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The nonlinear dynamics of preheating after early-universe inflation is often studied with lattice
simulations. In this work I present a new lattice code “HLattice”. It differs from previous public
available codes in the following three aspects: (i) A much higher accuracy is achieved with a modified
6th-order symplectic integrator; (ii) Scalar, vector, and tensor metric perturbations in synchronous
gauge and their feedback to the dynamics of scalar fields are all included; (iii) The code uses a
projector that completely removes the scalar and vector components defined by the discrete spatial
derivatives. Such a generic code can have wide range of applications. As an example, gravity waves
from preheating after inflation are calculated with a better accuracy.

I. INTRODUCTION

Early-universe inflation [1–3] has now become one of
the key elements of the standard cosmological model
[4–6]. In this paradigm the universe went through a
phase of accelerated expansion, which, in the simplest
scenario is, driven by a scalar field, namely the infla-
ton. The predictions of inflation have been confirmed by
the high-precision measurements of Cosmic Microwave
Background (CMB) [7–17] and the large scale structure
surveys [18–20]. Combining these observations with su-
pernova [21–28], weak gravitational lensing [29–36] and
Lymanα forests data [37–41], we find that the current
universe is undergoing another cosmic acceleration [42–
44]. This could be due to a cosmological constant [45] or
another scalar field [46–57].
It is hence important to understand the dynamics

of scalar field(s) in a perturbed Friedmann-Robertson-
Walker (FRW) background [4–6]. In many cases these
scalar fields are almost homogeneous. Thus linear or
second-order perturbation theory is enough to describe
such a system. However, there are exceptions. Some-
thing that we cannot avoid in any successful inflationary
model is the decay of the inflaton after inflation. This
could start with preheating, a nonperturbative violent
process due to parametric resonance or tachyonic growth
of fluctuations [58–69]. The typical comoving scale of pre-
heating is much smaller than current cosmological scales.
However, Cosmological-scale comoving curvature fluctu-
ations can also be generated via, e.g., preheating mod-
ulated by a field that is light during inflation but be-
comes heavy at the end of inflation [70–72]. Moreover,
the stochastic background of gravity waves (GW) gen-
erated during preheating [73–81] is in principle observ-
able. In particular, GW from preheating after hybrid
inflation may be observable with the next generation of
GW probes [79], although this depends on the param-
eters in this model. See also [75] where the parameter
space is systematically explored. For more models sug-
gesting potential observables from preheating, the reader
is referred to Refs. [82–87].

To make quantitative predictions of the observables
from preheating, one often needs to run full nonlinear
lattice simulations. In the previously mentioned GW
calculations, the evolution of scalar fields are done in
configuration space using the public available code LAT-
TICEEASY [88] or unreleased codes with similar tech-
niques. The linear metric perturbations are evolved ei-
ther in configuration space [75–79] or in Fourier space
[74, 80, 81]. In these treatments, a traceless-transverse
(TT) “tensor mode” is defined in Fourier space [89]:

hTT
ij,k =

[
MTT (k)

]
ij,lm

hlm,k , (1)

where hij are the metric perturbations in synchronous
gauge [4, 90]. The Fourier-space matrix form of the TT
projector, MTT (k), is given by

[
MTT (k)

]
ij,lm

≡ Pil (k)Pmj (k)−
1

2
Pij (k)Plm (k) ,

(2)
where

Pij (k) ≡ δij −
kikj
k2

. (3)

Here δij is the Kronecker delta. If not otherwise stated,
repeated indices are implicitly summed over. The Latin
indices run from 1 to 3 (spatial indices). The Greek in-
dices run from 0 to 3 (temporal and spatial indices).
One could also define the TT component in configura-

tion space:

hij =
h

3
δij +

(
∂i∂j −

1

3
δij∇2

)
Λ + ∂iAj + ∂jAi + hTT

ij ,

(4)
where

∇2 ≡ ∂2
1 + ∂2

2 + ∂2
3 (5)

h ≡ hii , ∂iAi = 0, ∂ih
TT
ij = 0 . (6)

Here hij is decomposed into two scalar components (h
and Λ), one vector component (Ai) and one tensor com-
ponent (hTT

ij ). The tracelessness of hTT
ij can be confirmed

by taking the trace of Eq. (4) and by using Eq. (6).
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In the continuous case, definition (4) is equivalent to
definition (1). But it is not so for a periodic and cu-
bical box with length L and n3 grid points, in which
the spatial derivatives in Eq. (4) are replaced by finite
difference. This is discussed in details in Section II B.
The discrepancy between definitions (1) and (4) leads
to scalar-tensor mixing: the scalar part of the energy-
momentum tensor, calculated in configuration space us-
ing discrete derivatives (finite difference), can produce
GW in Fourier space defined by Eq. (1). At scales where
the scalar components dominate, it is difficult to suppress
this “noise” or distinguish it from the physical GW. Sim-
ulations with very high resolution (n & 104), which might
solve the problem, are practically not favored as they are
numerically expensive and often limited by the machine
memory. In the new code “HLattice” that I will present
in the paper, I define, evolve, and extract scalar, vec-
tor, and tensor modes consistently in configuration space.
Even though the discrepancy between real (continuous)
physics and numerical (discrete) model cannot be com-
pletely removed in any numerical calculations, however,
in HLattice the scalar, vector and tensor parts of the met-
ric perturbations are only sourced, respectively, by the
scalar, vector, and tensor parts of the energy-momentum
tensor.
In other public available lattice codes, such as LAT-

TICEEASY, DEFROST [91], and CUDAEasy [92], the
scalar fields are evolved in a FRW background, and met-
ric perturbations are ignored. But at linear level one can
approximately take the energy-momentum tensor of the
scalar fields as a source, and evolve GW outside the sim-
ulation. (Therefore the scalar-tensor mixing effect is a
problem in post-processing. It should not be regarded
as a problem of these lattice codes.) Since this is a lin-
ear treatment, the TT component separation could be
done at the end of calculation [79]. Except for Ref. [93]
that I will discuss separately in Section IV, the previ-
ous works on GW from preheating are all based on this
(or a similar) approach. In these calculations, the feed-
back of metric perturbations to the dynamics of scalar
fields is ignored or partially ignored. HLattice is the first
released code that consistently evolve all components of
metric perturbations together with the scalar fields. Us-
ing HLattice I find the metric feedback, as conjectured
in previous works, is indeed not a dominating effect, at
least so for the models studied in this paper.
In some situations, in order to capture some small ef-

fects [72] or energy-insensitive modes [94], we need to
evolve the system of scalar fields and metric perturba-
tions accurately. In HLattice I use a 6th-order sym-
plectic integrator for global evolution, and a 4th-order
Runge-Kutta integrator [95] with refined time steps for
the non-canonical terms only. The advantage of doing
so is that no extra memory cost is required. With this
integrator the fractional energy noise of the system can
be suppressed to . 10−12. This enables us to check the
conservation of the total Hamiltonian, including the tiny
contribution from energy carried by gravity waves. This

is the first time that we can use the constraint equation to
accurately check the numerical accuracy in calculations
of GW from preheating.
This paper is organized as follows. In Section II I in-

troduce the HLattice code; In Section III I use HLattice
to calculate GW from preheating. I discuss and conclude
in Section IV.

II. HLATTICE CODE

A. Theory

The system that we consider contains m canon-
ical scalar fields φ1, φ2, ..., φm with a potential
V (φ1, φ2, ..., φm). The action reads

S =

∫ √
g d4x

(
1

2
∂µφℓ∂µφℓ − V +

M2
p

2
R

)
, (7)

where g ≡ |det gµν |, gµν being the spacetime metric; Mp

is the reduced Planck Mass, related to Newton’s gravita-
tional constant GN via Mp ≡ 1/

√
8πGN ; R is the Ricci

scalar [4].
The spacetime metric can be written in synchronous

gauge [4–6]:

ds2 = dt2 − gijdx
idxj . (8)

Natural units c = ~ = 1 are used.
In the context of inflation, we are interested in an ex-

panding and spatially flat universe, where the metric gij
is often written as

gij = a(t)2 (δij + hij) . (9)

In a finite volume L3, we choose a(t) to be the “scale
factor”, given by

a(t) ≡
(

1

L3

∫ √
gd3x

)1/3

. (10)

The Hubble parameter is defined as

H ≡ ȧ

a
, (11)

where a dot denotes the derivative with respect to time
coordinate t.
We will consider weak gravitational fields that satisfy

the condition |hij | ≪ 1. For a problem that requires
long-time integration, a growing nonphysical gauge mode
might spoil this condition. This specific case is discussed
in Section IID.
In HLattice I choose to evolve the following variables

βij ≡ (lnG)ij , (12)
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where G is the 3×3 matrix gij . The matrix function lnG
should be understood as

lnG ≡ 2E ln a+(a−2G−E)−1

2
(a−2G−E)2+1

3
(a−2G−E)3−... ,

(13)
where E is the 3× 3 identity matrix. To the linear order,
we have

hij ≈ βij − 2δij ln a . (14)

It follows from Eq. (14) that the traceless part of βij ,
which we define as γij , satisfies

γij ≡ βij −
β

3
δij = hij −

h

3
δij +O(h2

ij) . (15)

This implies that O(γn
ij) . O(hn

ij) for arbitrary n ≥ 0.
This significantly simplifies the procedure to expand an
arbitrary function of βij to a given order in hij– we just

need to replace βij with β
3 δij + γij and cut the Talor

expansions in γij at the same order. In the rest part of
this subsection, we will do that for the metric and for the
action.
Let us first calculate the volume weight

√
g. Using the

fact that det(G) ≡ eTr(lnG), we find a simple and exact
expression:

√
g = eβ/2 , (16)

where β ≡ βii is the trace of βij .
Writing the 3 × 3 matrix γij as Γ, we can rewrite the

3× 3 matrix gij as

G = e
β
3
E+Γ = eβ/3

(
1 + Γ +

1

2
Γ2 +

1

6
Γ3 + ...

)
. (17)

By taking the inverse of G we obtain

gij = e−
β
3

(
δij − γij +

1

2
γikγkj

)
+O

(
h3
ij

)
. (18)

We can substitute, for example, 1 − γ11 + 1
2γ

2
11 with

e−γ11 + O(h3
ij). With such substitutions and ignoring

O(h3
ij) terms, we can write gij as functions of βij :

g11 ≈ e−β11 +
e−2β11/3

2

(
β2
12e

−β22/3 + β2
13e

−β33/3
)
,

g22 ≈ e−β22 +
e−2β22/3

2

(
β2
23e

−β33/3 + β2
21e

−β11/3
)
,

g33 ≈ e−β33 +
e−2β33/3

2

(
β2
31e

−β11/3 + β2
32e

−β22/3
)
,

g23 ≈ −β23e
−(β22+β33)/2 +

1

2
β12β31e

−β/3 ,

g31 ≈ −β31e
−(β33+β11)/2 +

1

2
β23β12e

−β/3 ,

g12 ≈ −β12e
−(β11+β22)/2 +

1

2
β31β23e

−β/3 . (19)

The difference between the left-hand side and the right-
hand side of each equation is less than or equal to O(h3

ij).

It is obvious that such approximations are not unique, as
one can add arbitrarily more higher-order terms on the
right-hand side of each equation. The specific choice I
made in Eqs. (19) is based on three criteria:

• simplicity;

• less O(h3
ij) residual error terms;

• under a coordinate transformation xi → Cxi (i =
1, 2, 3, C is a constant; the metric transforms as
βij → βij−2δij lnC), the approximated expression
of gij scales as C2, just as the exact gij should be.

The last requirement enforces the gradient energy density
gij∂iφℓ∂jφℓ, with the approximations of gij in Eqs. (19)
being used, to remain exactly invariant. This allows us
to perform a spatial coordinate transformation xi → Cxi

without producing any extra error terms. This can be
used to optimize the HLattice code. In HLattice, af-
ter every few evolution steps the coordinate redefinition
xi → Cxi is performed, where C is chosen to be the
scale factor at the moment. After such transformation,
the scale factor is redefined to be unit and βij is made
small. The exponential functions in Eqs. (19) thus can
be evaluated via approximation

ex ≈










(

6∑

s=0

(x/16)s

s!

)2



2



2


2

, for |x| ≪ 1. (20)

For a program built with Fortran code, the evaluation
of the right-hand side of (20) is about twice faster than
that of ex. This significantly improves the performance
of HLattice.
Confusion should be avoided here. The FRW back-

ground is intrinsically different from a Minkowski back-
ground. In the calculation, by adaptively changing the
coordinate system, it is possible to keep the scale factor
close to unit and to keep βij small. However, when de-
riving the theoretical formulas, we should work in a fixed
coordinate system and cannot assume that βij is small.
The action (7) can be written as

S =

∫
dt (Kf −Gf − Vf +Kg −Gg) , (21)

where Kf is the kinetic energy of the scalar fields

Kf =

∫
eβ/2d3x

1

2
φ̇2
ℓ ; (22)

Gf is the gradient energy of the scalar fields

Gf =

∫
eβ/2d3x

1

2
gij∂iφℓ∂jφℓ ; (23)

Vf is the potential energy of the scalar fields

Vf =

∫
eβ/2d3xV (φ1, φ2, ..., φm) ; (24)
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Kg is the “kinetic energy” of gravity, approximated to
second order in hij by

Kg ≈
M2

p

4

∫
eβ/2d3x

×
(
β̇2
23 + β̇2

31 + β̇2
12

−β̇11β̇22 − β̇22β̇33 − β̇33β̇11

)
; (25)

Gg is the “gradient energy” of gravity, approximated to
second order in hij by

Gg ≈
M2

p

4
a(t)

∫
d3x

×
(
β2
23,1 + β2

31,2 + β2
12,3

−2β23,1β31,2 − 2β31,2β12,3 − 2β12,3β23,1

−β22,1β33,1 − β33,2β11,2 − β11,3β22,3

+2β23,2β11,3 + 2β31,3β22,1 + 2β12,1β33,2) ,(26)

where βij,k ≡ ∂kβij . In Eq. (26) I have approximated the

local volume weight eβ/6 with a global scale factor a(t).
This is valid since the integrand in Eq. (26) is of second
order in hij . In Eq. (25) such replacement is not allowed,
as the integrand is of zeroth order. With the bilinear
approximation (26), HLattice cannot capture the gravity
self-interaction, which in principle can be important on
small scales. This is discussed in Section IV.
Eqs. (25-26) are obtained using the same technique

that I used to derive Eqs. (19), i.e., rewriting βij as γij +
β
3 δij and cutting the Talor expansions of γij at the second
order. The simplicity of the final expression of Kg is the
main reason why I have used βij as fundamental variables
in HLattice.
It is also easy to verify that the right-hand sides of

Eqs. (22-26) are all exactly invariant under the spatial-
coordinate redefinition xi → Cxi.

B. The discretization scheme

In this subsection I answer or attempt to answer the
following questions:

1. What exactly are calculated in a lattice simulation?

2. How to choose a discretization scheme to include
metric perturbations?

3. How to define scalar, vector, and tensor on the lat-
tice?

Before answering these questions, let us briefly review
the lattice theory and the discrete Fourier transformation
(DFT).
I label a grid point in the lattice with three integer

numbers (i1, i2, i3) and apply the periodic boundary con-
dition (PBC)

fi1+n,i2,i3 = fi1,i2+n,i3 = fi1,i2,i3+n = fi1,i2,i3 , (27)

where n is a fixed integer representing the resolution of
the simulation; f represents all physical quantities in-
cluding the scalar fields, the metric, and their tempo-
ral/spatial derivatives. Given the PBC, we only need to
evolve fi1,i2,i3 in a cubical fundamental box containing
n3 grid points (−n/2 < i1, i2, i3 ≤ n/2). In what follows
I will use notation

∑
lattice to denote the summation over

grid points in this fundamental box.
The DFT is defined as [95]

f̃j1,j2,j3 ≡
∑

lattice

e
2πi

n (i1j1+i2j2+i3j3)fi1,i2,i3 , (28)

where i is the imaginary unit and j1, j2, j3 are arbitrary
integers. Unless otherwise stated, the overhead tilde sign
represents variables in Fourier space.

It is easy to verify that in Fourier space f̃j1,j2,j3 also
satisfies the PBC

f̃j1+n,j2,j3 = f̃j1,j2+n,j3 = f̃j1,j2,j3+n = f̃j1,j2,j3 . (29)

Moreover, if a field satisfies the PBC in Fourier space,
it also satisfies the PBC in configuration space. Thus in
what follows we no longer distinguish between the two
PBCs. Similarly we define a Fourier-space fundamental
box with −n/2 < j1, j2, j3 ≤ n/2.
The standard DFT wave vector is defined as

kstd
j1,j2,j3 ≡ 2π

L
(j1, j2, j3) , (30)

where L is the coordinate length of each edge of the fun-
damental box in configuration space. The amplitude of
kstd
j1,j2,j3

is

kstdj1,j2,j3 =
2π

L

√
j21 + j22 + j23 . (31)

I will use subscripts “disc” and “cont” to distinguish
between quantities evaluated on the discrete lattice or in
a continuum. These subscripts are often omitted when it
does not give rise to ambiguity.

1. What exactly are calculated in a lattice simulation?

In LATTICEEASY, DEFROST, and CUDAEasy, the
metric perturbations are ignored. Scalar fields are
evolved in configuration space. The lattice-version equa-
tion of motion (EOM) of the scalar fields is

(
d2

dt2
− ∇2

a2
+ 3H

d

dt

)
φℓ|i1,i2,i3 +

∂V

∂φℓ

∣∣∣∣
i1,i2,i3

= 0 , (32)

where ∇2 is the discrete Laplacian operator.
In this subsection we will discuss in an idealized case

where the temporal differential operator d/dt can be per-
fectly integrated. Moreover, the numerical errors in a(t)
and other background quantities are assumed to be negli-
gible. These assumptions can be quite close to the reality,
if a high-order integrator is used in the lattice code.
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The only spatial operator that appears in the EOM is
the Laplacian operator ∇2, which can be directly defined
without referring to any first-order discrete derivatives.
For example, in LATTICEEASY ∇2 is defined as

∇2f
∣∣
i1,i2,i3

≡ 1

∆2
(fi1+1,j1,k1

+ fi1−1,j1,k1
(33)

+fi1,j1+1,k1
+ fi1,j1−1,k1

+fi1,j1,k1+1 + fi1,j1,k1−1 − 6fi1,j1,k1
) ,

where ∆ ≡ L/n is the coordinate distance between neigh-
bor points in configuration space. By taking the DFT of
the above equation, we obtain its exactly equivalent form
in Fourier space

∇̃2f
∣∣∣
j1,j2,j3

= −
(
keffj1,j2,j3

)2
f̃j1,j2,j3 , (34)

where

(
keffj1,j2,j3

)2 ≡ 4

∆2

(
sin2

πj1
n

+ sin2
πj2
n

+ sin2
πj3
n

)
.

(35)

Because both ∇̃2f and f̃ satisfy the PBC, their ratio
−(keff)2 should also do. This can be explicitly checked
in Eq. (35).
The reader should keep in mind that Eq. (35) is a

consequence of the LATTICEEASY definition of discrete
∇2. In other lattice codes the definition of discrete ∇2

(and hence keff) can be different.
Using Eq. (34) we rewrite the EOM, Eq. (32) in Fourier

space:

 d2

dt2
+

(
keffj1,j2,j3

a

)2

+ 3H
d

dt


 φ̃ℓ

∣∣∣
j1,j2,j3

+

(̃
∂V

∂φℓ

)∣∣∣∣∣
j1,j2,j3

= 0 . (36)

Eq. (36) is the equation being integrated on the lat-
tice. Comparing it to the continuous-case EOM for a
mode k = keffj1,j2,j3 , we find that the only discrepancy
comes from the difference between the DFT of ∂V/∂φℓ

and the continuous Fourier transformation of it. This
discrepancy is model-dependent and difficult to quantify
in the nonlinear regime. However, in the linear regime,
as I will show below, this discrepancy vanishes.
In the linear regime, we can rewrite the lattice-version

EOM in configuration space as
(

d2

dt2
− ∇2

a2
+ 3H

d

dt

)
δφℓ|i1,i2,i3

+〈 ∂2V

∂φℓ′∂φℓ
〉 δφℓ′ |i1,i2,i3 = 0 . (37)

where 〈·〉 represents the lattice average 1
n3

∑
lattice ·. The

field perturbation δφℓ is defined as

δφℓ|i1,i2,i3 ≡ φℓ|i1,i2,i3 − 〈φℓ〉 . (38)

The Fourier-space version of Eq. (37) is

 d2

dt2
+

(
keffj1,j2,j3

a

)2

+ 3H
d

dt


 δ̃φℓ

∣∣∣
j1,j2,j3

+〈 ∂2V

∂φℓ′∂φℓ
〉 δ̃φℓ′

∣∣∣
j1,j2,j3

= 0 , (39)

which is identical to the continuous-case EOM for a linear
mode with wavenumber k = keff . If we interpret keff

as the physical wavenumber, in the limit that a perfect
integrator is used, all the linear modes will be correctly
solved on the lattice. In other words, in a lattice code
with a good integrator, the difference between a discrete
system and a continuum does not matter in the linear
regime.
What has been discussed above is well known to the

lattice community. However, in many previous works,
kstd in the fundamental box is interpreted as the phys-
ical wavenumber [74–81, 88, 96]. This is usually not a
serious problem. With a good definition of discrete ∇2,
keff should be close to kstd in the fundamental box. How-
ever, there are exceptions where the difference between
keff and kstd is relevant. One specific case is the calcula-
tion of GW that I will discuss later.

2. How to choose a discretization scheme to include metric

perturbations?

We have seen that defining the discrete ∇2 in config-
uration space is equivalent to defining a kernel −(keff)2

in Fourier space. First of all, the kernel should satisfy
the PBC. Secondly, since the linear modes on the lattice
behave like linear modes with k = keff in a continuum,
we should restrict (keff)2 to be positive to avoid non-
physical tachyonic growth. Third, for practical purpose,
in configuration space the discrete operator ∇2 should
involve only a few neighbors. Thus the functional form
of (keff∆)2 is limited to be a low-order polynomial of
e±2iπj1/n, e±2iπj2/n, and e±2iπj3/n. Finally, we want to
choose a (keff)2 that is close to (kstd)2, as we want the
nonlinear-regime mode-mode coupling on the lattice to
mimic the real physics in a continuum.
Using Eq. (33), the reader can verify that the LAT-

TICEEASY discrete∇2 satisfies all the above conditions.
Moreover, in configuration space it is accurate to the lin-
ear order of ∆:

∇2f
∣∣
disc

= ∇2f
∣∣
cont

+ O(∆2) . (40)

While this discretization scheme is simple and reason-
ably accurate, there may be various reasons to improve it.
For example, the discretization scheme in DEFROST im-
proves the isotropy of ∇2 without much additional com-
putational cost [91]. In DEFROST the default discrete
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∇2 is defined as

∇2fi1,i2,i3 ≡
∑

−1≤i′
1
,i′

2
,i′

3
≤1

C|i′
1
|+|i′

2
|+|i′

3
|fi1+i′

1
,i2+i′

2
,i3+i′

3
,

(41)
where C0 = −64/15, C1 = 7/15, C2 = 1/10, and C3 =
1/30.
For HLattice that includes metric perturbations, how-

ever, the discretization problem is much more compli-
cated, for the reasons that I list below.

1. The governing equations for the metric perturba-
tions are rather complicated. It is possible that
non-physical tachyonic growth arises in metric per-
turbations even when the discrete ∇2 is negative
definite.

2. The field EOMs now involve first-order derivatives
of the fields, whose discrete forms should be prop-
erly defined and be consistent with the lattice ∇2.

3. With the metric perturbations, the gradient en-
ergy terms (Gf and Gg) are much more compli-
cated. This prevent us from choosing complicated
discretization schemes, whose computational cost
will be intolerable.

To address the first point, I run HLattice for empty space-
time with initial small noises in the metric, and verify
that the noises do not grow. I propose that such a
null test should be done for any discretization schemes
of gravity.
Following the last two points, in the first released ver-

sion of HLattice (HLattice V1.0) I have used the simplest
discrete ∇ that is accurate to the linear order of ∆:

∂1|i1,i2,i3 f ≡ 1

2∆
(fi1+1,i2,i3 − fi1−1,i2,i3) ,

∂2f |i1,i2,i3 ≡ 1

2∆
(fi1,i2+1,i3 − fi1,i2−1,i3) , (42)

∂3f |i1,i2,i3 ≡ 1

2∆
(fi1,i2,i3+1 − fi1,i2,i3−1) .

The equivalent Fourier-space form can be achieved by
taking DFT of Eqs. (42). The result is:

∂̃1f j1,j2,j3 =
i

∆
sin

(
2πj1
n

)
f̃j1,j2,j3 ,

∂̃2f j1,j2,j3 =
i

∆
sin

(
2πj2
n

)
f̃j1,j2,j3 , (43)

∂̃3f j1,j2,j3 =
i

∆
sin

(
2πj3
n

)
f̃j1,j2,j3 .

The above equations can be written in a more compact
form

∇̃f j1,j2,j3 = ikeff
j1,j2,j3 f̃j1,j2,j3 , (44)

where the effective wave vector keff
j1,j2,j3

is

keff
j1,j2,j3 =

1

∆

(
sin

2πj1
n

, sin
2πj2
n

, sin
2πj3
n

)
. (45)

Thus the Fourier-space kernel for −∇2 is

(keffj1,j2,j3)
2 =

1

∆2

(
sin2

2πj1
n

+ sin2
2πj2
n

+ sin2
2πj3
n

)
.

(46)
Either taking the inverse DFT of Eq. (46) or repeatedly
using Eq. (42), we obtain the configuration-space defini-
tion of discrete ∇2 in HLattice V1.0:

∇2f
∣∣
i1,i2,i3

=
1

4∆2
(fi1+2,j1,k1

+ fi1−2,j1,k1
(47)

+fi1,j1+2,k1
+ fi1,j1−2,k1

+fi1,j1,k1+2 + fi1,j1,k1−2 − 6fi1,j1,k1
) .

This discrete ∇2 is also negative definite and accurate to
linear order of ∆. However, with this definition of ∇2,
if the metric backreaction is negligible and n is an even
number, a grid point on the lattice will never interact
with its neighbors. The Fourier-space point of view is
that keff in Eq. (46) satisfies a stronger PBC:

keffj1+n/2,j2,j3
= keffj1,j2+n/2,j3

= keffj1,j2,j3+n/2 = keffj1,j2,j3 ,

(48)
which indicate that we are only studying modes within
a smaller fundamental box. The higher modes (interac-
tion between neighboring points) are not included in this
discretization scheme.
Being not satisfied with the discretization scheme in

HLattice V1.0, I introduced a new discretization scheme
in the current version of HLattice, HLattice V2.0. The
discrete derivatives are defined as:

∂1|i1,i2,i3 f ≡ 1

12∆
[8 (fi1+1,i2,i3 − fi1−1,i2,i3)

−(fi1+2,i2,i3 − fi1−2,i2,i3)] ,

∂2|i1,i2,i3 f ≡ 1

12∆
[8 (fi1,i2+1,i3 − fi1,i2−1,i3) (49)

−(fi1,i2+2,i3 − fi1,i2−2,i3)] ,

∂3|i1,i2,i3 f ≡ 1

12∆
[8 (fi1,i2,i3+1 − fi1,i2,i3−1)

−(fi1,i2,i3+2 − fi1,i2,i3−2)] ,

whose Fourier-space form is

∇̃f j1,j2,j3 = ikeff
j1,j2,j3 f̃j1,j2,j3 , (50)

where the effective wave vector keff
j1,j2,j3

is

keff
j1,j2,j3 =

1

3∆

(
sin

2πj1
n

(
4− cos

2πj1
n

)
,

sin
2πj2
n

(
4− cos

2πj2
n

)
,

sin
2πj3
n

(
4− cos

2πj3
n

))
. (51)

This discrete ∇ is two-orders more accurate: ∇f |disc =
∇f |cont +O(∆4).
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TABLE I. Discretization schemes of lattice codes. The “ac-
curacy” is defined as (∇2f

∣

∣

cont
− ∇2f

∣

∣

disc
).

code ∇ ∇2 accuracy

LATTICEEASY undefined Eq. (33) O(∆2)
DEFROST undefined Eq. (41) O(∆2)
CUDAEasy undefined Eq. (41) O(∆2)
HLattice V1.0 Eqs. (42) Eq. (47) O(∆2)
HLattice V2.0 Eqs. (49) Eq. (52) O(∆4)

Explicitly written in configuration space, the discrete
∇2 in HLattice V2.0 is

∇2f
∣∣
i1,i2,i3

≡ 1

144

[
fi1+4,i2,i3 + fi1−4,i2,i3 + fi1,i2+4,i3

+fi1,i2−4,i3 + fi1,i2,i3+4 + fi1,i2,i3−4

+16
(
fi1+1,i2,i3 + fi1−1,i2,i3 + fi1,i2+1,i3

+fi1,i2−1,i3 + fi1,i2,i3+1 + fi1,i2,i3−1

−fi1+3,i2,i3 − fi1−3,i2,i3 − fi1,i2+3,i3

−fi1,i2−3,i3 − fi1,i2,i3+3 − fi1,i2,i3−3

)

+64
(
fi1+2,i2,i3 + fi1−2,i2,i3 + fi1,i2+2,i3

+fi1,i2−2,i3 + fi1,i2,i3+2 + fi1,i2,i3−2

)

−390fi1,i2,i3

]
(52)

Finally, I summarize all the discretization schemes in
Table I.

3. How to define scalar, vector, and tensor on the lattice?

In previous works [74–81, 88, 96], the scalar, vector
and tensor part of hij are defined in Fourier space:

h̃ij =
h̃

3
δij −

(
kstdi kstdj − 1

3
δij(k

std)2
)
Λ̃

+i kstdi Ãj + i kstdj Ãi + h̃TT
ij , (53)

where

kstdi Ãi = kstdi h̃TT
ij = h̃TT

ii = 0 . (54)

Because kstd does not satisfy the PBC, definition (53)
has to be limited in the fundamental box or in a smaller
region. It is clear that this definition is not equivalent to
the discrete form of Eq. (4), whose Fourier-space counter-
part is

h̃ij =
h̃

3
δij −

(
keffi keffj − 1

3
δij(k

eff)2
)
Λ̃

+i keffi Ãj + i keffj Ãi + h̃TT
ij , (55)

where

keffi Ãi = keffi h̃TT
ij = h̃TT

ii = 0 . (56)

Since the Fourier modes of scalar fields on the lattice
follow EOM (36), Eq. (55) seems to be a more proper

definition. Thus it is a question whether one should use
MTT

(
kstd

)
orMTT

(
keff
)
as the TT projector. One may

argue that with a reasonable ultraviolet (UV) cutoff, the
difference between keff and kstd is small. However, the
TT projection is a subtle procedure. Because the scalar
metric perturbations is typically much larger than the
tensor ones, we are extracting a small number from a big
number. A little difference in the projector may lead to a
big error. With n ∼ 102-103 and a simple discretization
scheme, most of the modes in the fundamental box will
have ∼ 1-10% discrepancy between kstd and keff . We
will typically get a numerical GW “noise” with ampli-
tude At,noise ∼ 0.01-0.1As, where As is the amplitude of
scalar metric perturbations. Thus the relative error in
GW amplitude At is At,noise/At ∼ 0.01/r-0.1/r, where
r ≡ At/As is the tensor-to-scalar ratio of metric per-
turbations. For a model with r . 0.1, we in principle
cannot ignore this potential numerical noise due to im-
perfect TT projection, unless we understand that it will
vanish in some way. In Section III B this scalar-tensor
mixing problem due to imperfect TT projection will be
further discussed with a concrete example.

C. The 6th-order symplectic-Runge-Kutta hybrid

integrator

HLattice does not discretize the action along the tem-
poral direction. Instead it uses an accurate 6th-order
symplectic integrator to integrate the EOMs.
A symplectic integrator is designed to integrate a

classical system with a Hamiltonian that has the form
H(p,q) = K(p) +P(q), where q, p, P(q) and K(p) are,
respectively, the general coordinates, the conjugate mo-
menta, the potential energy and the kinetic energy. I
have used the curled letter H to distinguish the Hamil-
tonian from the Hubble parameter H .
An arbitrary function f(p,q) can be evolved with

df

dt
= Hf , (57)

where the functional operator H is defined as

Hf ≡ {f,H} , (58)

with {·, ·} being the Poisson bracket. Similarly we can
define K ≡ {·,K} and P ≡ {·,P}. Note that H = K+P,
and that K and P do not commute.
The solution of (57) can be formally written as

f(t+ dt) = eHdtf(t) . (59)

The nth-order symplectic integrator is constructed by
factorizing eHdt = e(K+P)dt as

eHdt = ec1Kdted1Pdtec2Kdted2Pdt...+O(dtn+1) , (60)

where c1, d1, c2, d2, ... are constant c-numbers.
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The operators K and P can be regarded as, respec-
tively, a Hamiltonian for free particles and that for “in-
ertialess” particles with a potential. Consequently, the
exact evolution of the system under eKdt and ePdt can
be achieved numerically. More explicitly, the solutions
are

eKdt

(
p

q

)
=

(
p

q+ ∂K
∂p dt

)
, (61)

and

ePdt

(
p

q

)
=

(
p− ∂P

∂q dt

q

)
, (62)

where ∂K
∂p should be understood as the vector(

∂K
∂p1

, ∂K
∂p2

, ...
)
and ∂P

∂q is defined in the same way.

Eqs. (61-62) are exact for a finite dt. Using the right-
hand side of Eq. (60) to evolve the system, we will only
have an error term that scales as dtn+1. (Strictly speak-
ing, there are also machine round-off errors, which is
∼ 10−17 for Fortran double precision numbers that are
used in HLattice.)
Because symplectic integrators are very stable, they

are often used to study long-term evolution of many-body
systems in astronomy and particle physics [97, 98]. The
most well-known and oft-used symplectic integrator is
the second-order one,

eHdt = eKdt/2ePdteKdt/2 +O(dt3) , (63)

which is equivalent to the leapfrog algorithm used in
other lattice codes [88, 91, 92].
In HLattice, a modified 6th-order symplectic integrator

is used. Before introducing the integrator, I will write
down the discretized Hamiltonian of the scalar fields and
gravity on the lattice.
Writing the integrals (22-26) as the sums of the in-

tegrand on the lattice, we obtain the action of the dis-
crete system described by (m+6)n3 general coordinates,
φℓ(i1, i2, i3) and βij(i1, i2, i3) (1 ≤ ℓ ≤ m, −n/2 <
i1, i2, i3 ≤ n/2), and by their time derivatives. Since
rescaling the action by a constant factor does not change
the EOMs of the system, we will drop the factor ∆3 in
the discretized action.
The conjugate momentum of φℓ(i1, i2, i3) is

Πφℓ
|(i1,i2,i3) = eβ/2φ̇ℓ

∣∣∣
(i1,i2,i3)

, (64)

and that of βij(i1, i2, i3) is

Πβij

∣∣
(i1,i2,i3)

=
M2

p

4
eβ/2 (2− δij)

(
β̇ij − β̇δij

)∣∣∣∣∣
(i1,i2,i3)

.

(65)

Now we are ready to write down the Hamiltonian of
the system, given by

H = K1 +K2 + P , (66)

where K1 is the kinetic energy of the scalar fields and
the sum of off-diagonal terms in the “kinetic energy” of
gravity:

K1 =
∑

lattice

e−β/2

[
Π2

φℓ

2
+

1

M2
p

(
Π2

β23
+Π2

β31
+Π2

β12

)
]

;

(67)
K2 is the sum of diagonal terms in the “kinetic energy”
of gravity

K2 =
1

M2
p

∑

lattice

e−β/2


2

3∑

i=1

Π2
βii

−
(

3∑

i=1

Πβii

)2

 ;

(68)
and P is the sum of all gradient and potential energy
terms

P =
∑

lattice

eβ/2
[
V (φ1, φ2, ..., φm) +

1

2
gij∂iφℓ∂jφℓ

]

+
M2

p

4n

(
∑

lattice

eβ/2

)1/3

×
[ ∑

lattice

(
β2
23,1 + β2

31,2 + β2
12,3

−2β23,1β31,2 − 2β31,2β12,3 − 2β12,3β23,1

−β22,1β33,1 − β33,2β11,2 − β11,3β22,3

+2β23,2β11,3 + 2β31,3β22,1 + 2β12,1β33,2)
]
, (69)

with gij given by Eqs. (19).
The symplectic integrators found in earlier works [99–

101] can not be directly used here. This is due to
two problems: (i) H ≡ {·,H} contains three non-
commutative operators K1 ≡ {·,K1}, K2 ≡ {·,K2} and
P ≡ {·,P}, while in the literature only two-term sym-
plectic factorization formulas are given; (ii) K2 is non-
canonical, as it depends on both β11 and Πβ11

.
The first problem in principle could be solved by itera-

tive factorization. We can treat K1+K2 as one operator,
factorize e(K1+K2)dt+Pdt, and finally factorize each fac-
tor that contains K1 +K2. This procedure, however, is
not optimal, and leads to a factorization formula with
hundreds of factors (for sixth or higher order). Indeed
a much simpler symplectic factorization exists, as I am
giving below.
For arbitrary operators A, B, C, commuting or not,

e(A+B+C)dt can be factorized as

e(A+B+C)dt = ec3Adt/2ec3Bdt/2ec3Cdtec3Bdt/2e(c3+c2)Adt/2

× ec2Bdt/2ec2Cdtec2Bdt/2e(c2+c1)Adt/2

× ec1Bdt/2ec1Cdtec1Bdt/2e(c1+c0)Adt/2

× ec0Bdt/2ec0Cdtec0Bdt/2e(c0+c1)Adt/2

× ec1Bdt/2ec1Cdtec1Bdt/2e(c1+c2)Adt/2

× ec2Bdt/2ec2Cdtec2Bdt/2e(c2+c3)Adt/2

× ec3Bdt/2ec3Cdtec3Bdt/2ec3Adt/2

+O(dt7) , (70)
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where

c1 = −1.17767998417887 ,

c2 = 0.235573213359357 ,

c3 = 0.784513610477560 ,

c0 = 1− 2(c1 + c2 + c3) . (71)

Eq. (70) can be checked by expanding both sides
up to 6th-order in dt. A Python script doing this
tedious but straightforward job can be downloaded from
http://www.cita.utoronto.ca/∼zqhuang/work/symp6.py.
The symplectic factorization is not unique. For exam-

ple, one can interchange A and B in Eq. (70) to generate
another correct 6th-order symplectic factorization with a
different O(dt7) residual term.
While the proof of a symplectic factorization is always

trivial, the technique to search for one is not. A general
approach is to assume a form of the factorization with a
few undetermined coefficients and solve for these coeffi-
cients by requiring the exact cancellation of lower-order
terms. For a high-order symplectic factorization, these
coefficients often need to be solved numerically, by us-
ing the Monte-Carlo technique to search for a solution
in the high-dimensional parameter space. This is how I
obtained Eq. (70).
Because factors containing B appear more frequently

in Eq. (70), I let B = K1, whose numerical evaluation is
less expensive. Letting A = K2 and C = P and noticing
that the c-numbers can always be absorbed into dt, we
now only need to write down the explicit algorithm to
evolve the general coordinates φℓ and βij and their con-
jugate momenta under the operators eK1dt, eK2dt, and
ePdt. For canonical operators eK1dt this is straightfor-
ward. We take K1 as the Hamiltonian and write down
the Hamiltonian equations:

eK1dt




φℓ|i1,i2,i3
Πφℓ

|i1,i2,i3
β11|i1,i2,i3
β22|i1,i2,i3
β33|i1,i2,i3
β23|i1,i2,i3
β31|i1,i2,i3
β12|i1,i2,i3
Πβ11

|i1,i2,i3
Πβ22

|i1,i2,i3
Πβ33

|i1,i2,i3
Πβ23

|i1,i2,i3
Πβ31

|i1,i2,i3
Πβ12

|i1,i2,i3




=




(
φℓ + e−β/2Πφℓ

dt
)∣∣

i1,i2,i3
Πφℓ

|i1,i2,i3
β11|i1,i2,i3
β22|i1,i2,i3
β33|i1,i2,i3(

β23 +
2e−β/2

M2
p

Πβ23
dt
)∣∣∣

i1,i2,i3(
β31 +

2e−β/2

M2
p

Πβ31
dt
)∣∣∣

i1,i2,i3(
β12 +

2e−β/2

M2
p

Πβ12
dt
)∣∣∣

i1,i2,i3

Πβ11
+ K1

2 dt
∣∣
i1,i2,i3

Πβ22
+ K1

2 dt
∣∣
i1,i2,i3

Πβ33
+ K1

2 dt
∣∣
i1,i2,i3

Πβ23
|i1,i2,i3

Πβ31
|i1,i2,i3

Πβ12
|i1,i2,i3




,

(72)
Since the quantities used to evolve the system, β, Πφℓ

,
Πβ23

, Πβ31
, Πβ12

and K1 all remain unchanged under
eK1dt, the above algorithm can be applied for finite dt
without any ambiguity. For example, one does not need

to ask whether K1 on the right-hand side of Eq. (72) is
evaluated at time t or t+ dt.
The same procedure can be applied to derive the

lattice-version EOMs under the canonical operator ePdt,
by taking P as the Hamiltonian and writing down the
Hamiltonian equations. Due to the complexity of Gf and
Gg, the final result is not human-readable. The interested
reader is referred to the macro files in the released HLat-
tice package, where the EOMs are defined via a series of
compiler-preprocessor macros.
Under the operator eK2dt, the EOMs are

eK2dt




β11

β22

β33

Πβ11

Πβ22

Πβ33




=




β11 +
2e−β/2

M2
p

(Πβ11
−Πβ22

−Πβ33
) dt

β22 +
2e−β/2

M2
p

(Πβ22
−Πβ33

−Πβ11
) dt

β33 +
2e−β/2

M2
p

(Πβ33
−Πβ11

−Πβ22
) dt

Πβ11
+ K2

2 dt
Πβ22

+ K2

2 dt
Πβ33

+ K2

2 dt




,

(73)
where the configuration space label |i1,i2,i3 is omitted on
both sides. The rest general coordinates and conjugate
momenta do not change under eK2dt.
However, due to the non-canonicality of K2, the exact

solution for Eq. (73) with finite dt cannot be achieved.
This is because K2 depends on both β11, β22, β33 and
their conjugate momenta. Consequently β, Πβ11

, Πβ22
,

Πβ33
and K2 are all dynamical on the right-hand side of

Eq. (73). Thus an algebraic solution does not exist for a
finite dt. To solve Eq. (73) I use a 4th-order Runge-Kutta
integrator with a smaller time step dt′ ≪ dt. This Runge-
Kutta sub-integrator, unlike a global one, does not cost
extra memory, because the operator K2 is local (does
not contain interactions between different grid points).
Here we are solving n3 independent sets of ODE, with
each set containing six coupled ODE. If a global Runge-
Kutta integrator had been used, the task would then be
solving 6n3 all-coupled ODEs, which is numerically much
more expensive. Since this step is numerically cheap, I
can make dt′ sufficiently small so that the O(dt′5) er-
ror from the 4th-order Runge-Kutta integrator does not
spoil the global O(dt6) accuracy. In HLattice dt/dt′ is
an adjustable parameter, whose default value is set to be
10.
Both the O(dt′5) error from the Runge-Kutta sub-

integrator and the O(dt7) term in Eq. (70) can be made
very small by shrinking dt by a factor of a few. This
symplectic-Runge-Kutta hybrid integrator thus can be
made very accurate without much additional computa-
tional cost. In Figure 1 I show a simulation done on a
eight-core desktop PC in about half an hour. (All eight
cores are used, as HLattice is an OpenMP parallelized
code.) The fractional energy noises are suppressed to
. 10−12. Such noises are ∼ 10−5-10−3 in other public
available lattice codes and cannot be suppressed much by
shrinking dt, because the error term behaves as O(dt3)
in those codes. Here for illustration purpose the metric
perturbations are turned off, and a low resolution n = 64



10

0 20 40 60

−15

−10

−5

0

a

lo
g 1

0(
|E

|/E
to

t)

FIG. 1. Lattice simulation for preheating model V = λ

4
φ4 +

1
2
g2φ2χ2 using HLattice, where λ = 10−13 and g2/λ = 200.

The simulation is started at the end of inflation, where I de-
fine a = 1 and choose the box size L = 20H−1. The solid
red line is log10(Egrad/Etot), where Egrad is the mean gra-
dient energy, and Etot is the mean total energy. The dot-
dashed black line and dashed cyan line are log10(Epot/Etot)
and log10(Ekin/Etot), where Epot and Ekin are the mean po-
tential energy and the mean kinetic energy, respectively. The
dotted blue line log10 |3H2M2

p/Etot − 1| shows that the con-
straint equation is satisfied at 10−12 level.

is chosen. It is about 10 times more expensive to include
metric perturbations. Hence a simulation with met-
ric perturbations typically takes about 5( n

64 )
3( 8

# of cores)

hours on a desktop PC, assuming the simulation can be
done with roughly the same number of (∼ 50, 000) time
steps. However, practically a simulation including met-
ric perturbations is often memory-limited. A simulation
with n ≥ 256 and including metric perturbations either
crashes (on low-memory machines) or becomes very slow
on most of computer architectures. This deficiency could
be partially cured by using distributed memory, at the
price of frequent boundary data exchange. I leave the
development of a MPI-parallelized (distributed-memory)
version of HLattice as my future work.
In HLattice a few lower-order symplectic integrators

are also given as alternative options. The computational
cost can be reduced if a lower accuracy is tolerable.

D. The gauge choice problem

I have written HLattice in synchronous gauge for prac-
tical convenience. In synchronous gauge the gauge con-
dition g00 = g0i = 0 is local. In other gauges the ten
metric variables gµν are constrained by four global con-
straint equations, which has to be solved at every time-

step in order to eliminate the four gauge degrees of free-
dom. This is computationally expensive. Another op-
tion is to keep all the ten variables gµν on the lattice and
evolve them with Hamiltonian equations and four exter-
nal constraint equations defined by the gauge condition.
However, a symplectic integrator cannot deal with ex-
ternal constraint equations, at least not in a trivial way.
Thus writing HLattice in other gauges is a difficult prob-
lem. Nevertheless, I will discuss the theoretical aspect
of a generic gauge choices without implementing it in a
numerical code.
At first glance, gauge invariance must be broken when

we use the exact energy-momentum tensor Tµν on the
right-hand side of Einstein equation, while keeping only
the first-order terms in the Einstein tensor Gµν on the
left-hand side:

G(0)
µν +G(1)

µν =
1

M2
p

T exact
µν . (74)

HereG
(0)
µν is the background quantity, G

(1)
µν contains linear

terms of metric perturbations δgµν (or spacetime deriva-

tives of them). Analogously we can define G
(2)
µν , G

(3)
µν ,

etc. In the presence of small-scale nonlinearity in T exact
µν ,

the spacetime derivatives of the metric perturbations are
not necessarily small, but we still assume δgµν to be
small. (Collapsed objects like blackholes are not consid-
ered here.) For example, in the late-time universe around
a dark matter halo, the Laplacian of Newtonian potential
∇2ΦN can be larger than the “zero-th order” quantity

H2, while ΦN remains ∼ 10−5. Because G
(1)
µν contains

∂2gµν terms, it can be comparable to G
(0)
µν . The second-

order G
(2)
µν , which for dimensional reason does not con-

tain more derivatives, is suppressed by one more power
of δgµν . Hence it can be ignored.
Now, let us perform an infinitesimal coordinate trans-

formation xµ → xµ − ǫξµ. The two sides of Eq. (74)
transform as

G(0)
µν +G(1)

µν → G(0)
µν +G(1)

µν + ǫLξG
(0)
µν + ǫLξG

(1)
µν ,(75)

T exact
µν → T exact

µν + ǫLξT
exact
µν , (76)

where Lξ is the Lie derivative along ξ.
If we had followed the (usual) first-order gauge trans-

formation formulas for the metric [102], we would have
discarded the last “second-order” term on the right-hand
side of (75). However, we know that we should not do

so, as on small scales ǫLξG
(1)
µν is of the same order of

ǫLξG
(0)
µν . Both terms are needed to match the ǫLξT

exact
µν

term in Eq. (76), otherwise the Einstein equation in the
new gauge would not be equivalent to the one in the old
gauge.
In summary, to be self-consistent we need to use new

gauge transformation rules where spacetime derivatives
of δgµν are treated as zeroth-order quantities. This
then leads to a problem: δgµν themselves may no longer
be small after a gauge transformation. Physically, this
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means that there are “optimal gauges” where metric per-
turbations remain small. This is not surprising, as we
expect, for example, that uniform energy gauge would
fail in the presence of inhomogeneous matter.
The question for HLattice is then whether the syn-

chronous gauge is one of the “optimal gauges”. The an-
swer depends how long we want to evolve the system
and how inhomogeneous the scalar fields are. Empirically
when hij approaches O(1) we should stop the simulation,
because in this case we are using rather bad approxi-
mations. This, however, does not necessarily indicate
a strong gravitational field. In synchronous gauge one
has the freedom to choose arbitrary spatial coordinates.
This corresponds to a nonphysical gauge mode, whose
amplitude (but not its time derivative) can be eliminated
at any given moment by a proper gauge transformation
xi → xi + ζi(x). HLattice V2.0 includes an option of
using adaptive spatial coordinates (i.e. eliminating the
gauge mode in every few steps). Currently this option is
labeled as a “beta version” (a trial version). Its numerical
stability will be studied in my future work.
A conjecture is that Newtonian gauge is more optimal,

since the Newtonian potentials are all physical. I also
leave the rewriting of HLattice in Newtonian gauge for
future work, if a proper integrator can be found for this
gauge.
I end this section by summarizing the current HLattice

configuration options in Table II.

III. GRAVITY WAVES FROM PREHEATING

A. Gravity waves from tachyonic preheating after

hybrid inflation

In this section I use HLattice to calculate gravitational
waves from tachyonic preheating after hybrid inflation
[75, 79]. Following [75, 79], I assume a real inflaton field
φ and a complex field σ = σ1 + i σ2. The potential reads

V =
1

4
λ(σ2 − υ2)2 +

1

2
g2φ2σ2 , (77)

where σ2 ≡ σ2
1 + σ2

2 .
For illustration purpose, I fix the parameters that have

been used in Figure 4 of [75]: λ = 10−14, g2/λ = 2, υ =

10−3
√
8πMp, and

gφ̇
λυ2 |φ=φc = 10−5, where φc ≡

√
λυ/g

is the critical point where inflation ends. At the be-
ginning of the simulation, the initial metric perturba-
tions are all set to be zero and a is defined to be unit.
The σ field is initialized with random Gaussian fluctu-
ations with “vacuum-fluctuation” amplitude |σ1,k|2 =
|σ2,k|2 = 1/(2ωk) and |σ̇1,k|2 = |σ̇2,k|2 = ωk/2, where

ωk ≡
√
k2 +m2

σ = k, as σ is massless at the beginning of
simulation. This is an approximation using the classical
lattice simulation to mimic how these quantum vacuum
modes becomes classical due to the tachyonic instability.
Since the growth of δσ is exponential, this approxima-
tion is expected to be good. Another problem is that

physically gravity should not respond to these unrenor-
malized vacuum modes, while on the classical lattice it
does. However, since σ is light and the lattice UV cutoff
is not too high, the nonphysical hij excited by these ini-
tial σ fluctuations is negligible. The inflaton φ is set to
be initially homogeneous, for two reasons: (i) At the be-
ginning, the dominating physics is the tachyonic growth
of σ fluctuations. Later φ fluctuations are excited and
enhanced by the inhomogenous χ field. The vacuum flu-
tuations in φ remains irrelevant in this problem. (ii) the
renormalization problem is more severe for the φ field, as
at the beginning the energy fluctuations are more sensi-
tive to φ fluctuations.
The GW energy spectrum computed using HLattice

is shown in Figure 2. The fractional energy of GW per
efold, Ωgw, is defined as

Ωgw ≡ 1

ρcrit

dρgw
d ln f

, (78)

where f is the GW frequency and ρgw is the energy
density of the GW. Here the critical density, defined as
ρcrit ≡ 3H2M2

p , in a spatially flat universe is the same
as the mean energy density. I have converted the GW
energy spectrum to present-day observables in Figure 2.
Ωgw,0 is defined by replacing all quantities by today’s ob-
servables in Eq. (78). I have used Eq. (35-36) in Ref. [75]
to convert the simulation output to present-day observ-
ables. See also Ref. [79] for a more detailed derivation of
these formulas.
In this model, GW are produced during two stages.
In the first stage, φ can be approximated as φ = φc −

φ̇ct. The mass square of σ field is approximately

m2
σ ≈ −2g2φcφ̇ct . (79)

The infrared modes k < g

√
2φcφ̇ct first start to grow. As

t increases, more and more modes become tachyonic and
begin to grow. Bubbles of σ field are created in this pro-
cess, producing gravity waves on roughly the same scales
[75]. This can be seen from the lower part of Figure 2.
In the second stage, φ condensate is broken due to the

coupling between φ and σ. The estimation (79) is no
longer valid. The typical scales of inhomogeneity rapidly
shift towards k ∼ gφc, producing GW waves on these
scales. At low k the GW spectrum saturates at a sta-
tionary level, as shown in the upper part of Figure 2.
The saturated low-frequency part of GW is what we are
interested in, as it can potentially be observed with fu-
ture GW probes such as BBO [75, 79].
When gravity is included, the constraint equation is

always H = 0 regardless of the matter content of the sys-
tem. This constraint equation can be used to estimate
the numerical energy noises. In Figure 3 I plot the en-
ergy carried by GW and the total Hamiltonian H, both
divided by the energy carried by the scalar fields for com-
parison. The contribution of energy carried by GW sat-
urates to ∼ 10−6, while the final numerical energy noise
is ∼ 10−9. In other words, energy conservation has been
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TABLE II. Available Options in HLattice. S2-6 stands for the option of using the 2nd, 4th and 6th symplectic integrators; GW
stands for the option to calculate gravity waves; τ stands for the option of using conformal time (the default is using physical
time); keff (kstd) stands for the option of using keff (kstd) to construct the TT projector.

discretization scheme Eq. (33) Eq. (42) Eq. (49)
metric

Minkowski, no perturbations S2-6; GW; kstd S2-6; GW; keff ; kstd S2-6; GW; keff ; kstd

FRW, no perturbations S2-6; GW; τ ; kstd S2-6; GW; τ ; keff ; kstd S2-6; GW; τ ; keff ; kstd

FRW, with perturbations, synchronous
gauge, fixed spatial coordinates

DISABLED S2-6; GW; keff ; kstd S2-6; GW; keff ; kstd

FRW, with perturbations, synchronous
gauge, adaptive spatial coordinates

DISABLED S2-6; GW; keff S2-6; GW; keff

5 5.5 6 6.5
−30

−20

−10

log10(f/Hz)

lo
g 1

0
(Ω

gw
,0

h2
)

FIG. 2. Gravity waves from tachyonic preheating after hybrid
inflation calculated using HLattice V1.0 with metric pertur-
bations and fixed spatial coordinates. The simulation reso-
lution is n = 128. The model and parameters are the same
as that have been used in Figure 4 of [75]. Here Ωgw,0 is
the fractional energy of GW (per efold in frequency f) that
would be observed today (assuming radiation domination af-
ter preheating); h is the current Hubble parameter in unit of
100 kms−1 Mpc−1. The outputs are plotted from bottom to
top per unit time step dt = 0.00313H−1

φ=φc
, where φc is the

critical point where inflation ends. The lattice simulation is
started at φ = 0.9975φc, where I define a ≡ 1 and the box
size of simulation L = 0.8H−1

φ=φc
.

checked at the level of about 0.1% of the energy carried
by GW.
Comparing the “gradient energy” of gravity Gg shown

in Figure 3 to the energy carried by GW, we can estimate
r(k) ∼ 10−2 for the dominating modes. In this example,
the relative contribution of GW due to an imperfect TT
projector could be as high as ∼ 0.1/r, i.e., about 10 times
larger than the physical GW spectrum shown in Figure 2.
This provides a possible explanation why the GW spec-
trum found in previous works (see [75, 93] and references
therein) are generally larger than what I have obtained

1 1.2 1.4 1.6
−30

−20

−10

0

a

lo
g 1

0(
|E

|/E
to

t)

total Hamiltonian
fields gradient
gravity gradient
gravity waves

n = 128
L = 0.8H - 1

FIG. 3. The comparison between energy carried by GW
and numerical energy noise. The simulation is the same one
as that described in Figure 2. All the quantities are eval-
uated at the end of the simulation where a ≈ 1.8. The
solid red line is log10(Egrad,fields/Etot,fields), where Egrad,fields

is the total gradient energy of φ and σ fields, and Etot,fields

the total energy carried by them. The dot-dashed cyan
line is log10(|Gg|/Etot,fields), where Gg is the “gradient en-
ergy” of gravity defined in (26). The dashed black line is
log10(EGW/Etot,fields), where EGW is the energy carried by
GW. The dotted blue line is log10(H/Etot,fields), with H be-
ing the total Hamiltonian given by Eq. (66).

using HLattice. However, the discrepancy could also be
due to that I have included expansion of the universe,
which is ignored in Ref. [75]. Finally, due to the mem-
ory limitation, I cannot achieve the same high spatial
resolution in Ref. [75], which the authors found is also
important for this model.
The feedback from metric perturbations, however, is

found to be irrelevant for this model. No significant dif-
ference has been found in the power spectra of the scalar
fields between simulations with and without metric per-
turbations.
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~χk ∝  eµkτ

FIG. 4. The Floquet exponent µk(k) for χ̃k(τ ) in the pre-

heating model V (φ, χ) = λ

4
φ4 + g2

2
φ2χ2 with g2/λ = 120,

where τ is the conformal time in unit of 1/(
√
λφ̃max) and k is

comoving wavenumber in unit of
√
λφ̃max. Here χ̃ ≡ aχ and

φ̃ ≡ aφ are the conformal field values; φ̃max is the amplitude
of background φ̃ oscillations in the linear regime. The dashed
sky-blue, green and cyan lines are three characteristic scales
that will be compared to the simulation results.

B. Gravity Waves from preheating after chaotic

inflation

The example we have shown in previous section, al-
though being observationally interesting, is physically
complicated. The GW energy spectrum has two peaks
due to different physics at two stages. Mode-mode cou-
pling in a wide range of scales becomes important in the
nonlinear regime, which can be hardly captured by a sim-
ulation with n = 128. The result shown in Figure 2 need
to be further studied with a simulation with much higher
resolution if HLattice can be MPI-parallelized.
To better understand the scalar-tensor mixing prob-

lem, it is better to take a simple example that has been
well studied and well understood, and can be fully cap-
tured by a simulation with resolution n = 128. Here I
take the example of preheating after chaotic inflation

V (φ, χ) =
λ

4
φ4 +

g2

2
φ2χ2 . (80)

The parametric-resonance bands and Floquet exponents
for this model has been studied in details in Ref. [60]. I
choose the parameter λ = 10−14 and g2/λ = 120. This
set of parameters have been studied in Refs. [74, 79, 80].
For g2/λ = 120 the Floquet exponents µk is shown in
Figure 4. The dominating mode and the boundary of
the first resonance band, and the dominating mode in
the second resonance band are labeled with dashed sky-
blue, green and cyan lines, respectively.
I initialize the fields with “vacuum-amplitudes” ran-

dom Gaussian fluctuations with a cutoff |j1|, |j2|, |j3| <
38 (where keff does not significantly differ from kstd).

This covers the resonance band shown in Figure 4. The
simulation resolution is n = 128. The box size at the
beginning of simulation is L = n∆ = 20/(

√
λφini) =

13.87H−1
ini , where φini = 1.714Mp is the LATTICEEASY

default initial background value of φ, and Hini is the ini-
tial Hubble parameter. The scale factor a is defined to
be unit at the beginning of simulation. Here in order to
compare my result with the previous works, I have used
the same simulation configurations that have been used
in Refs. [74, 79, 80]. For this model, it is better to use
conformal time as time variable. In this simulation I thus
do not include the backreaction of metric fluctions, which
requires the coordinate t to be physical time.
The output of GW energy spectra are shown in Fig-

ure 5. In the IR part, both the GW projected by
MTT

(
keff
)
and that by MTT

(
kstd

)
agree with the re-

sults found in previous works [74, 79, 80]. On the inter-
mediate scales, the GW mapped by MTT

(
kstd

)
is sig-

nificantly higher than that by MTT
(
keff
)
, though keff

and kstd are close to each other. In this example, only
1-3% of the totally 1283 wave vectors are in the trustable
region, the shaded region of the lower panel in Figure 5,
where the difference betweenMTT

(
kstd

)
andMTT

(
keff
)

is negligible . This is also r-dependent. For a problem
with smaller r, the trustable region can be even smaller.
We have shown in Section II B that at linear level a mode
on the lattice exactly follows the EOM with k = keff and
that MTT

(
keff
)
can completely remove the scalar and

vector components defined by the discrete derivatives.
Therefore we may argue that we should trust MTT

(
keff
)

rather than MTT
(
kstd

)
. However, this argument be-

comes vague in the nonlinear regime. More discussion
along this line is given in Section IV. Nevertheless, what
has been explicitly shown here is that caution needs to
be taken for most of the modes on the lattice.
In Figure 6 the energy spectra of the χ field are plot-

ted, where nk is defined as nk ≡ 1
2k

[
k2 |χk|2 + |χ′

k|
2
]
. (I

have used the wavenumber k instead of the frequency ω
to avoid ambiguity in the nonlinear regime, where ω is ill-
defined.) The growth of nk in the linear regime (a . 30)
excellently agrees with the theoretical expectation shown
in Figure 4. In the nonlinear regime, the energy spectrum
still peaks around the resonance band until a ∼ 70. En-
ergy cascading becomes important at a & 70. When the
energy is peaked in a narrow band, the energy cascading
is efficient. The energy spectrum is soon smoothed at
a ∼ 80. The UV cascading slowly goes on after a ∼ 80.
However, due to the finite resolution of the simulation,
the UV cascading gradually becomes nonphysical on the
lattice. When the energy spectrum becomes flat, the UV
cascading will be strongly affected by the lattice UV cut-
off and should no longer be trusted. Physically, the UV
cascading in a continuum will continue until it is cut off
by the quantum effect at very high energy scales where
k4 is comparable to the background energy density. In
this sense, the classical lattice simulation cannot predict
a “final shape” of the spectrum. The hope is that, how-
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FIG. 5. The gravitational wave for the model V (φ,χ) = λ

4
φ4+

g2

2
φ2χ2 with λ = 10−14 and g2/λ = 120. The simulation

uses HLattice V2.0 discretization scheme and ignores metric
feedback. The box size is L = 128∆ = 20/(

√
λφini). The

blue solid line and red dashed line are GW projected with
MTT

(

keff
)

and with MTT
(

kstd
)

, respectively. In both cases
a cutoff |j1|, |j2|, |j3| < 38 in Fourier space has been used. In
the upper panel the output at a = 20, 30, ..., 90 are shown
from the bottom to top. In the lower panel only the outputs
in the nonlinear regime (from bottom to top, a = 60, 70, ...,
90) are shown. The shaded regions in the lower panel are the
regions containing 1% (dark) and 3% (dark and light) of the
kstd modes in the fundamental box (−n/2 < j1, j2, j3 ≤ n/2).
In both panels the characteristic scales shown in Figure 4 are
plotted with the same color code.
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FIG. 6. The energy power spectra of the χ field for the pre-

heating model V (φ,χ) = λ

4
φ4 + g2

2
φ2χ2 with λ = 10−14 and

g2/λ = 120. Here k is the effective wavenumber keff ; nk is

defined as nk ≡ 1
2k

[

k2 |χk|2 + |χ′

k|2
]

; 〈ρ〉 is the mean en-

ergy density. The simulation uses HLattice V2.0 discretiza-
tion scheme and ignores metric feedback. The box size is
L = 128∆ = 20/(

√
λφini). The gray lines from light to dark

correspond to a = 1, 10, 20, 30, ..., 90. The characteris-
tic scales shown in Figure 4 are plotted with the same color
code.

ever, other physics such as reheating takes place to stop
the cascading at some diffusion scale.

IV. DISCUSSION AND CONCLUSIONS

In Section II B it is shown that a TT projector
MTT

(
kstd

)
leads to a numerical noise in GW, which,

depending on the tensor-to-scalar ratio and the UV cut-
off used in the calculation, may or may not be negligi-
ble. This theoretical prediction has been confirmed in
Section III B, where the difference between GW ampli-
tudes calculated with different TT projectors is explicitly
shown.
It is also shown that the default TT projector in HLat-

tice, MTT
(
keff
)
, can perfectly remove the scalar and vec-

tor components defined by the discrete form of Eq. (4).
Since defining the discrete derivatives and MTT (k) is
a complicated part of the code, it is better to check if
the actual code agrees with this theoretical prediction.
In Figure 7 I show a null test. In the null test, a ran-
dom Gaussian field Λ with scale-invariant spectrum and
unit r.m.s. amplitude 〈δΛ2〉1/2 = 1 is generated on a
lattice with resolution n = 128. This field is shown in
the upper-left panel of each sub-figure. When gener-
ating the random field Λ, a cutoff |j1|, |j2|, |j3| < 32 is
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FIG. 7. Mapping a test field with TT projectors. Each sub-
figure contains four panels: the upper-left panel is a 2D slice
of the test field Λ; the upper-right panel is a 2D slice of
|F23|, where Fij ≡ ∂i∂jΛ; the lower-left panel is a 2D slice
of |F23| after TT projection under MTT

(

kstd
)

; the lower-
right panel is a 2D slice of |F23| after TT projection under
MTT

(

keff
)

. In sub-figures (a1-a3), the discrete ∂i is defined
in Eqs. (42). In sub-figure (b1-b3), the discrete ∂i is defined
in Eqs. (49). In sub-figures (a2) and (b2), a Fourier-space cut-
off |j1|, |j2|, |j3| < 32 is applied when generating the Λ field,
while this cutoff is |j1|, |j2|, |j3| < 16 for sub-figures (a3) and
(b3). See the text for more details.

used in sub-figure (a2) and (b2), and |j1|, |j2|, |j3| < 16
in (a3) and (b3). The discrete derivatives Fij ≡ ∂i∂jΛ
are calculated using either the HLattice V1.0 discretiza-
tion scheme (left column, sub-figures a1-a3) or the HLat-
tice V2.0 discretization scheme (right column, sub-figures
b1-b3). One component |F23| is shown in the upper-right
panel of each sub-figure. The DFT of Fij projected under
MTT

(
kstd

)
are inverse Fourier transformed back to con-

figuration space. The component |F23| after the TT pro-
jection is shown in the lower-left panel of each sub-figure.
Similarly, |F23| after TT projection with MTT

(
keff
)
is

shown in the lower-right panel of each sub-figure.
We have confirmed that in the code the scalar compo-

nent ∂i∂jΛ vanishes under the TT projector MTT
(
keff
)
.

(The 10−9 level noise is due to the round-off errors in the
DFT and inverse DFT calculations.) With the same cut-
off in sub-figures (a3) and (b3), the difference between
MTT

(
kstd

)
and MTT

(
keff
)
is much smaller in HLat-

tice V2.0. This again confirms that ∇disc defined by
Eqs. (49) is a better approximation to ∇|cont.
Although the projector MTT

(
keff
)
perfectly matches

the configuration space definition of GW, caution still
needs to be taken when we obtain different result us-
ing MTT

(
kstd

)
and MTT

(
keff
)
. The source of GW,

∂iφℓ∂jφℓ, in Fourier space is a convolution

˜∂iφℓ∂jφℓ

∣∣∣
j1,j2,j3

=
1

n3

∑
δ(3)(kstd

j′
1
,j′

2
,j′

3

+ kstd
j′′
1
,j′′

2
,j′′

3

− kstd
j1,j2,j3)

× (i keffi φ̃ℓ)
∣∣∣
j′
1
,j′

2
,j′

3

× (i keffj φ̃ℓ)
∣∣∣
j′′
1
,j′′

2
,j′′

3

,(81)

where −n/2 < j′1, j
′
2, j

′
3, j

′′
1 , j

′′
2 , j

′′
3 ≤ n/2. The discrete

Kronecker delta δ(3)(k) is unit when k = 2π
∆ (n1, n2, n3)

(n1, n2, n3 = 0,±1,±2, ...) and zero otherwise. We see
that while the discrete ∇ is mapped to ikeff , the mode-
mode coupling is described by kstd in the δ(3) function.
The danger of interpreting keff as the physical wave vec-
tor is that the mode-mode coupling may be inaccurately
described.
An ultimate solution to avoid the ambiguity in TT

projector might be evolving everything in Fourier space
without involving a discrete ∇ approximation. The dif-
ficulty is, however, is that calculating ∂V/∂φℓ in Fourier
space generally involves convolutions, which is expensive
for large n. An attempt in this direction is the PSpectRe
code by Easther et al. [103].
During preheating, the source terms ∂iφℓ∂jφℓ are com-

parable to the background energy density. In HLattice
the higher-order gravity self-interaction terms . Gghij

in the Lagrangian are ignored. This is valid at least on
large scales where the average Gg is much smaller than
the background energy density. On smaller scales this
might not be a good approximation. In Ref. [93] the au-
thors integrate discretized Einstein equations, and find
GW enhanced by an order of magnitude when gravity
self-interactions are included. However, the nonlinear en-
hancement that they find is on large scales (see Figure 2
and Figure 3 in [93]). This is a puzzling result. Note that
[93] suffers from the same scalar-tensor mixing problem.
Also, as discussed in Section II B, the discretization of
gravity is not a trivial problem. The authors of [93] find
that their result is sensitive to the initial conditions of
metric. This is a hint that numerical tachyonic instabili-
ties might exist in their discretization scheme for gravity,
because physically a weak gravitational field should not
have chaotic feature. Moreover, numerical noises could
arise if the integrator is not accurate enough. Ideally
their results can be checked by adding all the gravity
self-interaction terms into HLattice. However, this will
significantly complicate the code and make the simula-
tions much more expensive. I leave this for future work.
In HLattice the scalar fields are all assumed to be

canonical. An earlier version of HLattice, before met-
ric perturbations were incorporated, can simulate non-
canonical scalar fields as well. The non-canonical oper-
ators are similarly integrated using a Runge-Kutta sub-
integrator. I will merge the two versions together in the
future versions of HLattice. The purpose is to accurately
study GW produced in preheating with non-canonical
scalar fields [65].
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As a general lattice code with a superior accurate
integrator, HLattice can be used in many other fields
of cosmology. It can be used to study scalar met-
ric perturbations, such as the comoving curvature per-
turbations studied in [72], or nonlinear problems for
stochastic inflation models [104]. If vector fields can
be incorporated, it can also be used to study the elec-
troweak phase transition. To make the code more pro-
ductive, I release the source code to the community at

http://www.cita.utoronto.ca/∼zqhuang/hlat .
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[64] A. E. Gümrükçüoğlu, K. A. Olive, M. Peloso, and M.
Sexton, Phys. Rev. D 78, 063512 (2008).

[65] N. Barnaby, J. R. Bond, Z. Huang, and L. Kofman,
Journal of Cosmology and Astro-Particle Physics 12,
21 (2009).

[66] J. Braden, L. Kofman, and N. Barnaby, Journal of Cos-
mology and Astro-Particle Physics 7, 16 (2010).

[67] A. V. Frolov, Classical and Quantum Gravity 27,
124006 (2010).

[68] R. Allahverdi, R. Brandenberger, F. Cyr-Racine, and
A. Mazumdar, Annual Review of Nuclear and Particle
Science 60, 27 (2010).

[69] P. Brax, J. Dufaux, and S. Mariadassou, ArXiv e-prints
(2010).

[70] A. Chambers and A. Rajantie, Physical Review Letters
100, 041302 (2008).

[71] A. Chambers and A. Rajantie, Journal of Cosmology
and Astro-Particle Physics 8, 2 (2008).

[72] J. R. Bond, A. V. Frolov, Z. Huang, and L. Kofman,
Physical Review Letters 103, 071301 (2009).

[73] S. Khlebnikov and I. Tkachev, Phys. Rev. D 56, 653
(1997).

[74] J. Dufaux et al., Phys. Rev. D 76, 123517 (2007).
[75] J. Dufaux, G. Felder, L. Kofman, and O. Navros, Jour-

nal of Cosmology and Astro-Particle Physics 3, 1 (2009).
[76] J. Dufaux, Physical Review Letters 103, 041301 (2009).
[77] J. Dufaux, D. G. Figueroa, and J. Garćıa-Bellido, Phys.
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