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Around 1637, Pierre de Fermat, a lawyer and
amateur mathematician, conjectured that if n is
a natural number greater than 2, the equation
xn � yn � zn has no solutions where x, y, and 
z are non-zero integers. (Solutions where some
of the integers are zero are possible but not
interesting, and are known as trivial solutions.)
Fermat wrote the statement in the margins of
his Latin edition of a book called Arithmetica,
written by the Greek mathematician Diophantus
in the third century A.D. Fermat claimed, “I have
discovered a truly marvellous proof of this,
which, however, this margin is too small to 
contain.” The result has come to be known as

Fermat’s Last Theorem because it was the last of his conjectures to remain unre-
solved after his papers were published. It became famous among mathematicians
because for hundreds of years many great mathematicians attempted to prove it
and achieved only partial results.

Investigate
Fermat’s Last Theorem is closely related to the Pythagorean Theorem, and it is
known that x2 � y2 � z2 has integer solutions. For example, 32 � 42 � 52. 
The numbers (3, 4, 5) are called a Pythagorean triple. There are an infinite number
of Pythagorean triples. Just pick two numbers a and b with a � b and set 
x � 2ab, y � a2 � b2, and z � a2 � b2. Then x2 � y2 � z2. Try it. Then prove that
it works for any a and b.

Similar to Fermat’s Last Theorem is Leonhard Euler’s conjecture that there are no
non-trivial solutions to x4 � y4 � z4 � w4. This question remained unresolved for
over 200 years until, in 1988, Naom Elkies found that

2 682 4404 � 15 365 6394 � 18 796 7604 � 20 615 6734

Since x2 � y2 � z2 has infinitely many solutions and x4 � y4 � z4 � w4 has at
least one solution, it is hard to believe that xn � yn � zn has no solution.

DISCUSSION QUESTIONS

1. Does x3 � y3 � z3 have a non-trivial solution?

2. Why is there no need to consider negative integer solutions to xn � yn � zn?
That is, if we knew there were no solutions among the positive integers, how
could we be sure there were no solutions among the negative integers?

3. When Fermat’s Last Theorem was finally proven, its proof made headlines in
newspapers around the world. Do you think the attention was justified? ●

CHAPTER 1 :  FERMAT’S  LAST THEOREM

investigate 
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Section 1.1 — What Is Proof?

The concept of proof lies at the very heart of mathematics. When we construct 
a proof, we use careful and convincing reasoning to demonstrate the truth of a
mathematical statement. In this chapter, we will learn how proofs are constructed
and how convincing mathematical arguments can be presented.

Early mathematicians in Egypt “proved” their theories by considering a number of
specific cases. For example, if we want to show that an isosceles triangle has two
equal angles, we can construct a triangle such as
the one shown and fold vertex B over onto 
vertex C. In this example, ∠B � ∠C; but that is
only for this triangle. What if BC is lengthened
or shortened? Even if we construct hundreds of
triangles, can we conclude that ∠B � ∠C for
every isosceles triangle imaginable?

Consider the following example.

One day in class Sunil was multiplying some numbers and made the following
observation:

12 � 1
112 � 121

1112 � 12 321
11112 � 1 234 321

11 1112 � 123 454 321

He concluded that he had found a very simple number pattern for squaring a num-
ber consisting only of 1s. The class immediately jumped in to verify these calcu-
lations and was astonished when Jennifer said, “This pattern breaks down.” The
class checked and found that she was right. How many 1s did Jennifer use?

From this example, we can see that some patterns that appear to be true for a few
terms are not necessarily true when extended. The Greek mathematicians who
first endeavoured to establish proofs applying to all situations took a giant step
forward in the development of mathematics. We follow their lead in establishing
the concept of proof.

In the example just considered, the pattern breaks down quickly. Other examples,
however, are much less obvious. Consider the statement, The expression 
1 � 1141n2, where n is a positive integer, never generates a perfect square. Is this
statement true for all values of n? Does this expression ever generate a perfect
square? We start by trying small values of n.

B fold C

A

C, B

A

t chnologye
APPENDIX P. 485
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1141(1)2 � 1 � 1142, which is not a square (use your calculator to verify this)
1141(2)2 � 1 � 4565, which is not a square
1141(3)2 � 1 � 10 270, which is not a square
1141(4)2 � 1 � 18 257, which is not a square

Can we conclude that this expression never generates a perfect square? It turns
out that the expression is not a perfect square for integers from 1 through to 
30 693 385 322 765 657 197 397 207. It is a perfect square for the next integer,
which illustrates that we must be careful about drawing conclusions based on
calculations alone. It takes only one case where the conclusion is incorrect 
(a counter example) to prove that a statement is wrong.

We can use calculations or collected data to draw general conclusions. In 1854,
John Snow, a medical doctor in London, England, was trying to establish the
source of a cholera epidemic that killed large numbers of people. By examining
the location of infection and analyzing the data collected, he concluded that the
source of the epidemic was contaminated water. The water was obtained from the
Thames River, downstream from sewage outlets. By shutting off the contaminated
water, the epidemic was controlled. This type of reasoning, in which we draw
general conclusions from collected evidence or data, is called inductive reason-
ing. Inductive reasoning rarely leads to statements of absolute certainty. (We will
consider a very powerful form of proof called inductive proof later in this book.)
After we collect and analyze data, the best we can normally say is that there is
evidence either to support or deny the hypothesis posed. Our conclusion depends
on the quality of the data we collect and the tests we use to test our hypothesis.

In mathematics, there is no dependence upon collected data, although collected
evidence can lead us to statements we can prove. Mathematics depends on being
able to draw conclusions based on rules of logic and a minimal number of
assumptions that we agree are true at the outset. Frequently, we also rely on 
definitions and other ideas that have already been proven to be true. In other
words, we develop a chain of unshakeable facts in which the proof of any state-
ment can be used in proving subsequent statements. In writing a proof, it is
important to explain our reasoning and to make sure that assumptions and 
definitions are clearly indicated to the person who is reading the proof. When a
proof is completed and there is agreement that a particular statement can be 
useful, the statement is called a theorem.

A theorem is a proven statement that can be added to our problem-solving 
arsenal for use in proving subsequent statements. Theorems can be used to help
prove other ideas and to draw conclusions about specific situations. Theorems are
derived using deductive reasoning. Deductive reasoning allows us to prove a 



statement to be true. Inductive reasoning can give us a hypothesis, which might
then be proved using deductive reasoning.

As an example of inductive reasoning, note that if we write triples of consecutive
integers, say (11, 12, 13), exactly one of the three is divisible by 3. If a number of
such triples are written (say two or three by everyone in the class), we can
observe that every triple has exactly one number that is a multiple of 3. This 
provides strong evidence for us to conclude inductively that every such triple 
contains exactly one multiple of 3, but it is not proof. We will consider deductive
proof in the other sections of this chapter.

Part A

In each of the following exercises, you are given a mathematical statement. Using
inductive reasoning (that is, testing specific cases), determine whether or not the
claim made is likely to be true. For those that appear to be true, try to develop a
deductive proof to support the claim.

1. All integers ending in 5 create a number that when squared ends in 25. Test
for the first ten positive integers ending in 5.

2. The expression f(n) � �n3 � 5n2 � 5n � 6, where n is a positive integer,
gives a composite number for all values of n. Test for n � 1, 2, 3, 4, 5, 6.

3. In every set of four positive integers such that the second, third, and fourth are
each greater by 5 than the one preceding, there is always one divisible by 4. 
(One such set is 1, 6, 11, 16). Test using 5, 6, 7, 8, 11, 14, and 17 as first
numbers in the set.

Part B

4. a. The expression n2 � n � 5 generates a prime number for every positive
integer value of n.

b. The expression n2 � n � 11 generates a prime number for every positive
integer value of n.

c. The expression n2 � n � 41 generates a prime number for every positive
integer value of n.

Thinking/Inquiry/
Problem Solving

Knowledge/
Understanding

Exercise 1.1

5

Deductive reasoning is a method of reasoning that allows for a progression
from the general to the particular.
Inductive reasoning is a method of reasoning in which specific examples
lead to a general conclusion.

1 . 1  W H AT  I S  P R O O F ?



5. Straight lines are drawn in a plane such that no two are parallel and no three
meet in a common point. It is claimed that the nth line creates n new regions.
For example, the first line divides the plane into two regions, creating one
region in addition to the original one. Test this claim for n � 1, 2, 3, 4, 5.

6. If 9 is subtracted from the square of an even integer n greater than 2, the
result is a number that is composite (has factors other than 1). Test this claim
for n � 4, 6, 8, 10, 12.

7. If 9 is subtracted from the square of an odd integer n greater than 3, the result
is a number that is divisible by 8. Test this claim for n � 5, 7, 9, 13, 15.

8. If 3 is subtracted from the square of a positive integer n greater than 4, the
result is a composite number. Test this claim for n � 5, 6, 7, 8, 9.

9. John Snow, mentioned earlier, is often called the father of statistics. Discover
more about his interesting work in the great cholera epidemic by searching on
the London Cholera Epidemic on the Internet.

Part C

10. It is claimed that the expression n2 – 79n � 1601 generates a prime number
for all integer values of n from 1 to 200. Write a computer program to deter-
mine whether or not a given number is prime and use it to test the claim.

Communication

Application
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Section 1.2 — An Introduction to Deductive Proof 

In Section 1.1, we said that when we are proving something to be true we must
clearly explain the steps in our reasoning and state any assumptions that we are
making. The next example demonstrates these principles and provides a commen-
tary to justify each step.

EXAMPLE 1 Prove that in any set of three consecutive positive integers exactly one of them is
divisible by 3.

Proof
If a is any positive integer, then a � 1 and a � 2 are the next two integers, so the
triple (a, a � 1, a � 2) represents any set of three consecutive positive integers. 
If a is divided by 3, there must be a remainder of 0, 1, or 2.

If a leaves a remainder of 0, then it is divisible by 3. Further, a � 1 and a � 2
leave remainders of 1 and 2 on division by 3. Exactly one of the numbers is divis-
ible by 3.

Next, suppose that a leaves a remainder of 1 when divided by 3. If a is the small-
est of the three consecutive integers, then the next integer, a � 1, will leave a
remainder of 2. The third integer, a � 2, will leave a remainder of 0, so a � 2 is 
divisible by 3. Again, exactly one of the numbers is divisible by 3.

Finally, suppose that the integer a when divided by 3 leaves a remainder of 2.
Using the same argument as before, the next largest integer, a � 1, will leave 
a remainder of 0 when divided by 3, and the third integer, a � 2, will leave 
a remainder of 1, so a � 1 is divisible by 3. Exactly one of the numbers is 
divisible by 3.

We have considered all possibilities, and each one convinces us that when we take
three consecutive positive integers there is always exactly one of them divisible by
3. We conclude that for any set of three consecutive positive integers exactly one
of them will be divisible by 3.

There are a number of things to observe about this proof. First, the result is com-
pletely general. For any set of three consecutive positive integers, no matter how
large or small, we are guaranteed that exactly one of them is divisible by 3.
Second, we stated clearly the fact on which the proof was developed: when a 
positive integer is divided by 3, it leaves a remainder of 0, 1, or 2. Third, we con-
sidered all possibilities, leaving nothing to chance. Finally, and very importantly,
the argument was presented completely in the proof. A good proof is complete,
but we always strive to be brief in its presentation.
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Mathematical proof enables us to construct a chain of proven facts. In the next
example, we use the result of Example 1 to prove a new fact.

EXAMPLE 2 Prove that if n is an integer, n � 2, then f(n) � n3 � n is always divisible by at
least 6.

Solution
Factoring the expression, we obtain 

f(n) � n3 – n � n(n2 – 1)
� n(n – 1)(n � 1)

If n is an integer and is 2 or greater, then n – 1, n, n � 1 is a set of three consecu-
tive integers. Hence, one of these numbers is divisible by 3. Further, if we have
three consecutive integers, at least one of them is even (divisible by 2) by an 
argument similar to that of Example 1. Then the product of the three numbers is
divisible by 2 � 3 or 6.

Note that the fact proven in Example 1 makes our task in Example 2 simple once
we factor f(n).

EXAMPLE 3 If a, b, and c form an arithmetic sequence, prove that the equation 
(b – c)x2 � (c � a)x � (a – b) � 0 has equal roots.

Proof
Two facts will help. First, if a, b, c form an arithmetic sequence, then there is a
constant difference between consecutive terms. Second, for a quadratic equation
having equal roots, the discriminant is 0.

Since a, b, c form an arithmetic sequence, they have a constant difference, say d.
Then b � a � d and c � b � d or c � a � 2d.

D � (c – a)2 – 4(b – c)(a – b)
� [(a � 2d) – a]2 – 4[(a � d) – (a � 2d)][a – (a �d)]
� (2d)2 – 4(�d)(�d)
� 4d2 – 4d2

� 0

Since D � 0, the roots of the equation are equal.

In these examples, we have constructed proofs that are entirely general in nature.
We used no specific numerical examples in our proof, and no inductive reasoning.
Note, however, that the numerical examples we considered in Section 1.1 did give
us some assurance that the result is true.
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Our next example uses the idea of parity. When two integers have the same pari-
ty, either they are both even or they are both odd. If two numbers have different 
parity, one of the numbers is even and the other is odd. We can say, for example,
that the numbers 3 and 11 or 2 and 6 have the same parity, while 3 and 8 have 
different parity. Problems involving parity usually are posed for positive numbers
only.

EXAMPLE 4 Prove that there is exactly one triple of numbers (n, n � 2, n � 4) in which all
three are prime numbers.

Proof
If n is an even number, then n � 2 and n � 4 are even also. But the only even
prime is 2, so if n is an even prime, then n � 2. Now, n � 2 is 4, which is not a
prime. It is not possible for n to be even.

If n is odd, then n � 2 and n � 4 are odd also. Now, one of n, n � 2, and n � 4 is
always divisible by 3, because one of n, n � 1, and n � 2 is divisible by 3. 
If n � 1 is, then n � 4 � (n � 1) � 3 is also.

If one of the numbers n, n � 2, n � 4 is divisible by 3, that number is not 
a prime unless it is 3. Hence, n � 3 because that is the smallest odd prime, so
there is one triple (3, 5, 7).

Any other triple (n, n � 2, n � 4) with n odd must contain a number that is a 
multiple of 3, and hence is a composite number, so there is only one such triple.

Part A

1. Prove that every positive integer, ending in 5 creates a number that when
squared ends in 25.

2. Prove that if n is an odd positive integer, then one of the numbers n � 5 or
n � 7 is divisible by 4.

3. Prove that if n is an even positive integer, then n3 – 4n is always divisible by 48.Knowledge/
Understanding

Exercise 1.2

When writing a proof, explain your steps and always state the facts on which
you base the proof. Remember, the purpose is to convince a reader that you 
have constructed a clear, airtight argument.



4. Prove that the square of an odd integer is always of the form 8k � 1, where k
is an integer.

Part B

5. Observe that the last two digits of 72 are 49, the last two digits of 73 are 43,
the last two digits of 74 are 01, and the last two digits of 75 are 07. Prove that
the last two digits of 7201 are 07.

6. Prove that there are no integer solutions to the equation 2x � 4y � 5.

Part C

7. Prove that n5 – 5n3 � 4n is divisible by 120 for all positive integers n � 3.

8. Given that p and q are two consecutive odd prime integers, prove that their
sum has three or more prime divisors (not necessarily distinct).

9. Let a1, a2, a3, a4, and a5 be any distinct positive integers. Show that there
exists at least one subset of three of these integers whose sum is divisible 
by 3. (Use the fact that every integer can be written in one of the forms 
3k, 3k � 1, 3k � 2, where k is an integer.)

10. Prove that if 4 is subtracted from the square of an integer greater than 3, the
result is a composite number.

11. Prove that if 25 is subtracted from the square of an odd integer greater than 5,
the resulting number is always divisible by 8.

Thinking/Inquiry/
Problem Solving

Communication

Application
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Section 1.3 — Proof in Geometry

In Section 1.2, we illustrated some important ideas about the construction of a
proof. We emphasized the following points:

1. A proof is based on assumptions and facts that we accept as true or that
we have proven to be true.

2. Using these facts we can establish new conclusions, which we call theorems.

Now we’ll continue our discussion of proof, in the context of geometry. Since we
require a starting point, we begin by assuming three basic facts (or properties) to
be true. As we proceed, you will realize that these properties are not difficult to
prove. However, at this point they will be accepted as being true because they
have been used in your past study of geometry and have become statements of
fact that can be accepted as being true. They serve as a convenient starting point
in our discussion of geometric proof. The proof of a property is called a theorem.

When we use theorems, we do not have to verify their correctness each time we
wish to use them. The most important characteristic of theorems is that they are
general in nature. For example, when we say, The sum of the interior angles in a
triangle is 180˚, we are describing every triangle. Given any triangle, we can be
certain that its three angles will always add to this constant sum.

In geometric proofs, a diagram is imperative. On it we indicate all given informa-
tion, and as we proceed we mark other facts as they are discovered.

EXAMPLE 1 Triangle ABC has a right angle at B. AC is extended to D so that CD � CB. The
bisector of angle A meets BD at E. Prove that ∠AEB � 45˚.

Angles in a Triangle The sum of the interior angles in a triangle 
is 180 .̊ 
Isosceles Triangle Property In any isosceles triangle, the base angles 
are equal.
Opposite Angles When two straight lines intersect, opposite angles 
are equal.
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Comment 
We first draw a diagram, marking given information. 
Since ∠A is bisected, we let ∠BAE and ∠EAD be x. Then
∠BAC � 2x. Because CB � CD, ∠CDB � ∠CBD, and they
are each y. This is supplemental information that may be of
use to us as we proceed. Note that we use the symbol ∠CDB
both as a name of the angle and to represent the measure of
the angle.

Proof
In ∆BCD, CB � CD, so ∠CDB � ∠CBD.

Since the sum of the angles in a triangle is 180˚ 
in ∆ABD, (2x) � (y) � (90 � y) � 180.

Then 2x � 2y � 90
x � y � 45

In ∆ABE, x � y � 90 � ∠AEB � 180
Then 45 � 90 � ∠AEB � 180

∠AEB � 45

Hence ∠AEB � 45˚. 

EXAMPLE 2 Prove that for any convex polygon of n sides, the sum of the interior angles is
180(n – 2) .̊

Comment
First we clarify the term convex. A convex polygon is a polygon in which each of
the interior angles is less than 180˚.

A convex polygon A non-convex polygon

Proof 
Let P be any point inside the polygon. Join P to each of
the vertices. (This is why we specified a convex polygon.
There are points inside a non-convex polygon that cannot
be joined to all vertices by lines that lie completely inside
the polygon.) There are n triangles, each having an angle
sum of 180˚, so the sum of the angles in the n triangles is
180n˚. The sum of the n angles at P is 360˚, a complete
rotation. Then the sum of the angles at the vertices is 
180n˚ – 360˚, or 180(n – 2)˚.

B C

D

E

x x

y

y

A

A1

An

A6

A2

P

A5

A3 A4
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In the first example, we dealt with a specific situation, while in the second we
proved a property of convex polygons in general. Since this property has general
applicability, we can consider it to be a new theorem and remember it for future
use.

In a convex polygon, every interior angle has an exterior angle associated with it. If
a side of the polygon is extended, the exterior angle is the angle between the
extended and adjacent sides. There are two exterior angles associated with each
vertex because there are two sides that can be extended. It is easy to see that these
two angles are equal, because they are formed by intersecting lines. In considering
the exterior angles of a polygon, we count only one angle at each vertex.

EXAMPLE 3 Prove that the sum of the exterior angles for any convex 
polygon is 360˚.

Proof
At any vertex, the sum of the interior and exterior angles is 180˚. If there are n
vertices in the polygon, the sum of all interior and exterior angles is 180n˚. The
sum of the n interior angles is 180(n – 2)˚ � (180n – 360)˚. Then the sum of the
exterior angles is 180n˚ – (180n – 360)˚ � 360˚. Here we have another general
result, one that is rather surprising. Regardless of the number of sides in a convex
polygon, the sum of the exterior angles is 360˚. 

EXAMPLE 4 For the star-shaped figure shown, prove that the sum 
of the angles at A, B, C, D, and E is 180˚.

Proof
Since vertically opposite angles formed by 
intersecting lines are equal, we indicate equal pairs 
in the diagram. In each of the triangles having one 
of the required angles, the angle sum is 180˚.

Exterior Angles in a Convex Polygon Theorem The sum of the exterior
angles of any convex polygon is 360˚.

Angles in a Convex Polygon Theorem In any convex polygon with n sides
(or vertices), the sum of the interior angles is equal to 180(n – 2)˚.

B

A

E

D

C

A

B

C
D

E

t chnologye
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(∠A � v � x) � (∠B � x � y) � (∠C � y � z) � (∠D � z � u) �
(∠E � u � v) � 5(180) 

Then ∠A � ∠B � ∠C � ∠D � ∠E � 2(x � y � z � u � v) � 5(180) � 900

For the interior polygon, the sum of the exterior angles is 360˚.

Then x � y � z � u � v � 360
Therefore ∠A � ∠B � ∠C � ∠D � ∠E � 720 � 900

∠A � ∠B � ∠C � ∠D � ∠E � 180

The sum of the five angles is 180˚.

In this section, we have tried to give you an idea of the 
nature of geometric proof and how to construct a proof. 
The exercises give you an opportunity to develop the skill 
of writing simple proofs.

Part A

1. A convex polygon has 12 sides. Given that all interior angles are equal, prove
that every angle is 150˚.

2. In ∆KLM, P is the midpoint of the line segment LM. 
Prove that if PL � PK � PM, ∠LKM � 90˚.

Part B

3. Prove that the sum of the exterior angles at opposite vertices of any quadri-
lateral is equal to the sum of the interior angles at the other two vertices.

4. In ∆ABC, ∠A is a right angle. The bisectors of ∠B and ∠C meet at D. 
Prove that ∠BDC � 135˚.

5. In ∆PQR, PQ � PR. PQ is extended to S so that QS � QR. 
Prove that ∠PRS � 3(∠QSR).

6. The number of degrees in one interior angle of a regular polygon is x˚. Prove

that a formula for the number of sides of the polygon is �18
3
0
60

– x
�. 

(Remember that a regular polygon has equal sides and equal interior angles.)

Application

Knowledge/
Understanding

Exercise 1.3
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7. ∆ABC is obtuse-angled at C. The bisectors of the exterior angles at A and B
meet BC and AC extended at D and E, respectively. If AB � AD � BE,
prove that ∠ACB � 108˚.

8. In ∆ABC, the bisector of the interior angle at A and the bisector of the exterior

angle at B intersect at P. Prove that ∠APB � �
1
2� ∠C.

9. a. For the following seven-pointed star, determine the sum of the angles at
the tips of the star.

b. If a star has n points, where n is an odd number, find a formula for the sum
of the angles at the tips of the star.

Thinking/Inquiry/
Problem Solving

1 . 3  P R O O F  I N  G E O M E T RY 15
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y

x

B(6, 10)

C(12, –2)

A(–2, 2)

0

P(x, y)

Section 1.4 — Proof With Analytic Geometry

In earlier grades, you used analytic geometry to solve problems. Since analytic
geometry combines geometric properties with algebraic methods, it is useful in
numeric problems and in problems requiring general proofs.

EXAMPLE 1 Determine the coordinates of the point that is equidistant from the three points
A(�2, 2), B(6, 10), and C(12, �2).

Solution
Let P(x, y) be the required point.
Then PA � PB � PC
or 

PA2 � PB2 � PC2

PA2 � (x � 2)2 � (y – 2)2 � x2 � 4x � y2 – 4y � 8 1�
PB2 � (x – 6)2 � (y – 10)2 � x2 – 12x � y2 – 20y � 136 2�
PC2 � (x – 12)2 � (y � 2)2 � x2 –24x � y2 � 4y � 148 3�

Equating  1� and  2�, x2 � 4x � y2 – 4y � 8 � x2 – 12x � y2 – 20y � 136 
16x � 16y � 128

x � y � 8 4�

Equating  1� and  3�, x2 � 4x � y2 – 4y � 8 � x2 – 24x � y2 � 4y �148 
28x – 8y � 140
7x – 2y � 35 5�

Multiply equation  4� by 2: 2x � 2y � 16 6�
Adding 5� and  6� 9x � 51

x � �
1
3
7
�

Then y � 8 – x

� 8 – �
1
3
7
�

� �
7
3� 

The point P��
1
3
7
�, �

7
3�� is equidistant from A, B, and C. 

Using these same techniques, we can consider general proofs. Since we wish
them to be general, we cannot use numeric values for points defining a figure.
Instead, we name the coordinates of points in general terms. We begin by listing
the basic facts with which you are familiar.
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You know

1. how to determine the distance between two points

2. how to determine the equation of a line given its slope and a point on the line

3. how to determine the equation of a line given two points on the line

4. that two lines are parallel if their slopes are equal

5. that two lines are perpendicular if their slopes are negative reciprocals or if
the product of the slopes is –1

6. how to determine the equation of a circle given its radius and centre

We can use these facts to consider the following examples.

EXAMPLE 2 Prove that the midpoint of the line segment connecting the points A(x1, y1) 

and B(x2, y2) has coordinates ��x1 �
2

x2�, �
y1 �

2
y2��.

Proof
Let the midpoint of the line segment be
M(x, y). Draw the run and the rise from A
to M and from M to B. Then P has coordi-
nates (x, y1) and Q has coordinates (x2, y).

In ∆APM and ∆MQB, AM � MB
∠APM � ∠MQB    (Right angle)
∠MAP � ∠BMQ    (Lines parallel)

∆APM is congruent to ∆MQB.

Then AP � MQ and PM � QB
Then x – x1 � x2 – x and y – y1 � y2 � y
or 2x � x1 � x2 and 2y � y1 � y2

or x � �
x1 �

2
x2� and y � �

y1 �
2

y2�

The coordinates of M are ��x1 �
2

x2�, �
y1 �

2
y2��. 

The midpoint of the line segment connecting points (x1, y1) and (x2, y2) is

��x1 �
2

x2�, �
y1 �

2
y2��.

y

x
0

A(x1, y1) P(x, y1)

Q(x2, y)

B(x2, y2)

M(x, y)
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EXAMPLE 3 Prove that the lines joining consecutive midpoints of the sides of a convex 
quadrilateral form a parallelogram.

Proof
Let the coordinates for the quadrilateral be
O(0, 0), A(a, 0), B(c, b), and C(d, e).
(Note that we have placed one vertex at 
(0, 0) and one side along the x-axis. This will
simplify calculations.)

Since we wish to show that the midpoints of the quadrilateral form a parallelo-
gram, we first calculate the coordinates for the midpoints of the four sides. 

The midpoint of OA is R��
a
2�, 0�. 

Similarly, the midpoints of OC, BA, and CB are S��
d
2�, �2

e
��, Q��c�

2
a

�, �
b
2��, and 

P��d�
2

c
�, �

b�
2

e
��, respectively. 

Now the slope of SP is � �
b
c

� and the slope of RQ is � �
b
c

�

The slopes are equal, so SP is parallel to RQ. 

Also, the slope of RS is = �d –
e

a�

and the slope of QP is � �d �
e

a�

Then RS is parallel to QP. 

Since the opposite sides are parallel, PQRS is a parallelogram.

In Example 3, it was noted that convenient placing of a figure relative to the axes
can simplify calculations. We must also be aware that geometric conditions will
impose conditions on coordinates. This is important in the next example.

EXAMPLE 4 Prove that the diagonals of a rhombus bisect each other at right angles.

Proof
Let the rhombus have coordinates
O(0, 0), A(a, o), C(b, c), and B(a � b, c).
(This makes CB � OA.) 
Since OABC is a rhombus, OA � OC.
Then a2 � b2 � c2, so c2 � a2 – b2. 

�
b�

2
e

� – �
b
2�

��
�
d �

2
c

� – �c �
2

a
�

�2
e

� – 0
�
�
d
2� – �

a
2�

�
b
2� – 0

��
�
c �

2
a

� – �
a
2�

�
b�

2
e

� – �2
e

�

�
�
d�

2
c

� – �
d
2�

y

0
x

O(0, 0)

C(d, e)
B(c, b)

A(a, 0)

c + a
2

b
2Q (        ,    )

d + c
2

b + e
2P (        ,        )

a
2R (   , 0)

d
2

e
2S (   ,    )

v
v

y

0 O(o, o) A(a, o)

B(a + b, c)C(b, c)

x
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Now, slope OB � �
a �

c
b

� and slope AC � �
b �

c
a

�, so the product of the slopes is 

�
a �

c
b

� � �
b

c
– a
� � �

b2
c
–
2

a2�. 

But c2 � a2 – b2, so the product is �ab
2

2
–
–

b
a

2

2� � �1,

and the diagonals are perpendicular.

The midpoint of OB is P��a �
2

b
�, �2

c
��. The midpoint of AC is Q��a �

2
b

�, �2
c

��. 
Since these coordinates are the same, P and Q are the same point. The midpoint
of one diagonal is also the midpoint of the other. Then the diagonals of a rhombus
bisect each other at right angles.

Part A

Always try to choose coordinates of points so as to simplify your work. It can
sometimes be helpful to work a specific example before doing the general case.

1. Prove that the diagonals of a parallelogram bisect each other.

2. Triangle ABC has vertices A(�1, 3), B(5, 5), and C(7, �1).

a. Prove that this triangle is isosceles.

b. Prove that the line through B(5, 5) perpendicular to AC passes through the
midpoint of AC.

Part B

3. The ∆XYZ has its vertices at X(5, 4), Y(�2, 2), and Z(9, �3).

a. Determine the equation of the line drawn from vertex X to the midpoint of
YZ. (The line in a triangle from a vertex to the midpoint of the opposite
side is called a median.)

b. Determine the equation of the median drawn from vertex Y.

c. Prove that the two medians from parts a and b intersect at the point (4, 1).

d. Verify that the point (4, 1) lies on the median drawn from vertex Z.

e. What conclusion can be drawn about the medians of this triangle?

4. The ∆PQR has its vertices at P(�6, 0), Q(0, 8), and R(4, 0).

a. Determine the equation of a line drawn from R that is perpendicular to PQ.
(This line is called the altitude from R to PQ.)

Knowledge/
Understanding

Exercise 1.4
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b. Determine the equation of the altitude drawn from P to QR.

c. Determine the coordinates of the point of intersection of the two altitudes
found in parts a and b.

d. Show that the altitude from Q contains the point of intersection of the
other two altitudes.

e. What conclusion can be drawn about the altitudes of this triangle?

5. Prove that the diagonals in a square are equal.

6. Prove that the diagonals in a rectangle are equal.

7. Prove that the line segments joining the midpoints of any rectangle form 
a rhombus.

8. Prove that the line segment joining the midpoints of two sides of a triangle 
is parallel to the third side and has a length equal to one half of it.

9. Prove that the sum of the squares of the lengths of the sides of a parallelo-
gram is equal to the sum of the squares of the lengths of the diagonals.

10. In ∆ABC, where AD is the median, prove that AB2 � AC2 � 2BD2 � 2AD2.
(Let the length of BC be 2a units and use B or D as the origin.)

11. a. In the interior of rectangle ABCD, a point P is chosen at random. 
Prove that PA2 � PC2 � PB2 � PD2.

b. Prove this result using the Pythagorean Theorem.

Part C

12. Prove that the altitudes of a triangle are concurrent.

13. Prove that the medians of a triangle are concurrent.

Thinking/Inquiry/
Problem Solving

Application

Application

Pythagorean Theorem

If a triangle is right-angled, the square on the 
hypotenuse is equal to the sum of the squares 
on the other two sides; that is, a2 � b2 � c2.

a

b

c
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Fermat’s Last Theorem states that if n is a natural number greater than 2, the
equation xn � yn � zn has no solutions where x, y, and z are non-zero integers.
By 1992, mathematicians had proved the theorem for values of n up to four 
million. In 1994, over 350 years after Fermat first stated the theorem, Andrew
Wiles, a Cambridge mathematician, finally proved it for all natural numbers n. It
took Wiles more than seven years to produce the proof, including a final year to
fix an error pointed out after he first announced that he had the proof. When the
corrected proof was published it was well over 100 pages long. It is undoubtedly
not the proof that Fermat himself claimed to have; most mathematicians working
in number theory suspect that Fermat did not have a complete proof.

Investigate and Apply

1. Most proofs of Fermat’s Last Theorem for the case n � 4 focus on the
equation x4 � y4 � z2. Show that if there are no non-trivial solutions to 
x4 � y4 � z2, then there are no non-trivial solutions to x4 � y4 � z4. 
(Or, equivalently, if there is a non-trivial solution to x4 � y4 � z4, then there is
a non-trivial solution to x4 � y4 � z2. See the section on indirect proof in the
next chapter.)

2. Prove that if n is a natural number greater than 2, the equation xn � yn � zn

has no solutions where x, y, and z are non-zero rational numbers.

Hint: Show that if there is a solution among the non-zero rational numbers
then there is also a non-trivial integer solution (which we know is false).

INDEPENDENT STUDY
What kinds of questions are studied by mathematicians working in the branch 
of mathematics known as number theory?

What is the process by which a new mathematical result is accepted by the 
mathematical community?

Research other famous mathematicians who contributed to Fermat’s Last
Theorem, either by working out particular cases or by contributing ideas 
subsumed by Wiles’ proof.

What are some other significant unresolved questions in mathematics? ●

investigate and applywrap-up
CHAPTER 1 :  FERMAT’S  LAST THEOREM



Chapter 1 Test

1. Given the two points A(�2, 4) and B(6, 4), what must be true about a point 
C(x, y) that is equidistant from A and B?

2. Prove that the sum of the exterior angles for a convex hexagon is 360˚. Be
certain to explain the steps in your reasoning. (Do not use the formula for the
sum of the exterior angles of a convex hexagon.)

3. ABCD is a trapezoid with AB � CD. The diagonals AC
and BD have midpoints R and S. P is the midpoint of
AD, and Q is the midpoint of BC. Prove, using analytic
methods, that the points P, R, S, and Q lie in the same
straight line.

4. In the diagram, EB bisects angle ABC, and EC bisects
angle ACD. If ∠A is 58˚, determine ∠E.

5. Prove that when three consecutive even numbers are
squared and the results are added, the sum always has 
at least three divisors.

6. In ∆ABC, with vertices A(0, a), B(0, 0), and C(b, c), prove that the right bisec-
tors of the sides meet at a common point.

7. Julie writes the equation x2 � 2x � 3 � 0. She observes that D, the 
discriminant, is D � 22 – 4(1)(3) � �8, which implies that the given 
quadratic equation has imaginary roots. She does another example,
5x2 � 6x � 7 � 0, and makes the same observation.

a. Verify that the equation 8x2 � 9x � 10 � 0 has imaginary roots.

b. Prove that if an equation has consecutive positive integers as its coeffi-
cients, such as (n – 1)x2 � nx � n � 1 � 0, then this equation always has
imaginary roots.
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Now that you have learned more about the basic
concept of proof, you will expand your knowledge
of proofs to include theorems and plane figures. 
In mathematics, you can put forward a theorem 
as something that can be proven from other
propositions or formulas. As a rule or law, your
theorem may be expressed as an equation formula.
To develop our understanding of the properties 
of triangles, quadrilaterals, and other polygons, 
we continue to make use of the idea of proof in
this chapter, extending it to include indirect proofs,
as well. 

CHAPTER EXPECTATIONS In this chapter, you will

• prove some properties of plane figures using
deduction, Section 2.1, 2.2, 2.5, 2.6

• understand the principles of deductive proof,
Section 2.2, 2.3

• prove some properties of plane figures using
indirect methods, Section 2.4

Chapter 2
PLANE FIGURES AND PROOF



Review of Prerequisite Skills
In Chapter 1, we discussed some of the basic aspects of geometrical and non-geo-
metrical proof. In this chapter, we continue with proof in geometry, showing how
we can take basic definitions and theorems, accept them as true, and use them as
building blocks for the development of further theorems. Using these theorems,
we can prove new facts, constantly expanding our list of known facts.

THEOREMS ASSUMED IN CHAPTER 1

Angles in a Triangle

The sum of the angles in a triangle is 180º.

x � y � z � 180º

Isosceles Triangle Property

In any isosceles triangle, the base angles are equal.

a � b

Opposite Angles

When two lines intersect, opposite angles are equal.

Pythagorean Theorem

If a triangle is right-angled, the square on the 
hypotenuse is equal to the sum of the squares 
on the other two sides; in the diagram,
a2 � b2 � c2.

a

b

c

x

x
yy

a b

x

y z
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THEOREMS PROVED IN CHAPTER 1

Angles in a Convex Polygon

In a convex polygon of n sides,
the sum of the interior angles is 180(n – 2)º.

x1 � x2 � x3 � …. � xn � 180(n – 2)

Exterior Angles in a Convex Polygon

The sum of the exterior angles of a 
convex polygon is 360º.

a1 � a2 � a3 � … � an � 360

THEOREMS ASSUMED IN CHAPTER 2

Area of a Triangle

The area of a triangle having base b
and height h is A � �

1
2�bh.

A � �
1
2�b1h1 � �

1
2�b2h2

Exterior Angle Property

An exterior angle of a triangle is equal to the sum 
of the two interior and opposite angles.

a � b � c

c
a

b

b1

h2

b2
h1

a1
a2

a3

a4 a5

x1x2

x3

x4
x5
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Parallel Line Properties

If two lines are parallel

1. alternate angles a and b are equal

2. corresponding angles a and c are equal

3. the sum of co-interior angles a and d is 180º

4. distance between the lines is constant

Properties of a Parallelogram

In a parallelogram

1. opposite sides are equal

2. opposite angles are equal

3. the area is A � bh

AB � CD and AD � BC
x� z and w � y

A � b1h1 � b2h2

These relationships are the basis for the theorems that we will prove in this 
chapter.

Part A

1. In �gm ABCD, DC � 12 and AE � 10.

a. Calculate the area of �gm ABCD.

b. What is the area of ∆ABC?

2. In �gm ABCD, lengths are marked as shown.

AE � EC.

a. Determine the area of �gm ABCD.

b. Determine the length of AF.

Exercise
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h1 h2

a

b d
c

x y

h1

h2b2

b1B C
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D
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D 5

13

E C

F

BA



3. Calculate the area of figure ABCD.

4. Quadrilateral ABCD has BD � 12 and AC � 16. 
AC ⊥ BD. Determine the area of quadrilateral ABCD.

Part B

5. The rhombus PQRS has diagonals of length d1 and 
d2 as shown. Prove that the area of a rhombus is 

given by the formula A � �
d1

2
d2�.

6. If ∠ABC � 70º and ∠A � 30º,
determine the measure of ∠BDC.

7. In ∆ABC, AB � 12, AC � 10, and the altitude 
from C is 3. Determine the length of the 
altitude from B to AC.
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x
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Parallelograms are quadrilaterals with opposite
sides that are parallel. They are a common shape
because rectangles are a type of parallelogram.
Non-rectangular parallelograms are much less com-
mon, but they do arise as the solution to certain
engineering and design problems. They are used in
some jointed desk lamps, where they allow the
light-bulb end to be moved without changing the
direction in which the bulb points. For similar rea-

sons, they are used in some binocular mounts for amateur astronomers and some
motorcycle suspension systems. In movies, scenes that require a moving camera
can be made jitter-free by using a Steadicam, a device which works because of
the contribution of parallelograms.

Investigate and Inquire
In geometry, if we connect four points on a plane, the result is not likely to be a
parallelogram. However, if we connect the midpoints of the sides of the quadrilat-
eral, the resulting interior quadrilateral is a parallelogram.
Pick four points A(–7, 3), B(5, 7), C(7, –3), and D(–3, –5) on a Cartesian plane, as
shown. The midpoints of AB, BC, CD, and DA are found to be P (–1, 5), Q(6, 2),
R(2, –4), and S(–5, –1), respectively. 

The slope of PQ is �
y
x

2

2

�
�

y
x

1

1
� � �6

2
�

�
(�

5
1)� � ��

3
7�. 

A similar calculation shows that the slope of SR is 

also ��
3
7�. Thus, PQ and SR are parallel. 

Similarly, QR and PS can both be shown to have a 

slope of �
3
2�, so they are also parallel. Thus, PQRS is a 

parallelogram.
Try this with four other points. Using Geometer’s
Sketchpad® will allow you to move your four points
independently. 

DISCUSSION QUESTIONS

1. If a quadrilateral has special properties, it usually has a special name. For
example, a parallelogram is a special quadrilateral with opposite sides that are
parallel. What are some other special quadrilaterals?

2. A rectangle is a special type of parallelogram. What are some other special
parallelograms?

3. Consider a parallelogram frame that has one side held in position (e.g.,
mounted against the side of a wall). Describe the possible motions of the
parallelogram. ●

CHAPTER 2 :  VARIGNON PARALLELOGRAM
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Section 2.1 — Proofs Using Congruent Triangles

Two geometric figures are congruent if they are exactly the same except for posi-
tion. That is, there is a way to match one figure with the other so that correspon-
ding parts of the figures coincide. Thus measurable quantities, such as the lengths
of corresponding line segments, the measures of corresponding angles, and the
areas, are equal.

The two triangles shown above are congruent. We write ∆ABC � ∆DFE. In this
statement, the order of the letters gives the correspondence of the figures. Without
referring to the diagram, we know from the statement that ∠B � ∠F and 
AB � DF. Many other properties are equal because of the congruence. For exam-
ple, the altitude from A and the altitude from D are equal. If we wish to indicate
that the triangles are equal in area but are not necessarily congruent, we write
∆ABC � ∆DEF.

We use triangle congruence extensively in geometric proof, mainly because trian-
gles are easily defined geometric objects. If we specify three properties (sides or
angles) in the right combination, we generate only one triangle. All triangles with
the same three properties must be congruent. The combinations that specify trian-
gles are given by the following theorem. Since you have seen this result earlier,
we omit the proof.
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Triangle Congruence Theorem

Two triangles are congruent if
1.  (side-angle-side) two sides and the contained angle of one triangle are

respectively equal to two sides and the contained angle of the second 
triangle; or if 

2.  (side-side-side) three sides of one triangle are respectively equal to three
sides of the second triangle; or if 

3.  (angle-side-angle) two angles and a side of one triangle are respectively
equal to two angles and the corresponding side of the second triangle; 
or if 

4.  (hypotenuse-side) the hypotenuse and one other side of one right triangle
are respectively equal to the hypotenuse and one other side of a second
right triangle.

A

CB

o

x
E F

D
o

x

t chnologye
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Here are three additional observations:

1. Angle-angle-angle is not a triangle-congruence combination. Since the total of
the angles is fixed, we know that when two pairs of angles are equal, the third
pair must be equal; saying so does not give a third property.

2. The angle-side-angle combination can have the equal sides in any position 
relative to the pairs of equal angles, as long as they are the same position in
both triangles.

3. If there are two pairs of equal sides and one pair of equal angles in two trian-
gles, the angles must be contained (where the pairs of sides meet) or right
angles (the third property in the hypotenuse-side combination). Recall from
your study of trigonometry that there can be two triangles in some cases; this
was referred to as the ambiguous case.

For example, ∠ABC and ∠DEF
have two pairs of equal sides and
a pair of equal angles, but they
are not congruent. The equal
angles are neither right angles
nor contained by the equal sides.

In writing a proof using congruent triangles, we usually

1. identify the triangles we are considering (it is a matter of preference whether
we are careful about the correspondence of vertices at this stage)

2. list the three pairs of equal components, giving reasons, especially where the
equality is not obvious

3. state the congruence, implying the correspondence by the order of the vertices
(it is customary to refer to the triangle congruence combination being used)

Once we have established that the triangles are congruent, we can draw conclu-
sions about components of the triangles that were not previously known to be
equal. Note that if it is necessary, in order to establish one of the three properties,
to appeal to facts not relevant to the triangle congruence, we will generally do this
before identifying the triangles.

EXAMPLE 1 Prove that the median to the base of an isosceles triangle bisects the vertical angle.
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Solution
On the diagram we indicate what is known at the begin-
ning. 
Thus we have an isosceles triangle ABC, with AB � AC. 
We have drawn the median AD, so BD � DC. We need to 
prove that ∠ BAD � ∠ CAD.

Proof
In ∆ABD and ∆ACD,

AB � AC (given)
BD � CD (median)
AD � AD (common)

Then ∆ABD � ∆ACD (side-side-side)
Therefore ∠BAD � ∠CAD (triangles congruent)
Then the median bisects the vertical angle.

Notice that the same pair of congruent triangles show that ∠B � ∠C, the
Isosceles Triangle Property. Had we used this instead of the common side AD, the
triangle congruence combination would have been side-angle-side.

EXAMPLE 2 In the diagram, AB � DB and CB � EB. Prove ∆ABC � ∆DBE.

Proof
In ∆ABC and ∆DBE,

BA � BD (given)
∠ABC � ∠DBE (vertically opposite angles)

BC � BE (given)
Therefore, ∆ABC � ∆DBE (side-angle-side)

Part A

1. For the diagram given, state all properties that 
must be present for ∆ABC to be congruent with 
∆ADC. Use

a. the side-side-side property

b. the side-angle-side property

c. the angle-angle-side property

d. the hypotenuse-side property

Communication

Exercise 2.1
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2. In the given diagram, AB � AC.

a. State one additional fact that would prove that 
∆ABE � ∆ACD.

b. If ∆ABE � ∆ACD, could you state enough reasons 
for ∆DBC to be congruent with ∆ECB?

c. Could you now prove ∆FDB � ∆FEC?

3. Given the statement ∆ABC � ∆DEF, draw a 
diagram illustrating the triangles.

a. Which angle in ∆DEF is equal to ∠ABC in ∆ABC?

b. Which side in ∆ABC is equal to DF in ∆DEF?

4. In the following diagrams, we have marked the equal angles and sides. Find a
pair of congruent triangles in each diagram, and write a proof explaining why
the triangles are congruent.

a. b.

c. d.

AB and CD are diameters

5. Is the statement that follows true or false? Justify 
your answer. 
The median of a triangle divides a triangle into 
two congruent triangles.

Part B

6. In the given diagram, PQ � PR and PS � PT. 
Prove that ∠QRS � ∠RQT.
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O

A D

B C

DA

Q S T R

P

D C

BA

Knowledge/
Understanding

Communication

C H A P T E R  232

B

A

C

ED

F

B D C

A

S T

RQ

P



33

7. In quadrilateral ABCD, the diagonal AC bisects 
∠DAB and AB � AD. Prove that AC bisects 
∠BCD and BC � DC.

8. In the given diagram, ABE and CBD are straight
lines. If AB � BE, AC and AB are perpendicular,
and DE and BE are also perpendicular, prove that
AC � DE.

9. In ∆PQR, PQ � PR and ∠QPT � ∠RPT. Prove that
∠SQT � ∠SRT.

10. PQRS is a quadrilateral in which PQ � SR. If the diagonals PR and QS are
equal, then prove that ∠PQR � ∠SRQ.

11. Prove that if the opposite sides of a quadrilateral are equal then the diagonals
bisect each other.

12. S is the midpoint of side QR of ∆PQR. QT and RW are drawn perpendicular
to PS or PS extended. Prove that QT � RW.

13. We know that two triangles are congruent if two
sides and the contained angle of one are respective-
ly equal to two sides and the contained angle of a
second triangle. Using ∆ABC and ∆DEF, write an
informal proof showing that this statement is true.

Application
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14. Discuss the conditions needed for two quadrilaterals to be congruent. Is there
a possible statement about quadrilaterals that parallels

a. the triangle congruent situation side-angle-side?

b. the triangle congruent situation angle-side-angle?

c. the triangle congruent situation side-side-side?

Part C

15. The diagram shows a rectangular solid in which A
is the midpoint of SR, and B is the midpoint of 
UV.

a. Prove that AP � WB.

b. Prove that AX � PB.

16. A tetrahedron has four identical equilateral 
faces. X and Y are points on BD and CD,
respectively, so that BX � CY. Prove that 
AX � AY.
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Section 2.2 — Conditional Statements

We often hear people make statements in which one action is a consequence of
another. We might hear someone say, If you tip that glass the water in it will run
out, or If you study diligently, then your knowledge will increase. Statements in
which the first part implies the second part as a natural conclusion are called con-
ditional statements. One example of a mathematical conditional statement is, If
a triangle is drawn having exactly two equal sides then the triangle will have
exactly two equal angles. In this section, we examine the structure of conditional
statements and their role in mathematical proof. 

Before considering further mathematical examples we examine the structure of
conditional statements using examples from everyday life. Consider the following
statements:

p: I throw a stone into a pond.
q: Ripples are produced in the pond.

If we write p → q, we are saying, If I toss a stone into a pond then ripples are
produced in the pond. When we write p → q, we read it as If p, then q. Is this
statement true? Our experience tells us that ripples are produced when a stone is
tossed into a pond. The conclusion follows as a natural consequence of the prem-
ise that a stone is tossed into the pond. In mathematical terms, we are saying that
the conclusion q follows as a result of p being true. The combination of the two
simple statements, together with If… then… creates a conditional statement.

When considering the truth of q in the statement p → q, we are asking, If we
accept p as being true, does the conclusion q follow absolutely? The truth of such
statements depends on the premises that we accept. For example, suppose we let p
and q represent the following:

p: My family pet has four legs.
q: It is a dog.

In this example, we read the statement p → q, as If my family pet has four legs
then it is a dog. This statement is not necessarily true. The fact that my family pet
has four legs does not guarantee that it is a dog.

We use this type of logical inference frequently in everyday speech. When we
apply it in mathematics we are attempting a similar kind of reasoning, but with a
higher degree of precision. Consider the statement, If a prime number is squared
then the resulting square has exactly three divisors. This statement implies that if
we choose a prime and square it the result is always a number having three divi-
sors. As we know, this statement is true. If we square a prime number p, the
resulting number p2 has exactly three divisors: 1, p, and p2. Verify that this state-
ment is true using the primes 3, 5, and 7.
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In mathematical applications, if we can prove that a statement q is always true if a
given statement p is known, then the conditional statement defines a theorem.

THEOREM Consider the following statements:

p: Two parallelograms have equal bases and lie between the same parallel lines.
q: The parallelograms have the same area.

If we can show that the conditional statement p → q
is always true, we will always be able to make an
immediate conclusion when we encounter such paral-
lelograms. We can do so using the theorems stated at
the beginning of the chapter.

Proof
Let the parallelograms be ABCD and EFGH with BC � FG. Both parallelograms
have opposite sides in the two parallel lines WX and YZ. For each parallelogram,
the height is the distance between the parallel lines. Using the theorem of Parallel
Line Properties, we know that such distances are equal.

Since the parallelograms have equal bases and equal heights, their areas are equal.

EXAMPLE 1 In the given diagram, PQ�RS, PD�QR, QA�RD, and 
BR�AD. Prove that the area of �gm PQRS � �gm BRDA.

Proof
�gm PQRS and �gm TQRD have QR as a common base 
and lie between parallel lines QR and PD.

Then area �gm PQRS � area �gm TQRD. (Parallelogram Area Property Theorem)

�gm TQRD and �gm BRDA have RD as a common base and lie between parallel
lines RD and QA.

Then area �gm TQRD � area �gm BRDA. (Parallelogram Area Property Theorem)

Then area �gm PQRS � area �gm BRDA.

Notice that here we have used extended reasoning. Since p � q and q � r, then 
p � r. This type of reasoning is used frequently in the construction of proofs.

EXAMPLE 2 Prove that if a triangle and a parallelogram are on the same base and between the 
same parallels, then the area of the triangle equals �

1
2� that of the parallelogram.

Parallelogram Area Property Two parallelograms having equal bases (or
the same base) and lying between two parallel lines have the same area.
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Proof
Let the triangle EAB and the parallelogram
DABC have the common base AB and lie
between the parallel lines WX and YZ. 

Since the distance between parallel lines is 
constant, represent this distance by h.   (Parallel Line Properties Theorem)

Since h is the height of ∆EAB,

area ∆EAB � �
1
2�(AB)h

area �gm ABCD � (AB)h

Thus area ∆EAB � �
1
2�(area �gm ABCD).

EXAMPLE 3 In the diagram given, XY � XZ and P and Q are on the 
sides of ∆XYZ. Prove that if the area of ∆PRY equals the 
area of ∆QRZ, then the distance from P to XZ is equal to the 
distance from Q to XY.

Proof
Let the distance from Q to XY be h1 and the distance from P to XZ be h2.
Note that h1 is the altitude in ∆XQY and that h2 is the altitude in ∆XPZ.

Also ∆XQY � ∆PRY � quad XPRQ
∆XPZ � ∆QRZ � quad XPRQ

But ∆PRY � ∆QRZ

Then ∆XQY � ∆XPZ

�
1
2�(XY)h1 � �

1
2�(XZ)h2

But XY � XZ

Then h1 � h2

The distances are equal.

In this section we have introduced a number of proofs that
involve simple conditional reasoning. When we write the
statement p → q, we have a conditional statement or an If
… then… statement. We start with a premise p that we assume to be correct and
attempt to prove that the condition q follows.
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Part A

1. For each of the following statements,

a. identify the premise and conclusion;

b. determine whether or not the conclusion follows from the premise;

c. if the conclusion is incorrect, state an amendment that makes it correct.

(i)  If an integer ends in a 0 or a 5, then the integer is divisible by 0 or 5.

(ii)  If an odd integer is squared, then the resulting number will always have
an even number of divisors.

(iii)  If a positive integer is divided by a positive integer n, then the remainder
is an integer in the set 0, 1, 2, …, n � 1.

(iv)  If a parallelogram has an area of t square units, then a parallelogram of
2t square units has a base that is twice as large as the first parallelogram.

(v)  If a five-sided figure has 3 angles each equal to 90º, then the remaining
two angles must both be obtuse.

(vi)  If an integer is squared, then the resulting number always gives a remain-
der of 1 when divided by 4.

2. In ∆PQR, T, U, and V are the midpoints of PQ, PR,
and QR, respectively. If TU � QR, TV � PR, and 
VU � QP, name three parallelograms having equal area.

3. Given a parallelogram PQRS, draw a rectangle equal in area to the 
parallelogram.

4. Given a parallelogram ABCD, draw a second parallelogram having an area
double that of parallelogram ABCD.

Part B

5. PQRS is a parallelogram. If A is the midpoint of PQ
and B is the midpoint SR, prove that the area of 
�gm ASBQ � �

1
2� area of �gm PQRS.
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6. Prove that if a line in a triangle is a median, then the line bisects the area of
the triangle.

7. Prove that if AD and BE are medians in the given 
triangle, then ∆AEF � ∆FBD.

8. AD is the median of ∆ABC. Prove that ∆ABE � ∆ACE.

9. PQRS is a parallelogram. Prove that ∆PQT, ∆PTS,
∆TSR, and ∆TRQ all have equal area.

10. Prove that if the diagonals of a quadrilateral divide it into four triangles of
equal area, then the quadrilateral is a parallelogram.

11. PQRS is a parallelogram and T is any point 
inside the parallelogram. Prove that 

∆TSR � ∆TQP � �
1
2� �gm PQRS.

12. ABCD is a quadrilateral whose area is bisected by the diagonal AC. Prove that
BD is bisected by AC.

13. BE and CF are two medians of ∆ABC, intersecting at O. Prove that 
∆OFA � ∆OEA.

14. A parallelogram ABCD has diagonal AC extended to X. Prove that 
∆ABX � ∆ADX.

15. A point O is on the side BC of �gm ABCD. Prove that 
∆AOB � ∆DOC � �

1
2� �gm ABCD.

Application

B D C

E

A

S R

T

QP

S R

T

P Q

B
D

C

F

E

A
t chnologye
APPENDIX P. 508



Part C

16. For a quadrilateral ABCD, describe a procedure for the construction of a 
triangle that is equal in area to the quadrilateral.

17. ABC is an isosceles triangle in which AB � AC. BE and 
CD are drawn perpendicular to AC and AB respectively. 
Prove that DE � BC.

18. In ∆ABC, AB � AC and D is any point on AB. AC is extended to E so that 
CE � BD. DE cuts BC at K. Prove that DK � KE.

Thinking/Inquiry/
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Section 2.3 — The Converse of a Conditional Statement

The theorems we have accepted and the results we have proved from them are
examples of conditional statements. If one statement (the premise) is true, then
another statement (the conclusion) is true. Symbolically, if p is the premise and q
is the conclusion, we write p → q, which is read, “p implies q,” or “if p then q.”

An idea closely related to a conditional statement p → q is that of its converse,
which we write as q → p. We cannot conclude that the converse is true because
the original statement is true. Consider the statement, If the traffic light is red then
we stop the car. This statement is true for both legal and safety reasons. The con-
verse is If we stop the car, then the light is red. This statement is not necessarily
true; we can stop the car for a variety of reasons.

If a statement is true (p → q) and its converse is also true (q → p), we write 
p ↔ q, which is read, “p if and only if q (or q if and only if p).” We sometimes
write this as “p iff q.”

When we write p ↔ q we recognize that the truth of either of the statements
depends upon the truth of the other. This type of statement is said to be 
biconditional.

EXAMPLE 1 For each of the following statements

a. state the converse
b. determine whether the converse is a true statement
c. if the converse is true, restate the sentence as an …if and only if…. 

statement

1. If one side of a balance falls, there is more weight on that side than on the
other.

2. If one of two integers is even and the other is odd, then the sum of the integers
is odd.

3. If it is spring, then the grass is green.

Solution
1. The converse of this statement is, If there is more weight on one side of a bal-

ance than on the other, then one side of the balance falls. This is certainly true.
The biconditional statement is, One side of a balance falls if and only if there is
more weight on that side than on the other.

2. The converse of this statement is, If the sum of two integers is odd, then one of
the integers is even and one is odd. This is certainly true. The biconditional
statement is, The sum of two integers is odd if and only if one of them is even
and the other is odd.

t chnologye
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3. The converse of this statement is, If the grass is green, then it is spring. This
statement is certainly not true.

EXAMPLE 2 Is it true that p ↔ q, for these two statements? 

p: Two angles are vertically opposite. q: The two angles are equal. 

Solution

Part 1 p → q
The first statement we will prove is, If two angles are vertically opposite then they
are equal. 

Since ∠COA � ∠COB � 180º, ∠COB � 180º � ∠COA

Since ∠COA � ∠AOD � 180º, ∠AOD � 180º � ∠COA

Therefore ∠COB � ∠AOD

The statement is true.

Part 1 q → p
The second statement is, If two angles are equal then they are vertically opposite
angles.

We can demonstrate that this statement is not true by constructing an example
showing it to be false.

In isosceles triangle ABC, ∠ABC � ∠ACB but these two angles are not vertically
opposite each other. Then p ↔ q is not true because p → q and q → p are not
both true.

THEOREM Prove the biconditional statement, A point is on the right bisector of a given line
segment if and only if it is equidistant from the ends of the segment.

Solution

First we prove that any point on the right bisector of a line segment is equidistant
from the end points of the line segment.
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Proof
Let AB be any line segment and XY be its right bisector, cutting AB at D. Let P be
any point on XY. Join P to A and P to B.

In triangles PAD and PBD, AD � BD (right bisector)
∠PDA � ∠PDB (right angles)

PD � PD (same line)

Then ∆PAD � ∆PBD (side-angle-side)

Then PA � PB

Now we prove that if a point is equidistant from the endpoints
of a line segment, then it is on the right bisector of the line
segment.

Proof
We are given PA � PB. We join P to M, the midpoint of AB.
In triangles PAM and PBM,

PA � PB (given)
AM � BM (constructed)
PM � PM (same line segment)

Then ∆PAM � ∆PBM (side-side-side)

Then ∠PMA � ∠PMB and, since their sum is 180º,
∠PMA � ∠PMB � 90º

Then PM is the right bisector of AB.
We combine the results of these two properties in the Right Bisector Theorem.

EXAMPLE 3 Determine the position of a point P equidistant from three given points A, B, and
C that are not in a straight line.

Solution
If P is equidistant from A and B it must lie on the right 
bisector of AB, so P is a point on DE, the right 
bisector of AB.

Similarly, P is a point on FG, the right bisector of BC.

The point P is equidistant from A, B, and C, and so 
PA � PB � PC.

Y
DA B

P
X

A M B

P

Right Bisector Theorem A point is on the right bisector of a given 
line segment if and only if it is equidistant from the end points of the 
line segment.
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THEOREM A point is on the bisector of an angle if and only if it is equidistant from the arms
of the angle.

Proof
Part 1
If a point is on the bisector of an angle, it is 
equidistant from the arms of the angle.

Let BD be the bisector of ∠ABC and let P be any
point on BD.

From P draw perpendicular lines to meet the sides BA and BC at X and Y respec-
tively. We will prove that PX � PY.

In ∆PXB and ∆PYB,
∠PBX � ∠PBY (given)

PB � PB (same line)
∠PXB � ∠PYB � 90º (construction)

Therefore ∆PBX � ∆PBY (angle-angle-side)
Then PX�PY and P is equidistant from the arms of the angle.

Part 2 
If a point is equidistant from the angle arms, then
it is on the bisector of the angle.

Let P be any point on line BD such that perpendic-
ulars PX and PY are equal.

In ∆PBX and ∆PBY
PX � PY (given)

PB is common
∠PXB � ∠PYB � 90º   (given)

Then ∆PXB � ∆PBY (hypotenuse-side)

Then ∠PBX � ∠PBY and BP is the bisector of the angle.
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Angle Bisector Theorem A point is on the bisector of an angle if and 
only if it is equidistant from the sides of the angle.
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Part A

1. State the converse of each of the following statements.

a. If a triangle has three unequal sides, then it has three unequal angles.

b. If it rains, then we will get wet.

c. If a four-sided figure has four equal angles, then it is a square.

d. If the fruit is yellow, then it is a banana.

e. If today is Saturday, then it is the weekend.

f. If all answers on a test are incorrect, then several errors have been made.

g. If an integer is a prime, then it is not divisible by 2, 3, 5, or 7.

2. For each of the statements in Question 1, determine whether

a. the statement is true

b. the converse is true

c. the statement and its converse form a biconditional statement

3. Determine which of the following statements are true.

a. A positive integer is prime if and only if it is odd.

b. An integer is divisible by 2 if and only if it is even.

c. Figures are congruent if and only if they are similar.

d. A four-sided figure is a parallelogram if and only if it is a rectangle.

e. An integer is divisible by 5 if and only if it ends in a 5.

f. An animal is a cat if and only if it has four legs.

4. a. State the converse of the Isosceles Triangle Property Theorem.

b. Prove this converse.

We now consider the property to be an if and only if statement.

5. A new school is being built so that it will
be equidistant from three small towns A, B,
and C. If the distances between the towns
are as shown in the diagram, determine an
approximate location for the new school.
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6. Two sheds, S1 and S2, are located in a circular com-
pound as shown. Two gates are to be built so that each
gate is equidistant from the two sheds. Where should
the gates be located? Provide justification for your
answer.

Part B

7. A river crosses two roads as shown. Determine the
approximate location of a pumping station if the
pumping station is equidistant from the two roads.

8. Find the location of a point that is equidistant
from the two intersecting lines and is also
equidistant from the two given points.
Provide a justification for your answer.

9. Suppose that you are given four points, A, B, C, and D. Explain why it is not
likely that a circle would pass through the four points.

10. Y and Z are two given points on the circumference of a circle. Find a point X
also on the circumference such that ∆XYZ is isosceles.

11. Prove that the right bisectors of the sides of a triangle pass through a common
point.

12. Draw a series of five circles that pass through two given points.

a. Where do the centres of these circles lie?

b. What can you say about the centres of all circles that pass through the two
given points? Why?
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Part C

13. Suppose we are given ∆ABC as shown. Show
how to draw a line parallel to BC that meets
AB at D and AC at E so that DE � DB � EC.

14. Suppose we are given ∆ABC as shown. Find a
point D in side AB that is equidistant from A
and the midpoint of BC.

15. Prove or disprove the following statement:
The angles in a triangle are in arithmetic sequence if and only if one of the
angles equals 60º.

16. Prove that one of the roots of x3 � ax2 � bx � c � 0 is the negative of 
another if and only if c � ab.

CB

A

CB

A
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Section 2.4 — Indirect Proof and Parallel Lines

Sherlock Holmes, the great fictional detective, was famous for remarking that
after we have eliminated the impossible, whatever remains, however improbable,
must be the truth.

This method of arriving at a conclusion is used frequently in real life by a variety
of people. Auto mechanics, by eliminating things that cannot be wrong, deduce
the source of a problem. Doctors, by eliminating possibilities, decide on treat-
ments to prescribe. Certain neurological illnesses are diagnosed only by eliminat-
ing all other possibilities.

In mathematics, some things that we sense to be true but cannot prove directly are
approached in the same way. We list all possible outcomes and examine those that
seem incorrect. If we can eliminate them by showing them to be impossible, then,
using Sherlock’s approach, we arrive at the conclusion that the only possible truth
is the remaining possibility.

This line of reasoning is called Indirect Proof or Proof by Contradiction. It
depends on a complete listing of all possible outcomes and the elimination of all
but one. Consider an example.

EXAMPLE 1 Ten different teams are playing in a championship tournament in which each team
plays every other team exactly once. Thus far in the tournament, eleven games
have been played. Prove that one team has played at least three games.

Proof

There are only two possibilities: either there is a team that has played at least
three games or every team has played two games or less. These two possibilities
cannot both be true. If no team has played more than two games, the maximum 

number of games is �10
2
� 2
� � 10. Since eleven games have been played, this is 

not possible. The only other possibility is that at least one team has played three
games or more. Notice that we cannot say that two teams have played three
games, or that one team has played more than three.

In this example, we identified the two possibilities and showed that one of them
led to a contradiction. This method of indirect proof was first developed by Euclid
in 300 B.C. Our approach is to consider all possibilities and show that all but the
one we wish to prove leads to a false conclusion or a contradiction.
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EXAMPLE 2 If x and y are different numbers and a � 0, prove that �
x
y

� � �
x
y

�
�

a
a

�.

Solution
There are only two possibilities: either �

x
y

� � �
x
y

�
�

a
a

� or �
x
y

� � �
x
y

�
�

a
a

�.

Since we wish to prove �
x
y

� � �
x
y

�
�

a
a

�, we start by assuming that �
x
y

� � �
y
x

�
�a

a
�. 

This assumption leads to a contradiction.

If �
x
y

� � �
x
y

�
�

a
a

�, x(y � a) � y(x � a) 

xy � xa � xy � ya
xa � ya

Then x � y or a � 0.
But we are given that x � y and a � 0.

Thus we conclude that �
x
y

� � �
x
y

�
�

a
a

� is not true. We conclude that �
x
y

� � �
x
y

�
�

a
a

�.

We previously assumed certain properties of parallel lines. We can now prove
these properties using indirect proof. 

THEOREM Part 1

Prove that if a straight line crosses two straight lines in a plane so that the 
alternate angles are equal, then the two straight lines are parallel.

Proof
Let EF and GH be two lines cut by the line AD at B and C so that 
∠EBC � ∠BCH. We wish to prove that EF is parallel to GH.

There are only two possibilities. Either EF � GH or EF �� GH. We make the
assumption that EF �� GH. If the lines are not parallel, then they must meet at
some point K so that ∆BCK is formed, with ∠CKB � 0º. 
In ∆KBC, ∠EBC is an exterior angle.

Then ∠EBC � ∠BCK � ∠CKB (Exterior Angle Property Theorem)

But ∠EBC � ∠BCK

Then ∠EBC � ∠BCK � ∠CKB

G H

E FB

D

G

E

D

A

C

B

H

F

K

A

C α

αα

α
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The assumption that EF �� GH is not true, since 	 CKB � 0°. 

Then EF � GH.

Part 2
If a straight line cuts two parallel lines, then the alternate angles formed are equal.

Proof
Let EF and GH be parallel lines cut by AD at B and C. We wish to prove that
∠EBC � ∠BCH.

There are only two possibilities:
∠EBC � ∠BCH or ∠EBC � ∠BCH

Assume that ∠EBC � ∠BCH.

Draw ∠XBC � ∠BCH and extend XB to Y.

Then XY � GH. (alternative angles equal)

Then XY and EF are intersecting lines and are both parallel to GH, which is
impossible.

The assumption that ∠EBC � ∠BCH is false.

Then ∠EBC � ∠BCH.

Using the alternate angle properties it is easy to prove similar results for corre-
sponding angles, and we can state the complete parallel line theorem. 

The Parallel Line Theorem
Two straight lines are parallel if and only if
1. alternate angles are equal

or
2. corresponding angles are equal

Summary of Indirect Proof
1. List all the possibilities including the one that must be proved.
2. Remove the alternative that is to be proved and then consider each of 

the other possibilities. Show that each of them leads to an incorrect 
conclusion or a contradiction.

3. Conclude that the one remaining possibility must be true.

A

B
E

X

G H

F

Y

C

D
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Part B

1. In ∆ABC, AB � AC and DE � AC. Use indirect
reasoning to show that ∠DBE � ∠DEB.

2. Describe a real-life situation in which you have used indirect reasoning.

3. Prove that the line whose equation is y � 2x � 1 does not intersect the curve
with equation y � x4 � 3x2 � 2x.

4. A quadratic equation ax2 � bx �c � 0, where a, b, and c are not 0, has real
roots. Prove that a, b, and c cannot be consecutive terms of a geometric
sequence.

5. The lines CD and EF are each parallel to the line AB. Prove that CD � EF.

6. Prove that if the bisector of exterior ∠ACD is par-
allel to AB, then ∆ABC has two equal angles.

7. The medians BD and CE in ∆ABC are produced to X and Y respectively so
that BD � DX and CE � EY. Prove that X, A, and Y lie in a straight line.

8. PX and QY are radii in the given circles such that
PX � QY. When X and Y are joined, the line cuts the
circles at M and N, with M being on the circle with
centre P. Prove that PM � QN.

9. It is often assumed that the right bisectors of
two sides of a triangle meet. Prove that they
do by using indirect proof.

Thinking/Inquiry/
Problem Solving

Application

Communication

Communication

Exercise 2.4
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A

E

D

B C D

A

X

P
Q

Y

B C

A
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Part C

10. You are given an 8 � 8 checkerboard 
as shown in the diagram. If we cut 
out two opposite white corners,
is it possible to tile the new 
board with dominoes that 
look like ? 

11. If x is a real number such that x9 � 7x 	 10, prove that x 	 1.1.Knowledge/
Understanding
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Section 2.5 — Ratio and Proportion

Farmer Collins wishes to divide a rectangular field into
two parts so that the ratio of the smaller part to the
larger is 1:3. How can he do this? How confident can
he be that he is correct in the division?

If he divides the 36 m side into parts of 9 m and 27 m
and divides the field with a line parallel to the 53 m side, he can accomplish his
goal. Can we justify this statement?

Does the same thinking apply for a triangle or other geometric shapes? In this
section we examine some of the mathematical properties that use ratios.

THEOREM Triangles having equal heights have areas proportional to their bases.

Proof
Two triangles, ABC and DEF, have height h. We wish to calculate the ratio of
their areas.

The area of ∆ABC � �
1
2�h(BC) 

The area of ∆AEF � �
1
2�h(EF) 

Comparing areas, �
∆
∆

A
A

B
E

C
F

� � � �
B
E

C
F
�

Then ∆ABC : ∆DEF � BC : EF

When referring to the area of a triangle, we usually use the triangle name. The
context makes it clear that we are referring to the area. 

By a similar approach, we can show that the areas of triangles having equal bases
are proportional to their heights.

�
1
2�h(BC)
�
�
1
2�h(EF)

53 m

36 m

CB

A

h

D

QFE

h

t chnologye
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EXAMPLE 1 In ∆ABC, D is a point on AB such that AD � 1 and DB � 2. E is a point on AC
such that AE � 3 and EC � 1. What is the ratio ∆ADE : ∆ABC?

Solution
Join B to E and E to D.
Since ∆ADE and ∆ABE have the same height, and 
AB � 3AD,

�
∆
∆

A
A

D
BE

E
� � �

1
3� (Triangle Area Property)

or ∆ADE � �
1
3�∆ABE

Since ∆ABE and ∆ABC have the same height 

for bases AE and AC,

∆ABE � �
3
4�∆ABC (Triangle Area Property)

Substituting ∆ADE � �
1
3�[�

3
4� ∆ABC] � �

1
4� ∆ABC

Then �
∆
∆

A
A

D
BC

E
� � �

1
4�

EXAMPLE 2 Prove that if �
a
b

� � �
d
c

� then �a �
b

b
� � �

c �
d

d
� and �a �

b
3b

� � �
c �

d
3d

�.

Proof
Since �

a
b

� � �
d
c

�, �
a
b

� � 1 � �
d
c

� � 1

Then �
a �

b
b

� � �
c �

d
d

�

Also �
a
b

� � 3 � �
d
c

� � 3

Then �
a �

b
3b

� � �
c �

d
3d

�

THEOREM A line in a triangle is parallel to a side of the triangle if and only if it divides the
other sides in the same proportions.

Proof
Part 1
Let ST be a line in ∆PQR that is parallel to QR. We will prove that �

S
P
Q
S
� � �

P
TR

T
�. 

Join SR and QT.

Triangle Area Property
If triangles have equal heights, their areas are proportional to their bases
and
If triangles have equal bases, their areas are proportional to their heights.

A

B C

E

D

1

2

3

1
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Since ∆PST and ∆STQ have the same altitude with
bases PS and SQ,

�∆
∆

S
P
T
S
Q
T

� � �S
P
Q
S
� (Triangle Area Property)

Since ∆PTS and ∆STR have the same altitude with
bases PT and TR,

�
∆
∆

P
ST

S
R
T

� � �
P
TR

T
� (Triangle Area Property)

Because ST � QR, ∆STQ and ∆STR have the same base ST and equal altitudes.

Therefore ∆STQ � ∆STR

Then �∆
∆

S
P
T
S
Q
T

� � �
∆
∆

P
ST

S
R
T

�

Therefore �
S
P
Q
S
� � �

P
TR

T
�

Note as an extension that we easily obtain

�
S
P
Q
S
� � 1 � �

P
TR

T
� � 1

�
PS

S
�
Q

SQ
� � �

PT
T
�
R

TR
�

�
P
SQ

Q
� � �

P
TR

R
�

Part 2
Let PQR be a triangle and let S and T be points 

in the sides so that �
S
P
Q
S
� � �

P
TR

T
�. We can prove that 

ST � QR, and we do so by indirect proof.
Either ST � QR or ST �� QR.

If ST �� QR, then draw SX � QR meeting PR at X.

Because SX � QR, �
S
P
Q
S
� � �

P
X

X
R
� (Part 1 of theorem)

Then �
P
TR

T
� � �

P
X

X
R
�

This means that the points T and X divide PR in the same ratio, which is 
impossible.
Then the statement ST �� QR is not true. Therefore ST � QR.

RQ

P

S T

P

Q R

S T

X

Triangle Proportion Property Theorem
A line in a triangle is parallel to a side of the 
triangle if and only if it divides the other sides 
in the same proportion.

In ∆ABC, DE � BC if and only if

�
A
D

D
B� � �

A
E

E
C�.

A

B C

D E

DE   BC
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EXAMPLE 3 If DE � BC, calculate the length of EC.

Solution

Since DE � BC, �
A
D

D
B
� � �

E
A

C
E
� (Triangle Proportion 

Property)
Then �

3
4� � �

E
5
C
�

3EC � 20

EC � �
2
3
0
�

EXAMPLE 4 If A, B, C, and D are the midpoints of the sides of quadrilateral PQRS, as shown,
prove that ABCD is a parallelogram. (Recall that we proved this using coordinates
in Example 3 of Section 1.4).

Proof

Join SQ.
In ∆PSQ, PD � DS and PA � AQ

Then �
P
D

D
S
� � �

A
P

Q
A
�

Therefore, DA � SQ (Triangle Proportion Property)
In ∆RSQ, RC � CS and RB � BQ

Then �
R
C

C
S
� � �

B
R

Q
B
�

Therefore  CB � SQ (Triangle Proportion Property)

Then       CB � DA
By joining PR and using the same approach, AB � CD.
Since opposite sides are parallel, ABCD is a parallelogram.

Part A

1. In the given triangle, lengths are as shown. Determine the following:

a. ∆ABD:∆ADC b. ∆ABD:∆ABC

c. ∆BFD:∆BFA d. ∆BFD:∆BDA

e. ∆CDF:∆CFA f. ∆CFD:∆ABC

Knowledge/
Understanding

Exercise 2.5

A

B C

D E

3

4

5

D

C R

B
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D
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A
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2. Calculate the unknown in each of the following.

a. b. c. 

3. Find the lengths of a and b in the given triangle.

4. If �
P
T

T
S� � �

2
1�, determine �

S
P
Q
T
�.

Part B

5. If BD � DC and AF � FD, prove that

a. �∆
∆

A
A

B
B

C
F

� � �
1
4� b. �

∆
∆

A
A

F
B

C
C

� � �
1
4�

c. Prove that ∆ABF = ∆AFC.

6. If �
a
b

� � �
d
c

�, prove

a. �
a –

b
b

� � �
c –

d
d

� b. �
ma �

b
nb

� � �
mc �

b
nd

�

7. ∆ABC is an isosceles right-angle triangle in which AB � BC � 3. D is a point
on AB such that AD � 2 and DB � 1. Through D a line is drawn parallel to
BC to meet AC at E. Determine trapezoid DECB : ∆ADE.

8. In the diagram, EG � BD and GF � DC. Prove that 
EF � BC.

Thinking/Inquiry/
Problem Solving

Application

Communication

x

4.5

3
10

3

4

5

x
2

3

2.5

a

a
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4
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C

DB

E
G

F

A



9. ABCD is a rectangle in which �
E
A

D
E
� � �

1
2� and G is the 

midpoint of DC. If EF � AB,
determine ∆BHF : rectangle ABCD.

10. In the diagram, three parallel lines are cut by lines at X,

Y, Z, and P, Q, R, respectively. Prove that �
X
YZ

Y
� � �

P
Q

Q
R
�.

11. In �gm ABCD, X and Y are the midpoints of AD and BC, respectively. Prove
that BX and DY trisect AC.

Part C

12. If �
A
P

P
B
� � �

3
4� and �

R
A

C
R
� � �

3
2�, prove that C is 

the midpoint of BZ.

13. ABCD is a trapezium in which AB � DC,
AX � XD, and BY � YC. If X is joined to Y,
prove that XY � DC � AB.

14. ABC and BDC are two triangles on the same side of BC. From K, any point in
BC, KE is drawn parallel to BA to meet AC at E, and KF is drawn parallel to
BD to meet CD at F. Prove that EF � AD.
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Q

RZ

Y

X P

A B

CD

X Y

A

B
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ZC

1
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Section 2.6 — Similar Figures

Similarity is one of the most important properties of plane figures. If we take a
photograph of any shape and enlarge the photo, we create a new shape similar to
the original. Two figures are similar if the angles of one, taken in order, are
respectively equal to the angles of the other, in the same order, and the
corresponding sides are proportional.

Thus, if polygons ABCDE and
PQRST are similar, then 
∠A � ∠P, ∠B � ∠Q,
∠C � ∠R, ∠D � ∠S and 

∠E = ∠T; and �
P
A

Q
B
� � �

Q
BC

R
� �

�
C
R

D
S
� � �

D
ST

E
� � �

A
P

E
T
�.

The converse of this statement is also true.

The two pentagons ABCDE and JFGHI are 
equiangular but their side lengths are not in 
proportion, so the pentagons are not similar.

The rectangle ABCD and the parallelogram EFGH have sides that are proportional
(in this case equal) but the figures are not equiangular. Again, the figures are not
similar.

We saw earlier that there are a number of conditions on two triangles that make
the triangles congruent. There are three sets of conditions that make two triangles
similar. We examine these in the Similar Triangle Theorem.

A

B

C D

E
Q

P

T

SR

A J F B

C

D

E I
G

H

A B

CD

2

2

1 1

E

H G

F2

1
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Proof
Part 1
Let ∆ABC and ∆DEF have 
∠A � ∠D, ∠B � ∠E, and 
∠C � ∠F.

We prove that �
D
AB

E
� � �

D
AC

F
� � �

B
E

C
F
�.

Translate the smaller triangle ∆ABC onto ∆DEF so that ∠A fits on ∠D.

Then AB falls along DE and B is on DE.

Also AC falls along DF and C is on DF.

Since ∠ABC � ∠DEF and ∠ACB � ∠DFE,
BC � EF (Parallel Line Property)

Then �
D
AB

E
� � �

D
AC

F
� (Triangle Proportion Property)

By repeating this process with ∠C on ∠F,

�
D
AC

F
� � �

B
E

C
F
�

Then �
D
AB

E
� � �

D
AC

F
� � �

B
E

C
F
�

The triangles are similar.
To indicate that figures are similar, we write ∆ABC � ∆DEF.

Part 2
Let ∆ABC and ∆DEF be such that �

D
AB

E
� � �

D
AC

F
� � �

E
B

F
C

.�

We prove that ∠A � ∠D, ∠B � ∠E, and ∠C � ∠F.

Construct ∆EFG equiangular to ∆BCA.

Since ∠ABC � ∠FEG and ∠ACB � ∠EFG,

∆ABC � ∆GEF

Then  �
E
A

G
B
� � �

B
E

C
F
� � �

F
A

G
C
�

We are given that �D
AB

E� � �D
AC

F� � �
B
E

C
F�

Similar Triangle Theorem
Two triangles are similar if
1. they are equiangular, or if
2. their sides are proportional, or if
3. two pairs of sides are proportional, and the angles contained by these

sides are equal.

A

C

D

FE

B

� �







�

�

E F

B C

D (A)

�







�

�

A

CB
� �

E F

G

D

�
� �

�
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Since �
B
E

C
F
� is common to both proportions,

�
E
A

G
B
� � �

D
AB

E
� and �

F
A

G
C
� � �

D
AC

F
�

Then EG � DE and FG � DF
In ∆EFG and EFD,

EG � DE
FG � FD
EF � FE

Therefore ∆EFG � ∆EFD (side-side-side)

Then ∠EFG � ∠EFD, ∠FEG � ∠FED, and ∠EGF � ∠EDF

But ∠EFG � ∠BCA, ∠FEG � ∠ABC, and ∠EGF � ∠BAC

Therefore ∠BCA � ∠EFD, ∠ABC � ∠FED, and ∠BAC � ∠EDF

Then ∆ABC � ∆DEF.

Part 3
Let ∆ABC and ∆DEF be triangles in 

which ∠A � ∠D and �
D
AB

E
� � �

D
AC

F
�. 

We will prove that the triangles are similar.

Translate ∆ABC so that ∠A coincides with ∠D, AB falls along DE and AC falls
along DF, as shown.

Since �
D
AB

E
� � �

D
AC

F
�,

BC � EF (Triangle Proportion Property)

Then  ∠ABC � ∠DEF and ∠ACB � ∠DFE (Parallel Lines Property)

Then  ∆ABC � ∆DEF (equal angles)

We now have all conditions for similar triangles.

EXAMPLE 1 Prove that if two triangles are similar, corresponding altitudes have the same ratio
as a pair of corresponding sides.

Proof
Let ∆ABC and ∆DEF be similar. Let h1
be the altitude from A, meeting BC at G,
and h2 be the altitude from D,
meeting EF at H.

A

B C

B

E F

C

D (A)

A

B CG
� �

h1

D

HE F
� �

h2
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In ∆ABG and ∆DEH,
∠ABG � ∠DEH (similar triangles)
∠AGB � ∠DHE (right angles)
∠BAG � ∠EDH (angle sum)

Then ∆ABG � ∆DEH (Similar Triangle Theorem)

Therefore   �D
AB

E� � �D
AG

H� � �
h
h

1

2
�

But ∆ABC � ∆DEF, so �D
AB

E� � �D
AC

F� � �
B
E

C
F�

Then �
h
h

1

2
� � �

D
AB

E
� � �

D
AG

F
� � �

B
E

C
F
�

If two figures are similar, can we make any statement about the ratio of their 

areas? Suppose, for example, that ∆ABC � ∆DEF and �
D
AB

E
� � �

B
E

C
F
� � �

D
AC

F
� � �

1
2�. 

Can we determine the ratio of their areas? The answer is that we can. We cannot 

determine the area of either triangle, but from Example 1 we can say that �
h
h

1

2
� is 

also �
1
2�, and using this we can determine the ratio of the triangle areas.

Then �∆
∆

D
AB

E
C
F

� �

� �
B
E

C
F
� � �

h
h

1

2
�

� �
1
2� � �

1
2�

� �
1
4�

Now we can prove the result in general.

EXAMPLE 2 Prove that the areas of similar triangles are proportional to the squares on corre-
sponding sides.

Proof
Let ∆ABC and ∆DEF be two 
similar triangles and let h1 and h2 be their
altitudes.
Since ∆ABC � ∆DEF,

�D
AB

E� � �D
AC

F� � �
B
E

C
F� � �

h
h

1

2
�

�∆
∆

D
AB

E
C
F� �

�
1
2�(BC)h1
�
�
1
2�(EF)h2

�
1
2�(BC)h1
�
�
1
2�(EF)h2

h1

A

B C

h2

D

E F

A

B CG
�

h1 D

HE F
�

h2
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� �
B
E

C
F
� � �

h
h

1

2
�

� �
B
E

C
F
� � �

B
E

C
F
�

Then �∆
∆

D
AB

E
C
F

� � �
B
E

C
F2

2
�

EXAMPLE 3 If ∆ABC � ∆DEF, ∆ABC � 60, AB � 12, and DE � 9, determine ∆DEF.

Solution

�∆
∆

D
AB

E
C
F

� � ��
D
AB

E
��

2

�∆D
60

EF
� � ��

1
9
2
��

2
� ��

4
3��

2
� �

1
9
6
�

16 ∆DEF � 9 � 60

Then ∆DEF � �1
9
6� � 60 � 33.75

Part A

1. In the following list, which pairs are similar figures?

a. a quadrilateral and a rectangle

b. two hexagons that have equal angles

c. two squares

d. two isosceles triangles

e. two circles

f. two equilateral triangles

g. two right-angled triangles, each having an acute angle of 30º

h. two congruent pentagons

2. ∆ABC and ∆DEF are similar. If DE � 2, DF � 4, EF � 5, and AB � 12,
determine the lengths of AC and BC.

3. The sides of a triangular field are 40 m, 50 m, and 65 m. In a map of the
region containing the field, the scale is 1:100. What are the dimensions of the
field in the map?

Application

Knowledge/
Understanding

Communication

Exercise 2.6



4. A man 2 m tall casts a shadow 5.2 m long. How tall is a pole that casts a
shadow 9.1 m long?

Part B

5. A point X is chosen in side AB of ∆ABC such that �
A
X

X
B� � �

2
3�. From X, a line is 

drawn parallel to BC and meets AC at Y. If BC � 15, calculate the length of
XY.

6. In ∆ABC, D and E are in AB and AC respectively such that DE � BC, AD � 3,
DB � 4, and ∆ADE � 81. Determine each of the following:

a. ∆ABC

b. quadrilateral DBCE

7. If two similar triangles have areas in the ratio 4:49, how do the side lengths of
the two triangles compare?

8. Prove that if two triangles are equiangular, the bisectors of two corresponding
angles have the same ratio as any pair of corresponding sides.

9. Prove that if two triangles are equiangular, their perimeters have the same
ratio as a pair of corresponding sides. (Hint: Let the ratio between a pair of
corresponding sides be k: 1.)

10. In quadrilateral PQRS, O is any point and is joined to
each vertex. In OP, a point A is chosen. From A, the
line AB is drawn parallel to PQ, then BC is drawn
parallel to QR, and CD is drawn parallel to RS. Prove
that AD � PS.

11. a. In the diagram, name all pairs of similar triangles.

b. Prove each of the following:

(i)    AD2 � (BD)(DC) 

(ii)   AC2 � (BC)(DC) 

(iii)  AB2 � (BC)(BD) 

c. Using parts (ii) and (iii), prove that 
AC2 � AB2 � BC2.

12. The medians BD and CE of ∆ABC intersect at F. Prove that BF � 2FD and
CF � 2FE.

13. In ∆PQR, S is any point on QR and S is joined to P. A line is drawn parallel 

to QR, meeting PQ in A, PS in B, and PR in C. Prove that �B
A

C
B
� � �

Q
SR

S
�.

Thinking/Inquiry/
Problem Solving

Knowledge/
Understanding

Application
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Part C

14. In the figures below, quadrilateral ABCD � quadrilateral EFGH.

Prove each of the following:

a. ∆ABD � ∆EFH

b. ∆BDC � ∆FHG

c. �
∆
∆

A
E

B
F

D
H

� � �∆
∆

H
D

F
B

G
C

� � ��
H
D

G
C
��

2

d. �q
q
u
u
a
a
d
d

E
A

F
B

G
CD

H
� � �

H
D

G
C2

2�

15. Prove that two similar pentagons are proportional in area to the squares on
corresponding sides.

16. In ∆ABC, D is on AB and E on AC so that DE � BC. If trapezoid 

DBCE � �
2
2

4
5�∆ABC, determine �

A
D

D
B
�.

C
D

A

B

GH

E
F

t chnologye
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Key Concepts Review

In Chapter 2, we introduced you to different methods of proof through a discus-
sion of plane figures. One of the main features of this chapter was the introduc-
tion of conditional, biconditional, and indirect reasoning. Conditional reasoning,
or p → q, means showing q to be correct as a condition of p being true. We noted
that the two statements p → q and p ↔ q are not the same. If q → p is correct, for
instance, there is no guarantee that p necessarily implies q. In addition, you were
introduced to indirect reasoning. In this type of reasoning, you list all possible
outcomes for a certain premise and then eliminate all possibilities except one,
thereby implying that the remaining one must be correct.

In addition, we also introduced properties of area and similarity of plane figures.

IMPORTANT CONCEPTS

1. Parallelograms having the same bases and between the same parallels have
the same area.

2. If two triangles have the same bases but different heights, then their areas are
proportional to their corresponding heights.

3. Triangles are similar under the following conditions:

(i)  corresponding angles are equal

(ii)  corresponding sides are proportional

(iii)  an angle of one triangle equals an angle in the second triangle, and sides
about the angle are proportional

4. If ∆ABC � ∆DEF, then �∆
∆

D
AB

E
C
F

� � ��
D
AB

E
��

2
� ��

D
AC

F
��

2
� ��

B
E

C
F
��

2
.



Review Exercise

1. Which of the following pairs are similar figures?

a. a rectangle and a parallelogram

b. two rectangles

c. two congruent triangles

d. two rectangles that measure 8 � 3 and 32 � 12

e. two right-angled triangles

f. two quadrilaterals each containing two angles of 100º and 120º 

2. The area of a rectangle is A and it has a length of L. Write an expression for
the perimeter of this rectangle in terms of A and L.

3. If DE � BC and trapezoid DECB � �1
7
6�∆ABC,

determine DE:BC.

4. Determine the area of figure ABCD.

5. In the trapezoid ABCD, AB:DC � 2:5. The two diagonals
DB and CA intersect at E. Determine the following:

a. AE:EC

b. ∆ABE:∆CDE

6. ∆ABC and ∆DEF are two isosceles triangles 
in which the vertical angles ∠ABC and 
∠DEF are equal. Prove that the two 
triangles are similar.
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7. In ∆ABC, D is a point on BC such that BD � 2 and DC � 3. 
The point E is on DA such that DE � 1 and EA � 4.

a. Determine ∆BED:∆ABC.

b. Determine ∆BED:∆ADC.

8. ABCD is a parallelogram where X and Y are the 
midpoints of AD and BC, respectively. Prove

a. BX � DY

b. �
X
A

D
X
� � �

H
AH

M
�

c. AH � HM

d. CM � HM

e. BX and DY trisect AC

9. Determine the value of y in the diagram shown.

10. Into what fractional parts do the dotted lines divide each of the following?

a. b. c.

11. The legs of a right-angled triangle are 5 and 10, while the hypotenuse of a
similar triangle is 15. What is the area of the larger triangle?

12. In the trapezoid ABCD, AB � 1 and DC � 2. 
Prove that the diagonals of the trapezoid trisect 
each other.

13. In ∆ABC, a median is drawn from A to the point 
D on BC. Through any point P on AD, a line is 
drawn parallel to BC that meets AB and AC at E
and F, respectively. Prove that EP � PF.

1

1

2

3

BA

D E

F

C

A B

D C

E

P

Q RS1 2
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H
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3.6

13.2

2.2

6.6

y

C
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D
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A
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14. In the adjacent squares shown, the vertices 
A, B, and C lie in a straight line. 
Determine the value of x.

15. Prove that the three altitudes of a triangle are equal if and only if the triangle
is equilateral.

16. If a and b are the lengths of the two parallel sides of a trapezoid and h is the 

distance between them, prove that the area of the trapezoid is �
1
2�(a � b)h.

17. In ∆ABC, the medians AD, BE, and CF intersect at 
the point G. Prove that the six interior triangles in 
∆ABC have equal areas.

18. In the parallelogram ABCD, AE:ED � 1:2.
Determine the ratio of the area of ∆ABF to 
quadrilateral EFCD.

19. The base of a triangle is four times as long as a side of a square. If the trian-
gle and the square have equal areas, find the ratio of the altitude of the trian-
gle to a side of the square.

20. ABCD is a parallelogram, and point I is any point
on the diagonal AC. A line is drawn through I such
that EG is parallel to AD and BC. Similarly, a line
is drawn through I that is parallel to DC and AB.
Prove that parallelogram EBFI � parallelogram
HIGD.

21. In ∆ABC, D divides AB in the ratio 1:2, and E divides BC in the ratio 3:4. 
If ∆BDE � 6, find the area of ∆ABC.

22. ABCD is a parallelogram. A straight line
through A cuts BD at E, and BC at F, and
meets DC extended at G. 
Prove �

A
E

E
F� � �

A
A

G
F�.

C

B

A

4 7 x

A

B
D

C

E
F

G

B C

F

A E D

D CG

H I
F

A E B

D C G

E

A

F

B

t chnologye
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Varignon’s Parallelogram Theorem states that the figure formed by joining the
midpoints of any convex quadrilateral is a parallelogram. The theorem is named
after Pierre Varignon, a French mathematician who lived from 1654 to 1722. He
was the first to prove the theorem. The parallelogram formed by joining the mid-
points of a quadrilateral is called a Varignon parallelogram. Like so many oth-
ers, Varignon accidentally came across a copy of Euclid’s Elements and was
inspired to a career in mathematics. 

Investigate and Apply
Geometer’s Sketchpad® may be useful as you carry out some of these investiga-
tions.

1. a) Prove Varignon’s Parallelogram Theorem using the methods of this chapter.

b) Consider four points A(x1, y1), B(x2, y2), C(x3, y3), and D(x4, y4). Prove
Varignon’s Parallelogram Theorem using the midpoint and slope formulas
from analytic geometry.

c) Compare and contrast the proofs from parts a and b. Which is more
convincing? Which is easier to understand? 

A third method of proof will be encountered in Chapter 6.

2. If the initial quadrilateral is a square, does the interior Varignon Parallelogram
have any special properties? What if the initial quadrilateral is a rectangle, a
rhombus, a trapezoid, or a parallelogram?

3. Prove that the area of a Varignon Parallelogram is one half the area of the
initial quadrilateral. Hint: Consider the initial quadrilateral as two triangles.

INDEPENDENT STUDY
What special characteristics must the initial quadrilateral have in order for its
Varignon Parallelogram to be a rhombus, a rectangle, or a square?

If the initial quadrilateral is already a parallel-
ogram, what special properties must it have
in order to be similar to its Varignon
Parallelogram? 

Prove that if equilateral triangles are drawn
on the sides of a quadrilateral, alternately
inwards and outwards, their vertices will
form a parallelogram. ●

investigate and applywrap-up
CHAPTER 2 :  VARIGNON PARALLELOGRAM
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Chapter 2 Test 

1. In ∆ABC, D is a point on BC. 
Consider the following statement:
If ∆ADC � ∆ADB, then AD is a median.

a. State the converse of this theorem.

b. Prove that the converse of this theorem is true.

c. Restate the original statement and its converse in “if and only if ” form.

2. Answer each of the following. (You do not need to provide proofs.)

a. A rhombus has diagonals of length 12 and 20. What is the area of the
rhombus?

b. In ∆ABC, ∠C � 90º. The midpoint E of the 
median AD is joined to B. If AC � 8 and 
BC � 6, determine the area of ∆DEB.

c. ABCD is a parallelogram in which DC � 10 
with a height of 8 units as shown. If P is any 
point inside the parallelogram, calculate 
∆APB � ∆CPD.

d. The lengths of the parallel sides of a trapezoid
are 8 and 12 units, respectively. If the area of the
trapezoid is 120, determine the distance between the parallel lines.

3. The sides of a right-angled triangle 
ABC are 10, 24, and 26, with the right 
angle at B as shown. A line segment 
MY is drawn from M, the midpoint 
of AB, perpendicular to AC. 
Determine the length of MY.

D C

A

B

A B

C

P

D
10

8

A Y

26

24 CB

M
10

Achievement Category Questions

Knowledge/Understanding all

Thinking/Inquiry/Problem Solving 7

Communication 1

Application 2, 3



4. AD is a median of ∆ABC. E is on AD so that AE � �
1
4�AD. If ∆AEC � 36,

determine ∆ABC.

5. In parallelogram ABCD, P is any point on BC.
Prove that ∆APD � ∆ABP � ∆DCP.

6. PBCQ is a trapezoid in which PQ � BC and
PQ:BC � 2:3. PC and QB intersect at A.
If ∆ABC � 36, calculate the area of trape-
zoid PBCQ.

7. Prove the following statement using indirect reasoning. ∆ABC and ∆DBC
have the same base BC and equal areas. Prove that the line joining A to D is
parallel to BC.

(Hint: Select a point G on BD, and assume
that AG � BC.)
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A B
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O
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P
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COMPUTER INVESTIGATIONS

These investigations are provided for enrichment activity and as an introduction to investigation in
mathematics. They are designed to be used with Geometer’s Sketchpad®. You are encouraged to
develop other questions of interest for research. Keep in mind that after you’ve made a conjecture, it
must always be proved.

1. On a blank screen, select any three non-collinear points A, B,

and C. Determine by experimentation the location of a point

O that is equidistant from A, B, and C. Verify that point O is

at the point of intersection of the right bisectors of AB and BC

using the Perpendicular Line function. Draw the circle

which passes through A, B, and C.  

2. On a blank screen, select any three non-collinear points A, B,

and C such that these points form an obtuse-angled triangle.

Locate the position of point O, which is equidistant from A,

B, and C. If three points are chosen that form an obtuse-

angled triangle, what can we say about the location of a point

equidistant from the three points? Is the same conclusion true

if the three points form the vertices of an acute-angled

triangle? a right-angled triangle?

3. In Exercise 1.4, you were asked to prove that for any

rectangle ABCD, PA2 � PC2 � PB2 � PD2, where P is an

interior point in the rectangle.

a. Verify that this result is correct using Geometer’s

Sketchpad®.

b. In Chapter 9, we will ask you to prove this same result

where the point P is either in the interior or the exterior of

the rectangle. Move the point P to the outside of the

rectangle and verify that this result is still true.

c. ABCD is a parallelogram and P is any point in either the

interior or exterior of the parallelogram. Prove or disprove

the conjecture that PA2 � PC2 � PB2 � PD2.  
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4. Using Geometer’s Sketchpad®, construct a regular hexagon

ABCDEF. The point P is any point on the plane that contains

the given hexagon.

a. Determine the location of all points on the plane such that

PA � PC � PE � PB � PD � PF.

b. Using Geometer’s Sketchpad®, verify that 

PA2 � PC2 � PE2 � PB2 � PD2 � PF2.

c. Prove that this relationship is true by setting up and

coordinatizing in the following way.

d. If the point P is not on the plane containing 

the hexagon, explain why this relationship is still true.

5. a. Construct a scalene triangle ABC. (A scalene triangle is

one in which there are three unequal sides.)

b. On each side of ∆ABC, construct equilateral triangles, as

shown.

c. Locate the circumcentres of ∆DAB, ∆EAC, and ∆FCB and

label these three points as P, Q, and R, respectively.

d. Verify that ∆PQR is equilateral.

E(cos     , sin     )

F(cos π, sin π) C(cos 0, sin 0)

2π
3

2π
3

D(cos    , sin    )π
3

π
3

B(cos     , sin     )5π
3

5π
3

A(cos     , sin     )4π
3

4π
3

B

F

E

C

D

A

A B

C

P

DE

F



Chapter 3
PROPERTIES OF 
CIRCLES

In Chapter 3, we will consider the closed plane
curve of a circle. The circle is the most symmetrical
shape, and very important in art and design. The
properties of circles were fundamental to the
ancient Greeks, and especially important were the
formulas for circumference and area. These
formulas, C � 2�r and A � �r2, have been part of
the study of mathematics throughout history.
Why do we continue to study them? Aside from
the practical value that they have for architects,
designers, and engineers, these formulas
introduce the number � (pi). 

CHAPTER EXPECTATIONS In this chapter, you will

• prove some properties of plane figures using
deduction, Section 3.1, 3.2, 3.3, 3.4, 3.5

• prove some properties of plane figures using
indirect methods, Section 3.2, 3.3

• prove some properties of plane figures
algebraically, Section 3.4. 3.5



Review of Prerequisite Skills

DEFINITIONS RELATING TO THE CIRCLE

A circle is the locus of a point that moves so that it is 
always a constant distance from a fixed point. The fixed 
point is the centre and the constant distance is the radius. 
In the diagram, O is the centre, and OA is the radius.

DE is a chord; a chord is a line segment connecting two 
points on the circumference.

BC is a diameter; a diameter is a chord passing through 
the centre.

The curved line enclosing the circle is the circumference.

DFE and DGE are arcs; an arc is a portion of the 
circumference. DFE is a minor arc, and DGE is a major arc.

BGC is a semicircle. A semicircle is that part of a circle
bounded by a diameter and an arc.

A circle can also be considered as the surface area enclosed
by the circumference.

A sector is that part of a circle bounded by two radii and an
arc. A segment is that part of a circle bounded by a chord
and an arc. 

1. Calculate the area of the circle and the area of the sector for each of the 
following.

a. b. c.

r = 5
80°

r = 12
60°

r = 6

Exercise 
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d. e. f.

2. State a relationship between a sector area and the circle area in terms of the
sector angle.

3. Calculate the ratio of the areas of the two sectors in each of the following.

a. b. c.

4. Calculate the ratio of the areas of the two sectors for each of the following
pairs of circles.

a. b.

c. d.

5. The area of a given circle is 16� cm2.

a. What is the radius of this circle?

b. What is the circumference of this circle?

6. If the area of the given square is 81 cm2,
determine the area of the inscribed circle.  

7. The circumference of a circle, in cm, is equal to its 
area, in cm2. What is the radius of the circle?

8. A set of n circles, each with a diameter of 1 cm, has a total area equal to that
of a circle with radius 3 cm. What is the value of n?

r = 4 r = 6
30° 120°

r = 5 r = 10
40° 80°

r = 5
100°

r = 15

100°

r = 6

60°

r = 8

60°

r = 9
100°

70°

r = 20

40°
r = 6

80°

60°

r = 8
50°

r = 7

180°
r = 10

120°
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People who commit crimes sometimes seem difficult to catch. When there is no
clear relationship between the criminal and the victims, there can be no short list
of suspects. Instead, investigators must look for relationships between the victims.
This means analyzing vast quantities of data, most of which is likely to be insignif-
icant. To help police around the world, mathematicians have developed a field
called geographic profiling. Geographic profiling analyzes crime locations to
find where the perpetrator is likely to live.

Investigate
Three crimes have occurred at locations

indicated on the map by the points
P, Q, and R. Which of the points

A, B, C, or D most likely marks
the residence of the criminal?

We assume that the crimi-
nal’s home is in a central
position relative to the crime
locations.

The perpendicular bisector of
the segment PQ is the line of all points equidistant from

P and Q. Given points P and Q as shown, the perpendicu-
lar bisector is the line y � 2. Similarly, the line x � 3 marks

all points equidistant from Q and R. 

The intersection of these two lines is the point (3,2). This is the
point C. It is the same distance from P and Q, and the same distance
from Q and R. Therefore the point C is equidistant from all three crime

sites. 

We conclude that C marks the most likely location of the criminal’s resi-
dence.

Verify, using the distance formula, that C is equidistant from all three
crime sites P, Q, and R; that is, C is the centre of a circle through the

points P, Q, and R.

DISCUSSION QUESTIONS

1. How would you find the perpendicular bisector of PR?

2. Is there always a point equidistant from any three given points? What about
four points, or more than four points?

3. Is it reasonable to assume that the criminal’s home is in a central position
relative to the crime locations? ●

investigate 
CHAPTER 3 :  GEOGRAPHIC  PROFIL ING
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Section 3.1 — Properties of Chords

In the Review of Prerequisite Skills, we reviewed basic properties of circles. Here
we examine the properties of chords in a circle.

THEOREM A line drawn from the centre of a circle to the midpoint of a chord is perpendicu-
lar to that chord if and only if it bisects the chord.

Part 1

Let O be the centre of the circle and AB be a chord. From O draw OM where M is
the midpoint of AB. We will prove that OM ⊥ AB.

Proof 
In ∆OAM and ∆OBM,
OA � OB (Radii)
OM is common
AM � BM (Given)

Therefore ∆OAM � ∆OBM (Side-side-side)
Then ∠OMA � ∠OMB
But ∠OMA � ∠OMB � 180º
Then ∠OMA � ∠OMB � 90º

OM ⊥ AB

Part 2

Let AB be a chord in the circle having centre O. From O draw OM perpendicular
to AB. We prove that AM � MB.

Proof 
In ∆OAM and ∆OBM,

OA � OB (Radii)
OM is common
∠OMA � ∠OMB � 90º

Therefore ∆OMA � ∆OBM (Hypotenuse-side)
Then AM � MB

A B

O

M

A B

O

M

t chnologye
APPENDIX P. 530
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EXAMPLE 1 A circle has a diameter of length 26. If a chord in the same circle has a length of
10, how far is the chord from the centre?

Solution
Let the circle centre be O and let the chord be AB. 

Since the diameter is 26, OA � 13. 
If OM is perpendicular to AB, ∠AMO � 90º 
and AM � MB � 5. (Chord Right Bisector Property)

Then AM2 � MO2 � OA2 (Pythagoras)
52 � MO2 � 132

MO2 � 169 � 25
� 144

MO � 12 (MO � 0)

THEOREM Two chords are of equal length if and only if they are the same distance from the 
centre of the circle.

Part 1

Let AB and CD be equal chords in a circle whose centre is O. We will prove that
the chords are equidistant from the centre.

Proof 
From O draw OM and ON to the midpoints of the 
chords AB and CD. Join O to B and O to D.
In ∆OMB and ∆OND,

OB � OD (Radii)
∠OMB � ∠OND (Chord Right Bisector)

MB � ND (Chord Right Bisector)
∆OMB � ∆OND (Hypoteneuse-side)

Then OM � ON.

The Chord Right Bisector Property
1. The right bisector of a chord passes through the centre.
2. The perpendicular from the centre to a chord bisects the chord.
3. The line joining the centre to the midpoint of a chord is perpendicular 

to the chord.
4. The centre of a circle is the intersection of the right bisectors of two 

non-parallel chords. 

O

13

A

M
B

A C

O

M N

B D
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Part 2

Let O be the centre of a circle and let AB and CD be chords that are equidistant
from O. We will prove that AB � CD.

Proof 
Let OM � ON be the distance to the chords.
In ∆OMA and ∆ONC,

OA � OC (Radii)
OM � ON (Given)

∠OMA � ∠ONC (Right angles)
Therefore ∆OMA � ∆ONC (Hypotenuse-side)
Then MA � NC

But MA � �
1
2�AB and NC � �

1
2�CD (Chord right bisector)

Then AB � CD. 

EXAMPLE 2 In a circle with centre O, AB and CD are equal 
chords intersecting at E. Prove that BE � DE.  

Solution

Let OX be perpendicular to AB and OY be 
perpendicular to CD. Join OE.
In ∆OXE and ∆OYE,

OX � OY (Equal Chords Property)
OE � OE (Same line)

∠OXE � ∠OYE (90º)
∆OXE � ∆OYE (Hypotenuse-side)

Then XE � EY
Since OX ⊥ AB, BX � �

1
2�AB (Chord Right Bisector Property)

Also OY ⊥ CD, DY � �
1
2�CD (Same Property)

But AB � CD, so BX � DY
Then BX � XE � DY � YE
or BE � DE

Equal Chords Property
1. Chords that are equal are equidistant from the centre.
2. Chords that are equidistant from the centre are equal. 

O DB
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E
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Part A

1. Determine the length of the chord AB if OA � 5 and 
ON � 3. 

2. If AB � 10 and OA � 13, determine the length of ON.  

3. Calculate the distance between the parallel chords 
PQ and XY if PQ � 6, XY � 8, and the radius of the 
circle is 5.  

4. The two parallel chords AB and CD are a distance of 
14 units apart. If AB has length 12 and the radius of 
the circle is 10, calculate the length of CD.  

Part B

5. Two circles with centres A and B have radii 5 and 8,
respectively. The circles intersect at the points X and Y.
If XY � 8, determine the length of AB, the distance
between the centres.  

6. The distance between the parallel chords PQ and RS is 10. 
If PQ � 8 and RS � 12,
determine the length of the radius of the circle.

7. A chord of a circle is 4 units away from the centre of the circle, which has a
radius of 10. What is the length of the chord?

8. The point P is any point placed inside a circle. Is it always
possible to draw a line through P that is bisected at the
point P? Explain.  

Communication

Knowledge/
Understanding
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9. Prove that a straight line drawn from the centre of a circle perpendicular to a
chord will, if extended, bisect the arc cut off by this chord. 

10. A line is drawn through two concentric circles 
as shown. Prove that PX � QY.  

11. PQ and XY are two equal non-parallel chords in a 
circle. When extended, they meet at a point O outside
the circle. Prove that OQ � OY.  

12. Two circles with centres X and Y intersect at P and Q. Prove that XY is the
right bisector of PQ.

Part C

13. AB and CD are two chords of equal length that intersect at
the point X in the circle with centre O. Prove that when O
is joined to X, ∠OXC � ∠OXB.  

14. In the diagram, PA � 13 cm and QA � 20 cm, where P
and Q are the centres of the circles. Determine the
length of AB if PQ � 21 cm.  

Thinking/Inquiry/
Problem Solving
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Section 3.2 — Angles in a Circle

If an arc subtends an angle at the centre of a circle, we can determine the size of
the angle.

EXAMPLE 1 In the diagram, the radius of the circle is 6 and the 
length of the arc is �. Determine the measure of ∠AOB.  

Solution
The circumference of the circle is C � 2�r � 12�.
If ∠AOB � xº, then

�36
x
0� � �1

�
2�
�

x � �
3
1
6
2
0
�
�

� � 30

∠AOB � 30º

In this example, we have created a central angle. A 
central angle is an angle that has its vertex at the centre
of a circle and stands on an arc (or chord) of the circle. In
the diagram, two central angles are shown: ∠AOB, which
is less than 180º, and reflex ∠AOB. The angle α stands on
the minor arc ACB (or chord AB). In the same way, the
angle 360 � α stands on the major arc ADB. Each of the
two angles is described as a central angle because each Central Angles 
has its vertex at the centre of the circle and each stands 
on an arc of the circle. 

An angle at the circumference of a circle is an angle that
has its vertex on the circumference of a circle and that
stands on an arc (or chord) of a circle. ∠ADB and ∠ACB
are examples of two such angles which stand on the
minor arc AEB (or chord AB). ∠AEB is an example of
an angle which stands on the major arc AFB (or chord
AB). 

Angles at the 
circumference

O

A B

O

A B

C

D

360 – α

α
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E
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THEOREM The angle at the centre of a circle is twice an angle at the circumference of the
circle that stands on the same arc.

Proof
Let A and B be two points on a circle having centre
O, let X be a point on minor arc AB, and let ∠ACB
be an angle at the circumference, standing on arc
AXB. Join CO and extend it to D.

In ∆OCA, OC � OA (Radii)
Then ∠OCA � ∠OAC (Isosceles triangle)
Then ∠DOA � 2∠OCA (Exterior angle)

Similarly, in ∆OCB,
∠DOB � 2∠OCB

Then ∠DOA � ∠DOB � 2(∠OCA � ∠OCB)
∠AOB � 2∠ACB

By choosing a point Y on the major arc AB, it can be
shown that reflex ∠AOB � 2∠ACB.

This theorem leads to two immediate conclusions.

THEOREM Angles in the same segment of a circle are equal.

Proof
Let A and B be points on a circle having centre O,
and let ∠APB and ∠AQB be angles in the same 
segment, standing on arc AXB.
Join OA and OB.

Then ∠APB � �
1
2�∠AOB (Angle at the 

circumference)

and ∠AQB � �
1
2�∠AOB, (Same)

so ∠APB � ∠AQB.

Equal Angles in a Segment Property
Angles in the same segment of a circle are equal. 

Angle at the Circumference Property
An angle at the centre of a circle is twice the angle at the 
circumference standing on the same arc. 

A

x

2x 2y

x

y

y

B

X

D

C

O

A B
x

x

y
y

C

D

Y

O

A B
X

Q

P

O



THEOREM The angle in a semicircle is a right angle.

Proof
Let AOB be a diameter in a circle and let ∠APB
be an angle on AB.

Then ∠AOB � 2∠APB (Angle at the circumference)

But ∠AOB � 180º

Then ∠APB � 90º

EXAMPLE 2 If O is the centre of a circle such that 
∠POR � 100º, and ∠PTR � 40º,
determine the size of ∠QXS.  

Solution
Since ∠POR � 100º and is at the centre 
of the circle, ∠PQR � ∠PSR � 50º.

Since ∠PQR and ∠RQT are 
supplementary, ∠RQT � 130º.

In a similar fashion, ∠PST � 130º.

The sum of the interior angles of the quadrilateral QXST is 360º.

Then ∠QXS � 360º � (130 � 130 � 40)º � 60º.

EXAMPLE 3 CD and BA are two chords of a circle that 
intersect at E. If DB � DE, prove that 
∆ACE is isosceles.  

Proof
Join A to C, and for convenience, let ∠DBE � α

Since BD � ED, ∆DEB is isosceles.

Then ∠DBE � ∠BED � α

Since CD and AB are two intersecting straight lines,
∠CEA � ∠BED � α

Angle in a Semicircle Property
The angle in a semicircle is a right angle. 
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Also ∠ACD � ∠DBA � α (Equal angles in a segment)

Then ∠CEA � ∠ACE � α

Therefore ∆ACE is isosceles, with AC � AE.

EXAMPLE 4 In the diagram, the two circles are tangent at A. If AO is the diameter of the 
smaller circle and the radius of the larger circle, prove that AC � CD. 

Proof
Join OC.

∠OCA � 90º (Angle in a semicircle)

Then OC ⊥ AD

Then AC � CD (Chord right bisector)

Part A

1. Determine the measure of the indicated angle, for each of the following.

a. b.

Determine ∠BAC. Determine ∠BAC. 

c. d.

Determine ∠ADC and ∠AXB. Determine ∠BXD. 

2. The quadrilateral ABCD has its vertices on a
circle. The diagonals of the quadrilateral meet 
at the point X. Prove that ∆DCX and ∆ABX are
similar. 
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3. AB is a chord of a circle. Points D and C are 
chosen on the circumference of the circle so that
AD � BC. 
We want to prove ∆ABC � ∆ABD.

a. State two equalities in the triangles.

b. Discuss other necessary conditions for the
congruence of the triangles.

c. Prove ∆ABC � ∆ABD.

Part B

4. Prove that the Angle at the Circumference Property is true for circles with
centre O where P is a point on the circumference as shown.

a. b.

5. The length of chord AB is equal to the radius of
the circle with centre O. D is a point on the 
circumference between A and B. Prove that
∠ADB � 5∠ACB.  

6. Prove that if the parallelogram ABCD has each of its vertices on a circle then
ABCD must be a rectangle.

7. AB is the diameter of a circle with centre at O. Prove
that if CD � AB, then ∠CED � 90º. 

8. A square ABCD, with side length 2, is inscribed 
in a circle. The point E is on the arc AB as shown. 
Determine the numerical value of 
AE2 � BE2 � CE2 � DE2.  

Knowledge/
Understanding
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9. The rectangle ABCD has its vertices on a cir-
cle as shown. Point E is taken to be any point
on the circumference of the circle. Prove that
AE2 � BE2 � CE2 � DE2 = 2d2 where d is
the length of the diagonal of the rectangle.  

Part C

10. Two circles intersect at A and B. KAL is drawn perpendicular to AB and meets
the circles at the points K and L. The lengths KB and LB are extended to meet
the circles at P and Q respectively. Prove that AB bisects ∠PAQ. 

11. ABC has its vertices on a circle as shown. 
The bisector of the angle at A meets the 
circumference at D. From D, a line is drawn
perpendicular to the chord BC so that it meets
the circumference at E. Prove that DE is a
diameter of the circle.  

12. AXB and CXD are two perpendicular chords of a circle with centre O. Prove
that ∠AOD � ∠BOC � 180º. 

13. For ∆ABC, two circles are drawn. The first circle has AB as its diameter and
the second has BC as its diameter. The circles meet at the midpoint of AC.
Prove that ∆ABC is isosceles.

Thinking/Inquiry/
Problem Solving
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Section 3.3 — Cyclic Quadrilaterals

We can draw a circle that passes through the vertices of any triangle. This circle is
the circumscribed circle of the triangle.

EXAMPLE 1 Describe a method of obtaining a circle that passes through the vertices of a 
triangle.

Solution
Let ABC be any triangle.

Draw DE, the right bisector of AB.

Draw FG, the right bisector of BC.

Let DE and FG intersect at O.

Then OA � OB (Right bisector)
OB � OC (Same)

Therefore OA � OC.  

Then a circle with centre O and radius OA passes through A, B, and C.

Every triangle has a circumscribing circle. Are there quadrilaterals for which a
circle can be drawn that passes through the four vertices? Yes, there are, but this is
not true for every quadrilateral. The quadrilateral must meet special criteria. In
this section we discuss the conditions necessary.

Concyclic points are points that lie on a circle. Because any three non-collinear
points lie on a circle, we usually use the term to refer to a set of four or more
points. A set of such points is also referred to as a cyclic set of points.

A cyclic quadrilateral is a quadrilateral whose vertices lie on a circle. In other
words, the four points of a cyclic quadrilateral are concyclic.

THEOREM In a cyclic quadrilateral, opposite angles are supplementary.

Proof
ABCD is a quadrilateral with vertices on a circle with 
centre O. Join BO and DO.

In the diagram, ∠BAD is an inscribed angle standing on
the minor arc BD, for which ∠BOD is the central angle.

Hence ∠BAD � �
1
2�∠BOD (Angles in a circle)

Likewise, ∠BCD � �
1
2�(reflex ∠BOD) (Angles in a circle)
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∴∠BAD � ∠BCD � �
1
2�(∠BOD � reflex∠BOD)

� �
1
2�(360º)

� 180º
Note that it does not matter which arc BD is minor and which is major, or even if
both are semicircles; the proof is the same.

The converse of the theorem is also true.

THEOREM If opposite angles of a quadrilateral are supplementary, the quadrilateral is cyclic.

Proof
Let ABCD be a quadrilateral in which 
∠ABC � ∠ADC � 180º.

There is a circle passing through A, B, and C.

The point D is inside the circle, or outside the circle, or on
the circle. Assume D is inside the circle (Diagram 1). 

Extend CD to meet the circle at E.

Now ABCE is a cyclic quadrilateral, Diagram 1
so ∠ABC � ∠AEC � 180º. 

But ∠ABC � ∠ADC � 180º.

So ∠ADC � ∠AEC.

But ∠ADC � ∠AEC � ∠EAD (Exterior angle)
∠ADC � ∠AEC.

Diagram 2

This is a contradiction. Then D cannot be inside the circle. Assuming D is outside
the circle (Diagram 2) leads to a similar contradiction. Hence D is on the circle,
so ABCD is cyclic.

A corollary worth noting is that if we extend one side of a 
cyclic quadrilateral, the exterior angle so formed is equal 
to the interior angle at the opposite vertex. You will be 
asked to prove this in Exercise 3.3. 

Angles in a Cyclic Quadrilateral Property
A quadrilateral is cyclic if and only if its opposite angles are equal. The
exterior angle of a cyclic quadrilateral is equal to the interior angle at the
opposite vertex. 
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EXAMPLE 2 In a cyclic quadrilateral ABCD, AB � AD, ∠BCD � 110º, and ∠BAC � 30º. 
What is ∠ABC?

Solution
∠BCD � ∠BAD � 180º (Angles in a cyclic quadrilateral)

∠BAD � 70º
∠DAC � 40º (Subtraction)
∠DBC � 40º (Angles in a circle)

∠ABD � ∠ADB � 110º (Angles in a triangle)

Since ∠ABD � 55º, (Isosceles triangle)

then ∠ABC � 40º � 55º
� 95º

EXAMPLE 3 In ∆ABC, AB � AC. D and E are on AB and AC respectively so that DE � BC.
Prove that DECB is a cyclic quadrilateral.

Proof
∠ABC � ∠ACB (Isosceles triangle)
∠AED � ∠ACB (Parallel lines)

Then ∠ABC � ∠AED
∠AED � ∠DEC � 180º (Straight line)

Therefore ∠ABC � ∠DEC � 180º

Since ∠DBC and ∠ABC are the same angle, DECB is cyclic. 

Other properties of a circle also lead to theorems that prove that points lie on a
circle. The proofs are similar to the indirect proof given above. We give two of the
more useful results below.

THEOREM If one side of a quadrilateral subtends equal angles at the two remaining vertices,
the quadrilateral is cyclic.

Proof
Let ABDC be a quadrilateral such that ∠ACB � ∠ADB.
We will prove that ABDC is a cyclic quadrilateral. Draw
a circle that passes through A, B, and C. This circle either
passes through D or it does not. Suppose that it does not,
and let the circle cut AD at E. Join EB.  

Then ∠ACB � ∠AEB (Angles in a cyclic quadrilateral)
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But ∠ACB � ∠ADB.

Therefore ∠AEB � ∠ADB.

Then EB � DB (Parallel lines property)

But this is impossible, since EB and DB meet at B.

Then the supposition is false.

By a similar proof, it is not possible that the circle meets AD extended.
Then the circle must pass through D, and ABDC is a cyclic quadrilateral.

THEOREM The circle having as its diameter the hypotenuse of a 
right-angled triangle passes through the third vertex of 
the triangle. This theorem is the converse of the result 
that the angle in a semicircle is a right angle. Its proof 
is similar to the one above.  

EXAMPLE 4 In the diagram at the right, the angles are given. 
Show that BCED is cyclic.  

Solution
∠DAE � 70º (Angles in ∆ABE)

Then ∠ACB � 60º (Angles in ∆ABC)
∠ACD � 30º
∠BDC � 100º (Exterior angles, ∆ADC)
∠BEC � 100º (Straight line)

∴∠BCED is cyclic    (Cyclic quadrilateral property)

EXAMPLE 5 In ∆ABC, D is on BC and E on AC so that AD ⊥ BC and BE ⊥ AC. AD and BE
meet at O. Prove that ∠OCD � ∠BAD.

Proof
In quadrilateral OECD, ∠OEC � ∠ODC � 180º (Right angles)
Then OECD is cyclic

Therefore ∠OCD � ∠OED (Angles in a circle)

Cyclic Quadrilateral Property
A quadrilateral is cyclic if and only if one side subtends equal angles 
at the remaining vertices or opposite angles are supplementary. 
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Also ∠AEB � ∠ADB(90º),

so EDBA is cyclic. (Equal angles on chord AB).

Then ∠BAD � ∠BED (Angles in a circle)

But ∠OCD � ∠BED (From above)

Therefore ∠BAD � ∠OCD

Part A

1. Is it true that any square is cyclic? Any rectangle? Any parallelogram?
Explain your answer.

2. In the cyclic quadrilateral ABCD, BC is extended to F
and ∠DCF � 100º. The diagonal AC intersects BD at 
E. If ∠ABD � 50º and ∠AED � 80º, determine each 
of the remaining angles in the diagram. 

3. In the given diagram, what four points are concyclic?  

4. Prove that the points P, Q, R, and S
are concyclic. 

5. Determine the size of ∠PBD in the given 
diagram. 

Application

Knowledge/
Understanding
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Part B

6. Prove that if one side of a cyclic quadrilateral is extended, any exterior angle
equals the opposite interior angle of the quadrilateral.

7. In the quadrilateral ABCD, AB � AD and 
∠ABD � xº. Also, DB � DC and ∠DBC � 2xº.
Prove that ABCD is a cyclic quadrilateral.  

8. Prove that if a trapezoid has its vertices on a circle, then its base angles are
equal, as are its diagonals.

9. In the given diagram, PT � PR. 
Prove that the points P, Q, R, and 
S are concyclic.  

10. In isosceles ∆PQR, PR � PQ. The point T is chosen on PR, and TS is parallel
to RQ where S is a point on PQ. Prove that ∠QTS � ∠SRQ.

11. PQ and PR are two chords of a circle with centre O. OT is perpendicular to
PQ and OS is perpendicular to PR. If OT � OS, prove that the points T, S, R,
and Q are concyclic.

Part C

12. A cyclic regular octagon ABCDEFGH has its vertices on a circle. Points X1,
X2, . . . , X7, and X8 are chosen on successive arcs. Determine the numerical
value of ∠AX1B � ∠BX2C � ... � ∠HX8A.

13. A chord ST of constant length slides around a semicircle with diameter AB. M
is the mid-point of ST, and P is the foot of the perpendicular from S to AB.
Prove that the angle SPM is constant for all positions of ST.

Thinking/Inquiry/
Problem Solving

x

2x
R S T

Q

P

B

2x°
x°

CD

A



C H A P T E R  396

Section 3.4 — Tangents to a Circle

A straight line can intersect a circle in two places, can touch the circle, or make
no contact at all. There are no other possibilities.

A secant to a circle is a line that intersects
the circle in two points. Thus a secant con-
tains a chord of the circle. In the diagram, the
line l1 is a secant, containing the chord AB.

A tangent to a circle is a line that intersects
the circle at only one point; it is said to touch
the circle. In the diagram, the line l2 is a tan-
gent, touching the circle at the point C. C is
the point of contact. 

The line l3 in the diagram, which does not intersect the circle, is said to be skew
to the circle. Since they have no particular relation to the circle, skew lines are of
no current interest.

If you have taken any calculus, you probably know that the above definition of a
tangent is insufficient to describe tangents to more general curves. It is, however
adequate for circles. We will not do a formal study of slopes and limits in this
book, but we can use some of these concepts to investigate properties of tangents.
We can use geometry software in two ways to compare properties of secants as
they approach tangency:

1. Create a circle and a secant PAB, with P outside the circle and A and B on the
circle (start with A and B some distance apart on the circle). Now let the point
B move so that it gets closer to A. This requires P to move as well. What hap-
pens to the radii to A and B? As B gets closer to A, what do you observe about
the secant?

2. Create a circle and a secant PABQ as in the example above. This time, allow
the secant to move towards the edge of the circle, remaining parallel to the
original secant. As the chord AB gets smaller, what do you observe about the
secant?

Most of the properties of tangents can be demonstrated using one of these 
techniques.

l1

l2

l3

A

C

B

t chnologye
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t chnologye

DEMONSTRATION Using a computer (or using ruler and pencil),
make a diagram with radii OA and OB and the 
secant through A and B. ∆OAB is isosceles, so 

∠OAB � ∠OBA � �
1
2�(180º � ∠AOB).

What happens to ∠OAB as the secant moves towards 
tangency? 

THEOREM Part 1

A tangent to a circle is perpendicular to the radius at the point of contact.

Proof
Let AB be a tangent to a circle with centre O,
touching the circle at P. Using indirect proof we 
will prove that ∠OPA � 90º.

Either ∠OPA � 90º or ∠OPA � 90º.

Assume that ∠OPA � 90º. 

Then one of ∠OPA and ∠OPB is greater than 90º,
the other less than 90º. If ∠OPB � 90º, then there is
a point Q on AB such that ∠OPQ � ∠OQP.

But then OP � OQ. (Isosceles triangle)
This is impossible because Q is outside the circle, so OQ � OP.

It is not true that ∠OPA � 90º.

Then ∠OPA � 90º.

Part 2

A straight line drawn at right angles to a radius of a circle at the circumference is
a tangent to the circle. 

Part 3

A line drawn at right angles to a tangent at the point of contact passes through the
centre of the circle. 

O

A B

O

P Q
A B



EXAMPLE 1 The line BX is a bisector of ∠ABC, P is a point on BX, and PQ ⊥ BC. Prove that a
circle with centre P and radius PQ will have BA as a tangent.

Proof

Let PR be perpendicular to BA.

Then PQ � PR (Angle bisector)

Therefore a circle with centre P and radius 
PQ passes through R. Since PR ⊥ AB,
and PR is a radius, BA is tangent to the 
circle. (Tangent radius property)

From a point outside a circle, two tangents can be drawn. 

THEOREM If tangents are drawn to a circle from an external point, the segments to the points
of contact are equal.

Proof
Let PX and PY be tangents to a circle with 
centre O, and let A and B be the contact points 
of the tangents. We will prove that PA � PB.
Join PO.

In ∆POA and ∆POB,
PO � PO (Same line)
OA � OB (Radii)

∠OAP � ∠OBP (Tangent radius property)
∆POA � ∆POB (Hypotenuse-side)

Then PA � PB

Tangent Radius Property
For a given circle,
1. a tangent is perpendicular to the radius at the point of contact;
2. a line at right angles to a radius at the circumference is a tangent;
3. a perpendicular to a tangent at the point of contact passes through 

the centre. 
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EXAMPLE 2 In the given diagram, PX is a tangent contacting 
the circle at A, PY is a tangent contacting the 
circle at B, and CD is a tangent contacting 
the circle at E. If PA � 15, determine the 
perimeter of ∆PCD. 

Solution
PA � PB � 15 (Tangents from a point)
CA � CE (Tangents from a point)
DB � DE (Same)

Now perimeter ∆PCD � PC � CE � ED � DP
� PC � CA � BD � DP
� PA � PB
� 30

The perimeter is 30.

Part A

1. In the diagram, the radius is 5 and 
tangent AB has length 12. Determine 
the length of tangent AC and the length 
of OA. 

2. Determine the value of the variable(s) in each of the following. In each circle,
the centre is marked as 0.

a. b.

AB is a tangent to the circle. 

O y
25°B

A

O
25

7
y

Knowledge/
Understanding
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Tangent from a Point Property
Tangent segments from an external point to a circle are equal. 

P BD

E

C

Y

X

A

C

A

B

O



c. d.

3. In the diagram, what condition is necessary in
order that a circle with centre B and radius 
BC will have AX and AY as tangents? 

4. Circles with centres O and P touch at X,
where X is on the line OP.

a. Will a tangent to the circle with centre O,
drawn at X, also be tangent to the second
circle?

b. If the smaller circle is placed inside the
larger, will a tangent to one circle be a tangent to the other?

Part B

5. Prove that tangents to a circle drawn at the ends of a diameter are parallel.

6. Concentric circles have the same centre but different radii. Prove that in con-
centric circles, two chords of the larger circle that are tangent to the smaller
circle are equal.

7. AB, AC, and DF are tangents to a circle at
points B, E, and C, as shown. If AB � 10,
determine the perimeter of ∆ADF.

8. The quadrilateral ABDC is circumscribed
about a circle; that is, each side of the
quadrilateral is tangent to the circle. Prove
that AB � CD � AD � BC.

Communication

Oy xz 130°

O y 60°
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PO
B

D

A

E
C

9. Two circles with centres O and P, each 
with a radius of 2, are tangent to each 
other. The line OP cuts the circles at A and 
B. Lines AC and BD are tangent to the 
circle with centre P and intersect at D, as 
shown. Determine the length of BD.

10. Two circles with centres O and P touch 
externally at X. The tangent at X meets the
direct common tangent AB at M, as shown.
Prove that M is the midpoint of AB. 

11. Tangents at two points P and Q on a circle with centre O meet at an external
point X. Prove that ∠XPQ � ∠XOP.

Part C

12. ∆PQR is right-angled at Q. PQ � 16 cm and QR � 30 cm. A circle is drawn
inside the triangle, touching all sides. (This is called an inscribed circle or
incircle). Find the radius of the circle.

Thinking/Inquiry/
Problem Solving

O PX

A
M

B
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Section 3.5 — More About Tangents 

We have seen that a line perpendicular to a tangent 
passes through the centre of a circle. If this line is 
extended, it becomes a diameter of the circle. In the 
diagram, PQ is a tangent at R to the circle with 
centre O, and by extending RO to S we have RS
as a diameter. For any point X on the circle, we 
create ∠RXS � 90º. Now ∠RXS � ∠SRQ. 
What happens if RS is any chord, rather than a 
specific one? Is it still true that ∠RXS � ∠SRQ?

THEOREM The angle formed by a chord and a tangent is equal to the angle subtended by the
chord in the segment on the other side of the chord.

Proof

Let PQ be tangent at R to the circle with centre O. 
Let RS be any chord, let X be any point in the major
arc created by RS, and let Y be any point in the minor
arc.
We will prove that ∠RXS � ∠SRQ

and ∠RYS � ∠SRP.

Join RO and extend the line to meet the circle at T.

Then ∠RXS � ∠RTS (Angles on chord RS)

Also ∠TSR � 90º (Angle in a semicircle)

Then  ∠RTS � ∠TRS � 90º (Angles in a triangle)

But ∠SRQ � ∠TRS � 90º (Tangent Radius Property)

Therefore ∠SRQ � ∠RTS

Therefore ∠SRQ � ∠RXS

Similarly, ∠RYS � ∠SRP

Tangent Chord Property
The angle formed by a tangent and a chord is equal to the angle subtended
by the chord in the segment on the other side of the chord. 

O

R
P Q

X

S

O

R
P Q

X
T

S

Y
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EXAMPLE 1 PQR is tangent to a circle at Q. DE is a chord of the circle parallel to PQR. Prove
that ∆QED is isosceles.

Proof
Join DQ and QE.

Then ∠PQD � ∠DEQ (Tangent Chord Property)
∠EQR � ∠EDQ (Same)
∠DEQ � ∠EQR (Parallel lines)

Therefore ∠DEQ � ∠EDQ

Then ∆DEQ is isosceles (equal angles).  

When two non-parallel chords are drawn in a circle, they may intersect inside the
circle. If not, they will certainly intersect outside the circle if they are extended.
These extended chords are secants. From these intersecting lines, we obtain a use-
ful theorem.

THEOREM If two chords intersect, the product of the two parts of one is equal to the product
of the two parts of the other.

Proof
Let AB and CD be chords intersecting at E in a circle. 
We prove that AE • EB � CE • ED.

Join AC and BD.

In ∆ACE and ∆DBE,
∠AEC � ∠DEB (Vertically opposite)
∠ACE � ∠EBD (Angles on arc AD)

Then ∆ACE � ∆DBE. (Angles equal)

Therefore �
C
AE

E
� � �

E
E

D
B
�

or AE • EB � CE • ED

Q
P R

ED

B

D

C

E
A



You are asked to prove the Intersecting Secants Property in Exercise 3.5.

DEMONSTRATION Draw the diagram for secant intersection. Now let the secant PCD move so that,
while P stays fixed, the chord CD gets shorter. When C and D become the same
point, we have a tangent; if we call the common point T, then instead of PC • PD,
we have PT 2.

This indicates the following corollary to the Secant Intersection Property. 

Corollary 
If a tangent PT is drawn from a point on a secant AB, then PA • PB = PT2.

You are asked to prove this corollary in Exercise 3.5.

EXAMPLE 2 In a circle, two chords AB and CD intersect at X. P and Q are the midpoints of XC
and XB respectively. Prove that ADQP is a cyclic quadrilateral.

Proof
BX • XA � CX • XD (Intersecting chords)

Then �
1
2�BX • XA � �

1
2�CX • XD

or QX • XA � PX • XD

or �
Q
PX

X
� � �

X
X

D
A
�

Also ∠PXQ � ∠AXD (Opposite angles)

Therefore ∆PXQ � ∆AXD (Similar Triangle Property)

Then ∠PQX � ∠ADX

or ∠PQA � ∠ADP
These angles are both subtended by AP.

Therefore, ADQP is a cyclic quadrilateral.

Intersecting Chords Property
If two chords in a circle intersect, the product of the two parts of one is
equal to the product of the two parts of the other.

Intersecting Secants Property
If two secants AB and CD intersect at point P, then PA • PB � PC • PD.

C H A P T E R  3104

D A

PQ

X

B C

B
A

C
D

P



3 . 5  M O R E  A B O U T  TA N G E N T S 105

Part A

1. Find the value of the indicated variable(s) in each of the following.

a. b.

c. d.

e. f.

2. The sides BC, CA, and AB of ∆ABC touch a circle at D, E, and F, respective-
ly. If ∠A � 48º and ∠B � 80º, calculate each angle of ∆DEF.

Part B

3. The tangent to a circle at C is parallel to a chord AB of the circle. Prove that
∆ABC is isosceles.

4. For the given diagram, if 

a. a � 6, b � 4, and c � 8, find d

b. a � b, c � 12, and d � 3, find a

c. a � x, b � x � 5, c � x � 11 and d � x � 4, find x

5. For the given diagram, if 

a. PA � 6, AB � 10, and PC � 8, find CD

b. PT � 18 and PC � 12, find PD

c. PT � 15 and AB � 16, find PA

d. PA � x, AB � 2x � 6, PC � x � 4,
and CD � x � 3, find x

Communication

Knowledge/
Understanding
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6. AB is a chord of a circle, and AC is a diameter. The tangent to the circle at B
contains a point D such that AD ⊥ BD. Prove that AB bisects ∠DAC.

7. Two circles intersect at P and Q. A line through P meets the circles at A and B.
The tangents at A and B meet at C. Prove that AQBC is a cyclic quadrilateral.

8. Two circles intersect at P and Q. A common tangent touches the circles at X
and Y. Prove that ∠XPY � ∠XQY � 180º.

9. a. Prove the Intersecting Secants Property.

b. Prove the corollary to the Intersecting Secants Property.

Part C

10. AB is a diameter of a circle with centre O. 
P is on BA extended, and PT is tangent to
the circle. Use the corollary to the
Intersecting Secants Property to prove that
PT ⊥ OT.  

Key Concepts Review

In this chapter, you have studied many of the properties of circles, chords, and
angles in a circle. You should be familiar with the following:

1. circle chord properties and conditions for equal chords
2. the equality of angles in the same segment
3. properties of cyclic quadrilaterals
4. the tangent radius property
5. the tangent chord property

Thinking/Inquiry/
Problem Solving

Application
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Geographic profiling is a means of linking a series of crime sites to find where the
criminal lives. It was created by Dr. Kim Rossmo, an adjunct professor at Simon
Fraser University’s School of Criminology, who is also a former Detective Inspector
with the Vancouver Police Department. He says, “Seventy-five percent of serial
killers hunt in their own community ... Geographic profiling is designed to track
these people down.” The software he has developed considers many geographic
aspects of crime sites, including the location of central points.

Investigate and Apply
The map shows a section of a city where four simi-
lar crimes have been committed. The crimes were
committed on four consecutive days in the order
A, B, C, D.

1. Find the centres of four circles, each of which
passes through three of the crime locations. 

2. Is ABDC a cyclic quadrilateral? Provide as many
different arguments as you can to justify your
answer.

3. Does the interior of any of the four circles
contain all four points? If so, where is its
centre?

4. Speculate on the most likely location of the perpetrator’s home and justify
your conclusion with reasoning that includes mathematical reasoning.

INDEPENDENT STUDY
In addition to the location of central points, what other geographic factors should
be taken into account when using crime locations to predict a criminal’s place of
residence? Do you think that they can all be accounted for using circle geometry?

The RCMP’s Violent Crime Linkage Analysis System relates dozens of separate fac-
tors to find patterns among crimes. What are some other quantifiable aspects of
random crimes?

How is geographic profiling used in a court of law? Can it be used as proof of
guilt or innocence? ●

investigate and applywrap-up
CHAPTER 3 :  GEOGRAPHIC  PROFIL ING
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Review Exercise

1. Determine the value of the indicated variables in diagrams a and b. 

a. b.

2. Calculate the value of the unknown quantities in each of the following 
diagrams. (Where it is used, O is the centre of the circle.)

a. b.

c. d.

PT is a tangent to the circle. DE is a tangent to the circle at C.

e. f.

3. A series of triangles is drawn on the same side of a common base AB with
each angle opposite AB of the same size. What can be said about the set of
third vertices?

O C

BA

xA

B

C

O

x
150°

A

C
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E

B

x
50°

Q
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x
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A E
C

B

D

2

6

3
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C
A

4

5
6

x
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A

x

y

45°
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B

x y

120°
100°

∠AOB � 76º
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4. ABCD is a cyclic quadrilateral. If the diagonals AC and BD intersect at the
centre O, prove that ABCD is a rectangle.

5. You are given a cyclic quadrilateral ABCD with the diagonals AC and BD
intersecting at E. Side BC is extended to point F. If exterior angle 
BCF � 100º, ∠AED � 85º, and ∠ABD � 60º, find the size of each of the
remaining angles in the quadrilateral.

6. A point is taken on the bisector of a given angle. Prove that a circle may be
drawn with centre P that has the arms of the angle as tangents.

7. How would you draw a circle that touches two given straight lines if

a. the two given straight lines are parallel?

b. the two given straight lines are not parallel?

8. Two circles with centres P and Q touch a straight line and each other at the
point C. Prove that P, C, and Q lie on the same straight line.

a. b.

9. The chord CD has length 10.
If the radius of the smaller circle is 8
and the radius of the larger circle is 13,
determine the distance, XY, between 
the centres of the two circles. 

10. Suppose you are given three points A, B, and C and are told that they are on
the arc of a circle. How would you locate the centre of this circle?

11. If AB and CD are two parallel chords, prove that
AC � BD. 

12. The inscribed circle of ∆ABC touches its sides at D,
E, and H. If ∠ABC � 60º and ∠ACB � 45º, deter-
mine the measure of the angles of ∆DEH. 

A

B

C
P Q

A

B

CP Q

X Y

D

C

A

C
D

B

B D C

EH
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60° 45°
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13. A circle is drawn so that it has as its diameter one of the equal sides of an
isosceles triangle. How do we know that this circle passes through the middle
of the base?

14. TA and TB are tangents to a circle with 
centre O and radius 10. If ∠AOB � 120º,
determine the length of OT.  

15. AT is the tangent at A to a circle with 
centre O. If ∠ATB � x, determine the 
size of ∠OAB in terms of x.  

16. In the given diagram, ABCD is a cyclic
quadrilateral with ∠DAB � 3x. If AB and
DC are extended to meet at P, then
∠APD � x. If AD and BC are extended to
meet at Q, then ∠AQB � 2x. Find the value
of x.  

17. In the diagram, circles with centres A and B
are tangent externally at T. PQ is a com-
mon tangent line. The line of centres inter-
sects the circles at R and S as shown. RP
and SQ meet at X when extended. Prove
that PXQT is a rectangle.

18. A circle with centre P and radius 10 is 
tangent to the sides of an angle of 60º. A
larger circle with centre Q is tangent to the
sides of the angle and to the first circle.
What is the radius of the larger circle? 

19. Two circles intersect at the points A and B,
and one of them passes through O, which is
the centre of the other circle. A tangent is
drawn to the larger circle at A. Prove that
OA bisects the angle between the common
chord AB and the tangent to the circle at
point A.  

O

A

T

B

B
O

T

A

3x x

D
C

Q

PBA

A T B
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Q

P

Q

O

B
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20. ABCD is a cyclic quadrilateral. AB and DC are extended to meet at point P.
The lines CB and DA are extended to meet at Q. Circles are drawn around 
∆QAB and ∆PBC. These circles intersect again at R. Prove that 
∠QRP � 180º, and the points Q, R, and P are on the same straight line.

21. ∆ABC is a triangle in which ∠A � 60º, ∠B � 50º, and ∠C � 70º. A circle is
drawn that passes through the vertices A, B, and C. The bisectors of angles A,
B, and C meet the circumference of the circle at X, Y, and Z, respectively.
Determine the size of each of the angles in ∆XYZ.

22. Two circles have the same radius and intersect at
the points A and B. A line is drawn through A
that meets one circle at P and the other at Q.
Prove that PB � BQ.  

23. AB is the diameter of a semicircle. C and D are 
any two points on its arc. AC and BD are extended 
to meet at F. From F, a line through the intersection 
of AD and BC meets AB at J. Prove that FJ is 
perpendicular to AB.  

A

B

QP

A B
E

DC

F

J



Chapter 3 Test

1. Determine the measure for each of the indicated values in the following dia-
grams. It is not necessary to show your work; only the answer is required.

a.  AB is tangent to the circle at C. 

x � __________

b.  XY is tangent to the circle at Y. 

a � __________

c.  Two chords AB and CD intersect at E.

b � __________

C H A P T E R  3112
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d.  ABCD is a cyclic quadrilateral.

x � __________

y � __________

2. In the given diagram, O is the centre of the 
circle. If ∠BAC � 50º, determine the size of
∠BCD. Explain your reasoning.  

3. The two given circles are concentric with 
centre O. OB � 17, OC � 10, and OM � 8.
Determine the length of AC. 

4. In the diagram, OC is a radius of the larger 
circle and a diameter of the smaller circle,
which has B as centre. Prove that CD � DE.  

5. Two circles intersect at A and B, and PQ is a
tangent to both circles. Prove that when BA is
extended, it bisects PQ at the point R.  

6. a. In a given circle, several equal chords are drawn. Prove that their midpoints
lie on a circle concentric with the given circle.

b. Prove that all such chords are tangents to this concentric circle. 

7. AB is diameter of a circle, and AP is a chord. AT is another chord bisecting
∠BAP. Prove that the tangent at T cuts AP extended at right angles. 
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COMPUTER INVESTIGATIONS

1. A Cevian is a line drawn from a vertex of a triangle to the

opposite side of the triangle. Some examples of Cevians are

medians, altitudes, and angle bisectors. 

A well known theorem involving Cevians is Ceva’s Theorem.

Ceva’s Theorem

The cevians of ∆ABC, AP, BQ, and CR are concurrent if 

and only if �
A
R

R
B
� • �CQ

Q
A
� • �

P
B

C
P
� � 1.

a.  Draw a variety of different triangles and Cevians, and

convince yourself that Ceva’s Theorem is correct.

(Note that Ceva’s Theorem is written in if and only if

form and must thus be verified in both directions.)

b.  Draw ∆ABC and construct the incentre and incircle.

(Recall that the incentre, I, is the point of intersection of

the bisectors of the angles and that the incircle has centre I

and is tangent to the three sides of the triangles.) From

each vertex, draw a line to the point of contact on the

opposite side. Using Geometer’s Sketchpad®, verify that

the three Cevians concur.

c.  Prove that the observation you made in b is 

correct by using Ceva’s Theorem and the 

properties of tangents drawn to circles. 

2. Draw any triangle ABC and on the three sides AB, AC, and

BC, select three points P, Q, and R, respectively. Construct

three circles according to the following instructions. The first

circle passes through vertex C and the points R and Q. The

second circle passes through B, P, and R and the third

through A, P, and Q. (In our diagram we have drawn two of

the circles.)
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a.  Using Geometer’s Sketchpad®, construct all three circles

and show that all three points have a point, call it M, in

common.

b.  We have drawn two of the circles and we have labelled the

point M as the point of intersection.  Prove that M lies on

the circle passing through A, P and Q.

(Hint: Join P to M, M to Q, and M to R and then use

properties of cyclic quadrilaterals to show that A, P, M,

and Q are concyclic points.)

c.  Label the centres of the three circles as X, Y, and Z and

prove that ∆XYZ � ∆ABC.

3. Draw a circle and locate any four points A, B, C, and D on

the circumference of the circle.

a.  Using Geometer’s Sketchpad®, show that 

(AB)(DC) � (AD)(BC) � (AC)(BD). This is Ptolemy’s

Theorem.

b.  Draw an equilateral triangle ABC and construct a circle

that passes through A, B, and C.

(i)  Using Geometer’s Sketchpad®, show that if the point

P is on the arc BC, PA � PB � PC. 

(ii)  Prove, using Ptolemy’s Theorem, that this result is

correct.

c.  Draw a regular hexagon ABCDEF in a circle and place a

point on the arc BC.

(i)  Find an analogous relationship for the hexagon to that

found in b for the equilateral triangle.

(ii)  Prove that this relationship is true using Ptolemy’s

Theorem.
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Cumulative Review
CHAPTERS 1–3

1. On a map, 1 cm represents 1 km. A rectangular area measures 2.7 cm by 
3.5 cm on the map. What is its actual area?

2. AB and CD are two chords of a circle that, when extended, meet outside the
circle at a point O. Prove that ∆AOD � ∆BOC.

3. The lengths of the sides of a right-angled triangle are 2x � 5, 2x � 2, and 
2x � 3. Write an algebraic expression for the area of this triangle.

4. A and B are 8 cm apart. Find two points, each of which is 5 cm from A and 
6 cm from B.

5. The medians BD and CE of ∆ABC intersect at F. The areas of ∆DFC and
∆FBC are 8 and 16, respectively. Find the area of 

a. ∆EBF

b. quadrilateral AEFD

6. The vertex A of ∆ABC assumes various positions on the same side of BC,
while BC remains fixed in length and position. If the sum of the angles B and
C remains constant, what is the path traced out by the vertex A?

7. AB and CD are two perpendicular chords of a circle with centre O. Prove that
∠AOD � ∠BOC � 180º.

8. ABCD is a parallelogram. ABGH and ADEF are 
squares. Prove that ∆CGE is isosceles.  
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9. Determine which of the following statements are true.

a. A quadrilateral is a rhombus if and only if it is a parallelogram.

b. Quadrilaterals have equal areas if and only if they are congruent.

c. Two lines L1 and L2 are parallel if and only if a line crossing L1 and L2
makes alternate angles equal.

10. If a quadrilateral has its area bisected by the line joining the midpoints of a
pair of opposite sides, prove that these sides are parallel.

11. In the diagram, ∠PDC � 45º. Prove that ∆PDA � ∆PCB.  

12. In ∆ABC, a line is drawn from A perpendicular to
BC so that it meets BC at D. Prove that 
AD2 � (BD)(DC) if and only if ∠BAC � 90º.

13. In the given figure, SRNM is a parallelogram with
AN � SC and NT � SB. Prove that AT � BC and 
AC bisects BT.  

14. In a circle, two chords are drawn such that 
AB � CD. Prove that AC � BD.

15. ABC is a right-angled triangle with AB � 2BC. 
Find the ratio of the area of the inscribed 
square DEFB to the area of the triangle ABC.
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16. ∆ABC is an isosceles triangle in which ∠B � ∠C � 2∠A. BX bisects ∠B and
meets AC in X. Prove that BX and XA are consecutive sides of a regular 
pentagon.

17. A circle is inscribed in ∆ABC as shown. 
Prove that (AX)(BY)(CZ) � (BX)(YC)(ZA).  

18. Two angles of a convex polygon are 100º and 140º. The others, which are
equal, are angles of 120º. How many sides does the polygon have?

19. ABC is an isosceles triangle in which AB � AC. 
The line DE is a straight line parallel to BC. 
Prove that DBCE is a cyclic quadrilateral.  

20. In the diagram, O is the centre of the circle. 
If ∠DBA � 30º, determine the measure of 
∠ADC.

21. ABCD is a square. E is a point on BC. 
Prove that AE � BF if and only if BF is 
perpendicular to AE.  

22. M and N are the midpoints of AB and 
AC, respectively. Prove that ∆BYC � quad AMYN.  

23. In the diagram, QR is extended to S, making 
RS � PR. PS intersects the circle at T. 
Prove that QT is the bisector of ∠PQR.

24. ABCD is a cyclic quadrilateral with AB � 2,
BC � 3, CD � 4 and DA � 6. 
Determine the value of x, the length of AC.

25. BE and CH are altitudes of ∆ABC. 
TAN is the tangent at A to the circle shown. 
Prove that HE � TN.
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Have you ever tried to swim across a river with a
strong current? Have you sailed a boat, or run into
a head wind? If your answer is yes, then you have
experienced the effect of vector quantities. Vectors
were developed in the middle of the nineteenth
century as mathematical tools for studying physics.
In the following century, vectors became an
essential tool of navigators, engineers, and
physicists. In order to navigate, pilots need to know
what effect a crosswind will have on the direction
in which they intend to fly. In order to build
bridges, engineers need to know what load a
particular design will support. Physicists use vectors
in determining the thrust required to move a space
shuttle in a certain direction. You will learn more
about vectors in this chapter, and how vectors
represent quantities possessing both magnitude
and direction.

CHAPTER EXPECTATIONS In this chapter, you will

• represent vectors as directed line segments,
Section 4.1

• determine the components and projection of a
geometric vector, Section 4.1

• perform mathematical operations on geometric
vectors, Section 4.2

• model and solve problems involving velocity and
force, Section 4.3, 4.4

Chapter 4
VECTORS



Review of Prerequisite Skills

A vector is a quantity, an inseparable part of which is a direction. Pause for 
a moment and think about physical quantities that have a direction. Force is an
example. The force of gravity acts only downward, never sideways. Wind is
another example. A wind from the north and a wind from the south have different
physical consequences, even if the wind speeds are the same. Temperature, on the
other hand, is not a vector quantity. Temperature does not go in any direction.
Temperature is referred to as a scalar quantity.

We need both scalar and vector quantities to model complex physical systems.
Meteorologists, for example, need data on air temperature and wind velocity,
among other things, to make weather forecasts.

The object of this chapter is to introduce the mathematical properties of vectors
and then show how vectors and scalars are used to describe many features of the
physical world.

In this chapter, we introduce the concept of a vector, a mathematical object 
representing a physical quantity that has both magnitude and direction. We will
concentrate on geometric representations of vectors, so that most of our discus-
sion will be of two-dimensional vectors. In later chapters we will introduce 
algebraic representations of vectors, which will be more easily extended to higher
dimensions.

Before we begin this chapter, we will review some basic facts of trigonometry. 

TRIGONOMETRIC RATIOS

In a right-angled triangle, as shown,

sin � � �
a
c

� cos � � �
b
c

�

tan � � �
a
b

�

Note: The ratios depend on which angle is � and which
angle is 90°.
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�



THE SINE LAW

�sin
a

A
� � �sin

b
B

� � �sin
c

C
�

THE COSINE LAW

a2 � b2 � c2 � 2bc cos A or cos A � �
b2 �

2
c
b
2

c
� a2
�

1. State the exact value of each of the following.

a. sin 60º b. cos 60º c. sin 135º 

d. tan 120º e. cos 30º f. tan 45º 

2. A triangle ABC has AB � 6, ∠B � 90º, and AC � 10. State the exact value 
of tan A.

3. In ∆XYZ, XY � 6, ∠X � 60º, and ∠Y � 70º. Determine the values of XZ, YZ,
and ∠Z to two-decimal accuracy.

4. In ∆PQR, PQ � 4, PR � 7, and QR � 5. Determine the measures of the
angles to the nearest degree.

5. An aircraft control tower T is tracking two planes at points A, 3.5 km from T,
and B, 6 km from T. If ∠ATB � 70º, determine the distance between the
planes.

6. Three ships are at points A, B, and C such that AB � 2 km, AC � 7 km,
and ∠BAC � 142º. What is the distance between B and C?

Exercise
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Neuroscientists have found cells in a deep layer of a part of the brain called the
superior colliculus. These cells are tuned to the directions of distant visual and
auditory stimuli. Each cell responds only to stimuli from a specific direction.
Different cells are tuned to different directions. The tuning is broad, and the
regions to which different cells are tuned overlap considerably. Neuroscientists
have asked what it is about the activity in a group of cells with overlapping tuning
regions that specifies the actual direction of a stimulus? For example, how is it
that we can point accurately in the direction of a distant sound without 
seeing its source? One answer is that a cell responds more vigorously when the
distance stimulus is in its direction. The direction is determined not by which cell
fires most vigorously, but by a type of addition of the degrees to which the vari-
ous cells have responded to the stimulus.

Investigate and Inquire
The type of addition performed in the brain can be illustrated by
a simple case involving only two brain cells. Suppose that one of
these cells responds to stimuli that are approximately north,
while the other responds to stimuli that are approximately east. If
the north cell responds twice as vigorously as the east cell, what
is the direction of the stimulus? We can use vector addition to
find out.

The answer is found by forming a triangle
with a side pointing east and a side point-
ing north. The side pointing north is twice
as long as the side pointing east. The third
side is the actual direction of the stimulus.
From the diagram, we see tan � � �

1
2�. 

Solving, we find � � tan�1 ��
1
2�� � 26.6º. 

So � � 26.6º. 

Thus, the stimulus is 26.6º east of north.

What direction would be represented by a north-east cell
responding three times as vigorously as an east cell?

DISCUSSION QUESTIONS

1. How many cells would be needed to represent all the directions in the plane?

2. Why do you think the direction is not just taken to be the one corresponding
to the cell that fires most vigorously? ●

CHAPTER 4 :  VECTORS AND THE SUPERIOR COLL ICULUS

investigate 

east
1 unit

north
2 units direction

of stimulus
�
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Section 4.1 — Vector Concepts

Vectors are a part of everyone’s common experience. Consider a typical winter
weather report that you might hear on the nightly news: The temperature is
presently –11 ºC, with a wind from the northwest at 22 km/h. This weather report
contains two different types of quantities. One quantity (the temperature) 
is expressed as a single numerical value. The other quantity (the wind velocity)
has a numerical value (its magnitude) and also a direction associated with it.

These quantities are typical of the kinds encountered in science. They are 
classified as follows:

There seems to be some overlap here. For example, the temperature could be
thought of as having magnitude (11º) and direction (negative); in that sense, it
could be considered as a one-dimensional vector. There is no problem with this
interpretation; sometimes it is a useful way to look at such quantities. However, in
most situations we find it easier to use positive and negative numbers as scalars,
and restrict the term vectors to quantities that require (at least) two properties to
define them.

Some examples of vector quantities are 
Force The force of gravity has a well defined magnitude and acts in 

a specific direction (down). The force of gravity is measured 
when you step on a scale. Force is a vector quantity.

Displacement When you walk from point A to point B, you travel a certain 
distance in a certain direction. Displacement is a vector 
quantity.

Magnetic Field Some magnets are strong; others are weak. All cause 
a compass needle to swing around and point in a particular 
direction. A magnetic field is a vector quantity.

In a diagram, a vector is represented by an arrow: . The length of the arrow
is a positive real number and represents the magnitude of the vector. The direction
in which the arrow points is the direction of the vector. For now we will restrict
our discussion to vectors in two dimensions or to situations that can be expressed
in two dimensions. Our definitions and conclusions are easily extended to three
dimensions (or more).

Quantities having magnitude only are called scalars.
Quantities having both magnitude and direction are called vectors.
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EXAMPLE 1 A student travels to school by bus, first riding 2 km west, then changing buses and
riding a further 3 km north. Represent these displacements on
a vector diagram.

Solution
Suppose you represent a 1-km distance by a 1-cm line 
segment. Then, a 2-cm arrow pointing left represents the first 
leg of the bus trip. A 3-cm arrow pointing up represents the 
second leg. The total trip is represented by a diagram 
combining these vectors.

The notation used to describe vector quantities is as follows:

The algebraic symbol used in this text for a vector u��, v�� are vectors
is a letter with an arrow on top. Some texts use 
boldface letters for vectors. u, v are also vectors

Scalar quantities are written as usual. x, y, a, b are scalars

The magnitude of a vector is expressed by placing u��, v�� are the 
the vector symbol in absolute value brackets. magnitudes of the vectors
The magnitude of a vector is a positive scalar. u��, v��

Often it is necessary to explicitly state the initial AB�� is the vector that starts
point and the end point of a vector. Then, two at point A and ends at point B.
capital letters are used. Such vectors are referred 
to as point-to-point vectors. Its magnitude is AB��.

Certain other terms are used in connection with vectors.

EXAMPLE 2 ABCDEF is a regular hexagon. Give examples of vectors which are

a. equal

b. parallel but having different magnitudes

Two vectors are equal if and only if their magnitudes and their directions
are the same.
Two vectors are opposite if they have the same magnitude but point in 
opposite directions.
When two vectors are opposite, such as AB�� and CD��,
one is the negative of the other: AB�� � �CD��.
Two vectors are parallel if their directions are either the same or opposite.

N

S

W E

bus
stop

home

school

u
v

A

B

A

B C

D

A B

C

DE

F
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c. equal in magnitude but opposite in direction

d. equal in magnitude but not parallel

e. different in both magnitude and direction

Solution
a. AB�� � ED��

b. FA�� � EB��, but FA�� � EB��
c. FE�� � CB��, but FE�� � �CB��

d. ED�� � DC��, but ED�� � DC��

e. FB��, DC��

There are other possible answers. 

There is no special symbol for the direction of a vector. To specify the direction 
of a vector, we state the angle it makes with another vector or with some given
direction such as a horizontal or vertical axis or a compass direction.

One way to determine the angle between two vectors is to examine geometrical
relationships and use trigonometry.

EXAMPLE 3 OABC is a square with sides measuring 6 units. E is the midpoint of BC. 
Find the angle between the following vectors.

a. OB�� and OC�� b. OE�� and OC�� c. OB�� and OE��

Solution
a. The diagonal of the square bisects ∠AOC. 

The angle between OB�� and OC�� is 45º.

b. Using trigonometry, tan ∠EOC � �
3
6�, ∠EOC � 26.6º, so the angle between

OE�� and OC�� is 26.6º.

c. The angle between OB�� and OE�� is the difference 45º � 26.6º � 18.4º.

The angle between two vectors is the angle (�180º) formed when the 
vectors are placed tail to tail; that is, starting at the same point.

�

v

u

6

6

E

CO

BA
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When two vectors are parallel, one of the vectors can be expressed in terms of the
other using scalar-multiplication. Suppose, for example, M is the midpoint of the
line segment AB. Since M is the midpoint, then AB�� � 2AM��, and since the
directions of AB�� and AM�� are the same, we write the vector equations

AB�� � 2AM�� or AM�� � �
1
2�AB�� or BM�� � ��

1
2�AB��. 

Thus, multiplication of a vector by a scalar k results in a new vector parallel to the
original one but with a different magnitude. It is true in general that two vectors 
u�� and v�� are parallel if and only if u�� � kv��.

A particularly useful type of vector is a vector with magnitude 1. Such vectors are
called unit vectors. A unit vector is denoted by a carat (ˆ) placed over the symbol.
When a vector and a unit vector are denoted by the same letter, for example v�� and
vv̂, you should understand v̂ to be a unit vector having the same direction as v��. Any
vector can be expressed as a scalar multiple of a unit vector.

Another useful type of vector has magnitude 0. Such vectors are valuable even
though their direction is undefined. The zero vector is denoted by 0��.

EXAMPLE 4 Examine the vectors in the diagram.

a. Express b�� and c�� each as a scalar multiple of a��.

b. Express a��, b��, and c�� each in terms of the unit vector â.

Solution
a. On the grid, each vector lies on the hypotenuse of a right-angled triangle

with sides in the ratio 1:2, so the three vectors are parallel. The magnitudes
of a��, b��, and c�� can be found using the Pythagorean Theorem.

a��� �12 � 2�2� � �5�, b�� � �52 � 1�02� � 5�5�,

and c�� � �32 � 6�2� � 3�5�

Therefore b�� � 5a�� and c�� � �3a��.

b. The unit vector in the direction of a�� is â � a��. Then a�� � �5�â,
b�� � 5�5�â, and c�� � �3�5�â.

1
�
�5�

Unit Vectors
1. A unit vector in the direction of any vector v�� can be found by 

dividing v�� by its magnitude v��:

v̂ � �


1
v��
� v��

2. Any vector v�� can be expressed as the product of its magnitude v�� and 
a unit vector v̂ in the direction of v��

v�� � v��v̂

a
b

c
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Part A

1. In your own words, explain the difference between a scalar and a vector.

2. Which of these physical quantities is a vector and which is a scalar?

a. the acceleration of a drag racer b. the mass of the moon

c. the velocity of a wave at a beach d. the frequency of a musical note

e. the speed of light f. the age of a child

g. the friction on an ice surface h. the volume of a box

i. the energy produced by an electric j. the force of gravity
generator

k. the speedometer reading in an l. the momentum of a curling stone
automobile

m. the time on a kitchen clock n. the magnetic field of the earth

o. the density of a lead weigh p. the pressure of the atmosphere

q. the area of a parallelogram r. the temperature of a swimming pool

3. For each part of Example 2, state a second answer.

Part B

4. One car travelling 75 km/h passes another going 50 km/h. Draw vectors that
represent the velocities of the two cars if they are going

a. in the same direction b. in opposite directions

5. What is the angle between the following directions?

a. N and NE b. E and SW c. S and W

6. Draw a vector to represent

a. the velocity of a fishing boat travelling at 8 knots on a heading of S75ºW
(A knot is a speed of one nautical mile per hour.)

b. the position of a city intersection 7 blocks east and 3 blocks south of your
present position

c. the displacement of a crate that moves 6 m up a conveyor belt inclined at
an angle of 18º

d. the force exerted by a chain hoist carrying a load of 200 kg

Knowledge/
Understanding

Communication

Communication

Exercise 4.1

4 . 1  V E C TO R  C O N C E P T S
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7. Radar in the control tower of an airport shows aircraft at directions of N50ºE,
N70ºW, and S20ºW, and distances of 5, 8, and 12 km, respectively.

a. In a diagram, draw vectors showing the positon of the three aircraft 
in relation to the tower.

b. The aircraft are travelling at velocities of 450 kph N, 550 kph N70ºW, and
175 kph N20ºE, respectively. At the positon of each aircraft in part a, draw
small vectors to represent their velocities.

8. The points A, B, C, D, E, F, and G are equally spaced along a line. Name a
vector which is equal to

a. 3BD�� b. �
1
4�EA�� c. �

5
2�DF�� d. �

2
3�GC�� e. �2AD��

9. ABCD is a rhombus. For each of the following, find two 
vectors u�� and v�� in this diagram (expressed as 
point-to-point vectors) such that

a. u�� � v�� b. u�� � �v��

c. u�� � 2v�� d. u�� � �
1
2�v��

10. During takeoff, an aircraft rises 100 m for every 520 m of horizontal motion.
Determine the direction of its velocity.

11. Determine the magnitude and the direction of each of the 
vectors in the given diagram. Express each direction as 
an angle measured counter-clockwise from a unit vector 
in the positive x direction.

12. A search and rescue aircraft, travelling at a speed of 240 km/h, starts out at a
heading of N 20º W. After travelling for one hour and fifteen minutes, it turns
to a heading of N 80º E and continues for another 2 hours before returning to
base.

a. Determine the displacement vector for each leg of the trip.

b. Find the total distance the aircraft travelled and how long it took.

Part C

13. For what values of k is (k � 2)v�� � 4v��, (v�� � 0��)?

14. Prove that two vectors u�� and v�� are parallel if and only if u�� � kv��. 

Application

Knowledge/
Understanding

Application

B

A D

C
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Section 4.2 — Vector Laws

In many applications of vectors to physical problems, we must find the combined
effect or sum of two or more vectors. What, for example, is the combined effect of
two or more forces acting on an object? How does wind velocity affect the 
velocity of an aircraft?

To determine what the sum of two vectors is, let us look first
for a geometrical answer. Suppose the rectangle ABCD is 
a park at the corner of an intersection. To get from A to C,
some people will walk along the sidewalk from A to B and
then from B to C. They follow a route described by the sum 
of two displacement vectors: AB�� � BC��. Others may follow 
a shortcut through the park directly from A to C. This route 
is described by the displacement vector AC��.

Whichever route is followed, the displacement is the same;
both get from A to C. Therefore AB�� � BC�� � AC��.

This model for vector addition is valid for all vectors, because, in general, vectors
can be represented geometrically by a directed line segment.

The order in which we add the vectors
is unimportant.  If the vectors are
added in the opposite order, the result
is the same. This demonstrates that
vectors satisfy the commutative law 

of addition: u�� � v�� � v�� � u��.

By combining the two triangles of the triangle law in one 
diagram, a parallelogram is formed.

Triangle Law of Vector Addition

To find the sum of two vectors u�� and v�� using the triangle law of vector 
addition, draw the two vectors head to tail. The sum u�� � v��, or resultant,
is the vector from the tail of the first to the head of the second.

A

CD

B

A B

C

Vector 
Diagram

v

u

v + u

v

u

u + v

u + v

u

u

v v



These two laws of addition are equivalent. The method we use depends on which
is the most convenient for the problem at hand. When you set out to solve 
a problem involving vectors, start by drawing vector diagrams such as those on
page 129.

EXAMPLE 1 Given the three vectors a��, b��, and c��, sketch the sums a�� � b��

and (a�� � b��) � c��, b�� �c��, a�� � (b�� � c��).

Solution
Adding a�� to b�� first, we obtain

Adding b�� to c�� first, we obtain

This example illustrates that vectors satisfy the associative law of addition:
a�� � (b�� � c��) � (a�� � b��) � c��. It means that we can omit the brackets and write 
simply a�� � b�� � c��.

EXAMPLE 2 Find the magnitude and direction of the sum of two vectors u�� and v��, if their 
magnitudes are 5 and 8 units, respectively, and the angle between them is 30º.

Solution
Make a vector diagram showing the two vectors with
an angle of 30º between them. Complete the parallelo-
gram and draw the resultant. 

Parallelogram Law of Vector Addition
To find the sum of two vectors using the parallelogram law of vector 
addition, draw the two vectors tail to tail. Complete the parallelogram with
these vectors as sides. The sum u�� � v�� is the diagonal of the parallelogram
from the point where the tails are joined to the point where the heads meet.

a b
c

30°

v

u

a + b

a

b
a + b

(a + b) + c

c

b + c

cb

b + c

a + (b + c)

cb

a
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The resultant is the third side of a triangle with sides 5
and 8. Observe that the angle between the vectors is
not an angle in this triangle. The angle between the
vectors is equal to an exterior angle of the triangle.
(Why?) Use the angle of 150º and the cosine law to find the magnitude of the sum.

u�� � v��2 � 52 � 82 � 2(5)(8) cos 150º
� 158.28

Then u�� � v�� � 12.6

The direction of u�� � v�� is expressed as an angle measured relative to one of the
given vectors, say v��. This is � in the diagram. It can be found using the sine law.

�
sin

5
�

� � �
sin

12
1
.
5
6
0º

�

sin � � �
5 s

1
in
2.

1
6
50º

�

� � 11.4º

Therefore, the magnitude of u�� � v�� is 12.6 units, and it makes an angle of 
approximately 11.4º with v��.

To subtract two vectors a�� and b��, we express the difference in terms of a sum. 
To find the vector a�� � b��, use the opposite of b�� and add it to a��. Hence a�� � b�� is
equivalent to a�� � (�b��).

The difference of two equal vectors a�� � a�� is the zero vector, denoted by 0��. 
The zero vector has zero magnitude. Its direction is indeterminate.

EXAMPLE 3 In parallelogram ABCD, find the difference AB�� � AD��

a. geometrically b. algebraically

Solution
a. Draw AD´��� opposite to AD��. Using the 

parallelogram law, draw the sum AB�� � AD´���,
which is AC´�� in the diagram. 

But AC´�� � DB��, so AB�� � AD�� � DB��

b. AB�� � AD�� � AB�� � (�AD��)

� AB�� � DA�� (DA�� is the opposite of AD��)

� DA�� � AB�� (Rearrange the order of the terms)

� DB��

30°

8

5
150°�

u + v

BA

D C

BA

D C

D´ C´



These laws state that you may add vectors in any order you like and that you may
expand and factor expressions in the usual way. 

There are other basic vector relations that are universally true. We can 
demonstrate the validity of these relations by using vector diagrams. 
The following example illustrates this.

EXAMPLE 4 Show that u�� � v�� � u�� � v��. When does equality hold?

Solution
Make a diagram of two vectors u�� and v��, and their sum u�� � v��. 
The three vectors form a triangle. The lengths of the sides 
of the triangle are the magnitudes of the vectors. From the 
diagram, the side u�� � v�� must be less than the sum of the
other two sides u�� � v��. There is no triangle if it is greater. 

Therefore u�� � v�� � u�� � v��.

Properties of Vector Addition
• a�� � b�� � b�� � a�� Commutative Law
• (a�� � b��) � c�� � a�� � (b�� � c��) Associative Law

Properties of Scalar Multiplication
• (mn)a�� � m(na��) Associative Law
• m(a�� � b��) � ma�� � mb�� Distributive Laws
• (m�n)a�� � ma�� � na��

Properties of the Zero Vector: 0��

• a�� � 0�� � a��

Each vector a�� has a negative (�a��) such that
• a�� � (�a��) � 0��

In the parallelogram formed by two vectors u�� and v��

• the sum u�� � v�� is the vector created by the diagonal 

from the tail of the two vectors 

u�� � v�� � AC��

• the difference u�� � v�� is the vector created by the 

second diagonal 

u�� � v�� � DB��

BA

D C

u – v

u + v

v

u

u + v v

u
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When u�� and v�� have the same direction, the triangle collapses to 
a single line, and u�� � v�� � u�� � v��.

Part A

1. For each of the following, state the name of a vector equal to u�� � v�� and equal
to u�� � v��.

a. b. c.

2. Seven points A, B, C, D, E, F, and G, are arranged in order from left to right
on a single straight line. Express the vector BE�� as

a. the sum of two vectors, three vectors, and four vectors

b. the difference of two vectors in two different ways

3. What single vector is equivalent to each of these sums?

a. PT�� � TS�� � SQ�� b. AC�� � GE�� � CE��

c. EA�� � CB�� � DB�� � AD�� d. PT�� � QT�� � SR�� � SQ��

Part B

4. Find the sum of the vectors u�� and v�� if � is the angle between them.

a. u�� � 12, v�� � 21 and � � 70º b. u�� � 3, v�� � 10, and � � 115º 

5. A tour boat travels 25 km due east and then 15 km S50ºE. Represent these
displacements in a vector diagram, then calculate the resultant displacement.

6. If â and b̂ are unit vectors that make an angle of 60º with each other, calculate 

a. 3â � 5b̂ b. 8â � 3b̂

Application

Knowledge/
Understanding

Knowledge/
Understanding

Communication

Exercise 4.2

Triangle Inequality
For vectors u�� and v��,u�� � v�� � u�� � v��.

u + v

vu

BA

D C

v

u

BA

D C

vu

BA

D C

v

u



7. What conditions must be satisfied by the vectors u�� and v�� for the following to
be true?

a. u�� � v�� � u�� � v�� b. u�� � v�� 	 u�� � v�� c. u�� � v�� � u�� � v��

8. Under what conditions will three vectors having magnitudes of 7, 24, and 25,
respectively, have the zero vector as a resultant?

9. Vectors a�� and b�� have magnitudes 2 and 3, respectively. If the angle between
them is 50º, find the vector 5a�� � 2b��, and state its magnitude and direction.

10. Simplify the following expressions using the properties of vector operations.

a. 4x�� � 5y�� � x�� �6y�� b. 2x�� � 4(x�� � y��)

c. 8(3x�� � 5y��) � 4(6x�� � 9y��) d. 3x�� � 6y�� � 4(2y�� � x��) � 6x��

11. Let a�� � 2i� � 3j� � k��, b�� � i� � j� � k��, and c�� � 2i� � 3k��. Find

a. a�� � b�� � c�� b. a�� � 2b�� – 3c�� c. �3b�� � 4c��

12. If a�� � 3x�� � 2y�� and b�� � 5x�� � 4y��, find x�� and y�� in terms of a�� and b��.

13. Check each identity algebraically, and illustrate with the use of a diagram.

a. x�� � �
y�� �

2
x��

� � �
x�� �

2
y��

� b. x�� � �
x�� �

2
y��

� � �
x�� �

2
y��

�

14. Illustrate for k 	 0 that k(u�� � v��) � ku�� � kv��.

15. Show geometrically that, for any scalar k and any vectors u�� and v��,
k(u�� – v��) � ku�� � kv��.

16. By considering the angles between the vectors, show that a�� � b�� and a�� � b�� are
perpendicular when a�� � b��.

Part C

17. ABCDEF is a regular hexagon with sides of unit length. 
Find the magnitude and the direction of 
AB�� � AC�� � AD�� � AE�� � AF��.

18. If x�� � 11, y�� � 23, and x�� � y�� � 30, find x�� � y��.

19. The sum and the difference of two vectors u�� and v�� are given. 
Show how to find the vectors themselves.

Application

A F

E

DC

B

u + v u – v
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20. Represent by î , ĵ , and k̂, the three vectors AB��, AC��,
and AD�� that lie along adjacent edges of the cube in the 
given diagram. Express each of the following vectors in 
terms of î , ĵ , and k̂.

a. FG��, a diagonal of the front face of the cube

b. the other diagonals of the front, top and right faces of the cube

c. BE��, a body diagonal of the cube

d. the other body diagonals of the cube

e. What is the magnitude of a face diagonal? A body diagonal?

21. Prove that for any vectors u�� and v��, u�� � v��2 � u�� � v��2 � 2(u��2 � v��2).

Thinking/Inquiry/
Problem Solving

A

B G

C

ED

F
H
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Section 4.3 — Force as a Vector

A force on any object causes that object to undergo an acceleration. You can feel 
a force pushing you back into your seat whenever the car you are riding in 
accelerates from a stop light. You no longer feel any force once the car has
reached a steady speed, but that does not mean that the force that set the car 
in motion has ceased to exist. Instead that force is now balanced by other forces
such as air resistance and road friction. A steady speed is an example of a 
state of equilibrium in which the net force is zero.

It was Newton who first clarified these concepts and formulated the law that bears
his name.

The outside force mentioned in Newton’s First Law refers to an unbalanced force.
When you release a helium-filled balloon, it will rise into the air. It is attracted by
the force of gravity like everything else but upward forces are greater, so it 
accelerates into the sky. Eventually it reaches an altitude where the atmosphere is
less dense, and the buoyant forces and the force of gravity balance. In this state 
of equilibrium, it can float for days, as weather balloons often do.

EXAMPLE 1 Describe the forces acting on an aircraft flying at constant velocity.

Solution
An aircraft flying at a constant velocity is in a state of
equilibrium. The engines provide thrust, the force 
propelling the aircraft forward. The thrust is counter-
balanced by a drag force coming from air resistance.
The air rushing past the wings produces lift, a force
which counterbalances the force of gravity and keeps
the plane aloft.

The magnitude of a force is measured in newtons, which is abbreviated as N. At
the earth’s surface, gravity causes objects to accelerate at a rate of approximately 
9.8 m/s2 as they fall. The magnitude of the gravitational force is the product of an

Newton’s First Law of Motion
An object will remain in a state of equilibrium (which is a state of rest 
or a state of uniform motion) unless it is compelled to change that state 
by the action of an outside force.

aircraft

lift

weight

drag thrust
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object’s mass and this acceleration. The gravitational force on a 1-kg object at the
earth’s surface is approximately 9.8 N. In other words, a 1-kg object weighs
approximately 9.8 N.

It is generally the case that several forces act on an object at once. It is important
to know the net effect of all these forces, because an object’s state of motion is
determined by this net force. Since forces are vectors, the single force that has the
same effect as all the forces acting together can be found by vector addition. This
single force is the resultant of all the forces.

Sometimes a force acts on an object at an angle, so that only part of the force is
affecting the motion of the object.

EXAMPLE 2 Jake is towing his friend on a toboggan, using a rope which makes an angle of 25º
with the ground. If Jake is pulling with a force of 70 N, what horizontal force is
he exerting on the toboggan?

Solution
First draw a diagram showing the force and its
direction. Now consider that this force is the
resultant of a horizontal force h�� and a vertical
force v��. We show this by forming a triangle,
with the original 70 N force as the resultant;
h�� and v�� are perpendicular.

Now h�� � 70 cos 25º
� 63.4

So the horizontal force is about 63.4 N.

We refer to the quantietiesh�� and v�� as the horizontal and vertical components
of the original force.

EXAMPLE 3 Jake and Maria are towing their friends on a toboggan. Each is exerting a horizon-
tal force of 60 N. Since they are walking side by side, the ropes pull one to each
side; they each make an angle of 20º with the line of motion. Find the force
pulling the toboggan forward.

Solution
Make a diagram showing the forces. By completing 
the parallelogram, we show the resultant r�,
the diagonal of the parallelogram.

25°
v

h

70 N

20°
140°

20°

60 N 60 N

60 N

r



r�2 � 602 � 602 � 2(60)(60) cos 140º

r� � 112.8

The towing force is about 113 N.

In Example 3, the toboggan is (probably) travelling at a constant speed, indicating
that there is no unbalanced force on it. This is because there is a frictional force
that is equal and opposite to the towing force.

The force that is equal in magnitude but opposite in direction to the resultant is
called the equilibrant. It exactly counterbalances the resultant. In Example 2, the
force of friction is the equilibrant, which keeps the towing force from accelerating
the toboggan.

EXAMPLE 4 In Example 2, what if Maria starts pulling at an 
angle of 30º instead of 20º? As the diagram 
shows, the direction of the resultant will be a 
little to the right of the axis of the toboggan. This 
means that the toboggan will not travel forward in 
a straight line but will veer continually to the right. 
If these conditions remain unchanged, the toboggan 
will travel in a circle.

EXAMPLE 5 In Example 2, if Maria pulls with 
a force of 60 N at an angle of 
30º, what should the magnitude
of the force exerted by Jake at 

an angle of 20º be if the toboggan 
is to move straight forward without 
turning? According to the sine law,

�
si

n
F��
3

0º

� = �sin
60

20º
�

F�� � 88 N

1. We could have solved this question by finding the component of each 
force along the direction of travel and adding the results.

2. If the forces had not been equal, the angles made with the direction 
of travel would not have been equal.

Maria

30°
60 N

60 N

r

Maria

Jake

?

20°

30°
60 N

R

F

20°

130°

30°

60
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Jake must pull with a force of 88 N. Since Jake is pulling harder than before, the
resultant will be greater than before:

�
sin

R
130º
�� �

sin
60

20º
�

R � 134 N

As in Example 2 and the subsequent discussion, make it a practice with force
problems to look for ways to justify your numerical results and make them 
physically meaningful.

EXAMPLE 6 A large promotional balloon is tethered to the top of a building by two guy wires
attached at points 20 m apart. If the buoyant force on the balloon is 850 N, and
the two guy wires make angles of 58º and 66º with the horizontal, find the tension
in each of the wires.

Solution
First draw the position diagram showing where the forces act. In this problem, the
resultant of the two tensions must be 850 N to counterbalance the buoyant force
of the balloon, which is the equilibrant. In making the force diagram, draw the
tension vectors parallel to the corresponding lines in the position diagram.

In the diagrams, observe step by step how the angles in the position diagram are
first translated into the force diagram, and then how these angles are used to
determine the angles inside the force triangle.

Since all three angles in the force triangle are known, the magnitudes of the 
tension vectors T��1 and T��2 can be calculated using the sine law,

�s

in

T��

2
1
4º� � �sin

85
1
0
24º� and �s


in

T��

3
2
2º� � �sin

85
1
0
24º�.

Therefore T��1 � �
85

s
0
in

s
1
in
24

2
º
4º

� and T��2 � �
85

s
0
in

s
1
in
24

3
º
2º

�

� 417 N � 543 N

The tensions in the guy wires are approximately 417 N and 543 N, with the guy
wire at the steeper angle having the greater tension.

58° 66°

850 N

T1 T2

Position Diagram 58°

58°

66°

T1

T2

Force Diagram

850 N

24°



EXAMPLE 7 Is it possible for an object to be in a state of equilibrium when forces of 10 N,
20 N, and 40 N act on it?

Solution
An object will be in a state of equilibrium when the resultant of all the forces act-
ing on it is zero. This means that the three given force vectors must form a trian-
gle. By the triangle inequality theorem, the sum of any two sides must be greater
than the third, but in this case the magnitudes of the forces are such that 10 �
20 � 40. Therefore, an object cannot be in a state of equilibrium with the three
given forces acting on it.

In the discussion of forces in the previous examples,
we assumed that an object is free to move in the direc-
tion of the force acting on it. Often, however, that is
not the case. For example, when you push a lawn
mower, you exert a force along the handle, but the
mower does not move into the ground along the line of
the force. It moves horizontally. So, how much of the
force that you exert actually contributes to the motion?

To answer this question, we must resolve the force into
horizontal and vertical components. The components are
the magnitudes of forces acting horizontally and vertically,
whose sum, by vector addition, is the original force.

EXAMPLE 8 A lawn mower is pushed with a force of 90 N directed along the handle, which
makes an angle of 36º with the ground.

a. Determine the horizontal and vertical components of the force on the
mower.

b. Describe the physical consequences of each component of the pushing
force.

Solution
a. The force diagram is a right triangle. 

The components are

F��h � 90 cos(36º) and F��v � 90 sin(36)º
� 72.8 N � 52.9 N

b. The horizontal component of the force, 72.8 N, moves the lawnmower 
forward across the grass. The vertical component of the force, 52.9 N, is in
the same direction (down) as the force of gravity.

motion

force

vertical
component

horizontal
component

force

Fh

Fv

36°

140 C H A P T E R  4



1414 . 3  F O R C E  A S  A  V E C TO R

EXAMPLE 9 A 20-kg trunk is resting on a ramp inclined at an angle of 15º. Calculate the 
components of the force of gravity on the trunk that are parallel and perpendicular
to the ramp. Describe the physical consequences of each.

Solution
The force of gravity on the trunk is (20 kg) 
 (9.8 m/s2) � 196 N acting down.
The parallel and perpendicular components are 

F��p � 196 sin 15º and F��n � 196 cos 15º
� 51 N � 189 N

The parallel component points down the slope of the ramp. It tends to cause the
trunk to slide down the slope. It is opposed by the force of friction acting up the
slope. The perpendicular component presses the trunk against the ramp. The 
magnitude of the force of friction is proportional to this component.

Part A

1. Name some common household objects on which the force of gravity is
approximately 2 N; 20 N; 200 N. What is your weight in newtons?

2. Find the horizontal and vertical components of each of the following forces.

a. 200 N acting at an angle of 30º to the horizontal

b. 160 N acting at an angle of 71º to the horizontal

c. 75 N acting at an angle of 51º to the vertical

d. 36 N acting vertically

3. Find the resultant of each pair of forces acting on an object.

a. forces of 7 N east and 12 N west

b. forces of 7 N east and 12 N north

c. forces of 6 N southwest and 8 N northwest

d. forces of 6 N southeast and 8 N northwest

Knowledge/
Understanding

Communication

Exercise 4.3

15°
196 N

position diagram

Fp

Fn 15°

196 N

force diagram



Part B

4. Find the magnitude of the resultant of the four forces 
shown in the given diagram.

5. Two forces F��1 and F��2 act at right angles to each other. Express the magnitude
and direction of F��1 � F��2 in terms of F��1 and F��2. 

6. Find the magnitude and the direction (to the nearest degree) of the resultant 
of each of the following systems of forces.

a. forces of 3 N and 8 N acting at an angle of 60º to each other

b. forces of 15 N and 8 N acting at an angle of 130º to each other

7. Find the magnitude and direction of the equilibrant of each of the following
systems of forces.

a. forces of 32 N and 48 N acting at an angle of 90º to each other

b. forces of 16 N and 10 N acting at an angle of 10º to each other

8. Is it easier to pull yourself up doing chin-ups when your hands are 60 cm
apart or 120 cm apart? Explain your answer.

9. A mass of 10 kg is suspended from a ceiling by two cords that make angles 
of 30º and 45º with the ceiling. Find the tension in each of the cords.

10. Two forces of equal magnitude act at 60º to each other. If their resultant has 
a magnitude of 30 N, find the magnitude of the equal forces.

11. Which of the following sets of forces acting on an object could produce 
equilibrium?

a. 5 N, 2 N, 13 N c. 13 N, 27 N, 14 N

b. 7 N, 5 N, 5 N d. 12 N, 26 N, 13 N

12. Three forces of 5 N, 7 N, and 8 N are applied to an object. If the object is in 
a state of equilibrium

a. show how the forces must be arranged 

b. calculate the angle between the lines of action of the 5 N and 7 N forces

13. A man weighing 70 kg lies in a hammock whose ropes make angles of 
20º and 25º with the horizontal. What is the tension in each rope?

14. A steel wire 40 m long is suspended between two fixed points 20 m apart. 
A force of 375 N pulls the wire down at a point 15 m from one end of the
wire. State the tension in each part of the wire.

Knowledge/
Understanding

Communication
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15. An advertising sign is supported by a horizontal steel brace 
extending at right angles from the side of a building, and by 
a wire attached to the building above the brace at an angle 
of 25º. If the force of gravity on the sign is 850 N, find the 
tension in the wire and the compression in the steel brace.

16. Find the x-and y-components of each of the vectors u��, v��,
and w��.

17. A tractor is towing a log using a cable inclined at an angle of 15º to the 
horizontal. If the tension in the cable is 1470 N, what is the horizontal force
moving the log?

18. A piece of luggage is on a conveyer belt that is inclined at an angle of 28º. 
If the luggage has a mass of 20 kg

a. determine the components of the force of gravity parallel to and 
perpendicular to the conveyer belt

b. explain the physical effect of each of these components

19. A child with a mass of 35 kg is sitting on a swing attached to a tree branch by 
a rope 5 m in length. The child is pulled back 1.5 m measured horizontally.

a. What horizontal force will hold the child in this position?

b. What is the tension in the rope?

20. The main rotor of a helicopter produces a force of 55 kN. If the helicopter
flies with the rotor revolving about an axis tilted at an angle of 8º to the 
vertical

a. find the components of the rotor force parallel to and perpendicular 
to the ground

b. explain the physical effect on the helicopter of each component of the
rotor force

21. In order to keep a 250-kg crate from sliding down a ramp inclined at 25º, the
force of friction that acts parallel to and up the ramp must have a magnitude
of at least how many newtons?

22. A lawn roller with a mass of 50 kg is being pulled with a force of 320 N. 
If the handle of the roller makes an angle of 42º with the ground, what 
horizontal component of the force is causing the roller to move?

Application

40°
65°

y

x
u  = 5

w  = 12 v  = 9

25°



Part C
23. Three forces, each of which is perpendicular to the

other two, act on an object. If the magnitudes of
these forces are 6 N, 15 N, and 10 N, respectively,
find the magnitude and direction of the resultant.
(State the angles that the resultant makes with the
two larger forces.)

24. Two tugs are towing a ship. The smaller tug is 10º off the port bow and the
larger tug is 20º off the starboard bow. The larger tug pulls twice as hard as
the smaller tug. In what direction will the ship move?

25. Braided cotton string will break when the tension exceeds 300 N. Suppose
that a weight of 400 N is suspended from a 200-cm length of string, the upper
ends of which are tied to a horizontal rod at points 120 cm apart.

a. Show that the string will support the
weight, when the weight is hung at the
centre of the string.

b. Will the string break if the weight is 80 cm from one end of the string?

C H A P T E R  4144
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Section 4.4 — Velocity as a Vector

In elementary problems, the speed of a moving object is calculated by dividing
the distance travelled by the travel time. In advanced work, speed is defined more
carefully as the rate of change of distance with time. In any case, speed is a 
quantity having magnitude only, so it is classified as a scalar.

When the direction of motion as well as its magnitude is important, the correct
term to use is velocity. Velocity is a vector quantity. Speed is the magnitude 
of a velocity.

Velocity vectors can be added. When you walk forward in the aisle of an aircraft
in flight, the 2-km/hr velocity of your walk adds to the 500-km/hr velocity of the
plane, making your total velocity 502 km/hr. When two velocities are not in the
same direction, the resultant velocity determined from the addition of two velocity
vectors is nevertheless a meaningful, physical quantity.

EXAMPLE 1 A canoeist who can paddle at a speed of 5 km/h in still water 
wishes to cross a river 400 m wide that has a current of 2 km/h. 
If he steers the canoe in a direction perpendicular to the current,
determine the resultant velocity. Find the point on the opposite 
bank where the canoe touches.

Solution
As the canoe moves through the water, it is carried 
sideways by the current. So even though its heading is
straight across the current, its actual direction of motion
is along a line angling downstream determined by the
sum of the velocity vectors.

From the vector diagram,

v��2 � (5)2 � (2)2 and tan � � �
2
5�

v�� � �29� � 5.4 km/h � � 21.8º

Therefore, the canoeist crosses the river at a speed of 5.4 km/h along a line at an
angle of about 22º. The displacement triangle is similar to the vector triangle.

�2
x

� � �
40
5
0

�

x � 160

current

x
400 m
�

Vector Diagram

5 km/h

2 km/h
�

v

5 km/h

2 km/h
�

400 m

x
�



He touches the opposite bank at a point 160 m downstream from the point directly
opposite his starting point. We could also find x using the angle �, but we must be
careful not to round off in the process.

EXAMPLE 2 Suppose the canoeist of Example 1 had wished to travel straight 
across the river. Determine the direction he must head and the 
time it will take him to cross the river.

Solution
In order to travel directly across the river, the canoeist must 
steer the canoe slightly upstream. This time, it is the vector 
sum, not the heading of the canoe, which is perpendicular 
to the river bank. From the vector diagram,

v��2 � (5)2 � (2)2 and sin (�) � �
2
5�

v�� � �21� � 4.6 km/h � � 23.6º

Therefore, to travel straight across the river, the canoeist must head upstream at an
angle of about 24º. His crossing speed will be about 4.6 km/h.

The time it takes to cross the river is calculated from

t � �cr
r
o
i
s
v
s
e
i
r
ng

wi
s
d
p
t
e
h
ed� (where the width is 0.4 km)

� (we avoid using rounded values if possible)

� 0.087 h or 5.2 min

It takes the canoeist approximately 5.2 minutes to cross the river.

Wind affects a plane’s speed and direction much the same way that current affects
a boat’s. The airspeed of a plane is the plane’s speed relative to the mass of air it
is flying in. This may be different in both magnitude and direction from the
plane’s ground speed, depending on the strength and direction of the wind.

EXAMPLE 3 An airplane heading northwest at 500 km/h encounters a wind of 120 km/h from
25º north of east. Determine the resultant ground velocity of the plane.

Solution
Since the wind is blowing from 25º north of east, it can be represented by a vector
whose direction is west 25º south. This wind will blow the plane off its course,

0.4
�
�21�

current
400 m
�

Vector Diagram

5 km/h
2 km/h

�
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changing both its ground speed and its heading. Let v�� be the airspeed of the
plane and w�� be the wind speed. On a set of directional axes, draw the two
velocity vectors. Then draw the resultant velocity using the parallelogram law 
of vector addition.

In parallelogram OCBA, ∠COA � 45º � 25º � 70º, so ∠OAB � 110º. Then, in
∆OAB, two sides and the included angle are known, so the magnitude of the
resultant velocity can be calculated using the cosine law.

v�� � w��2 � 5002 � 1202 � 2(500)(120) cos 110º
v�� � w�� � 552.7

Store this answer in your calculator memory.
Next, ∠AOB can be calculated from the sine law.

�
sin

5
∠
0
A
0

OB
� � �


si
v��
n
�

11
w�
0
�
º

� (use the value of v�� + w�� calculated above)

∠AOB � 58.2º

∠WOB � 58.2º � 25º � 33.2º

The resultant velocity has direction 33º north of west and a magnitude 
of 553 km/h. 

Vectors are needed to describe situations where two objects are moving relative to
one another. When astronauts want to dock the space shuttle with the international
space station, they must match the velocities of the two craft. As they approach,
astronauts on each spacecraft can picture themselves to be stationary and the other
craft to be moving. When they finally dock, even though the two spacecraft are
orbiting the earth at thousands of miles per hour, their relative velocity is zero.

A key step in solving problems such as that in Example 3 is to find an angle 
in the triangle formed by the vectors. Here is a helpful hint: identify which
angle is formed by vectors whose directions are given, and draw small axes at
the vertex of that angle. The diagram shows this alternate way to calculate that 
∠OAB � 110º in Example 3.

45°

Plane Heading
N

S

EW

Wind direction

N

S

A
O

C

B

EW

v

w

v + w

A

O

B

v + w

110°

120

500

110°

45°
45° 65°

25°
A



Relative velocity is the difference of two velocities. It is what an observer meas-
ures, when he perceives himself to be stationary. The principle that all velocities
are relative was originally formulated by Einstein and became a cornerstone of his
Theory of Relativity.

EXAMPLE 4 A car travelling east at 110 km/h passes a truck going in the opposite direction 
at 96 km/h.

a. What is the velocity of the truck relative to the car?

b. The truck turns onto a side road and heads northwest at the same speed. 
Now what is the velocity of the truck relative to the car?

Solution
The vector diagram shows the velocity vectors of the car and
the truck. These velocities are relative to someone standing by
the side of the road, watching the two vehicles pass by. Since
the car is going east, let its velocity be v��car � 110. Then the
truck’s velocity is v��truck � �96.

v��rel � v��truck � v��car

� (�96) � (110)
� �206 km/h or 206 km/h west

This is the velocity that the truck appears to have, according to the driver of the car.

b. After the truck turns, the angle between the car and the
truck velocities is 135º. The magnitude of the sum is
found using the cosine law.

v��rel2 � (96)2 � (110)2 � 2(96)(110) cos 135º
v��rel � 190.4 km/h

(Store this in your calculator.)

The angle of the relative velocity vector can be calculated from the sine law.

�
si
9
n
6
�

� � �
si

1
n
9
1
0
3
.4
5º

�

� � 20.9º 

When two objects A and B have velocities v��A and v��B, respectively,
the velocity of B relative to A is
v��rel � v��B � v��A

truck
v

car
v

truck
v

car
v

rel
v

135°truck
v

car
v

rel
v

truck
v

car
v
�
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After the truck turns, its velocity is 190 km/h in a direction W 21º N relative to the
car. Note that the relative velocity of the two vehicles does not depend on their
position. It remains the same as long as the two vehicles continue to travel in the
same directions without any changes in their velocities.

Part A

1. A plane is heading due east. Will its ground speed be greater than or less than
its airspeed, and will its flight path be north or south of east when the wind 
is from

a. N b. S 80º W c. S 30º E d. N 80º E

2. A man can swim 2 km/h in still water. Find at what angle to the bank he must
head if he wishes to swim directly across a river flowing at a speed of

a. 1 km/h b. 4 km/h

3. A streetcar, a bus, and a taxi are travelling along a city street at speeds of 35,
42, and 50 km/h, respectively. The streetcar and the taxi are travelling north;
the bus is travelling south. Find

a. the velocity of the streetcar relative to the taxi

b. the velocity of the streetcar relative to the bus

c. the velocity of the taxi relative to the bus 

d. the velocity of the bus relative to the streetcar

Part B

4. A river is 2 km wide and flows at 6 km/h. A motor boat that has a speed of 
20 km/h in still water heads out from one bank perpendicular to the current. 
A marina lies directly across the river on the opposite bank.

a. How far downstream from the marina will the boat reach the other bank?

b. How long will it take?

5. An airplane is headed north with a constant velocity of 450 km/h. The plane
encounters a west wind blowing at 100 km/h.

a. How far will the plane travel in 3 h?

b. What is the direction of the plane?

6. A light plane is travelling at 175 km/h on a heading of N8º E in a 40-km/h
wind from N80º E. Determine the plane’s ground velocity.

Application

Knowledge/
Understanding

Knowledge/
Understanding

Communication

Exercise 4.4



7. A boat heads 15º west of north with a water speed of 3 m/s. Determine its
velocity relative to the ground when there is a 2 m/s current from 40º east 
of north.

8. A plane is steering east at a speed of 240 km/h. What is the ground speed of
the plane if the wind is from the northwest at 65 km/h? What is the plane’s
actual direction?

9. Upon reaching a speed of 215 km/h on the runway, a jet raises its nose to an
angle of 18º with the horizontal and begins to lift off the ground.

a. Calculate the horizontal and vertical components of its velocity 
at this moment.

b. What is the physical interpretation of each of these components 
of the jet’s velocity?

10. A pilot wishes to fly to an airfield S20º E of his present position. If the 
average airspeed of the plane is 520 km/h and the wind is from N80º E
at 46 km/h,

a. in what direction should the pilot steer?

b. what will the plane’s ground speed be?

11. A destroyer detects a submarine 8 nautical miles due east travelling northeast
at 20 knots. If the destroyer has a top speed of 30 knots, at what heading
should it travel to intercept the submarine?

Part C

12. An airplane flies from to Toronto to Vancouver and back. Determine which
time is shorter.

a. The time for the round trip when there is a constant wind blowing from
Vancouver to Toronto.

b. The time for the round trip when there is no wind.

13. A sailor climbs a mast at 0.5 m/s on a ship travelling north at 12 m/s, while
the current flows east at 3 m/s. What is the speed of the sailor relative to the
ocean floor?

14. A car is 260 m north and a truck 170 m west of an intersection. They are both
approaching the intersection, the car from the north at 80 km/h, and the truck
from the west at 50 km/h. Determine the velocity of the truck relative to the
car.

Application
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Key Concepts Review

In this chapter, you have been introduced to the concept of a vector and have seen
some applications of vectors. Perhaps the most important mathematical skill to
develop from this chapter is that of combining vectors through vector addition,
both graphically and algebraically.

Diagrams drawn free hand are sufficient, but try to make them realistic. It is not
difficult to draw angles that are correct to within about 10º and to make lengths
roughly proportional to the magnitudes of the vectors in a problem.

Once you have calculated answers, ask yourself if the calculated angles and 
magnitudes are consistent with your diagram, and if they are physically 
reasonable.

SUMS 

Speaking informally, if you want to go from A to C you
can travel directly along the vector AC��, or you can detour
through B, travelling first along AB��, and then along BC��.
This means that AC�� � AB�� � BC��, but observe how the
detour point fits into the equation: it is the second letter 
of the first vector and the first letter of the second vector.

DIFFERENCES 

Using the same diagram, if you want to go from D to B, you can travel directly
along DB��, or you can detour through A, travelling first backwards along AD��, and
then forwards along AB��. This translates into the equation DB�� � �AD�� � AB��,
which of course is just the difference DB�� � AB�� � AD��. Note carefully that, on the
right hand side of the equation, the order of the initial point D and the end point B
are reversed, and the detour point is the initial letter of the two vectors.

Pay attention to and become familiar with details such as these. You will be able
to draw and interpret vector diagrams and handle vector equations more quickly
and correctly if you do.

BA

D C



Brain cells in the superior colliculus are tuned to the directions of distant visual
and auditory stimuli. Each cell responds only to stimuli located within a cone of
directions. The vigour of a cell’s response can be regarded as specifying the 
magnitude of a vector in the direction the cell represents. The resultant vector
formed by summing the vectors represented by the individual cells points in the
direction of the stimulus.

Dr. Randy Gallistel, a professor in the Department of Psychology at UCLA, whose
research focus is in the cognitive neurosciences, has suggested that these neuro-
logical resultant vectors are “the first new idea about how the nervous system
represents the value of a variable since the beginning of the [twentieth] century
(from Conservations in the Cognitive Neurosciences, Ed. Michalels Gazzaniga, MA:
Bradford Books/MIT Press, 1997).”

Investigate and Apply

1. What direction would be represented by a north cell responding three times
as vigorously as a north-east cell, which, in turn, is responding twice as
vigorously as an east cell?

2. Consider an ensemble of 36 cells, representing directions evenly distributed
around a circle, with one cell representing north. One cell will represent 10º
east of north, the next will represent 20º east of north, and so on. A cell
always responds to some extent whenever a stimulus is within 20º of the cell’s
direction. 

a) Which cells will respond to a stimulus whose direction is north-east?
b) A response pattern is a description of the relative proportions of the vigour 

of the various cells’ responses. Give two possible response patterns for the
cells found in part a. 

3. How do you think the brain deals with the fact that several different response
patterns can represent the same direction?

INDEPENDENT STUDY

Investigate the field of neuroscience.

What other things can be represented in the brain using resultant vectors formed
from cells representing individual vectors? 

What are some other questions to which neuroscientists are seeking answers? 

What role does mathematics play in the search for answers to these questions? ●

investigate and applywrap-up
CHAPTER 4 :  VECTORS AND THE SUPERIOR COLL ICULUS
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Review Exercise

1. a. If v�� � t� � v��, what is t�?

b. If tv�� � v��, what is t?

c. If sv�� � tu��, and u�� is not parallel to v��, what are s and t?

2. Using vector diagrams, show that

a. (a � b)u�� � au�� � bu�� b. (ab)u�� � a(bu��) 

3. A mass M is hung on a line between two supports A and B.

a. Which part of the line supporting the mass has the
greater tension? Explain.

b. The supports A and B are not at the same level. What
effect does this have on the tension in the line? Explain. 

4. Explain these properties of the zero vector:

a. 0v�� � 0�� b. v�� � 0�� � v�� c. if u�� � v�� � 0��, then u�� � �v��

5. If î and ĵ are perpendicular unit vectors, what is the magnitude of

a. 3î � 4ĵ? b. 24î � 7ĵ? c. aî � bĵ?

6. Show that a�� � b�� � a�� � b��, if a�� and b�� have opposite directions.

7. A 3-kg mass is hanging from the end of a string. If a horizontal force of 12 N
pulls the mass to the side 

a. find the tension in the string

b. find the angle the string makes with the vertical

8. Two forces F��1 and F��2 act on an object. Determine the magnitude of the 
resultant if

a. F��1 � 54 N, F��2 � 34 N, and the angle between them is 55º

b. F��1 � 21 N, F��2 � 45 N, and the angle between them is 140º

9. Two forces at an angle of 130º to each other act on an object. Determine their
magnitudes if the resultant has a magnitude of 480 N and makes an angle of
55º with one of the forces.

Knowledge/
Understanding

Knowledge/
Understanding

Communication

Communication

A

M

B
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10. Forces of 5 N, 2 N, and 12 N, all lying in the same plane, act on an object.
The 5 N and 2 N forces lie on opposite sides of the 12 N force at angles of
40º and 20º, respectively. Find the magnitude and direction of the resultant.

11. A 10-kg mass is supported by two strings of length 5 m and 7 m attached 
to two points in the ceiling 10 m apart. Find the tension in each string.

12. The pilot of an airplane that flies at 800 km/h wishes to travel to a city 
800 km due east. There is a 80 km/h wind from the northeast.

a. What should the plane’s heading be?

b. How long will the trip take? 

13. An airplane heads due south with an air speed of 480 km/h. Measurements
made from the ground indicate that the plane’s ground speed is 528 km/h at
15º east of south. Calculate the wind speed.

14. A camp counsellor leaves a dock paddling a canoe at 3 m/s. She heads 
downstream at 30º to the current, which is flowing at 4 m/s.

a. How far downstream does she travel in 10 s?

b. What is the length of time required to cross the river if its width is 150 m?

15. A pilot wishes to reach an airport 350 km from his present position at 
a heading of N 60º E. If the wind is from S 25º E with a speed of 73 km/h,
and the plane has an airspeed of 450 km/h, find

a. what heading the pilot should steer

b. what the ground speed of the plane will be 

c. how many minutes it will take for the plane to reach its destination

16. A coast guard cutter is steering west at 12 knots, when its radar detects a
tanker ahead at a distance of 9 nautical miles travelling with a relative 
velocity of 19 knots, on a heading of E 14º N. What is the actual velocity of
the tanker? 

17. Twice a week, a cruise ship carries vacationers from Miami, Florida, to
Freeport in the Bahamas, and then on to Nassau before returning to Miami.
The distance from Miami to Freeport is 173 km on a heading of E 20º N. 
The distance from Freeport to Nassau is 217 km on a heading of E 50º S. 
Once a week the ship travels directly from Miami to Nassau. Determine the
displacement vector from Miami to Nassau.

18. If au�� � bv�� � 0�� and u�� and v�� have different directions, what must a and b
equal?

19. Show geometrically that u�� � v�� � u�� � v��. Under what conditions 
does equality hold?

Application

Thinking/Inquiry/
Problem Solving

Thinking/Inquiry/
Problem Solving

Application
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Chapter 4 Test

1. Under what conditions is u�� � v�� � u�� � v��?

2. Copy the three given vectors a��, b��, and c�� onto 
graph paper, then accurately draw the following 
three vectors.

a. u�� � a�� � 3c��

b. v�� � b�� � a��

c. w�� � �
2
3�b�� � 5c�� � a��

3. Simplify 3(4u�� � v��) � 2u�� � 3(u�� � v��). 

4. Illustrate in a diagram the vector property 4(a�� � b��) � 4a�� � 4b��. What is this
property called?

5. Forces of 15 N and 11 N act a point at 125º to each other. Find the magnitude
of the resultant.

6. A steel cable 14 m long is suspended between two fixed points 10 m apart
horizontally. The cable supports a mass of 50 kg at a point 6 m from one end.
Determine the tension in each part of the cable. 

7. A ferry boat crosses a river and arrives at a point on the opposite bank 
directly across from its starting point. The boat can travel at 4 m/s and the
current is 1.5 m/s. If the river is 650 m wide at the crossing point, in what
direction must the boat steer and how long will it take to cross?

8. What is the relative velocity of an airplane travelling at a speed of 735 knots
on a heading of E 70º S with respect to an aircraft at the same height steering
W 50º S at a speed of 300 knots?

Achievement Category Questions

Knowledge/Understanding 2, 4, 5

Thinking/Inquiry/Problem Solving 8

Communication 1

Application 3, 6, 7

a

bc



NON-EUCLIDEAN GEOMETRY

The word geometry comes from the Greek words for earth and measure. When we solve geometrical
problems, the rules or assumptions we make are chosen to match our experience with the world we live
in. For example, since locally the earth looks flat, it makes sense to talk about planar figures such as
triangles, circles, and so on. But what happens if we change the rules? For example, we normally define
distance in Euclidean terms. When we represent points and figures in terms of coordinates on the
Cartesian plane, then the distance between two points P(x1, y1) and Q(x2, y2) is 

d(P, Q) � �(x1 � x�2)2 � (�y1 � y�2)2�

If we ask for the locus of all points that are a constant distance, say 1, from the given point (0, 0), we
get the circle with equation x2 � y2 � 1. 

One way to create a whole new geometry is to change the way we measure distance. For example, we
can use the so-called taxi-cab distance given by 

t(P, Q) � x1 � x2 � y1 � y2
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The taxi-cab distance between P and Q is the sum of the lengths PR and RQ. The reason for the
colourful name is that it is the actual distance driven if a cab is restricted to a rectangular grid of streets.
Note that t(P, Q) � d(p, Q) for any pair of points P and Q. 

With this definition of distance, we can ask the same locus question. What is the set of all points a taxi-
cab distance of 1 from the origin? If P(x, y) is any point on the locus, then the equation of the locus is 
x � 0 � y � 0 � 1 or x � y � 1. The locus is plotted below, and turns out to be a square.
The graph can be produced by a graphing calculator or by hand. In this case, it is easiest to break the
problem into four cases depending on x and y being positive or negative.

You can investigate many other locus problems in this new geometry. For example, find the set of
points that are equidistant from (0, 0) and (1, 1). If we use Euclidean distance, we get a straight line,
the right bisector of the line segment joining the two points. The following diagram shows what
happens with taxi-cab distance.
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For 0 � x � 1, the right bisector is the line, as with Euclidean distance. However, for x � 1, y � 0 and 
x � 0, y � 1, all points are equidistant from (0, 0) and (1, 1). 

There are many other ways to generate non-Euclidean geometries. Another example is to look at
geometry on the surface of a sphere. In this geometry, straight lines (the shortest path between two
points) become arcs of circles. 

For fun, try the following with taxi-cab distance:

1. Find an equilateral triangle with taxi-cab side length 1. Are all angles equal?

2. Sketch the locus of all points that are equidistant from (0, 0) and (1, 2).

3. The line segment joining (0, 0) to (1, 0) is rotated about the origin. What happens to its length? 
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Chapter 5
ALGEBRAIC VECTORS
AND APPLICATIONS

For quantities that have both magnitude and
direction, the directed line segment or arrow is an
excellent introductory method. But what about a
quantity that has more than three dimensions? In
such cases, an algebraic vector model is required.
A vector model allows you to add, subtract, and
multiply by a scalar vector. We can also use this
model to multiply one vector by another vector.
The development of the vector model was made
possible because, thanks to Descartes and analytic
geometry, many geometric ideas already had an
algebraic counterpart. For example, a line could
be represented by a picture or by an equation.
We will see the real power of vectors in this
chapter, when we will use them to solve problems
in the third dimension and beyond.

CHAPTER EXPECTATIONS In this chapter, you will

• determine equations of lines in two- and
three-dimensional space, Section 5.1

• determine the intersection of a line and a
plane in three-dimensional space, Section 5.1

• represent Cartesian vectors, Section 5.1, 5.2

• determine and interpret dot and cross products
of geometric vectors, Section 5.3, 5.4, 5.5

• perform mathematical operations on Cartesian
vectors, Section 5.3, 5.4, 5.5
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Atoms bond together to form the molecules that make up the substances around
us. The geometry of molecules is a factor in determining many of the chemical
properties of these substances. Ethyl alcohol and dimethyl ether are both formed
from two carbon atoms, six hydrogen atoms, and one oxygen atom (C2H6O), but
they have very different chemical and physical attributes. The properties of
enzymes, protein molecules that speed up biochemical reactions, depend upon
precise fits between molecules with specific shapes. One aspect of molecular
geometry that interests chemists is called the bond angle. It is the angle between
two bonds in a molecule. For example, the angle formed where two hydrogen
atoms link to an oxygen atom to form water (H2O) is about 104.5º.

Investigate 
A water molecule can be studied in a
Cartesian plane. If we allow each unit on the
plane to represent 10–11 metres and place
the oxygen atom at the origin, then the
hydrogen atoms are located symmetrically at
about (7.59, 5.88) and (–7.59, 5.88). The
bond angle formed at the oxygen atom is 

� = 180 – 2 � tan–1��
5
7
.
.
8
5
8
9�� = 104.5º.

Can you explain why this calculation is correct?

Nitrogen trioxide (NO3
–) is an example of a trigonal planar 

molecule. It consists of four atoms in a plane: three oxygen atoms
surrounding and individually bonding to a single nitrogen atom.
Because there are three identical atoms surrounding the nitrogen
atom, the three are evenly spaced around a circle. The bond angle
for each of the three bonds is, therefore, 360 � 3 = 120°.

DISCUSSION QUESTIONS

1. If the distance between the nitrogen atom and each oxygen atom in NO3
– is

1.22 � 10–10 metres, what is one way to assign planar coordinates to the
atoms?

2. Formaldehyde (H2CO) is a trigonal planar molecule with 
the carbon in the centre. The bond between the carbon 
and the oxygen is shorter than the bond between the 
carbon and either one of the hydrogen atoms. Which is 
likely to be smaller, the O-C-H bond angle or the H-C-H
bond angle?

3. Can three-atom molecules always be studied in a plane? Can four-atom
molecules always be studied in a plane? What about molecules with more
than four atoms? ●

CHAPTER 5 :  MOLECULAR BOND ANGLES
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Section 5.1 — Algebraic Vectors

In this chapter, we establish principles that allow the use of algebraic methods in the
study of vectors. The application of algebra to problems in geometry first became
possible in 1637, when Descartes introduced the concept of a coordinate system.

A line is a geometrical object. How is a coordinate system
for a line constructed? First, choose an arbitrary point on the
line as a reference point, or origin. Next, associate with each
point P on the line a real number a. How? Let the sign of a
indicate which side of the origin P is on, and let the magnitude of a represent the
distance from the origin to P. The result is known as the real number line, and a is
called the coordinate of P.

The correspondence between points on the line and real numbers is complete in
this sense: each point on the line has a different real number as its coordinate, and
every real number corresponds to one and only one point on the line.

Now let u�� be a vector on this line. Move the vector until its 
initial point is at the origin. Its endpoint will fall on some
point P with coordinate a. The coordinate a contains 
everything you need to describe the vector u��.

The absolute value a is the magnitude of u��, and the sign of a tells you its direc-
tion.

We have now established the connection between the coordinates of a point and a
geometrical vector on a line. This amounts to an algebraic representation of a 
geometrical vector. It is the first step in the development of algebraic methods to
handle vector problems.

A line is one-dimensional. A plane has two dimensions. 
But the same process leads to an algebraic representation 
of a vector in a plane. The Cartesian coordinate system
for a plane is constructed from two real number lines—
the x-axis and the y-axis—placed at right angles in the
plane. The axes are oriented so that a counter-clockwise
rotation about the origin carries the positive x-axis into the positive y-axis. Any
point P in the plane is identified by an ordered pair of real numbers (a, b), which
are its coordinates.

Let u�� be a vector in the plane. Move u�� until its initial point
is at the origin. Its endpoint will fall on some point P with
coordinates (a, b). The magnitude of u�� can be determined
from (a, b) using the Pythagorean Theorem. The direction

origin a

O P

origin a

O u P

x

y

b P(a, b)

aO

x

y

b P(a, b)

aO

u

u

�
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of u�� can be expressed in terms of the angle � between u�� and the positive x-axis.

We can observe that, just as in the case of a line, the magnitude and direction of u��

are determined entirely by the coordinates of P. Nothing else is needed.
Therefore, the ordered pair (a, b) is a valid representation of the vector u��. 

The ordered pair (a, b) is referred to as an algebraic vector. The values of a and b
are the x- and y-components of the vector.

It is important to remember that the ordered pair (a, b) can be interpreted in two
different ways: it can represent either a point with coordinates a and b, or a vector
with components a and b. The context of a problem will tell you whether (a, b)
represents a point or a vector.

EXAMPLE 1 The position vector of a point P is the vector OP�� from the origin to the point.
Draw the position vector of the point P(�3, 7), express it in ordered pair notation,
and determine its magnitude and direction.

Solution
The point P(�3, 7) is in the second quadrant. The position vector of P is 
OP�� � (�3, 7). The magnitude and direction of OP�� are 
calculated as follows:

OP��2 � (�3)2 � (7)2 tan � � �
�
7
3�

OP�� � �58� � � 113º

Thus, the magnitude of OP�� is �58�. Its direction makes an 
angle of approximately 113º with the positive x-axis.

Another notation commonly used to describe algebraic 
vectors in a plane employs unit vectors. Define the vectors 
î � (1, 0) and ĵ � (0, 1). These are unit vectors that point in 
the direction of the positive x-axis and positive y-axis,
respectively.

Any vector u�� in a plane can be written as an ordered pair (a, b), where its
magnitude u�� and direction � are given by the equations

u�� � �a2 � b�2� and    � � tan�1��
b
a

��
with � measured counter-clockwise from the positive x-axis to the line of the
vector. The formula above gives two values of �, 0 � � 	 360º. The actual
value depends on the quadrant in which P(a, b) lies.

x

yP

O–3

�

x

y

j
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As you can see in the diagram, the position vector of
point P(a, b), and thus any vector u�� in the plane, can
be expressed as the vector sum of scalar multiples of î
and ĵ .

EXAMPLE 2 Express the position vector of each of the points shown in the 
diagram as an ordered pair and in unit vector notation.

Solution
OP�� � (6, �2) OQ�� � (�3, 3) OR�� � (0, 7)

� 6î � 2 ĵ � �3î � 3ĵ � 7ĵ

A coordinate system for three-dimensional space is formed in much the same way
as a coordinate system for a two-dimensional plane. Some point in space is cho-
sen as the origin. Through the origin, three mutually perpendicular number lines
are drawn, called the x-axis, the y-axis, and the z-axis. Each point in space corre-
sponds to an ordered triple of real numbers (a, b, c), which are its coordinates on
the three axes. 

There are two different ways to choose the positive 
directions of the axes. As a rule, mathematicians use a 
right-handed coordinate system. If you could grasp the 
z-axis of a right-handed system with your right hand, point-
ing your thumb in the direction of the positive z-axis, your
fingers should curl from the positive x-axis toward the 
positive y-axis. A left-handed system would have the 
positive y-axis oriented in the opposite
direction.

A plane in space that contains two of 
the coordinate axes is known as a 
coordinate plane. The plane containing the
x- and y-axes, for instance, is called the
xy-plane. The other two coordinate planes
are named similarly. A point such as 
(�4, 0, 1), which has a y-coordinate of 0,
lies in the xz-plane.

Ordered pair notation and unit vector notation are equivalent. Any algebraic
vector can be written in either form:

u�� � OP�� � (a, b)   or   u�� � OP�� � aî � bĵ

x

y

b P(a, b)

aO
j

j

i i
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To plot a point P(a, b, c) in space, move a units from the origin in the x direction,
then b units in the y direction, and then c units in the z direction. Be sure each
move is made along a line parallel to the corresponding axis. Drawing a rectangu-
lar box will help you to see the three-dimensional aspect of such diagrams. 

Just as in two dimensions, any vector in space can be placed with its initial point
at the origin. Its tip will then fall on some point P with coordinates (a, b, c), from
which its magnitude and direction can be determined. The ordered triple (a, b, c),
therefore, represents an algebraic vector in three dimensions. Alternatively, this
vector could be expressed in terms of unit vectors î , ĵ , and k̂, where î � (1, 0, 0),
ĵ � (0, 1, 0), and k̂ � (0, 0, 1).

EXAMPLE 3 Locate the point P, sketch the position vector OP�� in three dimensions, and 
calculate its magnitude.

a. P(�5, �7, 2) b. OP�� � 3î � 5ĵ � 4 k̂

Solution
a. b.

OP�� � �(�5)2�� (�7�)2 � (2�)2� OP�� � �(3)2 �� (5)2 �� (�4)2�
� �78� � �50�

O

P(3, 5, –4)

y

x

z

3

–4

5

O

P(–5, –7, 2)

y

x

z

–7

2 –5

Any vector u�� in three-dimensional space can be written
as an ordered triple, u�� � OP�� � (a, b, c),
or in terms of unit vectors, u�� � OP�� � aî � bĵ � ck̂.
Its magnitude is given by u�� � �a2 � b�2 � c2�. 

OP
P

O

(0, b, 0)

(a, 0, 0)

(0, 0, c)

y

z

x

P(a, b, c)

y

x

c

b

Oa

z
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In two dimensions, we can describe the direction of a vector by a single angle. In
three dimensions, we use three angles, called direction angles.

In this context, the components a, b, and c of the vector u�� are referred to as 
direction numbers.

In the given diagram, the direction angles are all acute 
angles. We can see the right triangle that relates u��,
the direction number c, and the direction angle γ,

from which it follows that cos γ � . 

The other direction numbers and angles are related in 
the same way.

Note that if you divide a vector (a, b, c) by its magnitude u��, you create a unit 

vector with components ��
a
u��
�, �


b
u��
�, �

u�
c
�
��, which is exactly (cos α, cos β, cos γ). 

Thus, the direction cosines are the components of a unit vector. Consequently,

cos2 α � cos2 β � cos2 γ � 1.

It follows from this that the direction cosines, and hence the direction angles, are
not all independent. From any two of them you can find the third.

EXAMPLE 4 Find the direction cosines and the direction angles of the vector u�� � (0, 5, �3).

Solution
The magnitude of u�� is �(0)2 �� (5)2 �� (�3)2� � �34�. 
The direction cosines and angles are therefore

cos α � , α � 90º

cos β � , β � 31º

cos γ � , γ � 121º�3
�
�34�

5
�
�34�

0
�
�34�

The direction cosines of a vector are the cosines of the direction angles 
α, β and γ , where 

cos α �    , cos β �    , and cos γ �    .

c
�
u��

The direction angles of a vector (a, b, c) are the angles α, β, and γ that 
the vector makes with the positive x-, y-, and z-axes, respectively, where 
0° � α , β, γ � 180°.

�
u�

a
�
� �

u�
b
�
� �

u�
c
�
�

y

x

z

c u

α β
γ

x

y

z

31°

121°
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This vector is perpendicular to the x-axis, and is, therefore, parallel to the 
yz-plane.

EXAMPLE 5 A vector u�� makes angles of 60º and 105º, respectively, with the x- and y-axes.
What is the angle between u�� and the z-axis?

Solution
cos2 60º � cos2 105º � cos2 γ � 1

cos γ � 
 �1 � co�s2 60º�� cos2� 105º�

γ � 34º or 146º

The angle between u�� and the z-axis is 34º or 146º, so there are two possible 
vectors.

Part A

1. What is the difference between an algebraic vector and a geometric vector?

2. Rewrite each of the following vectors in the form aî � bĵ .

a. (�5, 2) b. (0, 6) c. (�1, 6) 

3. Rewrite each of the following vectors as an ordered pair.

a. 2î � ĵ b. �3î c. 5î � 5ĵ

4. Rewrite each of the following vectors in the form aî � bĵ � ck̂.

a. (�2, 1, 1) b. (3, 4, �3) c. (0, 4, �1) d. (�2, 0, 7) 

5. Rewrite each of the following vectors as an ordered triple.

a. 3î � 8ĵ � k̂ b. �2î � 2ĵ � 5k̂

c. 2ĵ � 6k̂ d. �4î � 9ĵ

6. Express each of the following vectors as an algebraic vector in the form 
(a, b).

a. u�� � 12, � � 135º b. v�� � 36, � � 330º

c. w�� � 16, � � 190º d. x�� � 13, � � 270º

Knowledge/
Understanding

Knowledge/
Understanding

Communication

Exercise 5.1
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7. Express each of the following vectors as a geometric vector by stating its
magnitude and direction.

a. u�� = (�6�3�, 6) b. v�� � (�4�3�, �12)

c. w�� � (4, 3) d. x�� � (0, 8) 

8. What vector is represented in each of the following diagrams?

a. b.

c. d.

e. f.

9. For each of the following, draw the x-axis, y-axis, and z-axis, and accurately
plot the points.

A(�3, 0, 0) B(0, 2, 0) C(0, 0, �2) D(�3, 2, 0) 

E(3, 0, �2) F(0, 2, 3) G(�2, 0, 3) H(0, 3, �2) 

Part B

10. Describe where each of the following sets of points is located.

a. (0, 0, 6), (0, 0, �3), (0, 0, 4) b. (0, 2, 8), (0, �8, 2), (0, �2, 2)

c. (3, 0, 3), (3, 0, �5), (�3, 0, 5) d. (�1, 2, 0), (0, 4, 0), (5, �6, 0) 

e. (1, 3, �2), (1, 3, 6), (1, 3, 11) f. (2, 2, 2), (�3, �3, �3), (8, 8, 8) 

Communication

y

z

x

y

x

O

z

y

O

x

z

y

O

x

z

x

y

x

y

Knowledge/
Understanding
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11. Where are the following general points located?

a. A(x, y, 0) b. B(x, 0, 0)

c. C(0, y, z) d. D(0, 0, z)

e. E(x, 0, z) f. F(0, y, 0)

12. For each of the following, draw the x-axis, y-axis, and z-axis and accurately
draw the position vectors. 

a. M(6, �4, 2) b. N(�3, 5, 3)

c. P(2, 3, �7) d. Q(�4, �9, 5)

e. R(5, �5, �1) f. T(�6, 1, �8) 

13. Find the magnitude and the direction of the following vectors.

a. OE�� � (1, 7) b. OF�� � (0, �6)

c. OG�� � (�9, 12) d. OH�� � ���
1
2�, �

e. OJ�� � � , � � f. OK�� � (��6�, 0) 

14. Find the magnitude of the following vectors.

a. (�12, �4, 6) b. (8, �27, 21)

c. ��
1
2

4
7�, �

�
2
2
7
2

�, �
�
27

7
�� d. (��2�, 2�3�, �2�)

15. Can the sum of two unit vectors be a unit vector? Explain. Can the difference?

16. a. Calculate a�� when a�� � (2, 3, �2).

b. Find a��. Is it a unit vector?

17. a. Find the magnitude of the vector v�� � 2î � 3ĵ � 6k̂.

b. Find a unit vector in the direction of v��.

18. If v�� � (3, 4, 12), find a unit vector in the direction opposite to v��.

19. Show that any unit vector in two dimensions can be written as (cos �, sin �),
where � is the angle between the vector and the x-axis.

20. Reposition each of the following vectors so that its initial point is at the 
origin, and determine its components.

a. b.

x

y

x

y

Application

1
�
a��

Communication

�6�
�
�5�

2
�
�5�

�3�
�

2
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c. d.

21. Draw a diagram of a vector u�� � (a, b, c) that illustrates the relationship
between

a. u��, a, and cos α (α acute) b. u��, b, and cos β (β obtuse)

22. The direction angles of a vector are all equal. Find the direction angles to the
nearest degree.

Part C

23. Prove that the magnitude of the vector OP�� � (a, b, c) is given by 
OP�� � �a2 � b�2 � c2�.

24. Give a geometrical interpretation of the vector u�� � (4, 2, �5, 2). 
Make a reasonable conjecture about its magnitude.

Thinking/Inquiry/
Problem Solving

Thinking/Inquiry/
Problem Solving

y

z

x

y

z

x
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Section 5.2 — Operations with Algebraic Vectors

As we saw in Section 5.1, all vectors can be expressed in terms of the unit vectors
î and ĵ in two dimensions, or î , ĵ , and k̂ in three dimensions, or, equivalently, in
terms of ordered pairs or triplets. Vectors such as î , ĵ , and k̂, which have been
chosen to play this special role, are termed basis vectors. They form a basis for
the two- or three-dimensional spaces in which vectors exist. In Example 1, we
establish the uniqueness of the algebraic representation of a vector in terms of
these basis vectors.

EXAMPLE 1 Prove that the representation of a two-dimensional algebraic vector in terms of its
x- and y-components is unique.

Solution
Using the method of proof by contradiction, we begin by assuming that the vector
u�� can be written in terms of components in two different ways:

u�� � a1î � b1 ĵ and   u�� � a2î � b2 ĵ

Since they represent the same vector, these expressions must be equal.

a1î � b1 ĵ = a2î � b2 j

Some rearrangement produces the equations

a1î – a2î � �b1 ĵ � b2 ĵ

(a1 � a2)î � (�b1 � b2 )ĵ

The last equation states that a scalar multiple of î equals a scalar multiple of ĵ .
But this cannot be true. The unit vectors î and ĵ have different directions, and no
multiplication by a scalar can make the vectors equal.  The only possible way the
equation can be valid is if the coefficients of î and ĵ are zero, that is, a1 � a2 and
b1 � b2, which means that the two representations of the vector u�� are not different
after all.

A proof of uniqueness for vectors in three dimensions is more complicated and
will be explored in Chapter 6.

The uniqueness of algebraic vectors leads to a fundamental statement about the
equality of algebraic vectors.

Two algebraic vectors are equal if and only if their respective 
Cartesian components are equal.
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Since all vectors can be expressed in terms of the basis vectors î , ĵ , and k̂, all
the rules of vector algebra discussed in Chapter 4 apply to algebraic vectors. 
In two dimensions, for instance, scalar multiplication of a vector and addition
of two vectors, written in both unit vector and ordered pair notation, look like
this:

scalar multiplication

vector addition

EXAMPLE 2 If u�� � (5, �7) and v�� � (�2, 3), find w�� � 6u�� � 4v��.

Solution
In ordered pair notation In unit vector notation

w�� � 6u�� � 4v�� w�� � 6u�� � 4v��

� 6(5, �7) � 4(�2, 3) � 6(5î � 7ĵ ) � 4(�2î � 3ĵ )
� (30, �42) � (8, �12) � 30î � 42ĵ � 8î � 12ĵ
� (38, �54) � 38î � 54ĵ

EXAMPLE 3 Using vectors, demonstrate that the three points A(5, �1), B(�3, 4), and
C(13, �6) are collinear.

Solution
The three points will be collinear if the vectors AB�� and BC�� have the same 
direction, or the opposite direction. 

AB�� � (�8, 5)
BC�� � (16, �10)

Then BC�� � �2AB��

AB�� and BC�� have the opposite direction, so the points A, B, and C must be
collinear.

EXAMPLE 4 If A(1, �5, 2) and B(�3, 4, 4) are opposite vertices of parallelogram OAPB and O
is the origin, find the coordinates of P.

(a1i� � b1 j�) � (a2i� � b2 j�) � (a1� a2)i� � (b1 � b2)j�

or
(a1, b1) � (a2, b2) � (a1 � a2, b1 � b2)

k(aî � bĵ ) � kaî � kbĵ
or

k(a, b) � (ka, kb)
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Solution
OP�� � OB�� � BP��

But BP�� � OA�� � (1, �5, 2)

Then OP�� � (�3, 4, 4) � (1, �5, 2)
� (�2, �1, 6)

Therefore, point P has coordinates (�2, �1, 6).

Part A

1. In two dimensions, the unit vectors î and ĵ have been chosen as the basis 
vectors in terms of which all other vectors in the plane are expressed.

a. Consider the merits of this choice as opposed to using vectors that do not
have unit magnitude.

b. Consider the merits of this choice as opposed to using vectors that are not
perpendicular.

2. Find a single vector equivalent to each expression below.

a. (2, �4) � (1, 7) b. 5(1, 4)

c. 0(4, �5) d. (�6, 0) � 7(1, �1)

e. (2, �1, 3) � (�2, 1, 3) f. 2(1, 1, �4)

g. (4, �1, 3) � (�2, 1, 3) h. 2(�1, 1, 3) � 3(�2, 3, �1) 

i. 2(0, 1, 0) � 5(0, 0, 1) j. ��
1
2�(4, �6, 8) � �

3
2�(4, �6, 8) 

k. 5(0, �2, �4) � 4(3, 8, 0) l. �2(�3, 2, 4) � 5(3, 2, 8) 

3. Simplify each of the following expressions.

a. (2î � 3 ĵ ) � 4(î � ĵ ) b. 3(î � 2 ĵ � 3k̂) � 3(� î � 4 ĵ � 3 k̂)

c. �3(î � k̂) � (2î � k̂) d. 5(9î � 7ĵ ) � 5(�9î � 7k̂) 

4. Given a�� � (2, �1, 4), b�� � (3, 8, �6), and c�� � (4, 2, 1), find a single vector
equivalent to each of the following expressions.

a. 2a�� � b�� b. a�� � b�� c. 3a�� � b�� � 2c�� 

d. a�� � b�� � 2c�� e. �2a�� � b�� � c�� f. 4a�� � 2b�� � c�� 

5. Given x�� � 2î � ĵ � k̂ and y�� � 2ĵ � 4k̂, express each quantity in terms of
î , ĵ , and k̂.

a. 3x�� � y�� b. x�� � y�� c. x�� � y�� d. y�� � x��

Knowledge/
Understanding

Knowledge/
Understanding

Communication

Exercise 5.2

O B

A P
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6. If a�� � 3î � 2ĵ � k̂ and b�� � �2î � ĵ , calculate each magnitude.

a. a�� � b�� b. a�� � b�� c. 2a�� � 3b��

7. If D(3, 4, 5) and E(�2, 1, 5) are points in space, calculate each expression
and state what it represents.

a. OD�� b. OE�� c. DE��

d. DE�� e. ED�� f. ED��

Part B

8. Using vectors, demonstrate that these points are collinear.

a. P(15, 10), Q(6, 4), and R(�12, �8) 

b. D(33, �5, 20), E(6, 4, �16), and F(9, 3, �12) 

9. For each set of points A, B, C, and D, determine whether AB�� is parallel to CD��

and whether AB�� � CD��.

a. A(2, 0), B(3, 6), C(4, 1) D(5, �5) 

b. A(0, 1, 0), B(4, 0, 1), C(5, 1, 2), D(2, 3, 5) 

c. A(2, 4, 6), B(3, 4, 1), C(4, 1, 3), D(5, 1, �2) 

10. If PQRS is a parallelogram in a plane, where P is (4, 2), Q is (�6, 1), and S is
(�3, �4), find the coordinates of R.

11. If three vertices of a parallelogram in a plane are (�5, 3), (5, 2), and (7, �8),
determine all the possible coordinates of the fourth vertex.

12. If OA��, OB��, and OC�� are three edges of a parallelepiped where O is (0, 0, 0),
A is (2, 4, �2), B is (3, 6, 1), and C is (4, 0, �1), find the coordinates of the
other vertices of the parallelepiped.

13. A line segment has endpoints with position vectors OA��
1 and OA��

2. 
The midpoint of the line segment is the point with position vector

OM�� � .

Find the position vector of the midpoint of the line segment from

a. A(�5, 2) to B(13, 4) b. C(3, 0) to D(0, �7)

c. E(6, 4, 2) to F(�2, 8, �2) d. G(0, 16, �5) to H(9, �7, �1) 

14. a. Find x and y if 3(x, 1) � 2(2, y) � (2, 1).

b. Find x, y, and z if 2(x, �1, 4) � 3(�4, y, 6) � �
1
2�(4, �2, z) � (0, 0, 0).

OA��
1 � OA��

2��
2

Application

Thinking/Inquiry/
Problem Solving

Application

Application
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Part C

15. Find the components of the unit vector with direction opposite to that of the
vector from X(7, 4, �2) to Y(1, 2, 1).

16. a. Find the point on the y-axis that is equidistant from the points (2, �1, 1)
and (0, 1, 3).

b. Find a point not on the y-axis that is equidistant from the points (2, �1, 1)
and (0, 1, 3).

17. a. Find the length of the median AM in the triangle ABC, for the points 

A(2, �
3
2�, �4), B(3, �4, 2), and C(1, 3, �7).

b. Find the distance from A to the centroid of the triangle.

18. The centroid of the n points with position vectors OA1, OA2, …, OAn is the
point with position vector

OC�� � .

Find the centroid of each of the following sets of points.

a. A(1, 2), B(4, �1), C(�2, �2)

b. I(1, 0, 0), J(0, 1, 0), K(0, 0, 1)

c. A1(3, �1), A2(1, 1), A3(7, 0), A4(4, 4)

d. C(0, 0, 0), I(1, 0, 0), J(0, 1, 0), K(0, 0, 1) 

19. The centre of mass of the masses m1, m2, …, mn at the points with position
vectors OA��

1, OA��
2, …, OA��

n , respectively, is the point with position vector

OG�� � .

In some kinds of problems, a collection of masses can be replaced by a single
large mass M � m1 � m2 � … � mn located at the centre of mass, for the
purposes of calculation. Calculate the centre of mass in each case.

a. A mass of 2 units at (0, 0), a mass of 3 units at (4, 1), a mass of 5 units at
(�1, �7), and a mass of 1 unit at (11, �9).

b. A mass of 1 unit at (1, 4, �1), a mass of 3 units at (�2, 0, 1), and a mass
of 7 units at (1, �3, 10).

m1OA��
1 � m2OA��

2 � … � mnOA��
n����

m1 � m2 � … � mn

OA��
1 � OA��

2 � … � OA��
n���

n

Thinking/Inquiry/
Problem Solving
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Section 5.3 — The Dot Product of Two Vectors

Certain applications of vectors in physics and geometry cannot be handled by the
operatons of vector addition and scalar multiplication alone. Other, more sophisti-
cated combinations of vectors are required. The dot product of two vectors is one
of these combinations.

Since the quantity u��v�� cos � on the right is the product of three scalars, the
dot product of two vectors is a scalar. For this reason, the dot product is also
called the scalar product.

EXAMPLE 1 Find the dot product of u�� and v�� in each of the following cases, where � is the
angle between the vectors.

a. u�� � 7, v�� � 12, � � 60º b. u�� � 20, v�� � 3, � � �
5
6
�
�

c. u�� � 24, v�� � 9, � � 34º 

Solution
a. u�� • v�� � u��v�� cos 60º b. u�� • v�� � u��v�� cos �

5
6
�
�

� (7)(12)(0.5) � (20)(3)�� �
� 42 � �30�3�

c. u�� • v�� � u��v�� cos 34º
� (24)(9)(0.8290)
� 179.1

EXAMPLE 2 Prove that two non-zero vectors u�� and v�� are perpendicular, if and only if u�� • v�� � 0.

Proof
The condition that u�� • v�� � 0 is sufficient. Nothing else is needed to guarantee that
the vectors are perpendicular, because

if u�� • v�� � 0 

then u��v�� cos � � 0

or cos � � 0, (since the vectors are non-zero)

�3�
�

2

The dot product of two vectors u�� and v�� is

u�� • v�� � u��v�� cos �,

where � is the angle between the two vectors.

t chnologye
APPENDIX P. 531
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Therefore, � � 
 90º,
which means that the vectors must be perpendicular.
The condition that u�� • v�� � 0 is necessary, because 

if u�� • v�� � 0 

then u��v�� cos � � 0,
which means that cos � cannot be zero.

Consequently, � cannot be 90º.
So the vectors are perpendicular only if u�� • v�� � 0 .

The following properties of the dot product will be demonstrated in Exercise 5.3.

You can multiply by a scalar either a(u�� • v��) = (au��) • v�� � u�� • (av��)
before or after taking the dot product.

You can expand a dot product of a vector u�� • (v�� � w��) � u�� • v�� � u�� • w��

with the sum of two other vectors as you would in ordinary multiplication.

The dot product of a vector u�� with itself u�� • u�� � u��2

is the square of the magnitude of the vector.

Dot products of the basis vectors î , ĵ , and k̂ are of particular importance.

Because they are unit vectors, Because they are perpendicular,
î • î � 1 î • ĵ � ĵ • î � 0
ĵ • ĵ � 1 ĵ • k̂ � k̂ • ĵ � 0
k̂ • k̂ � 1 k̂ • î � î • k̂ � 0

The dot product is 1 if the vectors are the same, and 0 if they are different.

These results are used to work out the dot product of two algebraic vectors,
which, for vectors in space, proceeds in this manner:

If u�� � uxî � uyk̂ � uzk̂ and   v�� � vxî � vy ĵ � vzk̂

then u�� • v�� � (uxî � uy ĵ � uzk̂) • (vxî � vy ĵ � vzk̂)

� uxvx(î • î ) � uxvy(î • ĵ ) � uxvz(î • k̂)

� uyvx(ĵ • î ) � uyvy(ĵ • ĵ ) � uyvz(ĵ • k̂)

� uzvx(k̂ • î ) � uzvy(k̂ • ĵ ) � uzvz(k̂ • k̂)

� uxvx(1) � uxvy(0) � uxvz(0)

� uyvx(0) � uyvy(1) � uyvz(0)

� uzvx(0) � uzvy(0) � uzvz(1)

� uxvx � uyvy � uzvz.
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EXAMPLE 3 Find the dot product of u�� and v��, where

a. u�� � (�5, 2) and v�� � (3, 4) b. u�� � (1, 0, 4) and v�� � (�2, 5, 8)

Solution
u�� • v�� � (�5, 2) • (3, 4) u�� • v�� � (1, 0, 4) • (�2, 5, 8)

� (�5)(3) � (2)(4) � (1)(�2) � (0)(5) � (4)(8)
� �15 � 8 � �2 � 0 � 32
� �7 � 30

EXAMPLE 4 Find the angle � between each of the following pairs of vectors

a. u�� � (6, �5) and v�� � (�1, 3) b. u�� � (�3, 1, 2) and v�� � (5, �4, �1) 

Solution
Since u�� • v�� � u��v�� cos �,

then cos � � .

a. cos � �

�

� � 0.3644

∴ � � 69º

b. cos � �

�

� �

∴ � � 150º

The dot product of two algebraic vectors is a relatively simple operation to per-
form by hand. Nevertheless, if you have a programmable calculator, you might
like to write a short program that will do this calculation automatically.
Instructions on how to prepare such a program are found in the Appendix.

��3�
�

2
�21

��
�14��42�

(�3)(5) � (1)(�4) � (2)(�1)
�����
�(�3)2�� (1)2� � (2)2� �(5)2 �� (�4)2� � (�1�)2�

(�3 , 1, 2) • (5, �4, �1)
���
(�3, 1, 2)(5, �4, �1)

9
��
�61��10�

(6)(�1) � (�5)(�3)
����
�(6)2 �� (�5)2� �(�1)2�� (�3�)2�

(6, �5) • (�1, �3)
���
(6, �5)(�1, �3)

u�� • v��
�
u��v��

t chnologye
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Part A

1. a. What is the dot product of two vectors, if the angle between them is 0º?
90º? 180º?

b. What is the angle between two vectors if their dot product is positive? 
negative? zero?

2. Calculate the dot product u�� • v��, given the magnitudes of the two vectors and
the angle � between them.

a. u�� � 3, v�� � 4, � � 45º b. u�� � 6, v�� � 5, � � 60º

c. u�� � 9, v�� � 3, � � �
3
4
�
� d. u�� � �

2
3�, v�� � �

9
8�, � � 90º

3. Examine each of the following pairs of vectors. State whether or not the vec-
tors are perpendicular, then sketch each pair, and find their dot product.

a. a�� � (4, 1), b�� � (�1, 4) b. c�� � (5, 2), d�� � (�5, �2)

c. p�� � (1, 0), q�� � (0, �1) d. u�� � (7, 8), v�� � (4, �7) 

4. Find the dot product of each of the following pairs of vectors and state which
pairs are perpendicular. 

a. a�� � (�1, 3, 4), b�� � (1, 3, �2) b. x�� � (�2, 2, 4), y�� � (4, 1, �2)

c. m�� � (�5, 0, 0), n�� � (0, �3, 0) d. l� � (0, �3, 4), l� � (0, �3, 4) 

e. u�� � (0, 5, 6), v�� � (7, 0, 1) f. c�� � (8, �11, �5),

d�� � (�7, �11, �13) 

5. a. Find three vectors perpendicular to (2, �3).

b. How many unit vectors are perpendicular to a given vector in the xy-plane?

6. a. Find three non-collinear vectors perpendicular to (2, �3, 1).

b. How many unit vectors are perpendicular to a given vector in three 
dimensions?

7. Calculate, to four decimal places, the cosine of the angle between each of the
following pairs of vectors.

a. a�� � (8, 9), b�� � (9, 8) b. c�� � (1, �2, 3), d�� � (4, 2, �1) 

Knowledge/
Understanding

Communication
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Part B

8. Determine the angle between the following vectors.

a. a�� � (3, 5), b�� � (�4, 1) b. c�� � (5, 6, �7), d�� � (�2, 3, 1)

c. î � (1, 0, 0), m�� � (1, 1, 1) d. p�� � (2, �4, 5), q�� � (0, 2, 3) 

9. Given a�� � (2, 3, 7) and b�� � (�4, y, �14),

a. for what value of y are the vectors collinear?

b. for what value of y are the vectors perpendicular?

10. Find any vector w�� that is perpendicular to both u�� � 3ĵ � 4k̂ and v�� � 2î . 

11. If the vectors a�� � (2, 3, 4) and b�� � (10, y, z) are perpendicular, how must y
and z be related?

12. For u�� � (1, 5, 8) and v�� � (�1, 3, �2), verify that 

a. u�� • v�� � v�� • u�� b. u�� • u�� � u��2 and v�� • v�� � v��2

c. (u�� � v��) • (u�� – v��) � u��2 � v��2

d. (u�� � v��) • (u�� � v��) � u��2 � 2u�� • v�� � v��2

e. (2u��) • v�� � u�� • (2v��) � 2(u�� • v��) 

13. If u�� � (2, 2, �1), v�� � (3, �1, 0), and w�� � (1, 7, 8), verify that

u�� • (v�� � w��) � u�� • v�� � u�� • w��.

14. Expand and simplify.

a. (4î � ĵ ) • ĵ b. k̂ • ( ĵ � 3k̂) c. (î � 4k̂) • (î � 4k̂) 

15. Expand and simplify.

a. (3a�� � 4b��) • (5a�� � 6b��) b. (2a�� � b��) • (2a�� � b��) 

16. Find (3a�� � b��) • (2b�� – 4a��), if a�� � �î � 3 ĵ � k̂ and b�� � 2î � 4ĵ � 5k̂.

17. Two vectors 2a�� � b�� and a�� � 3b�� are perpendicular. Find the angle between a��

and b��, if a�� � 2b��.

18. Given â and b̂ unit vectors,

a. if the angle between them is 60º, calculate (6â � b̂) • (â � 2b̂)

b. if â � b̂ � �3�, determine (2â � 5b̂) • (b̂ � 3â)

19. The vectors a�� � 3î � 4 ĵ � k̂ and b�� � 2î � 3 ĵ � 6k̂ are the diagonals of a
parallelogram. Show that this parallelogram is a rhombus, and determine the
lengths of the sides and the angles between the sides.

Application

Application

Knowledge/
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20. a. If a�� and b�� are perpendicular, show that a��2 � b��2 � a�� � b��2. 
What is the usual name of this result?

b. If a�� and b�� are not perpendicular, and a�� � b�� � c��, express c��2 in terms of
a�� and b��. What is the usual name of this result?

Part C

21. If the dot product of a�� and b�� is equal to the dot product of a�� and c��, this does
not necessarily mean that b�� equals c��. Show why this is so

a. by making an algebraic argument

b. by drawing a geometrical diagram

22. Find a unit vector that is parallel to the xy-plane and perpendicular to the 
vector 4î � 3ĵ � k̂. 

23. Three vectors x��, y��, and z� satisfy x�� � y�� � z� � 0��. Calculate the value of 
x�� • y�� � y�� • z� � z� • x��, if x�� � 2, y�� � 3, and z� � 4.

24. A body diagonal of a cube is a line through the centre joining opposite ver-
tices. Find the angles between the body diagonals of a cube.

25. a. Under what conditions is (a�� � b��) • (a�� � b��) � 0? Give a geometrical inter-
pretation of the vectors a��, b��, a�� � b��, and a�� � b��.

b. Use the dot product to show that two vectors, which satisfy the equation
u�� � v�� � u�� � v��, must be perpendicular. How is the figure defined by
u�� and v�� related to the figure defined by a�� and b�� of part a?

26. Prove that a�� • b�� � a��b��. When does equality hold? Express this
inequality in terms of components for vectors in two dimensions and for 
vectors in three dimensions. (This is known as the Cauchy-Schwarz
Inequality.)

Thinking/Inquiry/
Problem Solving

Communication
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Section 5.4 — The Cross Product of Two Vectors

We have already defined the dot product of two vectors, which gives a scalar quan-
tity. In this section we introduce a new product called the cross product or vector
product. The cross product of two vectors a�� and b�� is a vector that is perpendicular
to both a�� and b��. Hence, this cross product is defined only in three-dimensional
space. The cross product is useful in many geometric and physical problems in
three-dimensional space; it is used to help define torque and angular velocity in
statics and dynamics, and it is also used in electromagnetic theory. We will use it to
find vectors perpendicular to two given vectors.

Let a�� � (a1, a2, a3) and b�� � (b1, b2, b3) be two vectors 
in three-dimensional space. Let us find all the vectors 
v�� � (x, y, z) that are perpendicular to both a�� and b��. 

These vectors satisfy both
a�� • v�� � 0 and b�� • v�� � 0. 
Hence,

a1x � a2y � a3z � 0 1�

b1x � b2y � b3z � 0 2�

We solve these two equations for x, y, and z. Multiply equation  1� by b3, and
equation  2� by a3 to obtain

a1b3x � a2b3y � a3b3z � 0 3�

a3b1x � a3b2y � a3b3z � 0 4�

Now eliminate z by subtracting equation  3� from equation  4� to obtain

(a3b1 � a1b3)x � (a3b2 � a2b3)y � 0

This is equivalent to
�
a2b3 �

x
a3b2

� � �
a3b1 �

y
a1b3

�

Using a similar procedure, we eliminate x from the original equations to obtain

�a3b1 �
y

a1b3
� � �

a1b2 �
z

a2b1
�

Let y � k(a3b1 � a1b3), for some constant k. 

Then x � k(a2b3 � a3b2) and z � k(a1b2 – a2b1). 

Then the vector v�� perpendicular to both a�� and b�� is of the form
v�� � (x, y, z) � k(a2b3 � a3b2, a3b1 � a1b3, a1b2 � a2b1).

The cross product of a�� and b�� is chosen to be the vector of this form that has 
k � 1.

a

a

b

b�
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This is a rather complicated expression to remember. It can be expressed as 
follows:

a�� � b�� �

where  a   b
� ad � bc

c  d

We showed above that any vector perpendicular to both the vectors a�� and b�� can be
written as k(a�� � b��). This is one of the most useful properties of the cross product.

EXAMPLE 1 Find a vector perpendicular to both (1, 3, 2) and (4, �6, 7).

Solution
The cross product will be one such vector. From the definition of the cross product,
(1, 3, 2) � (4, �6, 7) � (3(7) � 2(�6), 2(4) � 1(7), 1(�6) � 3(4))

� (33, 1, �18)

Hence, one vector perpendicular to (1, 3, 2) and (4, �6, 7) is (33, 1, �18).

Hint: It is very easy to make errors in calculating a cross product. However, there
is an easy check that should always be done after calculating any cross product. 
If v�� � a�� � b��, you can always check that a�� • v�� = 0 and b�� • v�� � 0.

In our example,

(1, 3, 2) • (33, 1, �18) � 1(33) � 3(1) � 2(�18)
� 0

(4, �6, 7) • (33, 1, �18) � 4(33) � 6(1) � 7(�18)
� 0

Hence, (33, 1, �18) is perpendicular to both (1, 3, 2) and (4, �6, 7).

The definition of cross product is motivated by the mechanical act of turning a 

Finding a Vector Perpendicular to Two Vectors

If aa�� and bb�� are two non-collinear vectors in three-dimensional space, then
every vector perpendicular to both aa�� and b�� is of the form k(aa�� � b��), for 
k � R.

The Cross Product or Vector Product of a�� � (a1, a2, a3) and 
b�� � (b1, b2, b3) is the vector

a�� � b�� � (a2b3 � a3b2, a3b1 � a1b3, a1b2 � a2b1)

(b2 b3
,b3 b1

,b1 b2
)a2 a3 a3 a1 a1 a2
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bolt with a wrench, a process which involves vectors
pointing in three different directions.

If, for instance, a bolt with a right-hand thread is 
turned clockwise, it moves down along the axis of 
rotation in a direction perpendicular to both the 
wrench handle and the turning force. This gives a 
definition for the magnitude of the cross-product 
vector.

We will prove that a�� � b�� = a��b�� sin �.

Let a�� � (a1, a2, a3) and b�� � (b1, b2, b3) so that 
a�� � b�� � (a2b3 � a3b2, a3b1 � a1b3, a1b2 � a2b1) 

Then a�� � b��2 � (a2b3 � a3b2)2 � (a3b1 � a1b3)2 � (a1b2 � a2b1)2

By adding and subtracting (a1b1)2 � (a2b2)2 � (a3b3)2 to the right side this can be
rewritten as

a�� � b��2 � (a1
2 � a2

2 � a3
2)(b1

2 � b2
2 � b3

2) � (a1b1 � a2b2 � a3b3)2

� a��2b��2 � (a�� • b��)2

� a��2b��2 � (a��b�� cos �)2

� a��2b��2 (1� cos2 �)

� a��2b��2 sin2 �

Since 0 � � � 180º, sin � 
 0, and so a�� � b�� � a��b�� sin �.

There are two vectors perpendicular to a�� and b�� with 
the same magnitude but opposite in direction. The
choice of direction of the cross product is such that a��,

b��, and a�� � b�� form a right-handed system. Hence, we
have the following geometric description of the cross
product.

The cross product of the vectors a�� and b�� in three-dimensional space is the 
vector whose magnitude is a��b�� sin � and whose direction is perpendi-
cular to a�� and b��, such that a��, b��, and a�� � b�� form a right-handed system.

The magnitude of the cross product of two vectors a�� and b�� is

a�� � b�� � a��b�� sin �

where � is the angle between the vectors, 0 � � � 180º.

direction of travel

force
axis of 
rotation

a

a

b

b�
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The direction of the cross product u�� � v�� of two vectors drawn in a plane can be
found by placing your right hand on the diagram so that your fingers curl in the
direction of rotation from u�� to v��, through an angle less than 180º. Your thumb
points in the direction of u�� � v��. Try it on the two diagrams below.

EXAMPLE 2 If u�� � 4 and v�� � 10 and the angle �
between u�� and v�� is 60º, find u�� � v��.

Solution
u�� � v�� � u��v�� sin 60º

� (4)(10)� �
� 34.6

Then u�� � v�� has magnitude 34.6 and a direction vertically up from the plane
defined by u�� and v��.

EXAMPLE 3 Find the cross product of u�� � 6î � 2 ĵ � 3k̂ and v�� � 5î � ĵ � 4k̂.

Solution
By direct substitution,
u�� � v�� � [(�2)(�4) � (�3)(1)]î � [(�3)(5) � (6)(�4)] ĵ � [(6)(1) � (�2)(5)]k̂

� [(8) � (�3)]î � [(�15) � (�24)] ĵ � [(6) � (�10)]k̂
� 11î � 9ĵ � 16k̂

or

u�� � v�� �  �2 �3 
î �

�3 6
ĵ �

6 �2   
1 �4         �4 5          5       1

� 11î � 9ĵ � 16k̂

Properties of the Cross Product
Let a��, b��, and c�� be vectors in three-dimensional space and let t � R.
a�� � b�� � �(b�� � a��) (Anti-commutative Law)

a�� � (b�� � c��) � (a�� � b��) � (a�� � c��) (Distributive Law)

k(a�� � b��) � (ka��) � b�� � a�� � (kb��)

�3�
�

2

k̂

4
Direction up

10

60°

points upward×u

u

v

v

×u v points downward

u

v
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These properties can be checked by using the definition of the cross product.
Notice that the first property means that the cross product is not commutative. 

For example, i� � j� � k��, but j� � i� � �k��. 

Since the result of a cross product is a vector, you may form the dot product or
the cross product of this vector with a third vector. The quantity (u�� � v��) • w�� is
known as the triple scalar product of three vectors, because it is a scalar quantity.
The brackets are not really needed to specify the order of operations, because 
u�� � (v�� • w��) is meaningless. (Why?) The quantity (u�� � v��) � w�� is a vector and is
called the triple vector product. Brackets are required in this expression to specify
the order of operations. Both of these quantities arise in the application of vectors
to physical and geometrical problems. Some of their properties are investigated in
the exercises.

Part A

1. If w�� � u�� � v��, explain why w�� • u��, w�� • v��, and w�� • (au�� � bv��) are all zero.

2. Find u�� � v�� for each of the following pairs of vectors. State whether u�� � v��

is directed into or out of the page.

a. b. c.

3. State whether the following expressions are vectors, scalars, or meaningless.

a. a�� • (b�� � c��) b. (a�� • b��) � (b�� • c��) c. (a�� � b��) • c��

d. a�� � (b�� • c��) e. (a�� � b�� ) • (b�� � c��) f. (a�� � b��) � c��

g. a�� • (b�� • c��) h. (a�� � b��) � (b�� � c��) i. (a�� � b��) � c��

j. a�� � (b�� � c��) k. (a�� • b��) � (b�� • c��) l. (a�� • b��) � c��

4. Use the cross product to find a vector perpendicular to each of the following
pairs of vectors. Check your answer using the dot product.

a. (4, 0, 0) and (0, 0, 4) b. (1, 2, 1) and (6, 0, 6)

c. (2, �1, 3) and (1, 4, �2) d. (0, 2, �5) and (�4, 9, 0)

Part B

5. Find a unit vector perpendicular to a�� � (4, �3, 1) and b�� � (2, 3, �1).

Knowledge/
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12°

= 5

v = 3

u

120°

= 18

v = 25

u

68°
= 12

v = 5
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6. Find two vectors perpendicular to both (3, �6, 3) and (�2, 4, 2).

7. Express the unit vectors î , ĵ , and k̂ as ordered triples and show that

a. î � ĵ � k̂. b. k̂ � ĵ � �î .

8. Using components, show that

a. u�� � v�� � �v�� � u�� for any vectors u�� and v��.

b. u�� � v�� � 0��, if u�� and v�� are collinear.

9. Prove that a�� � b�� = �(a�� • a��)�(b�� • b��)� � (a�� •� b��)2�.

10. Given a�� � (2, 1, 0), b�� � (�1, 0, 3), and c�� � (4, �1, 1), calculate the 
following triple scalar and triple vector products.

a. a�� � b�� • c�� b. b�� � c�� • a�� c. c�� � a�� • b��

d. (a�� � b��) � c�� e. (b�� � c��) � a�� f. (c�� � a��) � b��

11. By choosing u�� � v��, show that u�� � (v�� � w��) � (u�� � v��) � w��. This means that,
in general, the cross product is not associative.

12. Given two non-collinear vectors a�� and b��, show that a��, a�� � b��, and (a�� � b��) � a��

are mutually perpendicular. 

13. Prove that the triple scalar product of the vectors u��, v��, and w�� has the 
property that u�� • (v�� � w��) � (u�� � v��) • w��. Carry out the proof by expressing
both sides of the equation in terms of components of the vectors.

Part C

14. If the cross product of a�� and b�� is equal to the cross product of a�� and c��, this
does not necessarily mean that b�� equals c��. Show why this is so

a. by making an algebraic argument.

b. by drawing a geometrical diagram.

15. a. If a�� � (1, 3, �1), b�� � (2, 1, 5), v�� � (�3, y, z), and a�� � v�� � b��, find y and z.

b. Find another vector v�� for which a�� � v�� � b��.

c. Explain why there are infinitely many vectors v�� for which a�� � v�� � b��.

Thinking/Inquiry
Problem Solving
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Section 5.5 — Applications of Dot and Cross Products

In this section, we will apply the dot product and the cross product to problems in
geometry and physics. 

Projections
Mathematically, a projection is formed by dropping
a perpendicular from each of the points of an object
onto a line or plane. The shadow of an object, in 
certain circumstances, is a physical example of a 
projection.

The projection of one vector onto another can be 
pictured as follows. In the given diagram, where
u�� � OA�� and v�� � OB��, the projection of u�� onto v�� is the
vector ON��. There is no special symbol for a 
projection. In this text, we use the notation

ON�� � Proj(u�� onto v��).

The magnitude of ON�� is given by

u��cos � �

�

�

As you can see from the given diagrams, the direction of ON�� is the same as the
direction of v�� when � is acute, and opposite to v�� when � is obtuse. The sign of 
cos � in the dot product takes care of both possibilities. Therefore,

EXAMPLE 1 Find the projection of u�� � (5, 6, �3) onto v�� � (1, 4, 5).

The projection of u�� onto v� is

Proj(u�� onto v�) � .

Its magnitude is .

u�� • v��
�

v��

u��v��cos �
��

v��

u��cos �v��
��

v��

O N B

A

N O B

A

�

�

u

u

v

(u�� • v�)v�)
�

v�2

u�� • v�
�

 v�
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Solution

First, we calculate u�� • v�� and v��2.

u�� • v�� � (5, 6, �3) • (1, 4, 5) � 14

v��2 � 12 � 42 � 52 � 42

Therefore, Proj(u�� onto v��) �

� �
14(1

4
,
2
4, 5)
�

� ��
1
3�, �

4
3�, �

5
3��

Area of a Parallelogram

The area of a parallelogram is the product of its base 
and its height: A � bh. The base of the parallelogram 
in the given diagram is v�� and its height is equal to 

u��sin �. Its area is therefore A � v��u��sin �, which you will recognize to be 

the magnitude of the cross product of the two vectors u�� and v�� that make up the
sides of the parallelogram.

EXAMPLE 2 Find the area of the triangle with vertices P(7, 2, �5), Q(9, �1, �6), and 
R(7, 3, �3).

Solution
Start by finding the vectors that form two sides of this triangle. The area of the 
triangle is half the area of the parallelogram having these vectors as sides.

Vectors PQ�� = (2, �3, �1)

PR�� � (0, 1, 2)

Cross product PQ�� � PR�� � (2, �3, �1) � (0, 1, 2) � (�5, �4, 2) 

Magnitude (�5, �4, 2) � �(�5)2�� (�4�)2 � (2�)2� � �45�

The area of the triangle is therefore or .

Volume of a Parallelepiped

A parallelepiped is a box-like solid, the opposite
faces of which are parallel and congruent 
parallelograms. Its edges are three non-coplanar 
vectors a��, b��, and c��.

3�5�
�

2
�45�
�

2

The area of a parallelogram having u�� and v�� as sides is

A � u�� � v��.

(u�� • v��)v��
�

v��2

A

h

c

ca

b

b

�

hu

v
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The volume V of a parallelepiped, like that of a cylinder, is the area of the base A
times the height h, which is measured along a line perpendicular to the base. The
area of the base is the area of the parallelogram determined by the vectors b�� and c��:

A �b�� � c��

The height is the magnitude of the projection of a�� onto the normal to the base,
which is in the direction of b�� � c��:

h � Proj(a�� onto b�� � c��)

�

The volume is therefore
V � Ah

� b�� � c��

� a�� • (b�� � c��)

In other words, the volume of the parallelepiped is the magnitude of the triple
scalar product of the three vectors that make up its edges. Since the volume is a
constant, independent of which face is chosen as the base, this result illustrates an
important property of the triple scalar product. If a�� • b�� � c�� � t, and t is a 
constant, then b�� • c�� � a�� � c�� • a�� � b�� � t,
and a�� • c�� � b�� � c�� • b�� � a�� � b�� • a�� � c�� � �t.

Work

In everyday life, the word work is applied to any form of activity that requires
physical exertion or mental effort. In physics, the word work has a much narrower
meaning: work is done whenever a force acting on an object causes a displace-
ment of the object from one position to another. For instance, work is done by the
force of gravity when an object falls, because the force displaces the object from a
higher to a lower position. While it might seem like hard work to hold a heavy
object, if you do not move, you are doing no work.

Work is a scalar quantity. The unit of work is a joule (J).

The work done by a force is defined as the dot product

W � F�� • d��

� F�� d�� cos �
where F�� is the force acting on an object

d�� is the displacement caused by the force 
and � is the angle between the force and displacement vectors.

a�� • (b�� � c��)
��

b�� � c��

a�� • (b�� � c��)
��

b�� � c��
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EXAMPLE 3 a. A 25-kg box is located 8 m up a ramp inclined at an angle of 18º to the 
horizontal. Determine the work done by the force of gravity as the box slides to
the bottom of the ramp.

b. Determine the minimum force, acting at an angle of 40º to the horizontal,
required to slide the box back up the ramp. (Ignore friction.)

Solution
a. The angle between the displacement down the ramp and

the force of gravity is the difference 
90º � 18º � 72º. The force of gravity is
F��g � (25 kg)(9.8 m/s2) � 245 N. Therefore, the work
done by gravity would be
W � F��g • d��

� (245)(8) cos 72º
� 606 J

b. The gravitational force acting down the ramp is 
245 cos 72º.
The applied force acting up the ramp is F��a cos 22º.

Then F��a � �
24

c
5
o
c
s
o
2
s
2
7
º
2º

�

� 81.7
The force must exceed 81.7 N.

Torque

Sometimes, instead of causing a change in
position, a force causes an object to turn; that
is, the force causes an angular rather than a 
linear displacement. This turning effect of a
force is called torque.

The force exerted by a cyclist on a bicycle
pedal, for example, turns the pedal about an
axis. The distance along the shaft of the pedal
from the axis of rotation to the point at which
the force is applied is known as the lever arm.
The maximum turning effect occurs when the 
force is perpendicular to the lever arm.

72°

Fg

22°

18°

Fa

applied
force

lever
arm

axis of 
rotation
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Torque is a vector quantity. It is measured in units of newton metres (N-m). 

EXAMPLE 4 Find the torque produced by a cyclist exerting a force 
of 115 N on a pedal in the position shown in the 
diagram, if the shaft of the pedal is 16 cm long.

Solution
As with any problem involving forces,
the first step is to change the picture
showing where the forces act into a
vector diagram. In this case, that means
placing the vectors tail to tail and 
determining the angle between them.
This angle, as you can see, is 100º.
Therefore, the magnitude of the 
torque is

T�� � r�F�� sin �
� (0.16)(115)sin 100º
� 18.1 N-m

The direction of the torque vector is into the page, as determined by the right-
hand rule.

The torque caused by a force is defined as the cross product

T�� � r� � F��

� r�F�� sin � n̂

where F�� is the applied force
r� is the vector determined by the lever arm acting from the axis 

of rotation
� is the angle between the force and the lever arm

and n̂ is a unit vector perpendicular to both r� and F��

25°

15°

F

r

25°

picture vector diagram

15°

15°

25°
75°

r

r

F

F
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Part A

1. For each of the following, find the projection of u�� onto v�� and calculate its
magnitude.

a. u�� � (2, 5), v�� � (6, 4) b. u�� � (�2, 4), v�� � (�3, 2)

c. u�� � (3, 6, �2), v�� � (�4, 3, 8) d. u�� � (27, 11, �4), v�� � (0, 0, 8) 

2. a. If u�� and v�� are non-zero vectors, but Proj(u�� onto v��) � 0��, what conclusion
can be drawn?

b. If Proj(u�� onto v��) � 0��, does it follow that Proj(v�� onto u��) � 0��? Explain.

3. Find the projection of u�� � (2, 3, �4) onto each of the coordinate axes.

4. Find the projection of PQ�� onto each of the coordinate axes, where P is the
point (2, 3, 5) and Q is the point (�1, 2, 5).

Part B

5. a. Find the projection of an edge of a unit cube onto one of its body 
diagonals.

b. Find the projection of a body diagonal of a unit cube onto one of its edges.

6. Calculate the area of the parallelogram with sides consisting of the vectors

a. a�� � (1, 2, �2) and b�� � (�1, 3, 0)

b. c�� � (�6, 4, �12) and d�� � (9, �6, 18)

7. Find the area of the triangle with the given vertices.

a. (7, 3, 4), (1, 0, 6), and (4, 5, �2) b. (1, 0, 0), (0, 1, 0), and (0, 0, 1) 

8. Find the volume of the parallelepiped determined by the vectors 
a�� � (2, �5, �1), b�� � (4, 0, 1), and c�� � (3, �1, �1).

9. For each of the following, calculate the work done by a force F�� that causes a
displacement d��, if the angle between the force and the displacement is �.

a. F�� � 220 N, d�� � 15 m, � � 49º

b. F�� � 4.3 N, d�� � 2.6 m, � � 85º

c. F�� � 14 N, d�� � 6 m, � � 110º

d. F�� � 4000 kN, d�� � 5 km, � � 90º

Knowledge/
Understanding

Application

Communication

Knowledge/
Understanding

Exercise 5.5
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10. How much work is done in sliding a refrigerator 1.5 m across a kitchen floor
against a frictional force of 150 N?

11. How much work is done by gravity in causing a 30-kg rock to tumble 40 m
down a slope at an angle of 52º to the vertical? 

12. A pedicab is pulled a distance of 300 m by a force of 110 N applied at an
angle of 6º to the roadway. Calculate the work done.

13. How much work is done against gravity by a workman carrying a 8-kg sheet
of plywood up a 3-m ramp inclined at an angle of 20º to the horizontal?

14. A 35-kg trunk is dragged 10 m up a ramp inclined at an angle of 12º to the
horizontal by a force of 90 N applied at an angle of 20º to the ramp. At the
top of the ramp, the trunk is dragged horizontally another 15 m by the same
force. Find the total work done.

15. For each of the following, find the work done by a force F�� that causes a dis-
placement d��.

a. F�� � 2î , d�� � 5î � 6 ĵ

b. F�� � 4î � ĵ , d�� � 3î � 10ĵ

c. F�� � (800, 600), d�� � (20, 50)

d. F�� � 12î � 5ĵ � 6k̂, d�� � �2î � 8ĵ � 4k̂

16. If a 10-N force, acting in the direction of the vector (1, 1), moves an object
from P(�2, 1) to Q(5, 6), calculate the work done. The distance is in metres.

17. Find the work done by a 30-N force acting in the direction of the vector 
(�2, 1, 5), which moves an object from A(2, 1, 5) to B(3, �1, 2). The dis-
tance is in metres. 

18. A 50-N force is applied to the end of a 20-cm wrench and makes an angle of
30º with the handle of the wrench.

a. What is the torque on a bolt at the other end of the wrench?

b. What is the maximum torque that can be exerted by a 50-N force on this
wrench and how can it be achieved?

Part C

19. Under what circumstances is

a. Proj(u�� onto v��) � Proj(v�� onto u��)?

b. Proj(u�� onto v��) � Proj(v�� onto u��)?

Application

Application
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Review Exercise 

1. Express each vector in the form aî � bĵ � ck̂.

a. (1, 3, 2) b. (1, 0, 5) c. (�6, �8, 11) d. (9, �6, 2)

2. Express each vector in the form (a, b, c).

a. 3î � 2ĵ � 7k̂ b. �9î � 3ĵ � 14k

c. î � ĵ d. 2î � 9k̂

3. a. Find the dot product of the two vectors u�� and v�� where

u�� � (3, �4, 1), v�� � (2, 1, �5). 

b. Find the angle between u�� and v��.

4. Find a vector that is perpendicular to both of the vectors a�� � (1, 2, 4) and 
b�� � (0, 3, �2). 

5. Expand (a�� � b��) • (a�� � b��). Write your answer in the simplest form.

6. Expand (a�� � b��) • (c�� � d��).

7. The cosine of the angle between a�� and b�� is �2
4
1�. Find p,

if a�� � 6î � 3ĵ � 2k̂ and b�� � �2î � pĵ � 4 k̂.

8. Find � so that the vectors î � ĵ � k̂ and �2î � 2�ĵ � k̂ are perpendicular.

9. Calculate the dot product of 4x�� � y�� and 2x�� � 3y��, if x�� � 3, y�� � 4, and
the angle between x�� and y�� is 60º.

10. A vector u�� with direction angles α1, β1, and γ1 is perpendicular to a vector v��

with direction angles α2, β2, and γ2. Prove that

cos α1 cos α2 � cos β1 cos β2 � cos γ1 cos γ2 � 0.

11. Show that x�� • y�� � �
1
2�(x�� � y��2 � x��2 � y��2).

12. A triangle has vertices A(�1, 3, 4), B(3, �1, 1), and C(5, 1, 1).

a. Show that the triangle is right-angled.

b. Calculate the area of triangle ABC.
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c. Calculate the perimeter of triangle ABC.

d. Determine the fourth vertex needed to complete a rectangle.

13. Find the projection of u�� � (17, �3, 8) 

a. onto each of the coordinate axes

b. onto each of the coordinate planes

14. Use the cross product to find the area of the triangle whose vertices all lie in
the xy-plane at coordinates A(�7, 3, 0), B(3, 1, 0) and C(2, �6, 0).

15. A regular tetrahedron has one vertex at the origin, one vertex at (0, 1, 0), and
one vertex, with a positive x-coordinate, on the xy-plane.

a. Find the coordinates of the four vertices.

b. Find the coordinates of the centroid of the tetrahedron.

c. How far is the centroid from each vertex?

16. For any vectors a��, b�� and c��, show that

a. (a�� � b��) � c�� lies in the plane of a�� and b��

b. (a�� � b��) � c�� � (a�� • c��)b�� – (b�� • c��)a�� 

17. Find the volume of the tetrahedron with vertices (1, 1, 2), (3, �4, 6),
(�7, 0, �1), and (�1, 5, 8).
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The geometry of a molecule is one factor in determining its properties. Bond
angles are one quantitative aspect of molecular geometry. The term valence elec-
trons refers to those electrons that are most weakly bound to an atom and are,
therefore, involved in the formation of chemical bonds. A theory about the rela-
tionship between valence electrons and angles of chemical bonds was proposed
in 1939 by N. V. Sidgwick and H. M. Powell. They theorized that bonds tend to
keep as far apart as possible.

Investigate and Apply
Methane (CH4) consists of four hydrogen atoms bonded to a
single carbon atom. The hydrogen atoms are all 
1.095 � 10�11 metres from the carbon atom, and they are
distributed evenly in three dimensions to be as far apart as
possible. The resulting shape for the four hydrogen atoms is
called a regular tetrahedron. The carbon atom is located at
the centre of the regular tetrahedron. Other regular tetrahe-
dral molecules include SiH4, GeH4, and SnH4. They are differ-
ent sizes, but they all have the hydrogen atoms evenly
distributed.

One way to define a regular tetrahedron in three-dimensional space is to connect
the four vertices at (0, 0, 0), (1, 1, 0), (1, 0, 1), and (0, 1, 1). 

1. Verify that the four points listed are all equidistant from each other.

2. Draw a three-dimensional coordinate system and then draw the vertices and
edges of the given regular tetrahedron.

3. Find the centre of the given regular tetrahedron. Hint: Its three coordinates
are all equal, and it is equidistant from each vertex.

4. Use dot product methods to find the angle formed between any two vectors
extending from the centre of the regular tetrahedron to two of its vertices.

5. Why is your answer to question 4 the bond angle in CH4, SiH4, GeH4, SnH4,
and any other regular tetrahedral molecule?

INDEPENDENT STUDY
What are the bond angles in tetrahedral molecules such as CH3Cl, CH3Br, and
BrO3F, whose shapes are not regular tetrahedrons? Explain the differences.

What other methods do chemists use to determine bond angles? 

What are other quantitative aspects of molecules that chemists measure 
and use? ●

H
H

H

C

H

Methane

investigate and applywrap-up
CHAPTER 5 :  MOLECULAR BOND ANGLES
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Chapter 5 Test

1. What can you conclude about the vectors u�� and v�� if

a. u�� • v�� � 0 b. u�� • v�� � u��v�� c. u�� � v�� � 0��

d. u�� � v��� u��v�� e. (u�� � v��) • u�� � 0 f. (u�� � v��) � u�� � 0��

2. Given u�� � 6î � 3ĵ � 2k̂ and v�� � �3î � 4ĵ � k̂, find

a. 4u�� � 3v�� b. u�� • v��

c. u�� � v�� d. a unit vector perpendicular to both u�� and v��

3. a. Draw x-, y-, and z-axes and make a sketch of

i.  the position vector OP�� of the point P(3, �2, 5)

ii.  the projection of OP�� onto the z-axis

iii.  the projection of OP�� onto the xy-plane

b. Determine the magnitudes of the projections in a, parts ii and iii.

4. A parallelogram ABCD has vertices A(�1, 2, �1), B(2, �1, 3), and 
D(�3, 1, �3). Determine

a. the coordinates of C b. the angle at A c. the area

5. A box is dragged 16 m across a level floor by a 75-N force at an angle of 35º
to the floor. It is then dragged by the same force 8 m up a ramp inclined at an
angle of 20º to the floor. Determine the total work done by the force.

6. A force of 50 N acts at the end of a wrench 18 cm long.

a. In what direction should the force act to produce the maximum torque?
(Draw a diagram.)

Achievement Category Questions

Knowledge/Understanding 2, 3

Thinking/Inquiry/Problem Solving 7

Communication 1

Application 4–6
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b. What is the maximum torque? (State both magnitude and direction.)

c. At what angle will the force produce half the maximum torque? Indicate
this angle on your diagram.

7. Use the dot product to find an expression for the cosine of the acute angle
between the diagonals of a rectangle with sides a�� and b��.
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VECTORS IN COMMUNICATION

You have seen examples of geometric and algebraic vectors. A third common type of vector is the 0 - 1
string vector. Such vectors are composed of 0s and 1s in a row. A vector of length four might be 0010,
or 1010, or 1111, and so on. Such vectors, because they correspond to current on (1) or current off (0),
are of great value in computer communication.

Using strings of length 5 allows for the creation of 32 strings:
00000, 00001, 00011, ..., 11111.

Satisfy yourself that there are 32 length-5 strings.

Using 26 of these we can define the alphabet as follows:
A: 00001 G: 00111 M: 01101 S: 10011 Y: 11001
B: 00010 H: 01000 N: 01110 T: 10100 Z: 11010
C: 00011 I: 01001 O: 01111 U: 10101
D: 00100 J: 01010 P: 10000 V: 10110
E: 00101 K: 01011 Q: 10001 W: 10111
F: 00110 L: 01100 R: 10010 X: 11000  

If you are familiar with binary numbers, you will note that this is a simple assignment of the number 1
in a five-digit display to represent A, the number 2 to represent B, and so on. The first advantage gained
is that this allows the simple transmission of messages.

Using this system, the message This is clever can be transmitted as
101000100001001100110100110011000110110000101101100010110010.

Note that it is up to the receiver to create words from a string of letters and that, unless one of the
unused strings is designated for the purpose, there is no punctuation.

The weakness of this system is that messages such as this are easily intercepted. They are not very
secure if privacy is desired. This problem is, surprisingly, easily overcome by defining an arithmetic of
addition (and subtraction) which can effectively hide the message. This provides the foundation of
cryptography, the art of secret messages.

We define addition as follows:

a. 0 � 0 � 0 1 � 0 � 1
0 � 1 � 1 1 � 1 � 0

b.  There is no “carrying” from column to column. 

The only surprise in the addition process is 1 � 1 � 0. There are two reasons for this. The first is that
adding five-digit strings will always give a five-digit result. The second is due to electronic properties.
In a room with light switches at both ends of the room, the lights are off if both switches are off 
(0 position) OR if both switches are on (1 position). Hence, the addition works easily in electronic
form.



Using this definition, we illustrate addition:
10010 01101
11011 01001
01001 00100

In the first example, 10010 (R) now looks as though it is 01001 (I), and a person intercepting the
message will have a difficult time in determining the true message.

By adding a five-digit key, messages can be encrypted and interceptors cannot decode the transmitted
message. For example, using the key 11101 for each letter, the word MATH becomes:

Key   01101000011010001000
Add 11101111011110111101

10000111000100110101 (Send this) 

An interceptor would translate this to P?IU and be confused. A person receiving the message and
knowing the key merely reverses the process, as follows:

Key Note that subtraction is
identical with addition.

The message is retrieved!

You can easily create messages in code. For interest, work with two friends and try the following:

1.  Choose a key known to two but not the third.

2.  Encrypt a message and give it to your friends.

3.  The person knowing the key will be able to decrypt the message. It will be a real challenge for the
remaining person to do so.

Discussion
You can increase the complexity of the deciphering, by using vectors of length 6, 7, or 8. Discuss the
effect of doing so.

In the next chapter you will see how seven-digit vectors constructed using algebraic vector properties
can be used to build codes that can be corrected when errors occur.

10000111000100110101
11101111011110111101
01101000011010001000
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0 � 0 � 0, 1 � 1 � 0,
1 � 0 � 1, 0 � 1 � 1� �



Chapter 6
LINEAR 
COMBINATIONS

We have seen that if a vector v�� is multiplied by a
scalar k, the result is a new vector kv��, parallel to
the first but with a different magnitude. This
property is maintained in two- or three-
dimensional space, but suppose we move to four-
dimensional space or beyond. Does the concept
parallel mean anything? In two- or three-
dimensional space we can add two non-parallel
vectors a�� and b�� and form a new vector c�� � a�� � b��.
This new vector c�� lies in the same plane as a�� and
b�� but, again, what does “lie in the same plane”
mean in four-dimensional space? In this chapter,
we will answer these questions as well as look at
the use of vectors as another tool in the world of
proofs. 

CHAPTER EXPECTATIONS In this chapter, you will

• perform mathematical operations on
geometric vectors, Section 6.1

• determine the components and projection of a
geometric vector, Section 6.2, 6.3

• represent Cartesian vectors, Section 6.1, 6.3

• perform mathematical operations on Cartesian
vectors, Section 6.2, 6.3

• determine equations of lines in two- and
three-dimensional space, Section 6.4

• prove some properties of plane figures using
vector methods, Section 6.4



Review of Prerequisite Skills

One important use of mathematics is to describe a relation between two 
quantities. We say the area of a circle depends on its radius, or the distance 
travelled at a constant speed depends on the time, and we write formulas such as 
A � �r2 or d � vt.

In making statements such as these, we are taking one quantity, such as the area
or the distance, to be a derived quantity. In some way it is not as fundamental as
the other quantity. The derived quantity is referred to as the dependent variable,
because its value depends on the value of the other variable. 

It is possible to turn things around and write r � ��
�
A

�� or t � �
d
v

�, making the radius 

or the time the dependent quantity. The way a formula is written is a matter of
preference or circumstance, but the underlying idea of dependence is still present. 

How does this basic idea of dependence apply to vectors? Under what circum-
stances does one vector depend on another? If vectors are independent, what are
the implications? This chapter begins by examining the dependence and independ-
ence of vectors and ends with applications of vectors to geometrical proofs.
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Vectors can be added to each other and they can be multiplied by real numbers.
Polynomials also have these two properties, as do a number of other mathemati-
cal objects. Instead of studying all these various objects separately, mathemati-
cians have learned much about them by studying what they all have in common.
In 1888, the Italian mathematician Guiseppe Peano presented the first definition
of what are now called vector spaces. Vector spaces provide an abstract system
for studying the common properties of many different mathematical objects,
including vectors. 

Investigate
A vector space is a set of objects, V, called vectors,
for which two operations are defined: addition and
scalar multiplication. These operations must have the
following ten properties:

1. Any two vectors can be added, and the result
will always be in V.

2. Addition is commutative: u�� � v�� � v�� � u��.

3. Addition is associative: 
(u�� � v�� ) � w�� � u�� � (v�� � w��).

4. There is a zero element 0��, which has the
property that 0�� � v�� � v��.

5. Every vector v�� has an opposite �v��, such that v�� � (�v��) � 0��.

6. If a vector is multiplied by a real number, the result is in V.

7. Every vector is unchanged when multiplied by 1.

8. Scalar multiplication is associative: a(bv��) � (ab)v��.

9. Scalar multiplication distributes over vector addition: a(u�� � v��) � au�� � av��.

10. Scalar multiplication distributes over scalar addition: (a � b)v�� � av�� � bv��.

Verify that the following sets are all vector spaces: (i) the set of all vectors drawn
in a plane; (ii) the set of all ordered pairs of real numbers (x, y); (iii) the set of all
ordered triples of real numbers (x, y, z); (iv) the set of all polynomials with degree
less than or equal to two; (v) the set of all polynomials. 

DISCUSSION QUESTIONS

1. Calculate 2(34) and (23)4. Is exponentiation an associative operation on the set
of real numbers? 

2. The set of all real numbers is itself a vector space. Is the set of all complex
numbers a vector space? What about the set of all integers?

3. How can addition and scalar multiplication be defined so that the set of all
functions is a vector space? ●

CHAPTER 6 :  VECTOR SPACES

investigate 
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Section 6.1 — Linear Combinations of Vectors

The expression au�� � bv��, where a and b are scalar quantities, is a linear combina-
tion of the vectors u�� and v��. A linear combination of three vectors u��, v��, and w�� is
written au�� � bv�� � cw��. These expressions are linear because they consist only of
the sum of scalar multiples of vectors and nothing else.

In the preceding chapters, it was by means of such expressions that sets of 
vectors were combined to form new vectors. Recall, that one way to write an 
algebraic vector was as a linear combination of the basis vectors î , ĵ , and k̂:
aî � bĵ � ck̂.

This section is concerned with the reverse problem. Under what circumstances
can a given vector be expressed as a linear combination of other vectors? That is,
when can a vector x�� be expressed in the form x�� � au�� � bv�� � …? How are the
coefficients of such an expression to be found? What does it mean if forming such
a linear combination proves to be impossible?

We begin the investigation of these questions with the simplest case. The vector
au�� is a linear combination of the single vector u��. Under what circumstances is it
possible to express a given vector x�� in the form au��? The answer is that we write
x�� � au��, and determine a numerical value for the scalar a only
when x�� and u�� are collinear. The equation x�� � au�� implies that the
two vectors x�� and u�� are parallel. If x�� and u�� are not collinear, x��

cannot be written as a scalar multiple of u��.

EXAMPLE 1 If possible, express x�� as a scalar multiple of u��.

a. x�� � 4î � 8ĵ b. x�� � (10, �8, 3)

u�� � 6i� � 12j� u�� � (5, �4, 6)

Solution
a. Let a be a scalar.

If x�� � au��

Then (4î � 8ĵ ) � a(6î �12ĵ )
4î � 8ĵ � 6aî � 12aĵ

Two vectors x�� and u�� are collinear if and only if it is possible to find a 
non-zero scalar a such that x�� � au��.

x

u

au
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If the vector on the left is equal to the vector on the right, then the coefficients of
î and ĵ on the left must be the same as the corresponding coefficients on the right.

Then 4 � 6a and �8 � �12a

a � �
2
3� a � �

2
3�

The value for a in the two cases is consistent.
Thus x�� � �

2
3�u�� and x�� and u�� are collinear.

b. Proceed as in a.

If x�� � au��,
then  (10, �8, 3) � a(5, �4, 6)

(10, �8, 3) � (5a, �4a, 6a).

Equating corresponding components,

10 � 5a and �8 � �4a and 3 � 6a
a � 2 a � 2 a � �

1
2�

Since the scalar a must be the same for all components of the vectors, there is no
scalar multiple of u�� which equals x��. These two vectors are non-collinear.

Consider now a more complicated situation.
Under what circumstances is it possible to
express a given vector x�� in terms of two vectors
u�� and v��? The answer is that you can write 
x�� � au�� � bv�� and determine numerical values for
the scalars a and b only when the three vectors x��, u��, and v�� are coplanar. The 
equation x�� � au�� � bv�� implies that the three vectors x��, au��, and bv�� form a triangle.
If x�� does not lie in the plane of u�� and v��, this triangle cannot exist.

EXAMPLE 2 Three vectors u��, v��, and x��, have magnitudes u�� � 10, v�� � 15, and x�� � 24.
If x�� lies between u�� and v�� in the same plane, making an angle of 20º with u�� and 30º
with v��, express x�� as a linear combination of u�� and v��. 

Solution
You are to find scalar multiples of u�� and v��, the sum of which 
equals x��. Let x�� � au�� � bv��, where a and b are coefficients to 
be determined.

Three vectors x��, u��, and v�� are coplanar if and only if it is possible to find
non-zero scalars a and b such that x�� � au�� � bv��.

v

u

x

x?

30°
20°

v

u

x



Make a parallelogram by drawing lines from the tip of x�� in the
vector diagram, parallel to u�� and v��. The sides of this parallelo-
gram are the required vectors au�� and bv��, which add to x��. In this
particular case, au�� is longer than u��, so you should expect a to be
greater than one. On the other hand, bv�� is shorter than v��, so b
will be less than one.

Now draw the triangle for the addition of the vectors.

From 

�s
a
in
u�

3

�
0º� � �sin

x�

1

�
30º�

a � �1
2
0
4

s
s
i
i
n
n

1
3
3
0
0
º
º�

� 1.566

Therefore, x�� � 1.566u�� � 0.714v��, and x�� is expressed as a linear combination 
of u�� and v��. Note that a is greater than one and b is less than one, as expected.

EXAMPLE 3 Determine whether or not the three vectors u�� � (3, �1, 4), v�� � (6, �4, �8), and
x�� � (7, �3, 4) are coplanar. If they are, express x�� as a linear combination of u��

and v��.

Solution
We could calculate the triple scalar product. If it is zero, the vectors are coplanar,
but we would be left with the problem of expressing x�� as a linear combination of
u�� and v��. Instead, we proceed as follows.

Write x�� � au�� � bv��. If we can find values of a and b, the vectors are coplanar. 
If we cannot find values for a and b, the vectors are not coplanar. We have

(7, �3, 4) � a(3, �1, 4) � b(6, �4, �8)
� (3a � 6b, �a � 4b, 4a � 8b)

Equating components, we get the system of equations
3a � 6b � 7

�a � 4b � �3
4a � 8b � 4
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30°
20°

bv

au

x

30°
20° 130° bv

au

x

and from

�s
b
in
v�

2

�
0º� � �sin

x�

1

�
30º�

b � �1
2
5
4

s
s
i
i
n
n

1
2
3
0
0
º
º�

� 0.714



We solve any two of these equations, say the first and second.

3a � 6b � 7
�3a � 12b � �9

�6b � �2 

so b � �
1
3�

Substituting into either of the equations, we find a � �
5
3�.

We now see if these values satisfy the third equation

4��
5
3�� � 8��

1
3�� � �

2
3
0
� � �

8
3�

� 4, as required

Therefore the vectors are coplanar, and x�� � �
5
3�u�� � �

1
3�v��.

Part A

1. Explain why it is impossible to express x�� as a linear combination of u�� and v��,
when x�� does not lie in the plane of u�� and v��.

2. The vectors u��, v��, and x�� are any non-zero vectors in the xy-plane. Is it always
possible to express x�� as a linear combination of u�� and v��? Explain.

3. What information does the cross product of u�� and x�� give about the collinearity
of u�� and x��?

4. Write each of the following vectors as a linear combination of î and ĵ .

a. the vector p�� � (�4, 5)

b. the position vector of the point A(8, �3)

c. a vector directed at an angle of 45º with a magnitude of �2�

d. a vector directed at an angle of 150º with a magnitude of 6

5. a. Can every vector in the xy-plane be written as a linear combination 
of u�� � (1, 4) and v�� � (�2, 5)? Justify your answer.

b. Write the vector (�567, �669) in terms of u�� and v��.

Knowledge/
Understanding
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Communication
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6. Can every vector in the xy-plane be written as a linear combination 
of u�� � (�4, �6) and v�� � (10, 15)? Justify your answer.

Part B

7. Are the following sets of vectors coplanar?

a. (1, �1, 1), (0, 1, 1), (1, 0, 2) b. (1, 0, 1), (1, 1, 1), (1, 0, �1) 

8. If u�� � (2, 1, 1) and v�� � (�1, 1, 3)

a. which of the following vectors can be written in the form su�� � tv��

(i) (4, 2, 2) (ii) (1, 2, 4) (iii) (1, 5, 11) (iv) (4, 5, 8) 

b. Find another vector that can be expressed in the form su�� � tv��.

c. Find another vector which cannot be expressed in the form su�� � tv��,
and explain why it cannot.

9. Given that

u�� � xa�� � 2yb��

v�� � �2ya�� � 3yb��

w�� � 4a�� �2b��

where a�� and b�� are not collinear, find the values of x and y for which 2u�� � v�� � w��.

Part C

10. Find values of a, b, and c which satisfy each of the following equations.

a. a(2, 1, 0) � b(�3, 4, 5) � c(2, 0, 3) � (�4, 10, 7) 

b. a(3, �1, 2) � b(�1, 1, 3) � c(2, 1, 5) � (2, 5, 16) 

11. a. Demonstrate that the three vectors u�� � (1, 3, 2), v�� � (1, �1, 1),
and w�� � (5, 1, �4) are mutually perpendicular.

b. Express each of the vectors î , ĵ , and k̂ as a linear combination of the 
vectors u��, v��, and w��. 

12. If u�� � (5, �5, 2), v�� � (1, 8, �4), and w�� � (�2, �1, 2),
express x�� � (�3, 6, 8) 

a. in terms of u��, v�� and w��

b. in terms of the unit vectors û, v̂, and ŵ

13. Vectors u��, v��, and x�� in the xy-plane make angles of 20º, 50º, and 130º,
respectively, with the x-axis. If u�� = 2, v�� = 10, and x�� = 4

a. express x�� as a linear combination of u�� and v��

b. express x�� as a linear combination of the unit vectors û and v̂

Thinking/Inquiry/
Problem Solving

Application

Application

Application

Knowledge/
Understanding
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Section 6.2 — Linear Dependence and Independence

The concepts of linear dependence and independence are fundamental in vector
algebra. Their importance is both theoretical and practical. Two vectors are 
linearly dependent if they are collinear or parallel. Three vectors are linearly
dependent if they are coplanar.

Let us first consider just two vectors. For example, suppose u�� and v�� are two 
vectors such that u�� � 2v��. This statement can be rewritten as u�� � 2v�� � 0��.
Geometrically, this means that multiplying v�� by the scalar �2 and adding it 
to u�� brings us back to the zero vector 0��.

Parallel vectors Non-parallel vectors

We can see that whenever two vectors u�� and v�� are parallel, there is a relationship
au�� � bv�� � 0��, where a and b are not both zero. We then say that u�� and v�� are 
linearly dependent vectors.

On the other hand, consider two vectors m�� and n�� that are not parallel. There is no
possible way to combine multiples of these vectors so that am�� �bn�� � 0��,
unless a � b � 0. These vectors are called linearly independent vectors.

Linear Dependence of Three Vectors
Three vectors u��, v��, and w�� are linearly dependent if and only if there are
scalars a , b, and c, not all zero, such that 

au�� � bv�� � cw�� � 0��. 
Three vectors are linearly independent if they are not linearly dependent.

Linear Dependence of Two Vectors
Two vectors u�� and v�� are called linearly dependent if and only if there are
scalars a and b, not both zero, such that 

au�� � bv�� � 0��. 
Two vectors are linearly independent if they are not linearly dependent.

u u

u = 2v
u – 2v = 0

v –2v

m = kn

m n
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EXAMPLE 1 a. Demonstrate that the three vectors u�� � (2, 1), v�� � (�1, 7), and w�� � (�4, 3)
are linearly dependent by showing that it is possible to find coefficients a, b,
and c, not all zero, such that the linear combination au�� � bv�� � cw�� is equal to
the zero vector.

b. Express each vector as a linear combination of the other two.

Solution
a. If the vectors are linearly dependent, then there are values a, b, c such that 

au�� � bv�� � cw�� � 0��

a(2, 1) � b(�1, 7) � c(�4, 3) � 0��

(2a � b � 4c, a � 7b � 3c) � 0��

The components of the vector on the left must be zero.

2a � b � 4c � 0
a � 7b � 3c � 0

Since there are three variables but only two equations, it is not possible to find
unique values for a, b, and c. 

eliminating a and eliminating b
2a � b � 4c � 0 14a � 7b � 28c � 0

�2a � 14b � 6c � 0 a � 7b � 3c � 0
�15b � 10c � 0 15a � 25c � 0

∴ b � ��
2
3�c ∴ a � �

5
3�c

To avoid fractions, we choose c � 3, whereupon b � �2 and a � 5.
Consequently,

5(2, 1) � 2(�1, 7) � 3(�4, 3) � 0��

or 5u�� � 2v�� � 3w�� � 0��

Thus there are values of a, b, and c, not all zero, which make the linear 
combination au�� � bv�� � cw�� equal to the zero vector. Then the three vectors 
u��, v��, and w�� are linearly dependent.

b. If 5u�� � 2v�� � 3w�� � 0��, then

u�� � �
2
5�v�� � �

3
5�w��, v�� � �

5
2�u�� � �

3
2�w��, and         w�� � ��

5
3�u�� � �

2
3�v��

EXAMPLE 2 Prove that three non-collinear vectors u��, v��, and w�� are linearly dependent if and
only if they are coplanar.
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Solution
First, suppose that u��, v��, and w�� are linearly dependent, so that au�� � bv�� � cw�� � 0��

for some scalars a, b, c, not all zero. Assume that c is one of the non-zero scalars.
It is then possible to divide by c and solve for w��.

w�� � ��
a
c

� u�� � �
b
c

� v��

Thus, w�� is expressed as a linear combination of u�� and v��, so w�� must lie in the plane
of u�� and v��, making the three vectors coplanar. 

Conversely, suppose that u��, v��, and w�� are coplanar. Then w��, for example,
can be written as a linear combination of u��, and v�� as w�� � au�� � bv��. Hence,
au�� � bv�� � w�� � 0��. Because the coefficients a, b, and �1 are not all zero,
the three vectors must be linearly dependent.

We can always form a linear combination of vectors. For instance, we can 
always write an equation of the form au�� � bv�� � 0�� for any pair of vectors u�� and v��.
If the two vectors are non-collinear, however, the only values of a and b that can
make the equation true are a � 0 and b � 0, for then, 0u�� � 0v�� � 0��. 

We can make a similar observation about a linear combination of three vectors.
We can always write an equation of the form ax�� � bu�� � cv�� � 0��. But if the three
vectors are not coplanar, and no two are collinear, then it is impossible to
express one of the vectors in terms of the other two. Under these circumstances,
the only values of a, b, and c that can make the equation true are a � 0, b � 0,
and c � 0. 

A linear combination of vectors will, of course, equal the zero vector if we set all
the coefficients a, b, c, … equal to zero. However, if making coefficients equal
zero is the only way the linear combination can equal the zero vector, then the
vectors cannot be dependent. Such vectors are said to be linearly independent.

A set of vectors u��, v��, w��, x��, … is linearly independent
if the only linear combination au�� � bv�� � cw�� � dx�� � …
that produces the zero vector is the one in which
the coefficients a, b, c, d, … are all zero.



C H A P T E R  6212

EXAMPLE 3 Prove that î and ĵ , the basis vectors for a plane, are linearly independent. 

Solution 
Start by forming a linear combination of î and ĵ and setting it equal to zero.

aî � bĵ � 0��

Either a � 0 or a � 0. Suppose that a � 0. Then î � ��
b
a

� ĵ .

If b � 0, î must be a scalar multiple of ĵ .
If b � 0, î must equal the zero vector. 
Both of these statements are false.

Consequently, the assumption a � 0 is impossible, so a must be zero. It follows
that 0î � bĵ � 0��, which means that b � 0, since ĵ � 0��. Thus, the values a � 0
and b � 0 are the only values of a and b for which the linear combination 
aî � bĵ � 0��. Therefore, the vectors î and ĵ must be linearly independent.

EXAMPLE 4 Show that u�� � 4î � 8ĵ and v�� � 6î � 3ĵ are linearly independent.

Solution
For scalars a and b, let

au�� � bv�� � 0��

a(4î � 8ĵ ) � b(6î � 3ĵ ) � 0��

4aî � 8aĵ � 6bî � 3bĵ � 0��

(4a � 6b)î � (8a � 3b)ĵ � 0��

Since î and ĵ are linearly independent vectors, both coefficients are equal to zero. 

4a � 6b � 0
8a � 3b � 0

Thus, a � b � 0

Then u�� and v�� are linearly independent.

EXAMPLE 5 Given that the vectors u�� and v�� are linearly independent and 
(3 � s)u�� � tv�� � 5u�� – 4sv��, determine the values of s and t. 

Solution
(3 � s)u�� � tv�� � 5u��� 4sv��

(3 � s)u�� – 5u�� � tv�� � 4sv�� � 0��

(�2 � s)u�� � (t � 4s)v�� � 0��
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Since u�� and v�� are given to be linearly independent, the coefficients of u�� and v��

must be zero. Therefore,

�2 � s � 0 and t � 4s � 0
s � �2 t � 8 

Two vectors are linearly dependent if they are collinear. Any two non-collinear
vectors define a plane. Any pair of linearly independent vectors can be designated
as basis vectors for a plane. Every vector in the plane can be expressed as a linear
combination of these basis vectors. Thus, the vectors î and ĵ are not the only 
vectors that could be used as basis vectors for a plane. They are just a particularly
simple and convenient choice.

Three vectors are linearly dependent if they are coplanar. Three vectors are 
coplanar if (u�� � v��) • w�� � 0, since (u�� � v��) is perpendicular to the plane of u�� and 
v��, and if w�� is perpendicular to this cross product, it must lie in the plane of u�� and
v��. On the other hand, if the triple scalar product of three vectors is not zero, then
the three vectors are non-coplanar. Therefore, they are linearly independent. As a
consequence, they can be designated as basis vectors for space, in terms of which
every three-dimensional vector can be expressed.

Part A
1. Given that w�� � au�� � bv��, what can be said about w��

a. if u�� and v�� are linearly independent?

b. if u�� and v�� are linearly dependent?

2. a. Are three vectors lying in a plane always linearly dependent? Explain.

b. Given three vectors in a plane, under what circumstances is it impossible
to express one of them as a linear combination of the other two?

c. Can any set of three non-collinear vectors be used as a basis for space?
Explain.

3. If u�� and v�� are linearly independent vectors, find the values of s and t for each
of the following equations.

a. su�� � 2tv�� � 0�� b. (s � 5)u�� � (t � 3)v�� � 0��

c. (s � 2)u�� � (s � t � 3)v�� d. su�� � 7v�� � 5u�� � tv��

Knowledge/
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4. If u��, v��, and w�� are linearly independent vectors, find the values of r, s, and t for
each of the following equations.

a. ru�� � (2s � 1)v�� � (r � s � t)w�� � 0��

b. (r � s � 5)u�� � (r � s � 1)v�� � (r � st)w�� � 0��

5. Given that the vectors u�� and v�� are linearly independent, determine the value 
of k, if possible, for each of the following equations.

a. (k � 2)u�� � (k � 2)v�� � 0�� b. (6k � 4)u�� � (8 � 12k)v�� � 0��

c. (k2 – 4)u�� � (k � 2)v�� � 0�� d. ku�� � 3v�� � 0��

Part B

6. Given that u�� and v�� are linearly independent vectors and a and b are non-zero
scalars, prove that au�� and bv�� are linearly independent vectors.

7. Show that the representation of a three-dimensional vector in terms of î , ĵ ,
and k̂ is unique.

8. Show that the vectors (�1, 1, 1), (1, �1, 1) and (1, 1, �1) can be used as a
basis for vectors in space.

9. Show that the vectors a��, a�� � b��, and a�� � (a�� � b��) can be used as a basis for
vectors in space, where a�� and b�� are any non-collinear vectors.

10. Determine whether the following sets of vectors form bases for 
two-dimensional space. If a set forms a basis, determine the coordinates 
of v�� � (8, 7) relative to this base.

a. v��1 � (1, 2), v��2 � (3, 5) b. v��1 � (3, 5), v��2 � (6, 10) 

11. Determine whether the following sets of vectors form bases for three-dimen-
sional space. If a set forms a basis, determine the coordinates of v�� � (1, 2, 3)
relative to the basis.

a. v��1 � (�1, 0, 1), v��2 � (2, 1, 1), v��3 � (3, 1, 1) 

b. v��1 � (1, 3, �1), v��2 � (2, 1, 1), v��3 � (�4, 3, �5) 

c. v��1 � (1, 0, 0), v��2 � (1, 1, 0), v��3 � (1, 1, 1) 

Thinking/Inquiry/
Problem Solving

Application
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Part C

12. If (3u�� � 4v��) and (6u�� � 2v��) are linearly independent vectors, show that u��

and v�� must be linearly independent also.

13. The vectors a��, b��, and c�� are basis vectors for space. d�� is any three-dimensional
vector, and d�� � ka�� � lb�� � mc��. Show that this representation of d�� in terms 
of a��, b��, and c�� is unique.

14. If u��, v��, and w�� are mutually perpendicular, linearly independent vectors, are the
vectors u�� � v��, v�� � w��, and w�� � u�� linearly dependent or linearly independent?

15. The vectors u�� and v�� are linearly independent. Find s, if the vectors 
(1 � s)u�� � �

2
3�v�� and 3u�� � sv�� are parallel.

Thinking/Inquiry/
Problem Solving
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Section 6.3 — Division of a Line Segment

Two points determine a straight line. If a third point lies on this line, the three
points are said to be collinear. When three points, A, B, and P are collinear, two of
the points, say A and B, are taken as the end points of a line segment. The third
point P is called a division point of the segment.

When P lies between A and B on the line 
segment, then P is said to divide the segment 
internally. When points, such as Q or R in the 
given diagram, lie on an extension of the 
segment outside the interval AB, then they are 
said to divide the segment externally.

The midpoint of a line segment is an example of an internal divi-
sion point. The midpoint M of a segment AB lies between A and B
and divides the segment exactly in half. This means that the 
vectors AM�� and MB�� are equal.  From this equality, a formula for
the position vector of the midpoint can be found.

The position vectors of the points A, B, and M relative to some 
origin O are, respectively, OA��, OB��, and OM��.

Since AM�� � MB��

Then OM�� � OA�� � OB�� � OM��

2OM�� � OA�� � OB��

Therefore, OM�� � �
1
2� OA�� � �

1
2�OB��

The position vector of the midpoint is a linear combination of the position vectors
of the endpoints of the line segment. The derivation of this midpoint formula is
valid for vectors in both two and three dimensions.

EXAMPLE 1 Find the midpoint of the line segment from A(10, �7, �4) to B(8, 1, �6).

Solution
The position vectors of points A and B are OA�� � (10, �7, �4) 
and OB�� � (8, 1, �6). Therefore,

OM�� � �
1
2�[(10, �7, �4) � (8, 1, �6)]

� (9, �3, �5)

The midpoint M is (9, �3, �5).

A P B

AQ B R

P divides AB
internally

Q and R divide AB
externally

A M B

A M B

O
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There are several equivalent ways to describe the division point of a line segment.
The midpoint, for instance, can be spoken of as a ratio or written as a fraction.

M divides AB in the ratio 1:1 or �
A
M

M
B� � �

1
1�

In a similar manner,

if P divides AB in the ratio 1:3 or �
A
P

P
B� � �

1
3�

then the points must be arranged on the
line as in this division-point diagram:

In reading or making a division-point diagram, treat segments going in the same
direction as the given segment as positive, and in the opposite direction as 
negative. Here, the segments AP and PB are both positive.

In the case of an external division of a line segment,
such as that shown in this division-point diagram,

P divides AB in the ratio 3:�1 or �
A
P

P
B
� � �

�
3
1�

You can distinguish an external from an internal division by a negative sign in the
ratio or fraction. The negative sign is more conveniently placed on the smaller
term of the ratio. In the diagram above, P divides BA in the ratio �1:3 since BP
has direction opposite to BA.

EXAMPLE 2 Points P and Q lie on line segment AB, such that AP � 6 units, PQ � 5 units,
and QB � 3 units. In what ratio does

a. P divide AB? b. A divide BP? c. B divide PQ? d. A divide QB?

Solution
Draw a division-point diagram containing the given information:

a. �
A
P

P
B
� � �

6
8�, so P divides AB in the ratio 6:8 or 3:4

b. �A
B

P
A
� � �

�
14

6�, so A divides BP in the ratio 7:�3

c. �B
P

Q
B
� � �

�
8
3�, so B divides PQ in the ratio 8:�3

d. �
Q
AB

A
� � �

�
1
1
4
1

� so A divides QB in the ratio �11:14

A P B

1 3

A PB

1
3

A P Q B

56 3

6 . 3  D I V I S I O N  O F  A  L I N E  S E G M E N T
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EXAMPLE 3 The points P, Q, R, and S are collinear. S divides QR in the ratio �3:4. R divides
SP in the ratio 5:1. In what ratio does Q divide SP?

Solution
Write the fractions and draw the division-point diagrams for the two given ratios.

�
Q
SR

S
� � �

�
4
3
�

�R
SR

P� � �
5
1�

The numbers in the ratios are not the actual lengths of the segments. Think of
them as the number of equal parts into which the segment has been divided. The
points S and R are common to both segments. To compare the ratios, SR must be
divided into the same number of parts. Therefore, multiply the first ratio by 5 and
the second by 4, and then arrange all the points on a single line.

This makes it clear that QR must contain 5 parts, and therefore that

�Q
SQ

P� � �
1
9
5
�

so Q divides SP in the ratio 15:9 or 5:3.

EXAMPLE 4 The point P divides the line segment AB in the ratio �2:5. Express OP�� as a linear
combination of OA�� and OB��.

Solution
P divides AB in the ratio �2:5, so �

A
P

P
B
� � �

�
5
2
�.

Therefore,

AP�� � ��
2
5�PB��

5(OP�� � OA��) � �2(OB�� � OP��)

5OP�� � 5OA�� � �2OB�� �2OP��

3OP�� � 5OA�� � 2OB��

OP�� � �
5
3� OA�� � �

2
3�OB��

S Q R

4
3

S PR

15

QS R P

4515

20

B PA

2
5

A P B

O

P

O
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The formula for the position vector of the division point found in Example 4 can
be generalized. If P divides AB in some ratio a:b, then �

A
P

P
B� � �

a
b�.

Therefore,

AP�� � �
a
b�PB��

b(OP�� � OA��) � a(OB�� � OP��)

bOP�� � bOA�� � aOB�� � aOP��

(a � b)OP�� � bOA�� � aOB��

OP�� � �
a �

b
b

�OA�� � �
a �

a
b

�OB��

This theorem shows that when three points are collinear, their position vectors are
linearly dependent and, hence, coplanar.

EXAMPLE 5 Prove that if OP�� � kOA�� � lOB��, and k � l � 1, this is sufficient to guarantee that
the points A, B, and P are collinear.

Solution

Since k � l � 1, k � 1 � l

Then OP�� � (1 � l)OA�� � lOB��

� OA�� � lOA�� � lOB��

So OP�� � OA�� � l(OB�� � OA��)
AP�� � lAB��

Therefore, the vectors AP�� and AB�� are parallel, and so A, B, and P are collinear.
This proves the if part of the division-point theorem. The derivation of the 
division-point formula shows it is necessary for collinearity, and constitutes a
proof of the only if part of the theorem. 

Division-Point Theorem
Points A, B, and P are collinear if and only if

OP�� � �a �
b

b�OA�� � �a �
a

b�OB��.

B

P

O

A

P

A

B

O

kOA

lOB
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Part A

1. Can a line segment be divided in the ratio 1:�1? Explain.

2. Points A, B, C, and D are located on a line as shown in the given diagram.

Determine

a. the ratio in which C divides AD

b. the ratio in which B divides AD

c. the ratio in which A divides BD

d. the ratio in which D divides AB

e. the ratio in which B divides CD

3. Draw a division-point diagram for each of the following statements.

a. point A divides BC in the ratio 2:1

b. point U divides ST in the ratio 3:�1

c. point Q divides PR in the ratio �1:2

d. point K divides MN in the ratio 5:8

e. point D divides EF in the ratio �2:3

Part B

4. If the point P divides AB in the ratio 1:2 and the point Q divides AB in the
ratio �1:2,

a. in what ratio does A divide QB?

b. in what ratio does B divide QP?

c. in what ratio does Q divide AP?

d. in what ratio does P divide QA?

e. in what ratio does B divide PA?

5. If T divides AB in the ratio 2:�1, prove from first principles that 
OT�� � 2OB�� � OA��.

Knowledge/
Understanding

Knowledge/
Understanding

Communication

Exercise 6.3

A B C D

3 34



6 . 3  D I V I S I O N  O F  A  L I N E  S E G M E N T 221

6. If OB�� � �
2
3�OC�� � �

1
3�OD��, prove from first principles that B, C, and D are

collinear points.

7. Which statements indicate that A, B, and C are collinear points?

a. OA�� � �
3
4�OB�� � �

1
4�OC�� b. OC�� � �

3
5�OA�� � �

3
5�OB��

c. OA�� � 5OB�� � 4OC�� d. OA�� � OB�� � OC�� � 0��

8. In what ratio does P divide AB if 

a. OP�� � �
2
9�OA�� � �

7
9�OB�� b. OP�� � �

�
9
4
�OA�� � �

1
9
3
�OB��

c. OP�� � 5OA�� � 4OB�� d. OP�� � �
9
7�OA�� � �

2
7�OB��

9. Express OA�� as a linear combination of OB�� and OC��, when A divides BC in the
given ratios.

a. 3:2 b. �2:3 c. 3:�2

10. Find the midpoint of the line segment joining A(3, 4, 6) to B(7, 8, �3).

11. Find the points that trisect the line segment from A(3, 6, 8) to B(6, 0, �1).

12. A(2, 10) and B(1, �5) are the endpoints of AB. Find the point that divides AB
in each of the given ratios.

a. 1:5 b. 2:�1 c. �4:7 d. 3:12

Part C

13. If OE�� � �
�
5
2
�OD�� � �

7
5�OF�� and OG�� � �

1
5�OD�� � �

4
5�OF��,

a. in what ratio does D divide GE?

b. in what ratio does F divide GE?

14. If P divides AB in the ratio a:b, find the ratio of the areas of the triangles 
OAP and OPB.

15. Prove that if OD�� � rOA�� � sOB�� � tOC�� and r � s � t � 1, the four points 
A, B, C, and D are coplanar.

Thinking/Inquiry/
Problem Solving

Thinking/Inquiry/
Problem Solving

Application

Application
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Section 6.4 — Vector Proofs in Geometry

We need to be able to solve a problem in several different ways. Sometimes one 
solution may be more direct and easier than another. If we try different methods
of solution, we gain insight into the mathematical principles involved and increase 
our confidence in the results.

Euclidean proofs are the usual way to establish the properties of geometrical 
figures. The use of vectors is an alternate way to accomplish the same result.

There are two distinct approaches that can be taken when we use vectors to do
proofs. One approach is to use point-to-point vectors. The other is to use position
vectors. Point-to-point vectors usually lie in the plane of a figure and join one
point of the figure to another. Position vectors, on the other hand, point from
some outside origin, which is not usually part of the figure, to points in the figure.

The two methods are illustrated in Examples 1 and 2 below. Remember that there
are several things to do before you can actually start a proof. For instance, the
proposition to be proved is usually expressed in words, so your first job is to
express what is given and what is to be proved in the form of vector formulas or
equations. To do this, you will need a suitably labelled diagram.

EXAMPLE 1 Two of the opposite sides of a quadrilateral are parallel and equal in length. Using
point-to-point vectors, prove that the other two opposite sides are also parallel and
equal in length.

Solution
Let ABCD be a quadrilateral in which AB � CD
and AB � CD. Using vectors, we write AB�� � DC��. 
Likewise, what is to be proved can be written AD�� � BC��.

Then AD�� � AB�� � BD��

� DC�� � BD��

� BD�� � DC��

� BC��

Therefore, if two of the opposite sides of a quadrilateral are parallel and equal,
so are the other two opposite sides.

EXAMPLE 2 Two of the opposite sides of a quadrilateral are parallel and equal in length. Using
position vectors, prove that the other two opposite sides are also parallel and equal
in length.

A

B

C

D
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Solution
Let ABCD be a quadrilateral having AB � CD
and AB � CD. Let O be an origin that is not in the plane 
of the quadrilateral.

As in Example 1, AB�� � DC�� is given, and AD�� � BC�� is to be proved.

Since AB�� � DC��

OB�� � OA�� � OC�� � OD��

OD�� � OA�� � OC�� � OB��

AD�� � BC��

The conclusion is the same as that of Example 1.

Sometimes a proof using position vectors requires the use of the division-point
formula and the concept of linear independence. An example of that kind of proof
is shown next.

EXAMPLE 3 Prove that the medians of a triangle intersect at a point that divides each median
in the ratio 2:1.

Solution
In ∆ABC, D and E are the midpoints of BC and AC,
respectively. If O is a point not in the plane of the triangle, then

OD�� � �
1
2�OB��� �

1
2�OC��, and   OE�� � �

1
2�OA�� � �

1
2�OC��

Let OG�� � kOA�� � lOD��, (k � l � 1)

Then � kOA�� � l(�
1
2�OB�� � �

1
2�OC��)

� kOA�� � �
1
2� lOB�� � �

1
2� lOC��

Similarly OG�� � mOB�� � nOE��, (m � n � 1)

� mOB�� � n(�
1
2�OA�� � �

1
2�OC��)

� �
n
2�OA�� � mOB�� � �

n
2�OC��

These two expressions for OG�� must be equal. Therefore,

kOA�� � �2
l
�OB�� � �2

l
�OC�� � �

n
2�OA�� � mOB�� � �

n
2�OC��

or (k � �
n
2�)OA�� � (�2

l
� � m)OB�� � (�2

l
� � �

n
2�)OC�� � 0��

A

O

B

C

D

A

D CB

G

E
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Since the vertices of the triangle A, B, and C are not collinear, the position vectors
OA��, OB��, and OC�� are not coplanar. Therefore, they are linearly independent 
vectors. This linear combination can only equal 0�� if each of the coefficients 
separately equals zero:

k � �
n
2� � 0, �2

l
� � m � 0, �2

l
� � �

n
2� � 0

Since k � �
n
2� � 0, n � 2k

Since �2
l
� � �

n
2� � 0, l � n � 2k

Now k � l � 1, so k � 2k � 1, or k � �
1
3�

Then l � �
2
3�

Then OG�� � �
1
3�OA�� � �

2
3�OD��, and G divides AD in the ratio 2:1.

Similarly, �2
l
� � m � 0, l � 2m

and �2
l
� � �

n
2� � 0, l � n � 2m

Since m � n � 1, then m � �
1
3�, n � �

2
3�

Then OG�� � �
1
3�OB�� � �

2
3�OE��, and G divides BE in the ratio 2:1.

If you repeat this work using AD��, for instance, and the third median CF��, the result
is the same. So the point of intersection G divides each of the medians in the ratio
2:1. G is called the centroid of the triangle.

Another type of problem asks for a proof that two line segments are 
perpendicular. Such problems are handled by showing that the dot product of 
the corresponding vectors is zero.

EXAMPLE 4 Prove that an angle inscribed in a semicircle is a right angle. 

Solution
Let O be the centre of a circle with diameter AB. Draw 
angle ∠ACB in the semicircle. This angle is the angle 
between the vectors CA�� and CB��. If the dot product of the 
two vectors is zero, then ∠C is a right angle.

CA�� • CB�� � (OA�� � OC��) • (OB�� � OC��)
OA and OB are both radii and OB�� � �OA��.
Then CA�� • CB�� � (OA�� � OC��) • (�OA�� � OC��) 

� �OA�� • OA�� � OA�� • OC�� � OC�� • OA�� � OC�� • OC��

� �OA��2 � OC��2

� 0, since OA�� and OC�� are radii.

Therefore, ∠ACB is a right angle.

A

B

C

O
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EXAMPLE 5 If the diagonals of a parallelogram are perpendicular, prove that the parallelogram
is a rhombus.

Solution
Draw and label a diagram.
Let ABCD be a parallelogram. Then opposite sides are equal 
vectors; for instance, AB�� � DC��. The diagonals are 
perpendicular, so

AC�� • BD�� � 0

(AB�� � BC��) • (BC�� � CD��) � 0

(�CD�� � BC��) • (BC�� � CD��) � 0

�CD�� • BC�� � CD�� • CD�� � BC�� • BC�� � BC�� • CD�� � 0

�CD��2 � BC��2 � 0

Therefore, BC�� � CD��, so adjacent sides are equal and the figure must be 
a rhombus.

Part A

1. Prove that the line joining the midpoints of two sides of a triangle is parallel
to the third side and half its length

a. using point-to-point vectors b. using position vectors

2. If side BC of ∆ABC is trisected by points P and Q, show that 
AB�� � AC�� � AP�� � AQ��

a. using point-to-point vectors b. using position vectors

3. If D, E, and F are the midpoints of the sides of the triangle ABC, prove that
OD�� � OE�� � OF�� � OA�� � OB�� � OC��.

Part B

4. Prove that if the diagonals of a quadrilateral bisect each other, the 
quadrilateral is a parallelogram.

Knowledge/
Understanding

Communication

Exercise 6.4

C
D

B
A
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5. If G is the centroid of ∆ABC and AD is one of its medians,

a. in what ratio does D divide BC?

b. in what ratio does G divide AD?

c. Prove that OG�� � �
1
3�(OA�� � OB�� � OC��).

6. If G is the centroid of ∆ABC, prove that AG�� � BG�� � CG�� � 0��.

7. Prove that the diagonals of a parallelogram bisect each other. Use the type of
proof shown in Example 3.

8. If a line through the centre of a circle is perpendicular to a chord, prove that it
intersects the chord at its midpoint.

9. Show that the midpoint of the hypotenuse of a right-angled triangle is 
equidistant from the vertices.

10. Prove that the sum of the squares of the diagonals of any parallelogram is
equal to the sum of the squares of the four sides.

11. In the trapezoid ABCD, AB�� � nDC��. If the diagonals BD and AC meet at K,
show that

AK�� � �
n �

n
1�AD�� � �

n �
1

1�AB��

12. ∆ABC is inscribed in a circle with centre X. Define a point P by its position
vector XP�� � XA�� � XB�� � XC��.

a. Show that CP�� � XA � XB. 

b. Show that CP�� ⊥ AB��, BP�� ⊥ AC��, and AP�� ⊥ BC��.

c. Explain why the results of part b prove that the three altitudes of a triangle
intersect at a common point. (P is known as the orthocentre of the 
triangle.)

13. Let ABCD be a rectangle. Prove that

a. OA�� • OC�� � OB�� • OD�� b. OA��2 � OC��2 � OB��2 � OD��2

Part C

14. A regular hexagon ABCDEF has two of its diagonals, AC and BE, meeting at
the point K. Determine the ratios in which K divides AC and BE.

Application

Application

Knowledge/
Understanding



15. In a triangle ABC, the point E is selected on BC so that BE:EC � 1:2. 
The point F divides AC in the ratio 2:3. The two line segments BF and AE
intersect at D.

a. Find the ratios in which D divides AE and BF.

b. Determine the ratio of the area of the quadrilateral CEDF to the area of the
triangle ABC.

16. In the parallelogram ABCD, DC is extended to E so that DE:EC � 3:�2. 
The line AE meets BC at F. Determine the ratios in which F divides BC and F
divides AE.

17. In the quadrilateral APBQ, AP�� � AQ�� and BP�� � BQ��.

a. Prove that AB bisects PQ.

b. Prove that AB is perpendicular to PQ.

18. Given the tetrahedron MNPQ with MN ⊥ PQ and MP ⊥ NQ, prove MQ ⊥ NP.Thinking/Inquiry/
Problem Solving

Thinking/Inquiry/
Problem Solving
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Key Concepts Review

The fundamental concept in this chapter is that of linear independence. If the 
linear combination au�� � bv�� � cw�� � … is equal to 0�� only if the coefficients a, b,
c, … are each zero, then the set of vectors u��, v��, w��, … is linearly independent. 
You should understand what the implications are when a set of vectors is found to
be linearly independent or not.

The question of linear independence is usually approached indirectly by asking if
a set of vectors is linearly dependent. That consists of trying to express one of the
vectors in the set in terms of the others. If the vectors are not linearly dependent,
they must be linearly independent.

Two non-zero vectors u�� and v�� are linearly dependent
• if they are collinear
• if u�� � kv�� with k � 0, or 
• if the cross product u�� � v�� � 0��.

Three non-collinear vectors u��, v��, and w�� are linearly dependent
• if they are coplanar
• if u�� � av�� � bw�� where a and b are not both zero, or 
• if the triple scalar product u�� � v�� • w�� � 0.

Three vectors in a two-dimensional plane and four vectors in three-dimensional
space are always linearly dependent.

The division of a line segment is also connected to the linear independence of 
vectors. In the linear combination OP�� � mOA�� � nOB��, the three points A, B,
and P are collinear and their corresponding position vectors are coplanar only if
the coefficients m � n � 1.

You should be able to express the division of a line segment AB by a point P in
three equivalent ways and to convert readily from one to the other.

P divides AB in the ratio a:b, �
A
P

P
B
� � �

a
b

�, and OP�� � �
a �

b
b

�OA�� � �
a �

a
b

�OB��.

This is not difficult, if you pay attention to the form of the equations and the 
positions of the letters representing the individual points.



The concept of linear independence and the properties of division points both play
a role in vector proofs of geometrical propositions. Two approaches have been
illustrated:

1. using point-to-point vectors that lie in the plane of the figure

2. using position vectors from some origin to points in the figure

It should be possible to prove a proposition using either approach. However, one
approach may be more difficult than the other, and unfortunately, there is no way
to predict this. If you can make no progress using one method, try another.

To learn to carry out proofs successfully, there is no substitute for doing many
problems. Start with the simpler proofs. Follow the examples. Expect to work
through and write out the logic of a proof several times until you get it right.
Persevere.
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Review Exercise

1. a. Show that the vectors (2, 3) and (�4, 3) may be used as basis vectors 
for a plane.

b. Express (3, �1) as a linear combination of (2, 3) and (�4, 3).

2. Classify the following sets of vectors as being linearly dependent or linearly
independent. Give reasons for your answers.

a. (3, 5, 6), (6, 10, 12), (�3, �5, 6)

b. (5, 1, �1), (6, �5, �2), (3, 8, �2), (�40, 39, �29)

c. (7, 8, 9), (0, 0, 0), (3, 8, 6) 

d. (7, �8), (14, 19) 

e. (0, 1, 0), (0, 0, �7), (7, 0, 0) 

3. The vectors a�� and b�� are linearly independent. For what values of t are 
c�� � t2a�� � b�� and   d�� � (2t � 3)(a�� � b��) linearly dependent?

4. If the vectors a��, b��, and c�� are linearly independent, show that a�� � 2b�� � c��,
2a�� � b��, and a�� � b�� � c�� are also linearly independent.

5. For each triangle ABC, determine the midpoints of the sides and the 
coordinates of the centroid.

a. A(0, 0), B(5, �6), C(2, 0) b. A(4, 7, 2), B(6, 1, �1), C(0, �1, 4)

6. If OM�� � �
3
5�ON�� � �

2
5�OP�� and OM�� � �

4
5�ON�� � �

1
5�OQ��,

a. in what ratio does P divide NQ?

b. in what ratio does Q divide NM?

7. If M divides AB in the ratio 1:7, show from first principles that 
OM�� � �

7
8�OA�� � �

1
8�OB��.

8. a. Prove from first principles that the points M, N, and Q are collinear if 

ON�� � ��
2
9�OM�� � �

1
9
1
�OQ��.

b. Express OM�� as a linear combination of ON�� and OQ��.

C H A P T E R  6230



9. The point P divides the sides AC of the triangle ABC in the ratio 3:4 and Q
divides AB in the ratio 1:6. Let R be the point of intersection of CQ and BP.
Determine the ratios in which R divides CQ and BP.

10. In the parallelogram ABCD, E divides AB in the ratio 1:4 and F divides BC in
the ratio 3:1. The line segments DE and AF meet at K. In what ratio does K
divide DE, and in what ratio does K divide AF?

11. Prove that the median to the base of an isosceles triangle is perpendicular to
the base.

12. Prove that a line that passes through the centre of a circle and the midpoint 
of a chord is perpendicular to the chord.

13. Prove that the medians to the equal sides of an isosceles triangle are equal. 

14. Prove that the sum of the squares of the diagonals of a quadrilateral is equal
to twice the sum of the squares of the line segments joining the midpoints 
of the opposite sides.

15. In ∆ABC, the points D, E, and F are the midpoints of sides BC, CA, and AB,
respectively. The perpendicular at E to AC meets the perpendicular at F to AB
at the point Q.

a. Prove that AB�� • (QD�� � �
1
2�AC��) � 0.

b. Prove that AC�� • (QD�� � �
1
2�AB��) � 0.

c. Use parts a and b to prove that CB�� • QD�� � 0.

d. Explain why these results prove that the perpendicular bisectors of the
sides of a triangle meet at a common point. (Q is called the circumcentre
of the triangle.)
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When you try to make exactly 49 cents from the coins in your pocket, there are
two ways that you might be unsuccessful. You might not have enough coins (you
will need at least seven), or you might have the wrong coins (seven dimes will not
work). When you try to express a vector as a linear combination of a set of vec-
tors, the same problems can occur; your set may not have enough vectors or it
may have unsuitable vectors. In a particular vector space V, a set of vectors B that
has just the right number of vectors (no more, no less) of the right type (linearly
independent) so that every other vector in V can be written as a linear combina-
tion of the vectors in B, is called a basis of V.

INVESTIGATE AND APPLY

1. What is the smallest set of coins you would need in order to be able to make
any amount of change less than one dollar?

2. a) Show that every ordered pair of real numbers can be written as a linear
combination of (1, 0) and (0, 1). So {(1, 0), (0, 1)} is a basis of the set of all
ordered pairs. It is called the standard basis of this vector space.

b) Show that {(2, 3), (1, –1)} is also a basis of the set of all ordered pairs.

3. Give two examples of bases of the set of all ordered triples of real numbers.

4. How many different bases could a particular vector space have? What do they
all have in common?

5. a) Find a basis of the vector space of all polynomials with degree less than or
equal to two.

b) Let n be a fixed whole number. Find a basis of the vector space of all
polynomials of degree less than or equal to n.

INDEPENDENT STUDY
Investigate: How is the dimension of a vector space defined? What are the 
dimensions of the vector spaces we have encountered so far? Can vector spaces
be infinitely dimensional?

Investigate: Is the set of all matrices of a fixed size a vector space? If it is, what is
an example of a basis? ●

investigate and applywrap-up
CHAPTER 6 :  VECTOR SPACES



C H A P T E R  6  T E S T 233

Chapter 6 Test

1. Three vectors u��, v��, and w�� are linearly independent. Explain this concept using

a. an algebraic example b. a geometric example

2. P divides QR in the ratio 10:�3.

a. Express OP�� as a linear combination of OQ�� and OR��.

b. Express OR�� as a linear combination of OP�� and OQ��.

3. a. Copy the three vectors shown in the given diagram onto 
graph paper and draw c�� accurately as a linear 
combination of a�� and b��.

b. Determine values of r and s where c�� � ra�� � sb��.

4. The vectors u��, v��, and w�� are coplanar and have magnitudes 5, 12, and 18
respectively. u�� lies between v�� and w��, making an angle of 35º with v�� and 20º
with w��. Express u�� as a linear combination of v�� and w��.

5. F divides AP in the ratio 13:�8 and F divides PG in the ratio 4:�3.

a. Draw a division-point diagram showing the relative positions of the 
four points.

b. In what ratio does P divide AG?

a b

c

Achievement Category Questions

Knowledge/Understanding 3, 4

Thinking/Inquiry/Problem Solving 7, 8

Communication 1, 2

Application 5, 6



6. a. Form two point-to-point vectors out of the three points A(�4, 2, �8),
B(�1, �4, �2) and P(1, �8, 2). Demonstrate that the two vectors 
are collinear.

b. Express OP�� as a linear combination of OA�� and OB��.

7. ABCD is a quadrilateral. P, Q, R, and S are the midpoints of its sides. 
Prove using vectors that PQRS is a parallelogram.

8. In ∆ABC, D lies on AB and E lies on AC such that DE�� � kBC��. Prove that
AD�� � kAB�� and AE�� � kAC��, using the fact that AB�� and AC�� are linearly 
independent.
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ERROR–CORRECTING CODES

In the last chapter, you saw that 0 - 1 strings can be used to create vectors for communication. Suppose
that a satellite sends electronic messages using this system from outer space to a receiver on earth. The
message passes through electronic interference on its way and may be distorted, so a vector 0001000 is
received as 0001001. Since we have no access to the original message we need to be able to determine
whether or not the message received is unchanged from the one that was sent. Further, we wish to
correct it if it is changed.

While this seems like an impossible task, it can be done if we are clever in constructing the vectors we
use. The following system is the basis for the system originally used by NASA and provides a one-error
correcting code. It does not correct if there are two or more errors. It uses the same addition as the
earlier example but also employs the dot product of vectors. Hence for vectors, we have

(1001101) • (1101011) � 1 � 0 � 0 � 1 � 0 � 0 � 1
� 1. (Because 1 + 0 = 1 and 1 + 1 = 0)

To create the vectors, we use the matrix

100
010
001

together with all possible linear combinations of the vertical vectors making up the matrix. 

For example,

	 
� 	 
� 	 

We obtain

B

This is a set B of three vectors, b1, b2, b3, that allows us to determine the validity of a vector received
and to correct it if exactly one error occurs.

The vectors used for transmitting are formed as follows. By transposing the last four columns in B (that
is, changing rows to columns) and then appending the 4 � 4 matrix with 1 in the diagonal and 0
elsewhere, we have the following vectors:

v1:1101000

v2:1010100

v3:0110010

v4:1110001

1
1
0

0
1
0

1
0
0

1001101  b1
0101011  b2
0010111  b3

�



These vectors have the property that their dot product with each of the vectors b1, b2, b3 is 0.
You should verify that this is so.

By adding v1 � v2, we create v5 � 0111100, and by taking all possible combinations of them (two,
three, or four together) we can create a total of 15 vectors, all with the same property, that their dot
product with each of b1, b2, b3 is 0.

With this system we have only 15 vectors, but we have shown how to create a system using the
properties of matrices, vectors, combinations of vectors, and dot product. Now suppose that 
v6 � v1 � v3 � (1011010) is sent from space but in passing through a field of lightning is changed to
(1010010). How can we tell whether it was originally sent in this form and, if it wasn’t, how it has been
changed? We simply take the dot product of the vector received with each of b1, b2, b3 , as follows:

(1010010) � (1001101) � 1

(1010010) � (0101011) � 1

(1010010) � (0010111) � 0

Because we do not obtain 0 in each dot product there is an error. Where is the error? The vertical vector

	 
 matches the vector in the array B in column 4. This is the location of the error. By changing the 

0 in the fourth position to 1, the vector received is corrected to that which was sent.

In this example, you see that the clever use of number properties together with the algebra of vectors
allows for the creation of impressive technological applications. In more advanced applications, the
approach described here is used in systems requiring the correction of errors when it is impossible to
obtain original messages for comparison.

1
1
0
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When we solve geometric problems in two-
dimensional space, Euclid’s methods are usually
sufficient for problems involving polygons and
circles. For solving problems involving curves such
as parabolas, ellipses, and hyperbolas, however, the
analytic geometry of Descartes, using the language
of algebra, is a superior tool. Both Euclidean and
analytic methods are used for solving problems in
three-dimensional space as well, but vector
methods are more powerful than either the
Euclidean or the analytic method. There are well-
established formulas for finding the slope or
direction of a line in two-dimensional space, but
how do you express direction in three-dimensional
space? There are also formulas for lines in two-
dimensional space, but are there corresponding
formulas for lines in three-dimensional space? In
this chapter, we will use vectors to develop these
formulas and to solve problems involving points
and lines in two and three dimensions.

CHAPTER EXPECTATIONS In this chapter, you will

• determine equations of lines in two- and three-
dimensional space, Section 7.1, 7.2, 7.3, 7.4

• solve problems involving intersections of lines
and planes, Section 7.4

Chapter 7
LINES IN A PLANE



Review of Prerequisite Skills

In this chapter and the next, vectors are used to investigate the geometry of
straight lines and Euclidean planes in two and three dimensions. Lines are not
vectors, but vectors are used to describe lines. Their similarities and differences
are presented in the following table.

The equation of a straight line in a plane in the form y � mx � b is familiar from
earlier mathematics courses. This equation is not suitable for describing the equa-
tion of a line in space. In this chapter, a new form of the equation of a line based
on vectors is developed, one that can be extended from two to three dimensions.
We will also develop the principal concepts needed to solve problems about the
intersections of and distances between straight lines in both two and three dimen-
sions.
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Lines Vectors

Lines are bi-directional. A line defines a Vectors are unidirectional. A vector defines a 
direction, but there is nothing to distinguish direction with a clear distinction between 
forward from backward. forward and backward. 

A line is infinite in extent in both directions. Vectors have a finite magnitude.
A line segment has a finite length.

Lines and line segments have a definite A vector has no fixed location. The opposite 
location. The opposite sides of a sides of a parallelogram are described by the 
parallelogram are two different line segments. same vector. 

Two lines are the same when they have Two vectors are the same when they have 
the same direction and same location. the same direction and the same magnitude.
Such lines are said to be coincident. Such vectors are said to be equal. 
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Some forms of mathematics use creativity
and imagination in a way that is similar to
artistic creation. It is not uncommon to
hear mathematicians refer to theorems as
elegant or even beautiful. Sometimes
mathematicians produce interesting, even
beautiful, images.

Investigate and Inquire
One way to create interesting images is
through the use of parametric equations.
These will be defined more precisely in
Chapter 8, but one example of a set of parametric equations is x � t � 2 sin(t), 
y � 1 � cos(t), t � 0. Here, each value of t gives a point (x, y). For example, if 
t � � radians, then (x, y) � (�, 2). As t increases, the point moves through the
plane. The result is shown below.

This figure is called a trochoid. Try drawing this on a graphing calculator. (Note:
when working with parametric curves, we will evaluate trigonometric functions
using radians.)

Many parametric equations can be interpreted as the position of a particle, at
time t, as it moves through the plane.

DISCUSSION QUESTIONS

1. How can parametric equations be used to describe a curve in three
dimensions? What about four or more dimensions?

2. When has mathematics required you to be creative, to use your imagination?
Why does math sometimes seem unlike art?

3. How has mathematics been used in artistic practices? ●

investigate 
CHAPTER 7 :  EQUATIONS OF L INES
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Section 7.1 — Parametric and Vector Equations of a 
Line in a Plane

Imagine you are travelling at a constant 
speed along a perfectly straight highway 
that runs south and east from point A
toward point B. As you travel, your position,
P, changes from moment to moment,
depending on how much time, t, has passed 
since leaving point A. The x- and y-coordi-
nates of your position depend on t, but how?
What are the equations which relate x and y
to t?  

Your velocity v�� is a vector (vx, vy). In this vector, vx is the eastward (x) compo-
nent, which will be positive in this example. vy is the northward (y) component,
which will be negative in this example, since you are travelling to the south.

Consider first your motion toward the east. The distance that you have travelled
east is the difference x � x0 between your present position at point P and your
starting position at point A. This distance is equal to vxt, where vx is the eastward
component of your velocity, and t is the length of time you have been travelling:
x � x0 � vxt.

Therefore x � x0 � vxt

In like manner y � y0 � vyt

This pair of equations gives your position P(x, y) on the highway at any time t,
after starting from A(x0, y0).

The highway from A to B is a straight line. It is important to realize that the equa-
tions derived above represent a new and different way to describe this straight
line. Unlike the familiar formula y � mx � b, which expresses y as a function of
x, here each of the coordinates x and y is expressed separately in terms of a third
variable, t.

In mathematics, when you describe a relation between two variables in an indirect
manner using a third variable, the third variable is called a parameter. Equations
that show how the two variables depend on that parameter are called parametric
equations.
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A(x0, y0)

P(x, y)
east

B

north

v



The parameter t, which represents the travel time above, is a real number that can
take on any value. Just as each point in time corresponds to a position on the
highway, each value of t corresponds to a particular point on the line, and each
point on the line is characterized by a unique value of t.

EXAMPLE 1 Highway 33 from Regina to Stoughton, Saskatchewan, is an almost straight line.
Suppose you travel on this highway with a constant velocity (expressed in compo-
nent form, where east and north are positive) v�� � (85, �65) km/h. How far south
of Regina are you when you are at a position 102 km east of Regina?

Solution

The parametric equations are x � x0 � 85t, y � y0 � 65t, with (x0, y0) � (0, 0). 

Using the x-component of the velocity, 102 � 0 � 85t, then t � �
6
5�. Therefore, it 

takes �
6
5� of an hour, or 72 minutes, for you to reach a point on the highway that is 

102 km east of Regina.

Then y � 0 � (�65)��
6
5�� or y � �78. Consequently, at this point in time, you are 

at a position on the highway that is 78 km south of Regina.

The velocity vector, which in Example 1 was parallel to the highway, is an exam-
ple of a direction vector. In general, any vector d�� � (a, b) parallel to a line may be
used as a direction vector for the line. By choosing the vector (85, �65) in the
example, we indicate that the units are in kilometres and hours. This could be, for
example, a vector from one point to another on the line. The diagram below
shows how the direction vector for a line is related to its slope.

Any vector that is parallel to a line may be used as a direction vector
for the line.
A line with direction vector (a, b) has slope �

b
a�, provided a � 0. 

The parametric equations of a straight line in a plane have the form

x � x0 � at

y � y0 � bt

where (x, y) is the position vector of any point on the line
(x0, y0) is the position vector of some particular point on the line
(a, b) is a direction vector for the line

and t � R is the parameter. 
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(a, b)

a

b



EXAMPLE 2 State a direction vector for

a. the line that passes through the points C(3, 4) and D(7, 2)

b. a line that has slope ��
5
3�

c. a vertical line passing through the point (�6, 5)

Solution
a. The vector CD�� has components (7 � 3, 2 � 4) � (4, �2). This vector or any

scalar multiple of it such as (2, �1) would be a suitable direction vector.

b. A line with a slope of ��
5
3� has a rise of �5 and a run of 3. The vector (3, �5) 

is parallel to this line and would be a suitable direction vector.

c. A vector parallel to a vertical line has a horizontal component of zero. The 
simplest such vector is (0, 1). So, even though the slope of a vertical line does
not exist, a direction vector does. The point the line goes through is irrelevant. 

EXAMPLE 3 A line passes through the point (5, �2) with direction vector (2, 6).

a. State the parametric equations of this line.

b. What point on the line corresponds to the parameter value t � 3?

c. Does the point (1, �8) lie on this line?

d. Find the y-intercept and the slope of the line. Then, write the equation of the
line in the form y � mx � b.

Solution
a. It is given that (x0, y0) � (5, �2) and (a, b) � (2, 6). The parametric equations

of the line are

x � 5 � 2t
y � �2 � 6t, t � R

b. When t � 3,
x � 5 � 2(3) � 11
y � �2 � 6(3) � 16

Therefore, the point (11, 16) on the line corresponds to the parameter value t = 3.

c. To determine if (1, �8) lies on the line, try to find its parameter value. 
Substitute (1, �8) for (x, y) and solve for t.
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1 � 5 � 2t �8 � �2 � 6t
t � �2 t � �1

There is no single parameter value that satisfies both equations. Therefore, the
point (1, �8) does not lie on the line.

d. To find the y-intercept, set x � 0 and find the values of t and then y.

0 � 5 � 2t so t � ��
5
2�

y � �2 � 6���
5
2�� so   y � �17

Since the direction vector is (2, 6), the slope is �
6
2� or 3. Using the y-intercept �17,

the equation of the line is y � 3x � 17.

Let us now look at the parametric equations of a line from a vector viewpoint.
Recall that the ordered pair (x, y) can be reinterpreted as the position vector of the
point P(x, y). Therefore, the parametric equations of a line are equations about the
x- and y-components of vectors. Consequently, we can combine the two paramet-
ric equations into one vector equation.

x � x0 � at, y � y0 � bt becomes  (x, y) � (x0 � at, y0 � bt)
or  (x, y) � (x0, y0) � t(a, b)

EXAMPLE 4 State a vector equation of the line passing through the points P(4, 1) and Q(7, �5).

Solution
The vector PQ�� from one point to the other on the line may be used as a direction
vector, d��, for the line.

d�� � OQ�� � OP��

� (7, �5) � (4, 1)
� (3, �6)

Then, a vector equation of the line is r� � (4, 1) � t(3, �6), t � R. You could also
have used a shorter direction vector and the other point, so another vector equa-
tion of this line is r� � (7, �5) � s(1, �2), s � R.

The vector equation of a straight line in a plane has the form

r� � (x0, y0) � t(a, b)

where r� � (x, y) is the position vector of any point on the line,
(x0, y0) is the position vector of some particular point on the line,
(a, b) is a direction vector for the line,

and t � R.
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As Example 4 shows, the vector equation of a line has an unusual feature. Since
any vector parallel to the line will do as a direction vector, and any point on the
line can serve as the particular point required in the equation, two vector equa-
tions may look entirely different, yet still represent the same line. It is important,
then, to determine whether or not two different vector equations in fact represent
two different lines.

EXAMPLE 5 Are the lines represented by the following vector equations coincident? That is, do
these equations represent the same straight line?

a. r� � (3, 4) � s(2, �1) b. r� � (�9, 10) � t(�6, 3)

Solution
Check the direction vectors first.

a. d��1 � (2, �1) b. d��2 � (�6, 3)

Since d��2 � �3d��1, the direction vectors of the two lines are parallel. 

To decide if the lines are coincident, we check to see whether a point on one of
the lines satisfies the vector equation of the other. The point (3, 4) is on the first
line. If it is also on the second line, then (3, 4) � (�9, 10) � t(�6, 3).

Then 3 � �9 � 6t and     4 � 10 � 3t
t � �2 t � �2

Since the same parameter value is obtained from each equation, the point (3, 4)
from the first line does lie on the second line, and the lines are coincident. (You
may check in the same way that (�9, 10) from the second line lies on the first
line with s � �6.)

To summarize using vector language, the vector
equation of a line is a formula that gives the 
position vector OP�� of any point on 
the line. The diagram shows that OP�� is the sum of
the vectors OP0

��� to the line and P0P��

along the line: OP�� � OP0
��� � P0P��.

OP0
��� is the position vector (x0, y0) of a particular point on the line. P0P�� is a scalar
multiple of some direction vector (a, b) for the line. Consequently,

OP�� � OP0
��� � td��

or (x, y) � (x0, y0) � t(a, b)

or r� � r0
�� � td��
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Part A

1. What is a direction vector? What is a parameter? What role do these quanti-
ties play in the equation of a line?

2. State a direction vector for each of the following lines.

a. a line parallel to x � 9 � 3t, y � �4 � t

b. the line through (6, 4) and (�2, �6)

c. the line y � 3x � 6

d. a line parallel to r� � (1, 7) � t(4, 3)

e. a horizontal line

f. a vertical line

3. State the coordinates of two points on each of the following lines.

a. x � 3 � 8t, y � 4t b. r� � (4, 0) � t(0, 5)

4. State a parametric equation and a vector equation for each of the following
lines.

a. b.

5. Graph the following lines.

a. x � �1 � 5t b. r� � (�3, �4) � t(4, 3)

y � 6 � 2t

6. For each of the following, find the parametric equations of the line that passes
through the point P with direction vector d��. In each case, find two points on
the line different from P.

a. P(1, 1), d�� � (4, �4) b. P(5, 0), d�� � (1, 3)

7. State parametric equations

a. for the x-axis

b. for a line parallel to but not coincident with the x-axis

x

y

x

y

Knowledge/
Understanding

Knowledge/
Understanding

Communication

Exercise 7.1
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Part B

8. For each of the following lines, find the vector equation that passes through
the point P with direction vector d��.

a. P(�2, 7), d�� � (3, �4) b. P�2, �
3
4��, d�� � ��

2
3�, 6�

c. P(1, �1), d�� � (��3�, 3) d. P(0, 0), d�� � (�2, 3)

9. For each of the following lines, state a direction vector with integer compo-
nents. If possible, name a point on the line with integer coordinates.

a. x � �
1
3� � 2t, y � 3 ��

2
3�t

b. r� � ��
1
3�, �

1
2�� � t��

1
3�, �

1
4��

c. r� � ��
1
2�, 3� � t���

1
2�, 5�

10. For each of the following, determine which pairs of lines are parallel and
which are perpendicular.

a. x � 1 � 3t, y � 7 � 4t and  x � 2 � 4s, y � �3s

b. r� � (1, 7) � t(�3, 4)  and  r� � (2, 0) � s(3, �4)

c. r� � (1, 7) � t(�3, 4)  and  r� � (2, 0) � s(4, �3)

11. Find a vector equation of the line that passes through the point (4, 5) and is
perpendicular to the line r� � (1, 8) � t(3, 7).

12. Find the points where each of the following lines intersects the x- and y-axes.
Graph the line.

a. x � 6, y � 1 � 7t

b. r� � (�5, 10) � t(1, 5)

c. r� � (2, 3) � t(3, �1)

13. Show that both lines r� � (3, 9) � t (2, 5) and r� � (�5, 6) � u(3, �1) contain
the point (1, 4). Find the acute angle of intersection of these lines to the 
nearest degree.

14. The angle α, 0º � α � 180º, that a line makes with the positive x-axis is
called the angle of inclination of the line.

a. Find the angle of inclination of each of the following lines.

(i)  r� � (2, �6) � t(3, �4) (ii)  r� � (6, 1) � t(5, 1)

b. Prove that the tangent of the angle of inclination is equal to the slope of
the line.

15. You are driving from point A(24, 96) on a map grid toward point B with a
velocity defined by d�� (85, �65) km/h.

Application

Application
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a. State the parametric equations of the highway line.

b. How long have you been travelling when you reach a point P
102 km east of where you started at point A?

c. What are the coordinates of your position P at that time?

16 a. By eliminating the parameter t from the parametric equations of a line,

show that the equation of a line can be written in the form �
x �

a
x0� � �

y �
b

y0�

(provided neither a nor b is zero). This is known as the symmetric 
equation of a line.

b. Find a symmetric equation for each of the following lines.

(i)  x � 5 � 8t, y � �3 � 5t (ii)  r� � (0, �4) � t(4, 1)

c. Find a symmetric equation for the line through the points A(7, �2) and 
B(�5, �4).

Part C

17. a. Show that P(5, 8) and Q(17, �22) are points on the line that passes
through A(7, 3) with direction vector (2, �5) .

b. Describe the line segment from P(5, 8) to Q(17, �22) using parametric
equations with suitable restrictions on the parameter.

18. a. Suppose p�� and q�� are the position vectors of points P and Q in the plane.
Show that the line that passes through P and Q has the vector equation 
r� � (1 � t)p�� � tq��.

b. For what values of t does the point R with position vector r� lie between
points P and Q on the line?

c. When t � 2, draw a vector diagram that shows where point R with position
vector r� lies on the line relative to points P and Q.

d. For what values of t does the point R with position vector r� lie closer to Q
than P?

19. a. Find the vector equations of the two lines that bisect the angles between the
lines 

r�1 � (5, 2) � t(�3, 6)

r�2 � (5, 2) � u(11, 2)

b. Sketch all four lines.

c. Are the two lines that bisect the angles made by the intersecting lines
always perpendicular? Explain.

Thinking/Inquiry/
Problem Solving
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Section 7.2 — The Scalar Equation of a Line in a Plane

Another way to form the equation of a line is to use a vector that is perpendicular
to the line rather than one that is parallel to the line. Any vector that is perpendi-
cular to a line is called a normal vector or simply a normal to the line. 

EXAMPLE 1 Find a normal to the line

a. y � �2x � 5

b. (x, y) � (2, �3) � t(2, 5), t � R

Solution
a. The slope of the given line is �2. The slope of a line perpendicular to the given

line is �
1
2�. A vector normal to the line is, therefore, (2, 1).

b. The direction vector is (2, 5). The dot product of (2, 5) and any normal vector
(n1, n2) must be zero.

(2, 5) • (n1, n2) � 0
2n1 � 5n2 � 0

One of the many ways this equation can be satisfied is by choosing n1 � 5 and
n2 � �2 . Then, (5, �2) is a normal to the line with direction vector (2, 5).

The dot product of a normal vector and a direction vector is always zero because
they are perpendicular. This is the key to the use of normal vectors in two dimen-
sions.

EXAMPLE 2 Find the equation of the straight line with normal (5, 2), which passes through the
point (�2, 1). Write the equation of the line in the form Ax � By � C � 0.

Solution
For a point P(x, y) on the line, a direction vector is defined by

P0P�� � (x � 2, y � 1).

This vector is perpendicular to the normal. 
The dot product of these vectors must be zero.  

(5, 2) • (x � 2, y � 1) � 0
5(x � 2) � 2(y � 1) � 0

5x � 10 � 2y � 2 � 0
5x � 2y � 8 � 0 

This is the equation of the line through (�2, 1) with normal (5, 2).
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In the equation found in Example 2, we can see that the components of the 
normal end up as the coefficients of the x- and y-terms. The following derivation
demonstrates that this will always be the case.

The vector P0P�� along a line from a fixed point P0(x0, y0) to any other point P(x, y)
must be perpendicular to the normal n�� � (A, B).

Then n�� • P0P�� � 0
(A, B) • (x � x0, y � y0) � 0
A(x � x0) � B(y � y0) � 0
Ax � By � (�Ax0 � By0) � 0
Ax � By � C � 0, where C � �Ax0 � By0.

EXAMPLE 3 Find the scalar equation of the straight line with normal (�6, 4) that passes
through the point (�3, �7).

Solution
Since (�6, 4) � �2(3, �2) we can use (3, �2) as a normal to the line. The 
equation must be of the form

3x � 2y � C � 0

Since the point (�3, �7) lies on the line, its coordinates must satisfy the 
following equation.

3(�3) � 2(�7) � C � 0
C � �5

The equation of the line is 3x � 2y � 5 � 0.

When the equation of a line is expressed in scalar form,
it is a relatively straightforward task to find the distance 
from a point to the line. The shortest distance from the 
point Q to the line l is QN, measured along the normal 
through Q. This distance is shorter than the distance 
from Q to any other point P0 on the line. (Why?)

The scalar or Cartesian equation of a straight line in a plane has the form

Ax � By � C � 0

where the vector (A, B) is a normal to the line. 
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EXAMPLE 4 Find the distance from the point Q(5, 8) to the line 7x � y � 23 � 0.

Solution
In the diagram, the required distance is QN, where N is the point where the nor-
mal through Q meets the line. Then QN is the magnitude of the projection of P0Q���

onto the normal to the line, where P0 is any point on the line. Choosing P0 to be
(3, 2) gives P0Q��� � (2, 6). Also, n�� � (7, 1), so

QN � proj(P0Q��� onto n��)

�  
�  
� 2�2�

The distance from the point Q(5, 8) to the line 
7x � y � 23 � 0 is 2�2� units.

By working through the steps of the solution to Example 4 in general terms, we
can find a simple formula for the distance from a point Q(x1, y1) to a line with
scalar equation Ax � By � C � 0. Letting P0(x0, y0) be a point on the line, the
distance, d, is

d � proj(P0Q��� onto n��)

�  
�

�

Since P0(x0, y0) is on the line, it satisfies the equation of the line, so

Ax0 � By0 � C � 0

or    C � �Ax0 � By0

Then the distance is d � .

The distance from the point (x1, y1) to the line Ax � By � C � 0
is given by the formula

Ax1 � By1 � C
��

�A2 � B�2�

Ax1 � By1 � Ax0 � By0
���

�A2 � B�2�

(x1 � x0, y1 � y0) • (A, B)
���

�A2 � B�2�

P0Q��� • n��
�

n��

14 � 6
�

�50�

(2, 6) • (7, 1)
��

�72 � 1�2�
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Part A

1. Explain why there is one and only one scalar equation of a given line,
whereas there are many different parametric and vector equations for the line. 

2. State a normal of the line that is

a. perpendicular to 2x � 4y � 5 � 0 

b. parallel to 2x � 4y � 5 � 0

c. perpendicular to r� � (2, �5) � t(4, �2)

d. parallel to r� � (2, 5) � t(4, �2)

3. For each of the following, find the scalar equation of the line that passes
through the point P0 and has normal vector n��.

a. P0(4, �2), n�� � (2, 7) b. P0��
1
2�, 2�, n�� � (�4, 0)

c. P0(3, 3), n�� � (1, 1) d. P0��
1
3�, �

1
3��, n�� � (�1, 1)

4. For each of the following, find a normal vector, a direction vector, and a point
on each line.

a. 4x � 3y � 12 � 0 b. 3x � 6y � 14

c. x � 5 d. y � 3x � 10

5. Prove that both (�b, a) and (b, �a) are perpendicular to (a, b) for all a and b.

6. Find the Cartesian equation of each of the following lines.

a. (x, y) � (4, �6) � t(8, 2) b. x � 3 � 18t, y � 4 � 9t

c. r� � (2, 7) � t(2, 7) d. x � 2t, y � �2

7. Find the scalar equation of the line that passes through (2, �6) and

a. is parallel to 2x � 3y � 8 � 0

b. is perpendicular to 3x � 2y � 12 � 0

c. has a direction vector (2, �3)

d. has a normal vector (3, �2)

8. Find the scalar equation of the line through (8, �2) that is parallel to the line
x � �4 � 5t, y � 11 � 3t by first finding the symmetric equation of this line,
and then simplifying it.
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Part B

9. Find vector, parametric, and symmetric equations of the following lines.

a. 5x � 3y � 15 � 0 b. �4x � 6y � 9 � 0

10. Prove that the shortest distance from a point to a line is the distance measured
along the perpendicular from the point to the line.

11. For each of the following, find the distance from Q(3, �2) to each line.

a. 3x � 2y � 6 � 0 b. �
x �

2
3

� � �
y �

7
4

�

c. r� � (�3, �7) � t��
1
5�, �

1
6�� d. x � �5

12. Find the distance from each of the following points to the line 
6x � 3y � 10 � 0.

a. (4, 7) b. (4, �8) c. (0, 5) d. �5, ��
2
3
0
��

Part C

13. a. Prove that two lines in a plane are parallel if and only if their normals are
parallel.

b. Prove that two lines in a plane are perpendicular if and only if their nor-
mals are perpendicular.

14. a. Show that the equation of a line that has an angle of inclination α can be
expressed in the form x sin α � y cos α � C � 0. (See Exercise 7.1,
Question 14.)

b. Find the angle of inclination of 2x � 4y � 9 � 0.

c. Find the scalar equation of the line through the point (6, �4) with an angle
of inclination of 120º.

15. Draw any line through point A(2, 2). Through point B(8, 10), draw a normal
to the line through A, meeting it at the point N(x, y).

a. Show that N is a point on the circle defined by AN�� • BN�� = 0

b. Describe the relationship between this circle and the points A and B.

16. n�� is a normal to a line and OP�� is the position vector of a point P(x, y) on the
line.

a. Using diagrams, show that the line goes through the origin when 
n�� • OP�� � 0.

b. Prove that the line goes through the origin if and only if n�� • OP�� � 0.

Thinking/Inquiry/
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Section 7.3 — Equations of a Line in 3-Space

In generalizing the equations for a line from a two-dimensional plane to a three-
dimensional space, we must introduce a z-coordinate for points and a z-compo-
nent for vectors. The equations are otherwise very similar, except that there is no
scalar equation of a line in space because a line in space does not have a unique
normal.

The numbers a, b, and c, which are the components of the direction vector, are
known as direction numbers of the line.

EXAMPLE 1 Determine a direction vector for

a. the line that passes through the points P(6, �4, 1) and Q(2, �8, �5)
b. a line perpendicular to the xz-plane

Solution
a. PQ�� � OQ�� � OP��

� (2, �8, �5) � (6, �4, 1)
� (�4, �4, �6)

This vector or, better, (�2, �2, �3) or, better still, (2, 2, 3) could be used as a
direction vector for this line.

b. A vector perpendicular to the xz-plane is parallel to the y-axis. A suitable direc-
tion vector is, therefore, (0, 1, 0).

The vector equation of a straight line in space has the form

OP�� � OP0
��� � td��

or r� � r0
�� � td��

or (x, y, z) � (x0, y0, z0) � t(a, b, c)

where r� is the position vector of any point on the line

r0
�� is the position vector of some particular point on the line

d�� is a direction vector for the line

and t � R. 
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The position vector OP�� to a general point P(x, y, z) on 
the line can be expressed as OP�� � OP0

��� � P0P��.
OP0
��� is the position vector of a particular point 
P0(x0, y0, z0) on the line. P0P�� is some scalar multiple 
of a direction vector.

EXAMPLE 2 a. Find a vector equation of the line that passes through the point P(1, 0, �1) and
has direction numbers (1, 2, 3).

b. Does the point Q(�3, �8, �13) lie on this line?

Solution
a. A vector equation of the line is r� � (1, 0, �1) � t(1, 2, 3).

b. The point Q(�3, �8, �13) lies on the line only if there is a value of the
parameter t such that 

(�3, �8, �13) � (1, 0, �1) � t(1, 2, 3)

Then �3 � 1 � t and �8 � 2t and �13 � �1 � 3t
or t � �4 t � �4 t � �4

This vector equation is satisfied by t � �4, so the point Q does lie on the line.

When each component of the vector equation is written out separately, the result-
ing equations are the parametric equations of a straight line in space.

Solving each of the parametric equations for the parameter t gives

t � �
x �

a
x0�, t � �

y �
b

y0�, and t � �
z �

c
z0�

provided that none of a, b, or c is zero. These expressions give an alternate form
for equations of a straight line in space.

The parametric equations of a straight line in space have the form

x � x0 � at
y � y0 � bt
z � z0 � ct

where (x0, y0, z0) are the coordinates of some particular point on the line,
and a, b, and c are direction numbers for the line,

and t � R. 
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EXAMPLE 3 Find vector, parametric, and symmetric equations of the line that passes through
the points A(2, �2, �8) and B(5, �2, �14).

Solution
Since AB�� � (3, 0, �6), then (1, 0, �2) is a direction vector for the line. Using A
as the fixed point, a vector equation of the line is r� � (2, �2, �8) � t(1, 0, �2).

Then the corresponding parametric equations are
x � 2 � t
y � �2
z � �8 � 2t

and the corresponding symmetric equations are

�
x �

1
2

� � �
z
�
�

2
8

�, y � �2

There is no symmetric expression for y because the corresponding direction 
number b � 0. In cases like this, when y does not change with t, you must still
state its value. (If two direction numbers are 0, there is no symmetric equation.)

EXAMPLE 4 Write a vector equation for the line �x � y � 2 � z.

Solution
Rewriting the equations,

�
x �

�1
(0)
� � �

y �
1
(�2)
� � �

z �
1

(0)
�

Then by inspection, a vector equation of the line is

r� � (0, �2, 0) � t (�1, 1, 1)

EXAMPLE 5 Do the equations �x �
2

5
� � �

y
�
�

5
4

� � �
z �

3
1

� and  �x
�
�

4
1

� � �
y �

10
11

� � �
z
�
�

6
4

�

represent the same line?

The symmetric equations of a straight line in space have the form

�
x �

a
x0� � �

y �
b

y0� � �
z �

c
z0�

where (x0, y0, z0) are the coordinates of some particular point on the line,
and a, b, and c are direction numbers for the line with a, b, and c � 0. 
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Solution
The direction vector of the second line (�4, 10, �6) is �2 times the direction
vector of the first line (2, �5, 3), so the lines are parallel. They are coincident if
the point (�1, 11, �4) on the second line satisfies the equation of the first line.

�
(�1)

2
� 5
� � �3, �(11

�
) �

5
4

� � �3, �(�4)
3

� 1
� � �1

The fractions are not equal, therefore the lines are parallel and distinct.

EXAMPLE 6 Find vector, parametric, and symmetric equations of the y-axis, if possible.

Solution
The y-axis goes through the origin and has direction ĵ � (0, 1, 0). A vector 
equation for the y-axis is r� � (0, 1, 0) or simply r� � t ĵ . Parametric equations are 
x � 0, y � t, z � 0. It has no symmetric equation because two of the direction
numbers are zero.

Part A

1. Why does a line in space have a vector equation and a parametric equation,
but no scalar equation?

2. Find a direction vector for a line

a. parallel to r� � (7, �9, 3) � t(�4, 2, �5)

b. through (0, 6, 3) and (7, 4, 6)

c. parallel to �x � �
y �

2
3

� � �4
z

�

3. Give the coordinates of two points on each of the following lines.

a. r� � (1, 1, 2) � t(3, �1, �1)

b. x � 4 � 2t, y � �2 � 5t, z � 5 � 4t

c. �
x �

3
4

� � �
y �

4
5

� � �
z
�
�

1
1

�

4. For each of the following, find vector, parametric, and, if possible, symmetric
equations of the line that passes through P0 and has direction vector d��.

a. P0(2, 4, 6), d�� � (�1, �3, 2)

b. P0(0, 0, �5), d�� � (�1, 4, 1)

c. P0(1, 0, 0), d�� � (0, 0, �1)
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Understanding

Knowledge/
Understanding

Communication

Exercise 7.3

C H A P T E R  7256



5. List the points on the line r� � (�2, 4, 3) � t(3, �1, 5) for even integer values
of t from �6 to �6.

6. a. Which of the following points lies on the line x � 2t, y � 3 � t, z � 1 � t?

P(2, 4, 2) Q(�2, 2, 1) R(4, 5, 2) S(6, 6, 2)

b. If the point (a, b, �3) lies on the line, find the values of a and b.

Part B

7. Find parametric equations for the line that passes through the point 
(0, �1, 1) and the midpoint of the line segment from (2, 3, �2) to (4, �1, 5).

8. Find symmetric equations for the line through the origin that is parallel to the
line through the points (4, 3, 1) and (�2, �4, 3).

9. For each of the following pairs of equations, determine whether they represent
the same line, parallel lines, or neither of these.

a. r� � (1, 0, 3) � s(3, �6, 3)  and  r� � (2, �2, 5) � t(2, �4, 2)

b. r� � (2, �1, 4) � s(3, 0, 6)  and  r� � (�3, 0, 1) � t(2, 0, 2)

c. r� � (1, �1, 1) � s(6, 2, 0)  and  r� � (�5, �3, 1) � t(�9, �3, 0)

10. Describe in words the lines having the following parametric equations. Sketch
the lines.

a. x � t, y � 2, z � �1

b. x � 0, y � 1 � t, z � 1 � t

c. x � �5, y � 2 � t, z � 2 � t

11. a. Describe the set of lines in space that have one direction number equal to
zero.

b. Describe the set of lines in space that have two direction numbers equal to
zero.

Part C

12. Find the symmetric equations of the line that passes through the point 
(�6, 4, 2) and is perpendicular to both of the lines

�
�
x
4� � �

y �
�6

10
� � �

z �
3

2
� and  �x �

3
5

� � �
y �

2
5

� � �
z �

4
5

�.
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13. a. Show that the points A(�9, �3, �16) and B(6, 2, 14) lie on the line that
passes through (0, 0, 2) and has direction numbers (3, 1, 6).

b. Describe the line segment from A to B using parametric equations with
suitable restrictions on the parameter.

14. Find an equation of the line through the point (4, 5, 5) that meets the line 

�
x �

3
11

� � �
y
�
�

1
8

� � �
z �

1
4

� at right angles.

15. a. Prove that the distance from a point Q in space to a line through a point P

with direction vector d�� is equal to .

b. Find the distance from the point Q(1, �2, �3) to the line 
r� � (3, 1, 0) � t(1, 1, 2).

c. Find the distance between the parallel lines r� � (�2, 2, 1) � t(7, 3, �4)
and r � (2, �1, �2) � u(7, 3, �4).

PQ�� 	 d��
��

d��

Thinking/Inquiry/
Problem Solving
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Section 7.4 — The Intersection of Two Lines

What are the possible ways that two lines in a plane can intersect? They can be
parallel (and distinct), intersecting at no points; they can cross, intersecting at a
single point; or they can be coincident, thereby having an infinite number of 
common points.

parallel intersecting coincident

When the equations of two lines are expressed in scalar form, you can find their
point of intersection by the familiar method of elimination.

EXAMPLE 1 Find the intersection of the lines

2x � 3y � 30 � 0
and x � 2y � 13 � 0

Solution

Solving,
2x � 3y � 30 � 0

�2x � 4y � 26 � 0
7y � 56 � 0

y � 8
Substitute in the second equation,

x � 2(8) � 13 � 0
x � 3

Therefore, the point of intersection is (3, 8).

EXAMPLE 2 Find the intersection of the lines

r� � (18, �2) � t(3, �2)
r� � (�5, 4) �s(2, 1)

l1
l2

x

yl1

l2 x

yl1
l2

x

y
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Solution
First write the parametric equations of the lines.

line 1 x � 18 � 3t line 2 x � �5 �2s
y � �2 �2t y � 4 � s

Equating the expressions for x and y,

18 � 3t � �5 � 2s or 3t �2s � 23 � 0
�2 �2t � 4 � s 2t � s � 6 � 0

Solving, s � 4 and t � �5.

Substituting these into line 1 or into line 2, the coordinates of the intersection
point are (3, 8).

Like lines in a plane, lines in space can be parallel, intersecting at a point, or coin-
cident. But there is also a new possibility: they can be skew. Skew lines are not
parallel. Nevertheless, they do not intersect, because they lie in different planes.
They just pass by each other like the vapour trails left by two aircraft flying at dif-
ferent altitudes.

EXAMPLE 3 Find the intersection of

line 1 x � �1 � 3t and line 2 x � �1 � 2s
y � 1 � 4t y � 3s
z � �2t z � �7 � s

Solution
Equating the expressions for x, y, and z gives 

�1 � 3t � �1 � 2s or 3t � 2s � 0
1 � 4t � 3s 4t � 3s � 1 � 0

�2t � �7 � s 2t � s � 7 � 0

Solve for s and t using the second and third equations.

Equation 2 4t � 3s � 1 � 0

(–2) 	 Equation 3 �4t � 2s � 14 � 0
�5s � 15 � 0

s � 3
Substituting,

4t � 3(3) � 1 � 0
t � 2

Verify that t � 2 and s � 3 satisfy the first equation.
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3t � 2s � 3(2) � 2(3)
� 6 � 6
� 0

Therefore, the two lines intersect at a unique point, which is the point determined
by t � 2 on line 1, and s � 3 on line 2.
The point of intersection is (5, 9, �4).

EXAMPLE 4 Find the intersection of 

line 1 r� � (2, 1, 0) � t(1, �1, 1)
line 2 r� � (3, 0, �1) � s(2, 3, �1)

Solution
The direction vectors are not parallel, so the lines either intersect or are skew. 
The parametric equations are

line 1 x � 2 � t line 2 x � 3 � 2s
y � 1 � t y � 3s
z � t z � �1 � s

Equating the expressions for x, y, and z gives

2 � t � 3 � 2s or t � 2s � 1 � 0
1 � t � 3s t � 3s � 1 � 0
t � �1 � s t � s � 1 � 0

Solving the first and second equations,

Equation 1 t � 2s � 1 � 0
(–1) 	 Equation 2 �t � 3s � 1 � 0

�5s � 0
s � 0, so t � 1

Finally, check to see if these values of t and s satisfy the third equation.

t � s � 1 � (1) � (0) � 1
� 2
� 0

The values of t and s do not satisfy the third equation. Therefore, the lines have no
point of intersection. They are skew lines.

It is now time to place the subject of this section, intersections of lines, into a
more general context. The scalar equation of a line is an example of a linear
equation.
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The intersection problems considered in this section are elementary examples of
linear systems. A linear system is a set of two or more linear equations and may
involve thousands of equations. Problems requiring the solution of a linear system
arise in disciplines such as engineering, economics, physics, and biology. In this
section, the focus has been on the geometrical interpretation of a linear system
and its solutions.

A linear system is said to be consistent if it has at least one solution. Otherwise
the system is inconsistent.

Solving a linear system when the number of equations is large is an extremely
challenging problem, particularly if all coefficients are non-zero. Try to imagine
the amount of work required to solve ten equations with ten variables. Fortunately,
in real life many of the coefficients are zero.

You can get a reasonable picture of a real situation from the following examples.
Suppose that a grocery store that stocks 50 different items has 50 customers. The
first buys six different items worth $20, the second buys ten different items worth
$37, the third buys seven different items worth $52, and so on. From this we can
construct 50 equations in 50 variables, assuming that no two customers make
identical purchases. From these equations we can determine the cost of each item.

Now picture the situation if there are 50 000 items in the store, or imagine the
task of solving for 1 000 000 forces acting on the beams in a large building. It is
true that many of the coefficients are 0. A system involving a large number of
equations and having many coefficients equal to 0 is referred to as a sparse 
system.

Solving such a system involves computer applications and clever algorithms. The
study of linear systems is a highly developed area, and people skilled in analyzing
such systems are greatly in demand.

A system of linear equations may have
i) no solution

ii) a unique solution
iii) an infinite number of solutions

A linear equation is an equation of the form

a1x1 � a2x2 � a3x3 � ... � k

where the xi, ... are variables
and the ai, ... and k are constants.
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Part A

1. Line 1 intersects both the x-axis and the y-axis. Line 2 intersects only the 
z-axis. Neither contains the origin. Must the two lines be parallel or skew, or
can they intersect?

2. Find the intersection point of each of the following pairs of lines. Graph the
lines and identify the intersection point.

a. 2x � 5y � 15 � 0 b. r� � (�3, �6) � s(1, 1)

3x � 4y � 11 � 0 r� � (4, �8) � t(1, 2)

3. Determine whether the following pairs of lines are coincident, parallel and
distinct, or neither.

a. �
x

1
�
0

3
� � �

y
�
�

4
8

� b. x � 6 � 18s, y � 12 � 3s

�
x �

�5
33

� � �
y �

2
4

� x � 8 � 6t, y � 4 � 9t

c. x � 8 � 12s, y � 4 � 4s, z � 3 � 6s

x � 2 � 4t, y � 2 � t, z � 6 � 2t

d. �
x �

3
4

� � �
y �

4
12

� � �
z �

6
3

�

� � z � 5

Part B

4. Find the intersection of each pair of lines. If they do not meet, determine
whether they are parallel and distinct or skew.

a. r� � (�2, 0, �3) � t(5, 1, 3)

r� � (5, 8, �6) � u(�1, 2, �3)

b. x � 1 � t, y � 1 � 2t, z � 1 � 3t

x � 3 � 2u, y � 5 � 4u, z � �5 � 6u

c. r� � (2, �1, 0) � t(1, 2, �3)

r� � (�1, 1, 2) � u(�2, 1, 1)

d. (x, y, z) � (1 � t, 2 � t, �t)

(x, y, z) � (3 � 2u, 4 � 2u, �1 � 2u)

e. �
x �

4
3

� � y � 2 � z � 2

�
x
�
�

3
2

� � �
y �

2
1

� � �
z

�
�

1
2

�

Knowledge/
Understanding

y � 10
�

�
2
3�

x
�
�
1
2�

Knowledge/
Understanding

Communication

Exercise 7.4
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5. Consider the lines r� � (1, �1, 1) � t(3, 2, 1) and 
r� � (�2, �3, 0) � u(1, 2, 3).

a. Find their point of intersection.

b. Find a vector equation for the line perpendicular to both of the given lines
that passes through their point of intersection.

6. Show that the lines r� � (4, 7, �1) � t(4, 8, �4) and 
r� � (1, 5, 4) � u(�1, 2, 3) intersect at right angles and find the point of 
intersection.

7. If they exist, find the x-, y-, and z-intercepts of the line x � 24 � 7t,
y � 4 � t, z � �20 � 5t.

8. Find the point at which the normal through the point (3, �4) to the line 
10x � 4y � 101 � 0 intersects the line.

Part C

9. What are the possible ways that three lines in a plane can intersect? Describe
them all with diagrams.

10. What are the possible ways that three lines in space can intersect? Describe
them all with diagrams.

11. Find the equation of the line through the point (�5, �4, 2) that intersects the
line at r� � (7, �13, 8) � t(1, 2, �2) at 90º. Determine the point of 
intersection.

12. Find the points of intersection of the line r� � (0, 5, 3) � t(1, �3, �2) with
the sphere x2 � y2 � z2 � 6. Is the segment of the line between the intersec-
tion points a diameter of the sphere?

13. Find a vector equation for the line through the origin that intersects both of
the lines r� � (2, �16, 19) � t(1, 1, �4) and r� � (14, 19, �2) � u(�2, 1, 2).

14. a. Determine the point N at which the normal through the origin intersects the
line Ax � By � C � 0 in the xy-plane.

b. Find the magnitude of the position vector ON�� of point N.

15. The common perpendicular of two skew lines with direction vectors d1
�� and d2

��

is the line that intersects both the skew lines and has direction vector

n�� � d1
�� 	 d2

��. Find the points of intersection of the common perpendicular
with each of the lines (x, y, z) � (0, �1, 0) � s(1, 2, 1) and 
(x, y, z) � (�2, 2, 0) � t(2, �1, 2).

Thinking/Inquiry/
Problem Solving

Application

Communication

Communication

Application
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16. The distance between the skew lines r� � OP�� � td1
�� and r� � OQ�� � sd2

�� is 

Proj(PQ�� onto n��) or where n�� � d1
�� 	 d2

��. 

Find the distance between the lines

a. r� � (0, �2, 6) � t(2, 1, �1) and r� � (0, �5, 0) � s(�1, 1, 2)

b. x � 6, y � �4 � t, z � t and x � �2s, y � 5, z � 3 � s

Key Concepts Review 

This chapter has illustrated how the algebraic description of straight lines can be
formulated in terms of vectors. The form of the vector equation of a line,
r� � r0

�� � td��, is the same whether the line lies in a plane or in a three-dimensional
space. This equation also describes a line in more abstract, higher dimensional
spaces, where the vectors have more than three components.

To master this material, learn the various forms of the equation of a line.

the vector equation (x, y, z) � (x0, y0, z0) � t(a, b, c) or r� � r0
�� � td��

the parametric equations x � x0 � at, y � y0 � bt, z � z0 � ct

the symmetric equations �
x �

a
x0� � �

y �
b

y0� � �
z �

c
z0�

the scalar equation Ax � By � C � 0 (in two dimensions only)

Notice the position in each equation of the components (a, b, c) of the direction
vector and the coordinates (x0, y0, z0) of a point on the line. Work at converting
from one form to another by inspection.

Try visualizing lines in three-dimensional space, perhaps using the lines along the
corners of a room as coordinate axes. Practice sketching graphs of lines in two
and three dimensions, remembering to move parallel to the axes when you plot
coordinates of points or components of direction vectors.

PQ�� • n��
��

n��

Thinking/Inquiry/
Problem Solving
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Review Exercise

1. Consider any line in space that does not pass through the origin.

a. Is it possible for this line to intersect just one coordinate axis? exactly
two? all three? none at all?

b. Is it possible for this line to intersect just one coordinate plane? exactly
two? all three? none at all?

2. Find a vector equation of the line

a. that passes through the points (3, 9) and (�4, 2)

b. that passes through the point (�5, �3) and is parallel to the line 
r� � (4, 0) � t(0, 5)

c. that is perpendicular to the line 2x � 5y � 6 � 0 and passes through the
point (0, �3)

3. Find parametric equations of the line

a. that passes through (�9, 8) with slope ��
2
3�

b. that passes through (3, �2) and is perpendicular to the line 
r� � (4, �1) � t(3, 2)

c. through the points (4, 0) and (0, �2)

4. Find a vector equation of the line

a. that passes through the points (2, 0, �3) and (�3, 2, �2)

b. that has an x-intercept of �7 and a z-intercept of 4

c. that is parallel to �x �
4

5
� � �

y
�
�

2
2

� � �
z �

5
6

� and passes through the point 
(0, 6, 0)

5. Find parametric equations of the line

a. that is parallel to the line �x
�
�

3
1

� � �
y
�
�

2
2

� � z � 3 and passes through the
origin

b. that passes through the point (6, �4, 5) and is parallel to the y-axis

c. that has a z-intercept of �3 and direction vector (1, �3, 6)

C H A P T E R  7266



6. Find the Cartesian equation of the line

a. that passes through the point (�1, �2) and is parallel to the line 
3x � 4y � 5 � 0

b. that passes through the point (�7, 3) and is perpendicular to the line 
x � 2 � t, y � �3 � 2t

c. that passes through the origin and is perpendicular to the line 
x � 4y � 1 � 0

7. a. Find the parametric equations of the line l that passes through the point
A(6, 4, 0) and is parallel to the line passing through B(�2, 0, 4) and 
C(3, �2, 1).

b. If (�4, m, n) is a point on l, find m and n.

8. Determine if the following pairs of lines are parallel and distinct, coincident,
perpendicular, or none of these.

a. r� � (2, 3) � t(�3, 1) and r� � (�1, 4) � u(6, �2)

b. x � 1 � 2t, y � �3 � t and x � u, y � �
1
3� � 2u

c. �
x �

2
1

� � �
y �

1
4

�, z � 1 and x � 4t, y � 1 � 2t, z � 6

d. (x, y, z) � (1, 7, 2) � t(�1, �1, 1) and (x, y, z) � (�3, 0, 1) � u(2, �2, �2)

9. At what points does the line �x �
2

4
� � �

y
�
�

1
6

� � �
z �

4
2

� meet the coordinate
planes?

10. In the xy-plane,

a. find the Cartesian equation of the line r� � (2, 3) � t(�1, 5)

b. find a vector equation of the line 5x � 2y � 10 � 0

c. find a vector equation of the line y � �
3
4�x � �

1
2�

11. Given the line r� � (12, �8, �4) � t(�3, 4, 2),

a. find the intersections with the coordinate planes, if any

b. find the intercepts with the coordinate axes, if any

c. graph the line in an x-, y-, z-coordinate system

12. Find the direction cosines and the direction angles (to the nearest degree) of
the direction vectors of the following lines.

a. �
x �

5
3

� � �
y �

2
6

� � �
z
�
�

1
1

�

b. x � 1 �8t, y � 2 � t, z � 4 � 4t

c. r� � (�7, 0, 0) � t(4, 1, 0)
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13. Find the intersection, if any, of

a. the line r� � (0, 0, 2) � t(4, 3, 4) and the line
r� � (�4, 1, 0) � u(�4, 1, �2)

b. the line x � t, y � 1 � 2t, z � 3 � t and the line 
x � �3, y � �6 � 2u, z � 3 � 6u

14. Find the shortest distance between

a. the points (2, 1, 3) and (0, �4, 7)

b. the point (3, 7) and the line 2x � 3y � 7

c. the point (4, 0, 1) and the line r� � (2, �2, 1) � t(1, 2, �1)

d. the point (1, 3, 2) and the line �x
�
�

1
1

� � �
y �

1
3

� � �
z �

2
7

�

15. Find the coordinates of the foot of the perpendicular from Q(3, 2, 4) to the
line r� � (�6, �7, �3) � t(5, 3, 4).
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Beauty is a cultural concept. What is beautiful to one person may not appeal to
another. Nevertheless, when people consider the aesthetic qualities of an object,
they usually consider some relationship between the complexity of the object and
its orderliness. Repetition and symmetry are two ways in which an object may
contain order.

Investigate and Apply
The exercises below require you to draw graphs. A graphing utility such as a
graphing calculator will be helpful. Most graphing calculators have a mode setting
that allows you to draw parametric curves. Remember to use radian mode.

1. Graph x � 6 cos t, y � 6 sin t, 0 � t � 2�.

2. Find and verify parametric equations for an ellipse.

3. Graph x � �
1
2�t cos t, y � �

1
2�t sin t, 0 � t � 4�.

4. Graph x � �co
4
s t�, y � 3 tan t, 0 � t � 2�.

5. Graph x � 2t � 2 sin t, y � 2 � 2 cos t, t � 0. The resulting shape is called a
cycloid. It is a type of trochoid. It represents the path of a point on the edge
of a circle as the circle rolls along the x-axis.

6. a) Graph an epicycloid: x � 5 cos t � 2 cos��
5
2
t
��, y � 5 sin t � 2 sin��

5
2
t
��, 

0 � t � 4�.

b) Graph an epitrochoid: x � 5 cos t � 4 cos��
5
2
t
��, y � 5 sin t � 4 sin��

5
2
t
��, 

0 � t � 4�.

7. Graph a tricuspoid: x � 6 cos t � 3 cos(2t), y � 6 sin t � 3 sin(2t), 
0 � t � 2�.

8. Graph a Lissajous curve: x � 8 sin(3t � 1), y � 8 sin t, 0 � t � 2�.

9. What does x � 6 cos t, y � 6 sin t, z � t, t � 0 describe?

INDEPENDENT STUDY
Investigate: Find parametric equations for an Astroid, a hypocycloid, a Nephroid, a
Plateau curve, and the Folium of Descartes.

Experiment: Create a parametric curve different from the ones you have seen
here. Try to create one with features that make your curve unique.

Investigate: What are polar coordinates? What curves can be described using
polar coordinates? ●

investigate and applywrap-up
CHAPTER 7 :  EQUATIONS OF L INES
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Chapter 7 Test

1. A line goes through the points (9, 2) and (3, 4). Determine

a. its vector equation b. its parametric equations

c. its symmetric equation d. its scalar equation

2. Find the scalar equation of the line which is perpendicular to the line 
2x � 3y � 18 � 0 and has the same y-intercept as the line 
(x, y) � (0, 1) � t(�3, 4).

3. Find any two of the three intersections of the line �x �
6

2
� � �

y �
3

4
� � �

z
�
�

3
2

� with
the coordinate planes, and graph the line.

4. Find the distance from the point (1, �2, �3) to the line x � y � z � 2.

5. A line through the origin has direction angles β � 120º and γ � 45º. Find a
vector equation for the line.

6. Determine the point of intersection of the two lines

(x, y, z) � (�2, 0, �3) � t(5, 1, 3) and �x
�
�

1
5

� � �
y �

2
8

� � �
z
�
�

3
6

�

7. Let l1:x � �8 � t, y � �3 �2t, z � 8 � 3t and l2:�x �
2

1
� � �

y �
1

1
� � �3

z
� be two

lines in three-dimensional space.

a. Show that l1 and l2 are skew lines (that is, neither parallel nor intersecting).

b. State the coordinates of P1, the point on l1 determined by t � �2.

c. Determine the coordinates of P2, the point on l2 such that P1 P2 is perpen-
dicular to l2.

Achievement Category Questions

Knowledge/Understanding 1, 4

Thinking/Inquiry/Problem Solving 5, 7

Communication 3

Application 2, 6
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CHAOS

The simple quadratic function f (x) � rx(1 � x) where r is a specified constant can be used to
demonstrate some of the most interesting ideas in modern mathematics. You can easily check that the 
graph of this function is symmetric about x � �

1
2� with a maximum value of �4

r
�. We are interested in the 

function when 0 
 x 
 1 and 0 
 r 
 4 so that 0 
 f (x) 
 1.

We can define a sequence by specifying x0 and then each subsequent term by xn � f (xn�1), n � 1, 2, ...

If we start with r � 2.0 and x0 � 0.2, we get

x1 � 2 	 0.2 	 0.8 � 0.32, x2 � 0.4352, x3 � 0.491602, .... All terms are between 0 and 1.

It is easy to calculate the terms of this sequence on a spreadsheet. Note that the sequence can be written
as x0, f (x0), f (f (x0)), f ( f(f (x0))), ...

We can trace the development of the sequence on a plot of the function shown below. The line y � x is
also shown on the plot.

We start at the point (0.2, 0). The next point is (0.2, f (0.2)). We then move horizontally to the line 
y � x to get the point (f(0.2), f(0.2)). The next point is ( f(0.2), f(f(0.2))and so on. The points on the
curve have coordinates (xn, xn�1), n � 0, 1, ....

0
0

0.6

0.4

0.2

0.40.2 0.6 0.8 1

y = x

y = 2x(1 – x)



The key question is to determine what happens as n gets large. In this case, we see that the terms of the
sequence will approach 0.5. If we start with any value 0 
 x0 
 1, then the sequence will converge to
the same value — this is easy to see from the graph and to check with a spreadsheet calculation. 

This does not seem very interesting. However, let’s see what happens if we change the value of the
multiplier to  and carry out the same calculations with x0 � 0.2. The first few terms of the sequence are 

If you construct the corresponding plot, you will see that there are now two points of convergence at
0.513 and 0.799. When n is large, the sequence oscillates between these two values. Most starting 
values produce the same limiting behaviour, but some, such as x0 � �1

5
6�, produce a single point of

convergence. Can you figure out why?

If we further increase r to 3.5, we find that there are four points of convergence for most starting points.
In fact by slowly increasing r, we can get 8, 16, 32 , … points of convergence. The big surprise occurs
about r � 3.57. Suddenly, there is no apparent pattern in the sequence for many starting points and
there are no points of convergence. Different starting values lead to different sequences. The sequence
is called chaotic. Try generating this sequence on a spreadsheet with x0 � 0.2. 

Even stranger, if we look at larger values of r, there are some values for which the sequence is chaotic
and some for which there are regular oscillations. Write a spreadsheet program to try some values of x0
and r. Can you produce the plot of the sequence as described above?

In the chaotic case, a very small change in the value of r can lead to a complete change of behaviour of
the sequence. For mathematicians used to continuous behaviour, this abrupt change is fascinating. The
study of this sequence and its generalizations is called chaos theory, a very active branch of modern
mathematics. 
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n 0 1 2 3 4 5 6

xn 0.2 0.512 0.800 0.513 0.799 0.513 0.799



Chapter 8
EQUATIONS OF
PLANES

The concepts of point and line are as
fundamental to geometry in three-dimensional
space as they are in two-dimensional space. In
three-dimensional space, however, we have
another fundamental issue to consider, that of
the plane. Is there such a thing as the equation or
equations of a plane? Does a plane have a
direction in space? In this chapter, we will look at
the relationships between a point and a plane, a
line and a plane, two planes, and even three
planes.

CHAPTER EXPECTATIONS In this chapter, you will

• determine the vector, parametric, and scalar
equations of planes, Section 8.1, 8.2

• determine the intersection of a line and a
plane in three-dimensional space, Section 8.3

• determine the intersection of two or three
planes, Section 8.4

• solve systems of linear equations involving up
to three unknowns using row reduction of
matrices, with and without the aid of
technology, Section 8.4

• interpret row reduction of matrices as the
creation of a new linear system equivalent to
the original, Section 8.4

• interpret linear equations in two and three
unknowns, Section 8.5



Review of Prerequisite Skills

Two points or one vector (a direction vector) and one point determine a line, a
one-dimensional object. A third point not on that line opens the door to a second
dimension. Thus, three non-collinear points or two non-collinear vectors and 
a point determine a plane, a two-dimensional object. Similarly, four non-coplanar
points or three non-coplanar vectors determine a three-dimensional space. These
concepts can be generalized to higher dimensional spaces, which despite their
abstract nature have a surprising number of applications in the physical sciences,
engineering, and economics.

The equation of a two-dimensional plane in a three-dimensional space has several
forms. These are developed in the first part of this chapter in much the same way
as those of a straight line. 

Recall in particular
the vector equation r� � r�0 � td��

the parametric equations x � x0 � at
y � y0 � bt
z � z0 � ct

the scalar equation of a line Ax � By � C � 0
in two-dimensional space

Equations of lines and planes are essential parts of computer systems used by
engineers and architects for computer-assisted design.

The remainder of this chapter is concerned with how lines can intersect with
planes and planes can intersect with other planes. Intersection problems are 
geometrical models of linear systems. Therefore, this chapter includes an 
introduction to systematic methods for solving linear systems using matrices.
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Astronomers have always sought methods for determining
and predicting the positions of objects in the sky. One reason
for doing this has been to test and improve upon our models
of the solar system. In this way, astronomers have already
learned, among other things, that the earth revolves around
the sun once every 365.25 solar days in an elliptical orbit at a
distance varying between 147.1 and 152.1 million kilometres.
The earth rotates on its axis once every 23 hours, 56 minutes,
and 4 seconds. This is known as a sidereal day. The axis of
rotation is tilted 23.45º from perpendicular to the plane of the
earth’s orbit. We shall investigate, here and in the wrap-up at

the end of the chapter, how to determine the angle of elevation of the sun at any
given time of any given day at any given place on the surface of the earth.

Investigate and Inquire
The angle of elevation of the sun is the angle between the vector from the earth
to the sun and the plane tangent to the surface of the earth. Planes will be 
studied in this chapter. Here we shall set out some groundwork for our 
calculations.

We will make the following assumptions to simplify our calculations: the earth 
is a perfect sphere that orbits the sun every 365 days in a perfect circle whose
radius is 150 million kilometres. We shall let d be the number of solar days past
December 21, the date of the winter solstice in the northern hemisphere. We will
assume that at noon on December 21, the north pole is pointed away from the
sun as much as possible. We let h be the number of hours (positive or negative)
from noon. Noon here means the time when the sun is highest, regardless of the
standardized time-zone time. It is the time halfway between sunrise and sunset.
Let � be the latitude of the observer.

If we place the sun at the origin of a three-dimensional Cartesian coordinate 
system, we can parameterize the earth’s orbit in the xy-plane as

x � �150 sin ��336605d��, y � 150 sin ��336605d�� (See the Rich Learning Link on 

parametric curves in Chapter 7.) The vector s�, from the earth to the sun, will be 

s� � (�x, �y, 0) � �150 sin ��336605d��, �150 cos��336605d��, 0�. Why is it (�x, �y, 0) and

not (x, y, 0)?

DISCUSSION QUESTIONS

1. What is the angle of elevation of the sun at sunrise and sunset? How might
we interpret a negative angle of elevation?

2. Why is there a difference between the length of the solar day (the 24 hours
between successive noons) and the sidereal day? ●

CHAPTER 8 :  SUN ELEVATION

investigate 



Section 8.1 — The Vector Equation of a Plane in Space

The vector equation of a plane gives the position vector
OP�� of any point P(x, y, z) in the plane. It is constructed
in the same way as the vector equation of a line. First,
write the position vector OP�� as the sum of two vectors:
OP��

0, the vector from the origin to some particular point
P0(x0, y0, z0) in the plane, and P0P��, the vector from the
particular point P0 to the general point P.

OP�� � OP0
��� � P0P��

Now, choose two non-collinear vectors in the plane as
basis vectors for the plane. Call them a�� and b��. These
two vectors are known as direction vectors for the
plane. Express the point-to-point vector P0P�� as a linear
combination of a�� and b��. We write 

P0P�� � sa�� � tb��

Therefore, OP�� � OP0
��� � sa�� � tb��

or, letting r� and r0
�� stand for the position vectors OP�� and OP��

0, respectively,

r� � r�0 � sa�� � tb��

The coefficients s and t in the vector equation of a plane are parameters. There are
two parameters because a plane is two-dimensional. The parametric equations of
the plane are equations for the components of r�.

The vector equation of a plane has the form

r� � r�0 � sa�� � tb��

where a�� and b�� are direction vectors for the plane,
r�0 is the position vector of a particular point in the plane

and s, t � R.
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In reality, a plane is a flat surface that extends infinitely in all directions. In the
diagrams on page 276, we have depicted a plane using a parallelogram. This gives
a three-dimensional perspective to the diagrams and suggests that the plane may 
be oriented at some angle to the coordinate axes. Although not true graphs, such 
diagrams are adequate for analyzing most problems about lines and planes in
three dimensions.

EXAMPLE 1 Find vector and parametric equations of the plane that contains the three points
A(1, 0, �3), B(2, �3, 1), and C(3, 5, �3).

Solution
The point-to-point vectors AB�� and AC�� both lie in the plane. They are

AB�� � (1, �3, 4)

AC�� � (2, 5, 0)

Since these vectors are non-collinear, they can serve as direction vectors for the 
plane. Taking point A as the given point, r�0 � OA�� � (1, 0, �3). Therefore,
a vector equation of the plane is

r� � (1, 0, �3) � s(1, �3, 4) � t(2, 5, 0)

The parametric equations can be written down by inspection.
x � 1 � s � 2t
y � �3s � 5t
z � �3 � 4s

It should be clear that the vector and parametric equations of a plane are not
unique. In Example 1, if BA�� and BC�� had been chosen as direction vectors and
point B as the given point, then the vector equation would have been 

r � (2, �3, 1) � s(�1, 3, �4) � t(1, 8, �4)

The parametric equations of a plane have the form
x � x0 � sa1 � tb1
y � y0 � sa2 � tb2
z � z0 � sa3 � tb3

where (a1, a2, a3) and (b1, b2, b3) are components of 
the direction vectors a�� and b�� for the plane,

(x0, y0, z0) are components of the position
vector of a specific point in the plane,

and s, t � R.
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When two equations look entirely different, how do you decide if they represent
the same plane? This question will be addressed in the next section. 

EXAMPLE 2 Does the point (4, 5, �3) lie in the plane r� � (4, 1, 6) � p(3, �2, 1) � q(�6, 6, �1)?

Solution
The parametric equations are

x � 4 � 3p � 6q
y � 1 � 2p � 6q
z � 6 � p � q

If the point lies in the plane, the coordinates of the point, (4, 5, �3), must satisfy
these equations. Substitution gives

4 � 4 � 3p � 6q or 3p � 6q � 0
5 � 1 � 2p � 6q �2p � 6q � 4

�3 � 6 � p � q p � q � �9

Solving the first two equations gives p � 4, q � 2. But these values of p and q do
not satisfy the third equation. Therefore, the point does not lie in the plane. 
You can also see that these values of p and q produce z � 8 for the z-coordinate 
of the point, not z � �3 as they should.

EXAMPLE 3 Find the vector equation of the plane that contains the two parallel lines

l1: r� � (2, 4, 1) � t(3, �1, 1)
l2: r� � (1, 4, 4) � t(�6, 2, �2)

Solution
We take (2, 4, 1) from l1 as the position vector r�0 of a given point on the plane
and (3, �1, 1) as a��, one of the direction vectors.

For the second direction vector, use the point-to-point vector between the given
points on the two lines, (1, 4, 4) � (2, 4, 1) � (�1, 0, 3). A vector equation of the
plane is thus

r� � (2, 4, 1) � t(3, �1, �1) � s(�1, 0, 3).
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Part A

1. Why does the vector equation of a plane have two parameters while the vector
equation of a line has only one?

2. a. State two direction vectors for the xz-coordinate plane.

b. What do all direction vectors for the xz-coordinate plane have in common?

3. State two direction vectors for each of the following planes.

a. r� � (9, 5, 2) � s(�3, 5, 2) � t(�6, 1, 2)

b. a plane parallel to the plane x � 3 � 5s � t

y � �2 � 5s � 6t

z � �2 � 3s � 2t

c. the plane containing the intersecting lines r� � (6, 5, �2) � s(4, �2, 1) 
and r� � (�10, �3, 1) � t(�1, 5, 2)

4. State two points that lie on each of the following planes.

a. r� � (9, 4, �3) � t(�2, 2, 1) � p(0, �2, 6)

b. r� � (0, 1, 0) � t(1, 0, �2) � p(0, 0, 4)

c. x � 3 � 5s � t

y � �2 � 5s � 6t

z � �2 � 3s � 2t

d. the xz-plane

5. Write parametric equations for each of these planes.

a. r� � (�4, �6, 3) � s(5, 2, 3) � t(�4, �6, 3)

b. r� � (0, 0, 1) � s(0, 2, 0) � t(3, 0, 0)

c. the xz-plane

6. Write a vector equation for each of these planes.

a. x � �4 � s � 3t b. x � 7s c. the xz-plane

y � �1 � 3s � 4t y � 4

z � 3 � 4s � t z � �2t

Knowledge/
Understanding

Knowledge/
Understanding

Knowledge/
Understanding

Knowledge/
Understanding

Communication

Communication

Exercise 8.1
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Part B

7. Determine a vector equation of each of the following planes.

a. the plane through the point (�4, 5, 1) parallel to the vectors (�3, �5, 3)
and (2, �1, �5)

b. the plane containing the two intersecting lines r� � (4, 7, 3) � t(1, 4, 3) 
and r� � (�1, �4, 6) � s(�1, �1, 3)

c. the plane containing the line r� � (�3, 4, 6) � t(�5, �2, 3) and the point
(8, 3, 5)

d. the plane containing the two parallel lines r� � (0, 1, 3) � t(�6, �3, 6) 
and r� � (�4, 5, �4) � s(4, 2, �4)

e. the plane containing the three points (2, 6, �5), (�3, 1, �4),
and (6, �2, 2).

8. Determine parametric equations of each of the following planes.

a. the plane through the point (7, �5, 2) parallel to the vectors (4, �1, 1) 
and (�3, 4, 4)

b. the plane containing the two intersecting lines r� � (5, 4, 2) � t(4, �2, 1)
and r� � (7, 4, �7) � s(�3, 1, 4)

c. the plane containing the line r� � (1, 3, �1) � t(2, 2, �5) 
and the point (8, 3, 5)

d. the plane containing the two parallel lines r� � (3, 2, 2) � t(�9, 6, �6) 
and r� � (1, 6, �6) � s(6, �4, 4)

e. the plane containing the three points (2, 6, �5), (�3, 1, �4),
and (6, �2, 2)

9. Determine the vector equation of each of the following planes.

a. the plane parallel to the yz-plane containing the point (6, 4, 2)

b. the plane containing the origin and the points (3, 3, 3) and (8, �1, �1)

c. the plane containing the x-axis and the point (�1, �4, �7)

10. a. Explain why the three points (2, 3, �1), (8, 5, �5), and (�1, 2, 1) 
do not determine a plane.

b. Explain why the line r� � (4, 9, �3) � t(1, �4, 2) and the point (8, �7, 5)
do not determine a plane.
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11. Find vector and parametric equations of the plane that contains the line 
x � 7 � t, y � �2t, z � �7 � t and that does not intersect the z-axis. 

12. Demonstrate that a plane with a vector equation of the form 
r� � (a, b, c) � s(d, e, f ) � t(a, b, c) passes through the origin.

Part C

13. a. The vectors a��, b��, and c�� are the position vectors of three points A, B, and C.
Show that r� � pa�� � sb�� � tc��, where p � s � t � 1 is an equation of the
plane containing these three points.

b. What region of the plane is determined by the equation, when the parame-
ters s and t are restricted to the values 0 � s � 1, and 0 � t � 1? 
(Hint: replace p with (1 � s � t).) 

14. a. The equation r� � r�0 � td�� is a vector equation of a line and q�� is the position
vector of a point Q not on the line. Show that r� � kr�0 � lq�� � td��, where 
k � l � 1 is an equation of the plane containing the line and the point.

b. What region of the plane is determined by the equation, when the 
parameter k is restricted to 0 � k � 1? (Hint: replace l by (1 � k).)

Thinking/Inquiry/
Problem Solving

Application
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Section 8.2 — The Scalar Equation of a Plane in Space

Any vector that is perpendicular to a plane is a 
normal vector or simply a normal to the plane. 
You can find the normal to a plane by finding the
cross product of the two direction vectors of the
plane. Since every vector in the plane can be 
represented as a linear combination of the 
direction vectors, the normal is perpendicular to
every vector in the plane. 

EXAMPLE 1 a. Find a normal to the plane with vector equation 
r� � (3, 0, 2) � s(2, 0, �1) � t(6, 2, 0).

b. Show that the normal is perpendicular to every vector in the plane.

Solution
a. The two direction vectors of the plane are (2, 0, �1) and (6, 2, 0). 

The cross product of the direction vectors is (2, 0, �1) � (6, 2, 0) � (2, �6, 4). 
Thus, a normal to the plane is (2, �6, 4) or (1, �3, 2).

b. Any vector in the plane can be written as a linear combination of the two 
direction vectors, say v�� � p(2, 0, �1) � q(6, 2, 0). To show that the normal is
perpendicular to v��, find the dot product.

v�� • n�� � [p(2, 0, �1) � q(6, 2, 0)] • (1, �3, 2)
� p(2, 0, �1) • (1, �3, 2) � q(6, 2, 0) • (1, �3, 2)
� p(0) � q(0)
� 0

Since the dot product is zero, the two vectors must be perpendicular. This result is
independent of the values of p and q.

You can use the fact that the normal to a plane is perpendicular to every vector in
the plane to derive the scalar equation of a plane. Let P(x, y, z) be any point in a
plane with normal (A, B, C), and let P0(x0, y0, z0) be some particular point in the 
plane. The vector P0P�� must lie in the plane because its endpoints do. Therefore, it
must be perpendicular to the normal (A, B, C), and their dot product must be zero.

(A, B, C) • P0P�� � 0
(A, B, C) • (x � x0, y � y0, z � z0) � 0

A(x � x0) � B(y � y0) � C(z � z0) � 0
Ax � By � Cz � (�Ax0 � By0 � Cz0) � 0
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The quantity in brackets is a constant because the components of the normal and
the coordinates of the given point have particular numerical values. 
Letting D � (�Ax0 � By0 � Cz0) the result is 

Ax � By � Cz � D � 0

Unlike the vector equation, the scalar equation of a plane is unique. For instance,
the equations x � 2y � 3z � 4 � 0 and 2x � 4y � 6z � 8 � 0 represent the same
plane, since one equation is a multiple of the other.

EXAMPLE 2 a. Find the scalar equation of the plane with vector equation 
r� � (3, 0, 2) � p(2, 0, �1) � q(6, 2, 0).

b. Show that r� � (�1, �2, 1) � s(5, 3, 2) � t(2, 4, 5) is another vector 
equation of the same plane.

Solution
a. In Example 1, a normal to this plane was found to be (1, �3, 2). Therefore,

(A, B, C) � (1, �3, 2) 
and x � 3y � 2z � D � 0

The vector (3, 0, 2) is given as the position vector of a point on this plane.
Then

(3) � 3 (0) � 2 (2) � D � 0
D � �7

Therefore, the scalar equation is x � 3y � 2z � 7 � 0.

b. For r� � (�1, �2, 1) � s(5, 3, 2) � t(2, 4, 5), the normal is 
(5, 3, 2) � (2, 4, 5) � (7, �21, 14).
Therefore, (7, �21, 14) or (1, �3, 2) is a normal to the plane.
The scalar equation of the plane is

x � 3y � 2z � D � 0

Now, substitute the point (�1, �2, 1) into this equation to find D.

(�1) � 3(�2) � 2(1) � D � 0
D � �7

The scalar or Cartesian equation of a plane in space is 
Ax � By � Cz � D � 0

where (A, B, C ) is a vector normal to the plane.
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The scalar equation of this plane is x � 3y � 2z � 7 � 0, so the two vector 
equations represent the same plane, or the planes represented by the two vector
equations are coincident.

The distance from a point to a plane in three dimen-
sions is calculated in much the same way as the 
distance from a point to a line in two dimensions. 
It is measured along the normal to the plane. If Q is
some point not in the plane and P0 is any point in 
the plane, then the distance QN from Q to the 
plane is the projection of P0Q��� onto the normal n��.

EXAMPLE 3 Find the distance from the point Q(1, 3, �2) to the plane 4x � y � z � 6 � 0.

Solution
The distance is the projection of P0Q��� onto the normal (4, �1, �1). For P0, choose 

any point in the plane, say (0, 0, 6). Then P0Q��� � (1, 3, �8). The distance is then

d � Proj(P0Q��� onto n��)

� �
P0



Q���

n��

• n��
�

�

�

�

�

A general formula can be derived by following the same steps. If P0Q is the 
vector from some point P0 on the plane Ax � By � Cz � D � 0 to a point 
Q(x1, y1, z1) off the plane, then the distance d from Q to the plane is the projection
of P0Q onto the normal (A, B, C).

d � Proj(P0Q��� onto n��)

� �
P0



Q���

n��

• n��
�

�

�

�
Ax1 � By1 � Cz1 � (�Ax0 � By0 � Cz0)
�����

�A2 � B�2 � C2�

A(x1 � x0) � B(y1 � y0) � C(z1 � z0)
�����

�A2 � B�2 � C2�

(x1 � x0, y1 � y0, z1 � z0) • (A, B, C)
�����

�A2 � B�2 � C2�

3�2�
�

2

3
�
�2�

9
�
�18�

(1, 3, �8) • (4, �1, �1)
���

�(4)2 �� (�1)2� � (�1�)2�
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Since P0 is a point in the plane, it satisfies the equation of the plane,
so Ax0 � By0 � Cz0 � D � 0 or D � �Ax0 � By0 � Cz0. Substituting this into
the above equation gives the following result.

Note the structure. The numerator uses the equation of the plane, with the 
coordinates of the point off the plane substituted for x, y, and z. The denominator
is the magnitude of the normal.

In the special case when the point Q(x1, y1, z1) is the origin, the distance to the
plane Ax � By � Cz � D � 0 is 

d �

EXAMPLE 4 What is the distance between the planes 2x � y � 2z � 3 � 0 and 
4x � 2y � 4z � 9 � 0?

Solution
The planes are parallel, since n��2 � (4, �2, �4) is a multiple of n��1 � (2, �1, �2).
The distance between the planes is the distance from a point in the first plane to
the second plane. The point (0, 3, 0) is on the first plane. Then

d �

�

� �
5
2�

Part A

1. For each of the following, find the scalar equation of the plane that passes
through the point P0 and has normal n��.

Knowledge/
Understanding

Exercise 8.2

�15
�

�36�

4(0) � 2(3) � 4(0) � 9
���

�(4)2 �� (�2)2� � (�4�)2�

D
��
�A2 � B�2 � C2�

The distance from the point (x1, y1, z1) to the plane
Ax � By � Cz � D � 0 is given by the formula

285

d �
Ax1 � By1 � Cz1 � D
���

�A2 � B�2 � C2�
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a. P0(2, 1, �3), n�� � (7, 1, �1) b. P0(5, 1, 9), n�� � (1, 0, 0)

c. P0(0, 6, �2), n�� � (2, 0, 3) d. P0(0, 0, 0), n�� � (2, �1, 4)

2. Determine the scalar equation of the plane that passes through (1, �2, 3) and
has a normal

a. parallel to the y-axis

b. perpendicular to the xy-plane

c. parallel to the normal of the plane x � y � 2z � 19 � 0

3. a. Find the scalar equation of the plane that passes through the origin and has
a normal n�� � (A, B, C).

b. How can you tell by inspection of the scalar equation of a plane whether or
not the plane passes through the origin?

4. a. What is the orientation of a plane in space when two of the three variables
x, y, and z are missing from its scalar equation?

b. What is the orientation of a plane in space when only one of the three vari-
ables x, y, or z is missing from its scalar equation? 

5. Find the scalar equation of each of the following planes. State which of the
planes, if any, are coincident.

a. r� � (�8, �1, 8) � s(�5, 1, 4) � t(3, 2, �4)

b. r� � (�2, �2, 5) � s(3, 1, �1) � t(4, 1, �4)

c. r� � (2, 0, 0) � s(0, 4, 0) � t(0, 0, �3)

d. r� � (�8, 2, 0) � s(4, 0, 3) � t(0, �2, �5)

e. r� � (2, �11, �17) � s(0, 5, 13) � t(0, 3, 10)

f. r� � (13, 0, �12) � s(�1, 8, �4) � t(11, 3, �12)

6. Find the scalar equation of each of the following planes.

a. x � 4 � 3s � 2t b. x � �2t

y � 2 � 4s � 4t y � 2 � s � 3t

z � 1 � 2s � 3t z � 5 � 3s

7. For each of the following, find the scalar equation of the plane that passes
through the given points.

a. (1, 1, �1), (1, 2, 3), (3, �1, 2) b. (2, �2, 4), (1, 1, �4), (3, 1, �6)

c. (1, 1, 1), (�1, 1, 1), (2, 1, 2) d. (1, 3, 0), (0, 5, 2), (3, 4, �2)

Communication

Communication

Knowledge/
Understanding
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Part B

8. What is the scalar equation of the plane that contains the x-axis and the point
(4, �2, 1)? 

9. Find the scalar equation of the plane that contains the intersecting lines

�
x �

1
2

� � �2
y

� � �
z �

3
3

� and  �x
�
�

3
2

� � �4
y

� � �
z �

2
3

�

10. Determine whether the following pairs of planes are coincident, parallel and
distinct, or neither.

a. x � 3y � z � 2 � 0  and  2x � 6y � 2z � 8 � 0

b. 2x � y � z � 3 � 0  and  6x � 2y � 2z � 9 � 0

c. 3x � 3y � z � 2 � 0  and  6x � 6y � 2z � 4 � 0

d. 2x � 4y � 2z � 6 � 0  and  3x � 6y � 3z � 9 � 0

11. Find a vector equation for the plane with scalar equation

a. 2x � y � 3z � 24 � 0 b. 3x � 5z � 15 � 0

12. Which of the following lines is parallel to the plane 4x � y � z � 10 � 0? 
Do any of the lines lie in the plane?

a. r� � (3, 0, 2) � t(1, �2, 2)

b. x � �3t, y � �5 � 2t, z � �10t

c. �
x �

4
1

� � �
y
�
�

1
6

� � �1
z

�

13. The angle between two planes is defined as the angle between their normals.
Determine the angle � (0 � � � 90º), to the nearest degree, between the given
planes.

a. 2x � 3y � z � 9 � 0  and  x � 2y � 4 � 0

b. x � y � z � 1 � 0  and  2x � 3y � z � 4 � 0

Part C

14. If the positive z-axis points up, show that the line x � 0, y � t, z � 2t

a. is parallel to and below the plane 2x � 10y � 5z � 1 � 0

b. is parallel to and above the plane x � 4y � 2z � 7 � 0

15. a. Find an equation for the set of points P(x, y, z) that are equidistant from the
points A(1, 2, 3) and B(4, 0, 1).

b. What does this equation represent geometrically?

Application

Application
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16. The vectors a��, b��, and c�� are the position vectors of three points A, B, and C,
respectively.

a. Show that the scalar equation of the plane through A, B, and C can be 
expressed in the form (r� � a��) • (a�� � b�� � b�� � c�� � c�� � a��) � 0.

b. Find the scalar equation of the plane through the points A(8, 4, �3),
B(5, �6, 1), and C(�4, 1, 2).

17. Show that as k varies, the plane 2x � 3y � kz � 0 rotates about a line through
the origin in the xy-coordinate plane. Find parametric equations for this line.

18. When the coefficients A, B, and C in the scalar equation of a plane are the
components of a unit normal, what is a geometrical interpretation for the 
constant D?

19. If a, b, and c are the x-intercept, the y-intercept, and the z-intercept of a plane,
respectively, and d is the distance from the origin to the plane, show that

�
d
1
2
� � �

a
1
2
� � �

b
1
2
� � �

c
1
2
�.

20. Find a formula for the scalar equation of a plane in terms of a, b, and c, where
a, b, and c are the x-intercept, the y-intercept, and the z-intercept of a plane,
respectively.

Thinking/Inquiry/
Problem Solving

Thinking/Inquiry/
Problem Solving

Thinking/Inquiry/
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Section 8.3 — The Intersection of a Line and a Plane

What are the possible ways that a line and a plane in three dimensions can 
intersect? The line can be parallel to the plane, intersecting it at no points. It can
cut through the plane, intersecting it at one point. It can lie in the plane, in which
case every point on the line is a point of intersection.

line is parallel to the plane line intersects the plane line lies in the plane

EXAMPLE 1 Find the intersection of the line with parametric equations x � 1 � 2t,
y � �6 � 3t, z � �5 � 2t and the plane whose scalar equation is 
4x � 2y � z � 19 � 0.

Solution
In terms of t, the coordinates of a point on the given line are 
(x, y, z) � (1 � 2t, �6 � 3t, �5 � 2t). This point will lie on the plane if, for
some particular value of t, these coordinates satisfy the equation of the plane.
Substituting,

4(1 � 2t) � 2(�6 � 3t) � (�5 � 2t) � 19 � 0
4 � 8t � 12 � 6t � 5 � 2t � 19 � 0

4t � 8 � 0
t � 2

Therefore, the point on the line with parameter t � 2 is the point at which the line
intersects the plane. Its coordinates are 

x � 1 � 2(2) � 5
y � �6 � 3(2) � 0
z � �5 � 2(2) � �1

The point of intersection of the line and the plane is (5, 0, �1).

EXAMPLE 2 Find the intersection of the line x � 2t, y � 1 � t, z � �4 � t and the plane 
x � 4y � 2z � 4 � 0.
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Solution
We find the parameter value of the point of intersection by substituting the point
(2t, 1 � t, �4 � t) into the equation of the plane.

(2t) � 4(1 � t) � 2(�4 � t) �4 � 0
2t � 4 � 4t � 8 � 2t �4 � 0

0t � 8

There is no value of t which satisfies this equation, so there is no point at which
the line intersects the plane.

This means that the line must be parallel to the plane. Its direction vector,
m�� � (2, �1, 1), must be perpendicular to the normal to the plane, (1, 4, 2). Indeed,

m�� • n�� � (2, �1, 1) • (1, 4, 2)
� 2 � 4 � 2
� 0

EXAMPLE 3 Find the intersection of the line x � �4 � 3t, y � 0, z � t and the plane 
x � 2y � 3z � 4 � 0.

Solution
Substitute the point (�4 � 3t, 0, t) into the equation of the plane to find the
parameter value of the point of intersection.

(�4 � 3t) � 2(0) � 3(t) � 4 � 0
�4 � 3t � 3t � 4 � 0

0t � 0

In this case, the equation is satisfied for all values of t. Therefore, every point on
the line is an intersection point, and the line lies in the plane.

The intersection of the line and the plane is the entire line itself. You can confirm
this conclusion by checking that the particular point (�4, 0, 0) on the line is a
point in the plane, and that the direction vector of the line, (3, 0, 1), is perpendicu-
lar to the normal to the plane, (1, �2, �3).

The x-, y-, and z-axes are lines in space. The intersections of a plane with these
special lines are of particular importance. A plane may intersect an axis at a point,
or a plane may be parallel to or contain an axis. These intersections are the key to
making sketches of planes in three dimensions.

EXAMPLE 4 Determine the x-, y-, and z-intercepts of the plane 3x � 8y � 8z � 24 � 0. 
Make a sketch of the plane.
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Solution
To find the x-intercept, set y and z equal to zero.

3x � 8(0) � 8(0) � 24 � 0
3x � 24 � 0

x � �8

The x-intercept of this plane is the point �8. Likewise,
the y- and z-intercepts are 3 and 3, respectively.

Now, plot these on the coordinate axes, join them with
straight line segments, and sketch the plane as a triangular
surface. This figure is a three-dimensional representation 
of the plane, which extends infinitely in the directions 
shown by the orientation of the triangle.

Note that the sides of the triangle formed by the line segments joining the 
intercepts are segments of the lines in which the plane intersects each of the three
coordinate planes. 

EXAMPLE 5 Find the intersections of the plane 3x � 2y � 18 � 0 with the three coordinate
axes. Make a sketch of the plane.

Solution
The normal to this plane, (3, 2, 0), has no component in the z direction. Therefore,
the plane must be parallel to the z-axis, and there is no z-intercept. By inspection,
the x- and y-intercepts are 6 and 9. 

Plot the intercepts. Then, through the intercepts, draw 
lines parallel to the z-axis. The flat region between the 
parallel lines is a representation of the plane in three
dimensions.

Keep in mind that the plane extends infinitely up and
down and left and right, in the directions shown by the 
orientation of the shaded area. The line joining the 
intercepts is the line in which the plane intersects the 
xy-plane. The vertical lines through the intercepts are 
the lines in which the plane intersects the xz-plane 
and the yz-plane. 

As observed, a plane not only intersects a coordinate axis in a point, but it also
intersects a coordinate plane in a line. Clearly, knowing how to find these 
intersection lines would help us make the sketch of a plane. Fortunately, there is a
simple way to find the equations of these lines.
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The xy-coordinate plane, for example, is the plane where the z-coordinate of every
point is zero. The scalar equation of the xy-plane is z � 0. By setting z equal to
zero in the equation of a plane, we are singling out those points in the plane that
lie in the xy-coordinate plane. These are exactly the points on the intercept line,
and by setting z � 0 we obtain the equation.

In Example 4, for instance, the plane intersects the xy-coordinate plane in the line
3x � 8y � 8(0) � 24 � 0 or 3x � 8y � 24 � 0. In Example 5, the plane inter-
sects the xy-coordinate plane in the line 3x � 2y � 18 � 0 (there is no variable z
in the equation of this plane, so setting z equal to zero does not change the 
equation).

EXAMPLE 6 Sketch the plane 5x � 2y � 0.

Solution
Since D � 0, the point (0, 0, 0) satisfies the equation of the plane. So this plane
contains the origin. Consequently the x- and y-intercepts are both zero. The nor-
mal to this plane is (5, �2, 0), so as with Example 5, this plane is parallel to the
z-axis. But if the plane is parallel to the z-axis and contains the origin, it must
contain the entire z-axis. You can reach the same conclusion by observing that
every point (0, 0, z) on the z-axis satisfies the equation of the plane.

The set of planes with this property is illustrated in the given 
diagram.

Sketch the plane as a parallelogram, with the intersection line 
and the z-axis as sides. This parallelogram-shaped region repre-
sents a section of the plane 5x � 2y � 0 in three dimensions.

From this set of planes, we choose the one which intercepts 
the xy-plane along the line with equation 5x � 2y � 0. 

Part A

1. For each of the following, find the intersection of the line and the plane.

a. x � 4 � t, y � 6 � 2t, z � �2 � t  and 2x � y � 6z � 10 � 0

b. x � 3 � 4t, y � �2 � 6t, z � �
1
2� � 3t  and  3x � 4y � 7z � 7 � 0

Knowledge/
Understanding

Exercise 8.3
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c. x � 5 � t, y � 4 � 2t, z � 7 � 2t and  2x � 3y � 4z � 7 � 0

d. r� � (2, 14, 1) � t(�1, �1, 1)  and  3x � y � 2z � 6 � 0

e. r� � (5, 7, 3) � t(0, 1, �1)  and  z � 5 � 0

2. a. Does the line r� � (�2, 6, 5) � t(3, 2, �1) lie in the plane 
3x � 4y � z � 25 � 0?

b. Does the line r� � (4, �1, 2) � t(3, 2, �1) lie in the plane 
3x � 4y � z � 17 � 0?

3. Where does the plane 3x � 2y � 7z � 6 � 0 intersect

a. the x-axis? b. the y-axis? c. the z-axis?

Part B

4. a. In what point does the plane r� � (6, �4, 3) � s(�2, 4, 7) � t(�7, 6, �3)
intersect

i) the x-axis ii) the y-axis iii) the z-axis

b. In what line does this plane intersect the 

i) the xy-plane ii) the yz-plane iii) the xz-plane

5. Where does the line r� � (6, 10, 1) � t(3, 4, �1) meet

a. the xy-plane b. the xz-plane c. the yz-plane

6. State whether it is possible for the lines and planes described below to 
intersect in one point, in an infinite number of points, or in no points.

a. a line parallel to the x-axis and a plane perpendicular to the x-axis

b. a line parallel to the y-axis and a plane parallel to the y-axis

c. a line perpendicular to the z-axis and a plane parallel to the z-axis

7. Find the point of intersection of the plane 3x � 2y � 7z � 31 � 0 with the
line that passes through the origin and is perpendicular to the plane.

8. Find the point at which the normal to the plane 4x � 2y � 5z � 18 � 0
through the point (6, �2, �2) intersects the plane.

9. For each of the following planes, find the x-, y-, and z-intercepts and make a
three-dimensional sketch.

a. 12x � 3y � 4z � 12 � 0 b. x � 2y � z � 5 � 0

c. 2x � y � z � 8 � 0 d. 4x � y � 2z � 16 � 0

Application

Application
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10. For each of the following planes, find the x-, y-, and z-intercepts, if they exist,
and the intersections with the coordinate planes. Then make a three-dimen-
sional sketch of the plane.

a. x � y � 4 � 0 b. x � 3 � 0 c. 2y � 1 � 0

d. 3x � z � 6 � 0 e. y � 2z � 0 f. x � y � z � 0

Part C

11. For what values of k will the line �x �
3

k
� � �

y �
2

4
� � �

z �
1

6
� intersect the plane

x � 4y � 5z � 5 � 0

a. in a single point?

b. in an infinite number of points?

c. in no points?

12. A plane has an x-intercept of a, a y-intercept of b, and a z-intercept of c, none 

of which is zero. Show that the equation of the plane is �
a
x

� � �b
y

� � �c
z

� � 1.

Thinking/Inquiry/
Problem Solving

C H A P T E R  8294



Section 8.4 — The Intersection of Two Planes

What are the possible ways two planes can intersect? They can be parallel and
distinct, hence not intersecting. They can be coincident, intersecting at every
point. They can intersect in a line.

planes are parallel planes are coincident planes intersect in a line

If the normals are collinear, the planes are parallel and distinct or coincident. 
If the normals are not collinear, the planes must intersect in a line.

EXAMPLE 1 Find the intersection of the two planes 2x � 2y � 5z � 10 � 0 and 
2x � y � 4z � 7 � 0.

Solution
The equations of the two planes constitute a linear system of two equations with
three variables.

The normals of the two planes are (2, �2, 5) and (2, 1, �4). These are not
collinear, so the planes intersect in a line. To find its equation, we solve the 
equations. 

Subtracting we obtain

2x � 2y � 5z � 10 � 0
2x � y � 4z � 7 � 0

�3y � 9z � 3 � 0
Then y � 1 � 3z

The value of y depends on the value of z. But there are no constraints on z. 

Let z � 2t, t � R
Then y � 1 � 6t

Substituting in equation two,

2x � (1 � 6t) � 8t � 7 � 0
x � �4 � t

Parametric equations of the line of intersection of the two planes are 
x � �4 � t, y � 1 � 6t, z � 2t.
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The solution of systems of linear equations is such an important topic that several
different methods to handle this problem have evolved. One of them makes use of
matrices. For our purposes, a matrix is a rectangular array of numbers made to
facilitate the solution of a linear system.

Consider, for instance, the linear system dealt with in Example 1. From the 
coefficients of x, y, and z in the two equations

2x � 2y � 5z � �10 you can form the matrix
2x � y � 4z � �7

This is a 2 � 3 matrix – it has two rows and three columns. It is called the 
coefficient matrix of the system. Each coefficient is an element of the matrix.
The row and column position of each matrix element indicates the equation and
the term to which the coefficient belongs.

The constant terms of the equations (which are here written to the right of the
equal signs) can be included by adding another column to the coefficient matrix.

� �
This matrix is called the augmented matrix of the system. The vertical bar in the
matrix shows where the equal signs in the system are located. 

The matrix method of solving the system of Example 1 starts with the augmented
matrix and proceeds by performing arithmetic operations on its rows. The first
operation is to subtract the elements of the second row from those of the first, and
then replace the second row with this difference.

� �
Observe how this operation on the rows of the matrix is expressed in symbolic
form: R1 and R2 stand for the two rows. By placing R1 � R2 beside row 2, we
indicate where the result is to be placed.
This step is the counterpart of subtracting the equations in Example 1. These
operations on the matrix have made the element in the lower left corner equal to
zero, which is equivalent to eliminating x in the corresponding equation.

The next step is to divide each of the elements of the second row by �3. We write

� �
This is equivalent to the removal of the factor �3 from the result of the 
subtraction in Example 1.

In order to make the element in row 1, column 2 equal to zero, we multiply the
second row by 2, add it to the first row, and replace the first row with this sum. 

�10
1

5
�3

�2
1

2
0R2 � (�3) 

�10
�3

5
9

�2
�3

2
0R1 � R2

�10
�7

5
�4

�2
1

2
2
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We write

� �
This is equivalent to eliminating y in the first equation. Such operations on the
rows of the matrix are legitimate, because they match similar operations that
could be done on the corresponding equations. Lastly, divide the elements of the
first row by 2.

� �
At this point the matrix has served its purpose. The two equations corresponding
to this matrix are 

x � �
1
2�z � �4 or x � �4 � �

1
2�z

y � 3z � 1 y � 1 � 3z

Here, x and y are both functions of z, but there are no restrictions on z. So, setting
z � 2t, the equations of the line of intersection are x � �4 � t, y � 1 � 6t, z � 2t
as before.

The matrix method of solving a system of linear equations, illustrated above, is
referred to as Gauss-Jordan elimination. A 2 � 4 matrix of the form

� �
can be written down directly from the original equations of the linear system to be
solved and then changed into reduced row-echelon form

� �
This form is only one step removed from the solution of the system. The actual
operations performed on the rows will depend on what the coefficients are.

The permissible operations that can be performed on the rows of a matrix arise
from the algebraic operations that can be performed on the equations of the 
corresponding linear system.

Using the matrix methods described above, the solution of a linear system can be
systematized so that it can be programmed on a calculator or computer. 

Row Operations
1. Any row can be multiplied (or divided) by a non-zero constant.
2. Any row can be replaced by the sum (or difference) of that row and 

a multiple of another row.
3. Any two rows can be interchanged. 

*
*

*
*

0
1

1
0

*
*

*
*

*
*

*
*

�4

1

��
1
2�

�3

0

1

1

0

R1 � 2 

�8
1

�1
�3

0
1

2
0

2R2 � R1

2978 . 4  T H E  I N T E R S E C T I O N  O F  T W O  P L A N E S

t chnologye



This makes it possible to find solutions to systems with many equations and 
variables, such as those in economics or statistics, which would be difficult, if not 
impossible, to work out by hand.

The box on page 299 shows how to use a calculator to solve a system of linear
equations. If you have a calculator that can perform matrix operations, try using it
to work through the example above before continuing.

EXAMPLE 2 Find the intersection of the two planes 4x � 7y � 33z � 17 � 0 and 
�8x � 5y � 3z � 7 � 0 using Gauss-Jordan elimination.

Solution
The equations of the two planes form the linear system 4x � 7y � 33z � �17

�8x � 5y � 3z � 7

The augmented matrix of this linear system is � �
The solution is achieved by starting with the augmented matrix and carrying out
the following row operations to change the matrix into reduced row-echelon form.

� �
� �
� �
� �

The final matrix corresponds to the equations

x � 4z � 1 or x � 1 � 4z

y � 7z � �3 y � �3 � 7z

Parametric equations of the line of intersection result when z is set equal to t.
They are x � 1 � 4t, y � �3 � 7t, z � t.

EXAMPLE 3 Find the intersection of the two planes x � 4y � 3z � 6 � 0 and 
2x � 8y � 6z � 11 � 0.

Solution
The augmented matrix of this system is � ��6

�11
�3
�6

4
8

1
2

1
�3

4
�7

0
1

1
0

R1 � 4

4
�3

16
�7

0
1

4
0

R1 � 7R2

�17
�3

�33
�7

7
1

4
0R2 � 9

�17
�27

�33
�63

7
9

4
02R1 � R2

�17
7

�33
3

7
�5

4
�8
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The first operation is to put a zero in the lower left corner of the matrix

� �
There is no need to go further. The second row of this matrix corresponds to the
equation 0z � �1, but there is no value of z for which this equation is true.
Hence, there is no solution, and the planes do not intersect. They must be parallel.
If an elementary row operation makes all the elements of a row zero, this 
indicates that one equation is a multiple of the other and the planes are coincident. 
We could say that the normals to the planes, (1, 4, �3) and (2, 8, �6),
are collinear, so the planes are parallel and distinct or coincident. Since 
(2, 8, �6, 11) 	 2(1, 4, �3, 6), the planes are distinct.

�6
�1

�3
0

4
0

1
02R1 � R2
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CALCULATOR APPLICATION

Some calculators can put a matrix into reduced row-echelon form and thereby
help you to find the solution to a linear system. To solve the linear system of
Example 1, for instance, start with the augmented matrix 

� �
and follow the following steps (the instructions are for a TI-83 Plus calculator).

1. To define the matrix,
press , select EDIT, select matrix , and press .

To set its dimensions,

press 2 and 4 .

To enter its elements,

press 4 , then 7 , etc., for all eight elements.

Then press to return to the home screen.

2. To put the matrix in reduced row-echelon form,
press , select MATH, then cursor down to B:rref(

and press ).

To select which matrix to reduce,

press , select NAMES, select matrix ,

and press .

To complete and execute the instruction,

press and press .

The result is    � �
Now write the corresponding equations and complete the solution.

1
�3

4
�7

0
1

1
0

ENTER)

ENTER

AMATRIX2nd

ENTER

MATRIX2nd

QUIT2nd

ENTERENTER

ENTERENTER

ENTERAMATRIX2nd

�17
7

�33
3

7
�5

4
�8
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Part A

1. Explain why two planes can never intersect in a single point.

2. Do the following pairs of planes intersect in a straight line?

a. �6x � 12y � 9z � 9 � 0  and  4x � 8y � 6z � 9 � 0

b. 2x � y � 2z � 3 � 0  and  6x � 3y � 6z � 9 � 0

c. r� � (6, 0, 1) � p(1, 1, 2) � q(4, 2, 3) 

and r� � (1, 1, �9) � s(5, 3, 5) � t(3, 1, 1)

d. r� � (1, 1, 1) � p (0, 0, 1) � q (0, 1, 0) 

and r� � (0, 0, 0) � s(0, 0, 1) � t(1, 0, 0)

3. Determine which of the following pairs of planes are parallel. For each pair
that is not parallel, find the parametric equations of the line of intersection.
Use algebraic elimination.

a. x � y � 3z � 4  and  x � 2y � z � 1

b. 5x � 2y � 2z � 1 � 0  and  5x � 2y � 2z � 3 � 0

c. x � 3y �z � 3 � 0  and  2x � 4y � z � 5 � 0

d. x � y � z � 1  and  x � 0

e. x � 3y � z � 4 � 0  and  2x � 6y � 2z � 8 � 0

Part B

4. Write the augmented matrix for each of the following linear systems.

a. 3x � 7y � z � 12 b. �4x � 3y � 2z � 4

x � y � 2z � �3 2y � 5z � 5

c. x � 4z � 16 d. 5y � 2z � 6x � 4

y � 8z � �2 3z � 5y � 2x � �4

5. Write the system of equations that corresponds to each of these matrices.

a. � � b. � �
c. � � d. � �0

0
4
9

0
1

1
0

8
6

�10
�4

0
3

5
0

�6
9

3
�6

�2
�6

8
2

9
4

4
�6

0
1

1
0
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6. Use Gauss-Jordan elimination to find the vector equation of the line of 
intersection of each pair of planes.

a. x � 2y � 7z � 4 b. x � 4y � 3z � 5

x � 3y � 3z � 1 2x � y � 6z � 0

c. 2x � 8y � 2z � 7 d. 4x � 8y � 3z � 6

x � 4y � z � 3 �3x � 6y � z � �2

e. 3x � 2y � 6z � 5 f. 6x � 8y � 3z � 9

2x � 3y � 9z � �10 10x � 2y � 5z � 15

Part C

7. What is the geometrical interpretation of the system of equations that 
corresponds to these matrices?

a. � � b. � � c. � �
8. a. Let A1x � B1y � C1z � D1 � 0 and A2x � B2y � C2z � D2 � 0 be two

non-parallel planes in space. Show that for any fixed k,

(A1x � B1y � C1z � D1) � k(A2x � B2y � C2z � D2) � 0

is the equation of the plane through the intersection of the two planes. 
As k varies, this equation generates the family of all such planes 
(except the second plane itself).

b. Find the scalar equation of the plane that passes through the origin and the
line of intersection of the planes 3x � 4y � 7z � 2 � 0 and 
2x � 3y � 4 � 0.

c. Find the scalar equation of the plane that is parallel to the line x � 2y � 3z
and passes through the line of intersection of the planes 
4x � 3y � 5z � 10 � 0 and 4x � y � 3z � 15 � 0.

9. Find the scalar equation of the plane that is perpendicular to the plane 
r� � (�2, 1, 3) � s(5, �2, �2) � t(�1, 0, 1) and intersects it along the line
r� � (9, �1, �5) � p(2, �2, 2).

Application

Thinking/Inquiry/
Problem Solving

10
22
15

�9

�4
4
1

�5

3
�6
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2

6
3
8
5

5
2

�2

8
3
2

�1
4

�3

5
�5

3

�2
1
4

6
5

�3

2
6
2
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Section 8.5 — The Intersection of Three Planes

What are the possible ways three planes can intersect? Before reading further,
try to discover as many as you can.

One of the ways that three planes can intersect is in a single point. The three 
coordinate planes, for instance, intersect in a single point, namely the origin. You
can find a point of intersection using algebraic elimination or by using matrices
and Gauss-Jordan elimination. Examples 1 and 2 illustrate these methods.

EXAMPLE 1 Find the point of intersection of the three planes using algebraic elimination.

1� x � 3y � 2z � �9
2� 2x � 5y � z � 3
3� �3x � 6y � 2z � 8

Solution
For these equations, it appears that z is the easiest variable to eliminate.

Add  1� and  3� x � 3y � 2z � �9
�3x � 6y � 2z � 8

4� �2x � 3y � �1

Multiply  2� by 2 and add to  1� x � 3y � 2z � �9
4x � 10y � 2z � 6

5� 5x � 13y � �3

Multiply  4� by 5 and  5� by 2 and add �10x � 15y � �5
10x � 26y � �6

�11y � �11
y � 1

Substitute y � 1 in  5� 5x � 13 � �3
x � 2

Substitute y � 1 and x � 2 in  2� 4 � 5 � 2 � 3
z � 4

The planes intersect at (2, 1, 4).

Gauss-Jordan elimination in a case like this consists of putting a matrix

� � into the reduced row-echelon form: � �**
*

0
0
1

0
1
0

1
0
0

*
*
*

*
*
*

*
*
*

*
*
*
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The equations of the three planes constitute a linear system. The augmented
matrix for this system is a 3 � 4 matrix.

� �
To accomplish this in an orderly 
manner, consider the elements one at 
a time in the order indicated by the 
numbers. For each one, carry out the 
row operations that will turn that 
element into zero.

EXAMPLE 2 Find the point of intersection of the three planes of Example 1 using 
Gauss-Jordan elimination.

1� x � 3y � 2z � �9
2� 2x � 5y � z � 3
3� �3x � 6y � 2z � 8

Solution
Starting with the augmented matrix, the calculations are

� � � �
�2R1 � R2 � � � �

� � � �
� � �5R3 � R2 � �

The final matrix corresponds to the equations x � 2, y � 1, z � 4. Therefore, the
solution is (2, 1, 4), as before.

2
1
4

0
0
1

0
1
0

1
0
0

�9
21
44

�2
5

11

�3
1
0

1
0
0

2
21
4

0
5
1

0
1
0

1
0
0

�9
21

�19

�2
5

�4

�3
1

�3

1
0
0

54
21
4

13
5
1

0
1
0

1
0
0

�9
21
8

�2
5
2

�3
1
6

1
0

�3

�9
21
4

�2
5
1

�3
1
0

1
0
0

�9
3
8

�2
1
2

�3
�5

6

1
2

�3

�9
3
8

�2
1
2

�3
�5

6

1
2

�3
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� �**
*

#5
#6
*

#4
*
#3

*
#1
#2
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As you can see from Example 2, it can be a complicated and lengthy process to
work out a problem by hand using Gauss-Jordan elimination. Using a calculator
with matrix functions makes the work faster and easier (see the box on page 307).
Try solving the problem in Example 2 using a calculator.

When working without a calculator, it is usually simpler to do Gaussian
elimination. This consists of using matrix methods to get just the three zeros in
the lower left corner; that is, putting the augmented matrix in row-echelon form.

� � which in Example 2 is � �
Then, continue by writing the corresponding equations, x � 3y � 2z � �9

y � 5z � 21
11z � 44

and finally finish the problem by doing the substitutions as in Example 1. 
The remaining examples in this section illustrate this method of solving a linear
system.

Now that you have the tools to solve systems of three linear equations, it is time
to return to the question that started this section: What are the possible ways three
planes can intersect?

To answer this question, consider the normals of the three planes.

When the normals of all three are parallel, the possibilities are

3 planes are 2 planes are coincident, 3 planes are coincident;.
parallel and distinct; the other parallel; intersection: a plane
no intersection no intersection

When only two of the normals of the planes are parallel, the possibilities are

two planes are two planes are coincident;
parallel and distinct, the other crossing;
the other crossing; intersection: a line
no common intersection

�9
21
44

�2
5

11

�3
1
0

1
0
0

*
*
*

*
*
*

*
*
0

*
0
0
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When none of the normals are parallel, the possibilities are

normals coplanar; normals coplanar; normals are not parallel
no intersection intersection: a line and non-coplanar;

intersection: a point

EXAMPLE 3 Find the intersection of the following planes using Gaussian elimination.

x � y � 2z � �2
3x � y � 14z � 6

x � 2y � �5

Solution
By inspection, none of the normals are collinear. Solving,

� �
� �
� �
� �

The corresponding equations are

x � y � 2z � �2
y � 2z � �3

0z � 0

Since the third equation is true for any value of z, set z � t, and then solve for x
and y in terms of t.

y � �3 � 2t
and x � (�3 � 2t) � 2t � �2

x � 1 � 4t

�2
�3

0

2
�2

0

1
1
0

1
0
0

�2
�3

3

2
�2

2

1
1

�1

1
0
0

�2
�12

3

2
�8

2

1
4

�1

1
0
0

�2
6

�5

2
14
0

1
�1

2

1
3
1

8 . 5  T H E  I N T E R S E C T I O N  O F  T H R E E  P L A N E S 305

3R1 � R2
R1 � R3

R2 � 4

R2 � R3



The solution is then

x � 1 � 4t, y � �3 � 2t, z � t

The three planes, none of which are parallel, intersect 
in a single line, as shown in the diagram.

EXAMPLE 4 Determine the intersection of the following planes.

x � 2y � 3z � 9
x � y � z � 4

2x � 4y � 6z � 5

Solution
The normal vectors of the three planes are n��1 � (1, �2, 3), n��2 � (1, 1, �1), and
n��3 � (2, �4, 6). Since n��3 � 2n��1, but the third equation is not 
twice the first, the two corresponding planes are parallel and 
distinct. The third plane intersects them, as shown in the 
diagram. Consequently, there is no solution. 

Alternatively, using Gaussian elimination, we obtain

� � row-echelon form � �
Without proceeding further, we can see that the last row corresponds to the 
equation 0z � �13, which has no solution. 

EXAMPLE 5 Determine the intersection of the following planes.

x � y � 4z � 5
3x � y � z � �2

5x � y � 9z � 1

Solution
None of the normals are collinear.

(n��1 � n��2) • n��3 � (1, �1, 4) � (3, 1, 1) • (5, �1, 9)
� (�5, 11, 4) • (5, �1, 9)
� 0

The normals are coplanar.

� �5�2
1

4
1
9

�1
1

�1

1
3
5

9
�5

�13

3
�4

0

�2
3
0

1
0
0

9
4
5

3
�1

6

�2
1

�4

1
1
2
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� �
� �

The third row corresponds to the equation 0z � 7, which has no solution.
Therefore, the three planes intersect in pairs in three parallel lines, as shown in the 
diagram.

To check that the lines are indeed parallel, calculate the cross products of the 
normals:

n��1 � n��2 � (1, �1, 4) � (3, 1, 1) � (�5, 11, 4)

n��2 � n��3 � (3, 1, 1) � (5, �1, 9) � (10, �22, �8)

n��3 � n��1 � (5, �1, 9) � (1, �1, 4) � (5, �11, �4)

The normals are all multiples of the same vector, so this confirms the nature of
the intersection. 

5
�17

7

4
�11

0

�1
4
0

1
0
0

5
�17
�24

4
�11
�11

�1
4
4

1
0
0
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R2 � 3R1
R3 � 5R1

R2 � R3

CALCULATOR APPLICATION

The steps to put a 3 � 4 matrix into reduced row-echelon form are almost 
identical to those for a matrix. To solve the linear system of Example 2,
for instance, start with the augmented matrix 

� �
and carry out the following steps (the instructions are for a TI-83 Plus 
calculator).

1. To define the matrix,

press , select EDIT, select matrix , and press .

To set its dimensions,

press 3 and 4 .

To enter its elements,

press 1 , then �3 , etc., for all twelve elements.

Then press to return to the home screen. 
(continued)

QUIT2nd

ENTERENTER

ENTERENTER

ENTERAMATRIX2nd

�9
3
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1
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6

1
2

�3
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Part A

1. Using diagrams, classify the intersections of three planes according to
whether the intersection is a point, a line, a plane, or no common points.

2. State whether the normals to the following planes are collinear, coplanar,
or neither.

a. 3x � 4y � 5z � 6 b. �4x � 9y � 8z � 13

5x � 6y � 7z � 8 5x � 3y � z � 15

6x � 8y � 10z � 9 2x � 5y � 2z � �8

c. 2x � 2y � z � 6 d. 2x � 2y � 6 � 0

4x � 2y � 7z � 3 5x � 5y � 8 � 0

5x � 4y � 2z � 11 3x � 3y � 10 � 0

3. For each of the following, state the point of intersection of the three planes.

a. x � 4 � 0 b. x � 0 c. x � y � z � �1

6y � 3 � 0 x � 3y � 6 y � 1 � 0

2z � 6 � 0 x � y � z � 2 x � 1 � 0

4. Using algebraic elimination, find the point of intersection of these three
planes.

Knowledge/
Understanding

Knowledge/
Understanding

Communication

Communication

Exercise 8.5
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2. To put the matrix in reduced row-echelon form,
press , select MATH, then cursor down to B:rref(

and press .

To select which matrix to reduce,

press , select NAMES, select matrix ,

and press .

To complete and execute the instruction,

press and press .

The calculator carries out a Gauss-Jordan elimination.

The result should be � �You can read off the solution (2, 1, 4) directly.
2
1
4

0
0
1

0
1
0

1
0
0

ENTER)

ENTER

AMATRIX2nd

ENTER

MATRIX2nd



x � y � z � �1
2x � 2y � 3z � �7
3x � 2y � 7z � 4

Part B

5. Write the following linear systems in matrix form.

a. 5x � 2y � z � 5 b. �2x � y � 3z � 0 c. 4y � 3z � 12

3x � y � 5z � 12 x � 5y � 8 2x � 5y � 15

x � 5y � 2z � �3 3y � 2z � �6 4x � 6z � 10

6. Write the equations that correspond to the following matrices.

a. � � b. � � c. � �
7. Using Gaussian elimination, find the point of intersection of these planes.

2x � 6y � 4z �11 � 0
x � 3y � 4z � 7 � 0

8x � 18y � 2z � 1 � 0

8. Determine the intersection, if any, of each of the following sets of planes. 
In each case, give a geometrical interpretation of the system of equations 
and the solution. Also state whether the system has no solutions, a unique
solution, or an infinite number of solutions.

a. x � 2y � z � 12 b. x � y � 2z � 4 c. x � y � z � 5

2x � y � z � 5 2x � 2y � 4z � 7 2x � 2y � 4z � 6

3x � y � 2z � 1 3x � 3y � 6z � 11 x � y � 2z � 3

d. �2x � 4y � 6z � �2 e. x � y � 2z � 2 f. x � 3y � 5z � 10

4x � 8y � 12z � 4 x � y � 2z � 5 2x � 6y � 10z � 18

x � 2y � 3z � 1 3x � 3y � 6z � 5 x � 3y � 5z � 9

g. x � 3y � 2z � 9 h. x � y � 2z � 6 i. 2x � y � z � 0

x � 11y � 5z � �5 x � y � 4z � �2 x � 2y � 3z � 0

2x � 8y � 3z � 4 3x � 5y � 12z � 27 3x � 2y � 4z � 0

Part C

9. For what value of k will the following set of planes intersect in a line?

x � 2y � z � 0
x � 9y � 5z � 0

kx � y � z � 0

Thinking/Inquiry/
Problem Solving
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Key Concepts Review

In this chapter, the vector methods used to find the equations of a line have been
extended to planes. The resulting equations of a plane are

the vector equation (x, y, z) � (x0, y0, z0) � s(a1, a2, a3) � t(b1, b2, b3)

the parametric equations x � x0 � sa1 � tb1

y � y0 � sa2 � tb2

z � z0 � sa3 � tb3

the scalar equation Ax � By � Cz � D � 0

As with lines, it is essential to memorize these equations and to learn to convert
quickly, by inspection when possible, from one form to another.

Make a connection between the algebraic equations and the geometrical position
and orientation of a line or plane in space. Draw graphs, diagrams, or sketches 
to increase your ability to visualize intersections. 

Finally, try to invest your solutions to problems with meaning. Look at the 
equations or numerical values of your answers and ask if they answer the question
asked, whether are they consistent, and whether they meet your expectations. 
In a summary statement, express the solution in words.
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R I C H  L E A R N I N G  L I N K  W R A P - U P 311

Like so many astronomers before us and throughout history, we shall determine,
through calculations, the angle of elevation of the sun for any given time of any
given day at any given place on the surface of the earth.

Investigate and Apply
Let d be the number of days past 
December 21. Let h be the number 
of hours (positive or negative) from 
noon, and let � be the latitude of 
the observer. 

As previously noted, the vector 
from the earth to the sun is 

s� � �150sin��336605d��, �150cos��336605d��, 0�.

We want to find the angle between s� and the observer’s plane of tangency to the
earth. To do this, we will need the normal, n��, of this plane of tangency.

Pick specific values of d, h, and � (perhaps the current date and time and your
current latitude �). Use negative values of � for southern latitudes. Calculate s�.

1. Now to find n�� we start by assuming the earth’s axis is not tilted. 

a) Given that s� � (s1, s2, 0), let n��1 � s cos��36
2
0
4
h

�� � (�s2, s1, 0)sin��36
2
0
4
h

��. 
Why is this the correct normal for a person on the equator?

b) Let n��2 � n��1cos � � (0, 0, n��1 sin �). What does n��2 represent?

2. The earth’s axis is tilted 
 � 23.45º away from the z-axis in the direction of
the y-axis. If n��2 � (a, b, c), then n�� � (a, b cos 
 � c sin 
 , c cos 
 � b sin 
).
Justify this and then calculate n��.

3. a) Let � be the angle between s� and n��.

b) Calculate � � 90º � �. This is the angle of elevation of the sun.

c) Why is � the angle of elevation of the sun, and not �? 

4. What does it mean if the angle of elevation is negative? (In practice, the
angle between a line and a plane will always be between 0º and 90º. Why?)

INDEPENDENT STUDY
Develop a general formula for � in terms of d, h, and �.

How can we find the positions of the stars and the other planets? ●

investigate and applywrap-up
CHAPTER 8 :  SUN ELEVATION
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Review Exercise

1. a. Can a plane be perpendicular to the x-axis and contain the line 
x � z, y � 0? Explain.

b. Can a plane be parallel to the yz-coordinate plane and contain the point 
(�4, 0, 5)? Explain.

2. Find vector and parametric equations of the plane

a. that passes through the point (�1, �1, 2) and is parallel to the plane 

r� � (2, �1, 0) � s(5, 4, 2) � t(0, 0, 1)

b. that passes through the points (1, 1, 0) and (�2, 0, 3) and is parallel to the
y-axis

c. that has intercepts x � �2, y � �3, and z � 4

d. that contains the point (1, 1, 1) and the line �3
x

� � �4
y

� � �5
z

�

e. that contains the two intersecting lines 

r� � (3, �1, 2) � s(4, 0, 1)  and  r� � (3, �1, 2) � t(4, 0, 2)

3. Find the scalar equation for the plane

a. that passes through the point (1, 7, 9) and has normal n�� � (1, 3, 5)

b. that passes through the points (3, 2, 3), (�4, 1, 2), and (�1, 3, 2)

c. that passes through the point (0, 0, 6) and is parallel to the plane y � z � 5

d. that contains the point (3, �3, 0) and the line x � 2, y � 3 � t,
z � �4 � 2t

e. that contains the line r� � (2, 1, 7) � s(0, 1, 0) and is parallel to the line 

r� � (3, 0, 4) � t(2, �1, 0)

f. that contains the points (6, 1, 0) and (3, 0, 2), and is parallel to the z-axis

4. For what value of k, if any, will the planes 3x � ky � z � 6 � 0 and 
6x � (1 � k)y � 2z � 9 � 0 be

a. parallel? b. perpendicular?

5. Find the scalar equation of the plane that contains the parallel and distinct lines

x � 1, �
y �

4
3

� � �2
z

� and  x � 5, �
y �

2
5

� � �
z �

1
3

�.
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6. Find a vector equation of the plane that contains the origin and the point 
(2, �3, 2) and is perpendicular to the plane x � 2y � z � 3 � 0.

7. Find the scalar equation of the plane that passes through the point (1, 2, 3) 

and is parallel to the vectors 6 k̂ and î � 2 ĵ � 3 k̂ .

8. A line that passes through the origin intersects a plane at the point (1, �3, 2).
If the line is perpendicular to the plane, find the scalar equation of the plane.

9. Find the scalar equation of the plane that contains the intersecting lines 

�
x �

2
1

� � �
y �

3
1

� � �
z
�
�

1
1

� and  �
x
�
�

1
1

� � �
y �

5
1

� � �
z �

4
1

�.

10. Explain why the point (2, 21, 8) and the line r� � (�4, �3, �1) � t (2, 8, 3)
do not determine a plane.

11. Find the distance between

a. the point (7, 7, �7) and the plane 6y � z � 5 � 0

b. the point (3, 2, 1) and the plane 3x�2y�z�10

c. the line r� � (1, 3, 2) � t (1, 2, �1) and the plane y � 2z � 5

d. the planes x � 2y � 5z � 10 � 0 and 2x � 4y � 10z � 17 � 0

12. Find the distance from the point (1, �2, �2) to the plane having an 
x-intercept of �1, a y-intercept of 2, and a z-intercept of 3.

13. A normal to the plane 4x � 2y � 5z � 9 � 0 passes through the origin. 
At what point does this normal intersect the plane?

14. Determine where the plane 4x � 5y � z � 20 � 0 meets the coordinate axes,
and graph the plane.

15. Graph the following planes in an xyz-coordinate system:

a. 2x � y � z � 3 � 0 b. 3y � 4z � 24 � 0

c. 3z � 9 � 0 d. r� � (4, �5, 0) � s(�12, 9, 8) � t(8, �7, �8)

16. Show that the line x � �5 � 3t, y � 3 � 4t, z � 1 � 5t lies in the plane 
2x � y � 2z � 5 � 0.

17. For what values of k will the planes 2x � 6y � 4z � 3 � 0 and 
3x � 9y � 6z � k � 0

a. not intersect? b. intersect in a line? c. intersect in a plane?



18. A plane passes through the points (1, 0, 2) and (�1, 1, 0) and is parallel to the
vector (�1, 1, 1). 

a. Find the scalar equation of the plane.

b. Find the equation of the line through the point Q(0, 3, 3) that is 
perpendicular to the plane.

c. Find the point at which the perpendicular through Q intersects the plane. 

d. Use a distance formula to check your answer to part c.

19. Find the equation of the plane that passes through the point (3, 0, �4) and is
perpendicular to the line of intersection of the planes x � 2y � 7z � 3 � 0
and x � 5y � 4z � 1 � 0.

20. Let l be the line of intersection of the two planes x � y � z � 1 � 0 and 
2x � 3y � z � 2 � 0.

a. Find the scalar equation of the plane that contains the line l and passes
through the origin.

b. Show that the plane found in part a makes an angle of 60º with the plane 
x � z � 0 .

21. Are the two planes r� � (4, 0, 3) � t(�8, 1, �9) � u(�1, 5, 7) and 
r� � (�14, 12, �1) � p (1, 1, 3) � q (�2, 1, �1) parallel, coincident,
or neither?

22. Solve each of the following systems of equations. Give a geometrical 
interpretation of each system and its solution.

a. x � 5y � 8 � 0 b. 2x � 2y � 4z � 5 c. 3x � 2y � 4z � 1 � 0

5x � 7y � 8 � 0 x � y � 2z � 2 2x � y � z � 3 � 0

d. x � 2y � 3z � 11 e. x � y � 3z � 4 f. x � 3y � 3z � 8

2x � y � 7 x � y � 2z � 2 x � y � 3z � 4

3x � 6y � 8z � 32 3x � y � 7z � 9 2x � 6y � 6z � 16

g. x � 2y � z � �3 h. 3x � 3z � 12 i. x � y � z � �3

x � 7y � 4z � �13 2x � 2z � 8 x � 2y � 2z � �4

2x � y � z � 4 x � z � 4 2x � 2y � 2z � �5

C H A P T E R  8314



Chapter 8 Test

1. What can you conclude about the intersection of 

a. two planes, if their normals satisfy n��1 • n��2 � 0?

b. two planes, if their normals satisfy n��1 � n��2 � 0?

c. three planes, if their normals satisfy n��1 � n��2 • n��3 � 0?

2. For each of the following, state whether each line lies in the plane 
4x � y � z � 10 � 0, is parallel to the plane, or intersects the plane at a
point. Give your reasons.

a. x � �3t, y � �5 � 2t, z � �10t b. �
x �

4
2

� � �
y �

1
2

� � �
�
z
1�

3. Describe with diagrams all the ways that three planes can intersect in one 
or more common points.

4. The plane r� � (0, 0, 5) � s(4, 1, 0) � t(2, 0, 2)

a. intersects the x-axis at what point?

b. intersects the xz-coordinate plane in what line?

5. Find the scalar equation of the plane containing the line x � y, z � 0 and the
point (2, �5, �4).

6. Solve the following system of equations and give a geometrical interpretation
of the result.

x � 2y � z � 3 � 0

x � 7y � 4z � 13 � 0

2x � y � z � 4 � 0

Achievement Category Questions

Knowledge/Understanding 2, 5

Thinking/Inquiry/Problem Solving 7

Communication 1, 3

Application 4, 6
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7. a. Find the distance from the origin to the plane 3x � 2y � z � 14 � 0.

b. Find the distance from the point P(10, 10, 10) to the plane 
3x � 2y � z � 14 � 0.

c. Is P on the same side of the plane as the origin? Give evidence to support
your answer. 
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GENERATING RANDOM NUMBERS

Random numbers are used for computer simulations of processes that can be modelled using
probability. For example, airlines often sell more seats than exist on a plane because they know that
some ticket holders may not show up. Of course, if too many tickets are sold, then the airline will have
to provide costly incentives to convince some of the extra passengers to wait for the next flight. Using
random numbers as part of a model, the airline can simulate different seat-selling strategies without
ever trying one in practice. This is the advantage of simulation.

Your calculator has a function that can generate random numbers, usually between 0 and 1, or random
digits within a specified range. How does this work? One way to produce a sequence of random digits
from the set {0, 1, 2, ..., 9} is to put 10 identical balls numbered 0 to 9 into a container and shake it
vigorously. Then, without looking, reach into the container and choose a ball. Note the digit on the ball
you selected, replace the ball in the container, and repeat the process. You might get a sequence such as
7, 5, 4, 0, 5, 2, 2, 8, 1.

Here is a sequence of random digits produced by a TI-83. Use the key strokes → → → PRB 5
to get to the function randInt. Then enter 0,9,8) to get the 8 random digits 9, 2, 3, 0, 9, 1, 0 5.
Of course, if you try this you will get a different answer!

How does the calculator produce this sequence since there is no one inside to shake up a container of
balls? The answer is that the calculator uses an algorithm that is completely deterministic. The numbers
produced will be exactly the same every time if you start with the same initial conditions. This is not
true with the container of balls. Hence, the numbers generated by the calculator are far from random.
However, the sequence shares many properties with a sequence of random numbers and, if the
algorithm is well selected, the numbers produced are good enough for practical purposes.

To see how the calculator generates a sequence of random numbers, we must look (perhaps suprisingly)
at how division works. When we divide 37 by 8, the remainder is 5. That is, 37 � 4 � 8 � 5. If we
divide any integer by 8, we get a remainder of 0, 1, 2, ... or 7. Generally, if we divide any integer x by
the integer m, the remainder r is an integer between 0 and m � 1, inclusive. We use a fancy notation
x � rmod(m) and say that x is congruent to rmodulo m“. For example, 37 � 5 mod(8) and 63 � 7
mod(8). Spreadsheet programs such as EXCEL have a function mod(x, m) that returns the remainder
when x is divided by m.

ENTER

MATH



One algorithm for generating a sequence of random numbers is a mathematical equation of the form 
xn � axn�1mod(m), n � 1, 2, ... where x0 is a specified number called the seed. The seed can be set by
the user or determined in some other way (e.g., from the clock inside the calculator). For example,
consider the generator xn � 8xn�1mod(13), n � 1, 2, ... with seed x0 � 1. If we substitute n � 1, 2, 3, ...
12, we get the sequence 8, 5, 12, 1, 8, 5, 12, 1, 8, 5, 12, 1. This sequence does not look very random
since it repeats itself every four terms. We say that the sequence has period 4. If we change a in the
generator to 2 so that the equation is xn � 2xn�1mod(13), n � 1, 2, ..., we get the sequence 1, 2, 4, 8, 3,
6, 12, 11, 5, 9, 10, 7, 1, which then repeats. This looks better since the period is now 12. Could the
period be longer than 12 for any choice of a?

In practice, m and a are selected so that the sequence has a very large period and other good properties.
For example, one version of Waterloo MAPLE uses a generator with m � 1012 � 11,
a � 427419669081, which produces a sequence with period 1012 � 12 (do not try to check this by
hand!). For amusement, you can try the following.

1. Explain why you must get a periodic sequence with this generator (try specific values for a and m

first).

2. For m � 23, 24, 25, investigate different values of a to determine the longest possible period. Can

you guess the answer for 2e for any integer value of e?

3. Suppose m is a prime, for example m � 17. What are the possible periods for various choices of a? 

On your calculator, the function rand returns a rational number between 0 and 1. Since the remainder 

xn is always less than m, the number displayed is �
x
m

n�. 
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Cumulative Review
CHAPTERS 4–8

1. Show that the cross product of two unit vectors is not generally a unit vector.

2. Prove that (u�� � v��) � u�� is perpendicular to v��.

3. The points A(2, 4), B(0, 0), and C(�2, 1) define a triangle in the plane. Find
the cosine of ∠ABC.

4. Write the vector (0, 8) as a linear combination of the vectors (2, 4) and 
(�2, 1).

5. For the four points A(2k, 0, 0), B(0, 2k, 0), C(0, 0, 2k), and D(2l, 2l, 2l), let W
be the midpoint of AB, X the midpoint of BC, Y the midpoint of CD, and Z
the midpoint of DA. Prove that W, X, Y, and Z are coplanar.

6. In ∆ABC, P is the midpoint of BC. Q is the point that divides AP internally in 
the ratio 5:2. R is on AC such that AR�� � kAC��, for k a real number. For what
value of k is BQR a straight line?

7. P1, P2, P3, ... P12, are consecutive vertices of a regular polygon with 12 sides. 

If P1, P2
��� � x�� and P1P3

��� � y��, express the following vectors in terms of x�� and y��:

a. P2P3
��� b. P1P4

��� c. P3P7
���

8. Let a��, b��, and c�� be linearly independent vectors in space, and let

u�� � 3a�� � 2b�� � c��

v�� � �2a�� � 4c��

w�� � �a�� � 3b�� � kc��

Determine k so that u��, v��, and w�� are coplanar.



9. Prove that the diagonals of a parallelogram bisect each other.

10. Draw a quadrilateral ABCD with opposite sides AB and DC parallel. Let M be
the point of intersection of the diagonals AC and BD. Through M draw a line
parallel to AB that intersects AD in P and BC in Q. Prove that M is the mid-
point of PQ.

11. Prove that the bisector of the apex angle of an isosceles triangle is perpendi-
cular to the base.

12. Consider the two lines with equations 

�
x �

1
8

� � �
y �

3
4

� � �
z �

1
2

� and (x, y, z) � (3, 3, 3) � t(4, �1, �1).

a. Show that the lines are perpendicular.

b. Find the point of intersection of the lines.

13. Determine whether the point O(0, 0, 0) lies on the plane that passes through
the three points P(1, �1, 3), Q(�1, �2, 5), and R(�5, �1, 1).

14. Determine the equation in the form Ax � By � Cz � D � 0 of the plane that
passes through the point P(6, �1, 1), has z-intercept �4, and is parallel to the 

line �x �
3

2
� � �

y �
3

1
� � �

�
z
1�.

15. Determine a point A on the line with equation 
(x, y, z) � (�3, 4, 3) � t(�1, 1, 0), and a point B on the line 
(x, y, z) � (3, 6, �3) � s(1, 2, �2), so that AB�� is parallel to m�� � (2, �1, 3).

16. The equation (x � 1)2 � (y � 2)2 � (z � 3)2 � 9 defines a sphere in three-
dimensional space. Find the equation (in the form Ax � By � Cz � D � 0) of
the plane that is tangent to the sphere at (2, 4, 5), a point at one end of a
diameter of the sphere.

17. Determine the intersection of the line x � �1 � t, y � 3 � 2t, z � �t with
each of the following planes:

a. x � y � z � 2 � 0

b. �4x � y � 2z � 7 � 0

c. x � 4y � 3z � 7 � 0

C U M U L AT I V E  R E V I E W  C H A P T E R S  4 – 8320



18. Find the point on the xy-plane that lies on the line of intersection of the planes
with equations 4x � 2y � z � 7 and x �2y � 3z � 3.

19. A plane passes through the points (2, 0, 2), (2, 1, 1), and (2, 2, 4). A line 
passes through the points (3, 2, 1) and (1, 3, 4). Find the point of intersection
of the plane and the line.

20. a. Determine the parametric equations of the line of intersection of the two
planes 3x � y � 4z � 6 � 0 and x � 2y � z � 5 � 0.

b. At what points does the line of intersection intersect the three coordinate
planes?

c. Determine the distance between the xy-intercept and the xz-intercept.

21. The point Q is the reflection of P(�7, �3, 0) in the plane with equation 
3x � y � z � 12. Determine the coordinates of Q.

22. Determine the components of a vector of length 44 that lies on the line of
intersection of the planes with equations 3x � 4y � 9z � 0 and 2y � 9z � 0.

23. The line through a point P(a, 0, a) with direction vector (�1, 2, �1) inter-
sects the plane 3x � 5y � 2z � 0 at point Q. The line through P with direc-
tion vector (�3, 2, �1) intersects the plane at point R. For what choice of a is
the distance between Q and R equal to 3?

24. Consider two lines

L1: (x, y, z) � (2, 0, 0) � t(1, 2, �1)

L2: (x, y, z) � (3, 2, 3) � s(a, b, 1)
where s and t are real numbers. Find a relationship between a and b
(independent of s and t) that ensures that L1 and L2 intersect.

25. Determine all values of x, y, and z satisfying the following system of 
equations.

x � 2y � 3z � 1

2x � 5y � 4z � 1

3x � 6y � z � 3

C U M U L AT I V E  R E V I E W  C H A P T E R S  4 – 8 321



26. In the following system of equations, k is a real number. 

�2x � y � z � k � 1

kx � z � 0

y � kz � 0

a. For what value(s) of k does the system 

i)  have no solution?

ii)  have exactly one solution?

iii)  have an infinite number of solutions?

b. For part a iii, determine the solution set and give a geometric 
interpretation.
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Chapter 9
PROOF USING
DIFFERENT
APPROACHES

“Contrariwise,” continued Tweedledee, “if it was
so, it might be; and if it were so, it would be; but
as it isn’t it ain’t. That’s logic.” (Lewis Carroll)

Mathematics is one of the best ways to teach
logic and proof. In mathematical problem solving,
you can consider problems using deduction,
intuition, working backwards, and trial and error.
The ability to consider a problem from many
angles is as valuable for business professionals as
for researchers in academic environments. In this
chapter, you will consider the value of different
approaches to solving a problem.

CHAPTER EXPECTATIONS In this chapter, you will

• prove some properties of plane figures
algebraically, Section 9.1, 9.2

• solve problems by combining a variety of
problem-solving strategies, Section 9.3

• generate multiple solutions to the same
problem, Section 9.3

• understand the relationship between formal
proof and the use of dynamic geometry
software, Section 9.4

• use technology in testing conjectures, 
Section 9.4



Review of Prerequisite Skills

1. Recall the properties of congruent triangles, similar triangles, and parallel
lines.

2. Recall the properties of circles, chords, and tangents.

3. Recall the properties of vectors and combinations of vectors, and their use in
the equations of lines.

4. •  The distance between the points (x1, y1) and (x2, y2) is 
d � �(x2 � x�1)2 � (�y2 � y�1)2�.

•  The equation of the straight line through (x1, y1) with slope m is 
y � y1 � m(x � x1).

•  The equation of the straight line through (x1, y1) and (x2, y2) is 

y � y1 � �
y
x

2

2

�
�

y
x

1

1
�(x � x1).

•  If two lines are perpendicular and have slopes m1 and m2, m1m2 � �1.

•  The coordinates of the midpoint of the line segment joining (x1, y1) and 

(x2, y2) are ��x1 �
2

x2�, �
y1 �

2
y2��.

•  If P(x, y) divides the line segment connecting A(x1, y1) and B(x2, y2) so that 

AP � 2PB, then (x, y) � ��2x2
3
� x1�, �

2y2
3
� y1��.

•  The perpendicular distance from P(x1, y1) to the 
straight line whose equation is Ax � By � C � 0 is 

d � .

•  The equation of a circle having radius r is x2 � y2 � r2 if the centre is 
(0, 0) and is (x � h)2 � (y � k)2 � r2 if the centre is (h, k).

Ax1 � By1 � C
��

�A2 � B�2�
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1. List conditions under which two triangles are

a. congruent

b. similar

2. Determine whether the triangles defined by the following sets of points are
equilateral, isosceles, or right-angled. 

a. (1, 0), (�1, 0), (0, 4) b. (4, 5), (0, �2), (�3, 1)

c. (1, 7), (7, 1), (2, 2) d. (2, �2), (1, 5), (�1, �1) 

3. The line segment joining A(�1, 5) to B(5, �3) is divided internally by the
point C. Determine the coordinates of C if

a. AC:CB � 3:1 b. AC:CB � 2:3

4. Determine the coordinates of the point on the y-axis that is equidistant from
the points (5, 7) and (10, 4).

5. A circle has its centre on the x-axis and a chord that connects (�2, 1) and 
(10, 7). What are the coordinates of the centre?

6. What is the equation of a circle having

a. centre (0, 0) and radius 3?

b. centre (�1, 4) and radius 4?

c. centre (3, 2) and passing through (7, 4)?

7. The point (x, �4) is twice as far from the point (�9, 4) as it is from the 
origin. Determine all possible values of x.

8. A triangle has vertices (1, 3), (7, 5), and (�3, 6). What are the coordinates of
the midpoints of the sides?

9. What is the equation of the median from the point (2, 3) in a triangle if the
other vertices are (5, 8) and (1, �2)?

10. A quadrilateral has vertices A(0, 0), B(6, 0), C(8, 11), and D(3, 7). What are
the coordinates of E and F, the midpoints of AC and BD? What are the co-
ordinates of G, the midpoint of EF?

Exercise 
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Consider the problem of providing a fibre-optic network to
three or more sites on a university campus so that any two sites
are connected by some fibre-optic path. To minimize cost and
maximize communication speed, the network must be as short
as possible. How can this be done? Such a shortest-length net-
work is called a Steiner network, after the Swiss geometer
Jacob Steiner, who lived from 1796 to 1863. Applications of
Steiner networks arise in designing transportation networks,
production facility layouts, and computer microchip design. 

If ∆ABC is an acute triangle, then there is a point F inside the triangle, called the
Fermat point, for which AF � BF � CF is less than for any other point. It is the
centre of the Steiner network for the three points A, B, and C.

Investigate 
The diagram shows a square
ABCD with side length one unit
and three possible networks. The
H-pattern network has total length
of 3 units. A shorter network is
formed by the diagonals of the
square. Applying the Pythagorean
theorem, we find that this 
network has length 2�2� � 2.83 units. The shortest network, a Steiner network, is
formed by locating two points E and F such that EF passes through the centre of
the square and the angles ∠AED and ∠BFC are both 120º. This network has a
total length of 1 � �3� � 2.73 units. Verify this calculation.

The Steiner network for a rectangle ABCD is very 
similar to that of the square. Points E and F are located
such that EF passes lengthwise through the centre of 
the rectangle and the angles ∠AED and ∠BFC are 
both 120º.

DISCUSSION QUESTIONS

1. How many Steiner networks does a square have?
How many Steiner networks does a rectangle have?

2. Will a Steiner network connecting five points always be longer than a
network connecting four points?

3. Besides length, what other concerns arise when designing communications or
transportation networks?

4. Can you think of other applications in which a shortest-length network might
be sought? ●

investigate 
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Section 9.1 — Using Analytic Methods

An equation involving variables x and y represents a restriction of the xy-plane to
points whose coordinates satisfy the equation. An equation such as 
3x � 2y � 6 � 0 defines a straight line; one such as y � 3x2 � 4x defines a
parabola; one such as x2 � y2 � 9 defines a circle with centre at the origin and
radius 3; and so on.

In this section, we expand our ability to develop the equations of figures having
specific conditions.

EXAMPLE 1 Determine an equation for a circle such that the endpoints of its diameter are
determined by the points A(�5, 1) and B(1, 9).

Solution
Since the end points of the diameter are A(�5, 1)
and B(1, 9), the coordinates of the centre are at 

C ��1 �
2

5
�, �

9 �
2

1
�� � C(�2, 5). 

The radius is 

r � AC � �[�5 �� (�2)]�2 � (1� � 5)2� �

�9 � 16� � 5.
The equation of this circle is 

(x � 2)2 � (y � 5)2 � 25.

This answer is given in standard form. 
If we expand the squares, we get

x2 � 4x � 4 � y2 � 10y � 25 � 25
x2 � y2 � 4x � 10y � 4 � 0

This equation is in general form. Since the radius and/or the coordinates of the
centre might be fractions, we could multiply the equation by a number to elimin-
ate fractions.

EXAMPLE 2 Find the radius and centre of the circle defined by 
3x2 � 3y2 � 10x � 12y � 13 � 0.

Solution
Divide the given equation by 3. 

x2 � y2 � �
1
3
0
�x � 4y � �

1
3
3
� � 0

Rearranging, x2 � �
1
3
0
�x � y2 � 4y � �

1
3
3
�
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Complete the squares, adding the same numbers on the right as on the left.

x2 � �
1
3
0
�x � �

2
9
5
� � y2 � 4y � 4 � �

1
3
3
� � �

2
9
5
� � 4

�x – �
5
3��

2
� (y � 2)2 � �

10
9
0

�

The centre is ��
5
3�, �2� and the radius is �

1
3
0
�.

If the constant had been a large positive number, so that instead of �
1
3
3
� on the right,

we got a negative number larger than �
2
9
5
� � 4, the final result would have a 

negative value for r2, and no circle would exist.

EXAMPLE 3 A perpendicular from the point P(�1, 3) meets a 
line l at the point Q(2, 5). What is the equation of 
line l?

Solution
The slope of PQ is �2

5
�

�
(�

3
1)� � �

2
3�.

Then the slope of l is ��
3
2�.

The equation of l is y � 5 � ��
3
2�(x � 2) 

or 3x � 2y � 16 � 0.

EXAMPLE 4 Determine the equations of all tangents having slope 4 to the circle x2 � y2 � 17.

Solution
If the tangents have slope 4, then the line from the 

tangent contact point to the centre has slope ��
1
4�,

since these lines are perpendicular. Then, the 

equation of the diameter with slope ��
1
4� is 

y � ��
1
4�x.

We determine the coordinates of P and Q by 
solving this equation with the circle equation.

Replacing y by ��
1
4�x, we obtain

x2 � �1
1
6�x2 � 17

�
1
1

7
6�x2 � 17

x2 � 16
x � �4

The point Q is (4, �1), and P is (�4, 1).
The tangent through Q has equation y � 1 � 4(x � 4), and the tangent through P
has equation y � 1 � 4(x � 4).
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EXAMPLE 5 Determine the length of the tangent from A(�3, 2) to the circle with equation
x2 � y2 � 6x � 2y � 0.

Solution
Rewriting x2 � y2 � 6x � 2y � 0, we have 
(x � 3)2 � (y � 1)2 � 10. This is a circle with
radius �10� and with its centre at C(3, 1). We have
two tangents, AY and AX, of equal length.

Since ∆ACY is right-angled, AC2 � AY2 � CY2.
CY2 � r2 so CY2 � 10

and AC2 � (�3 � 3)2 � (2 � 1)2 � 37 
Thus, AY2 � 37 � 10 � 27

∴AY � �27�

Thus, the length of the tangent from A to the circle is �27�, or 3�3�.

Part A

1. For each of the following circles, identify the radius and the coordinates of
the centre.

a. (x � 2)2 � (y � 1)2 � 25

b. x2 � y2 � 2x � 4y � 4 � 0

c. 2x2 � 2y2 � 4x � 12y � 29 � 0 

2. Identify each of the following.

a. x2 � y2 � 4x � 10y � 29 � 0

b. 3x2 � 3y2 � 8y

c. x2 � y2 � 4x � 6y �23 � 0

3. Find the length of the tangent from A(5, 7) to x2 � y2 � 2x � 8y � 4 � 0.

4. What is the distance from the origin to the circle with equation 
(x � 5)2 � (y � 12)2 � 1?

Part B

5. Find the length of the chord of the circle x2 � y2 � 5 � 0, which is part of
the line y � 3x � 5.

Application

Knowledge/
Understanding

Communication

Exercise 9.1
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6. For the circle x2 � y2 � 16, determine the length of the longest possible chord
passing through P(1, �2).

7. Find the coordinates of the intercepts of the circle whose equation is 
x2 � y2 � 6x � 2y � 0.

8. Find the length of the tangent from (5, 7) to the circle with equation 
x2 � y2 � 6x � 2y � 6 � 0.

9. Show that the point A(1, 5) is on the circle with equation 
x2 � y2 � 4x � 2y � 20 � 0. Find the coordinates of the other end of 
the diameter through A.

10. Find the equation of the circle that passes through the points (8, 2) and 
(�2, �4) and which has its centre on the line with equation y � 2x � 4.

11. A circle lies in the third quadrant and touches both coordinate axes. If the
length of the tangent from the point A(�4, 2) to the circle is 5, determine the
equation of the circle.

12. The point R(3, �4) is on a circle with its centre at the origin. The tangent
through R intersects the x-axis at the point P and the y-axis at the point Q.
Find the length of PQ.

Part C

13. Determine the shortest possible distance between a point on the circle 
x2 � y2 � 9 and a point on the circle x2 � y2 � 12x � 6y � 41 � 0.

14. Find the length of the common chord of the two circles whose equations are
x2 � y2 � 4 and x2 � y2 � 6x � 2 � 0.

Thinking/Inquiry/
Problem Solving
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Section 9.2 — Proof Using Analytic Geometry

In earlier chapters, you saw how geometric facts can be proven using deductive
thinking. In Chapter 1, we looked briefly at using analytic methods. If we are to
make the best possible use of analytic methods, two steps are necessary. First,
determine the usefulness of analytic methods. Second, ensure that the location of
figures used is to your advantage. By considering a few examples we can see how
this can be done.

EXAMPLE 1 Describe an efficient way of defining a parallelogram in analytic terms.

Solution
By making one vertex the origin and a second vertex a 
point on the x-axis, we require only one variable. Let one 
vertex be O(0, 0) and a second vertex be A(a, 0). The vertex
C in the diagram cannot be defined using the variable a. 
We let C have coordinates (b, c). Then, since CB � a,
the coordinates of B are (a � b, c). The parallelogram is now 
defined using a minimum number of variables.

EXAMPLE 2 Using analytic methods, prove that the diagonals of a parallelogram bisect each
other.

Solution
Using the parallelogram defined in Example 1, we have

midpoint of OB is ��a �
2

b
�, �2

c
��

midpoint of AC is ��a �
2

b
�, �2

c
��

Since these are the same, the diagonals bisect each other.

We are free to define coordinates as long as we use properties of the figures. In
the examples above, we must ensure that OA � BC and OC � AB. We could have
avoided fractions in the midpoint coordinates by letting the coordinates be 
A(2a, 0), C(2b, 2c), and B(2a � 2b, 2c). The strength of the analytic method is
that we can choose coordinates for convenience.

EXAMPLE 3 Use analytic methods to prove that the medians of a triangle are concurrent and
divide each other in a ratio 2:1 from a vertex to a midpoint.
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Solution

Let any triangle have coordinates A(�2a, 0),
B(2b, 0), and C(0, 2c). Then D, the midpoint of
AB, has coordinates (b � a, 0); E, the midpoint of
BC, has coordinates (b, c); and F, the midpoint of
AC, has coordinates (�a, c).

If P divides AE in the ratio 2:1, then P has 

coordinates ��2b �
3

2a
�, �

2
3
c
��.

If Q divides BF in the ratio 2:1, then Q has coordinates ��2(�a)
3

� 2b
�, �

2
3
c
�� or 

��2b �
3

2a
�, �

2
3
c
��.

If R divides CD in the ratio 2:1, then R has coordinates ��2(b �
3
a) � 0
�, �

0 �
3

2c
�� or 

��2b �
3

2a
�, �

2
3
c
��.

But P, Q, and R are the same point. Therefore, the medians intersect at the same
point and divide each other in a ratio 2:1.

EXAMPLE 4 Using analytic methods, prove that the angle in a semicircle is a right angle.

Solution
Let the circle have equation x2 � y2� r2. Then
the diameter on the x-axis has end points whose
coordinates are A(�r, 0) and B(r, 0). Let C(p, q)
be any other point on the circumference. We will
prove that ∠ACB � 90º.

The slope of AC is m1 � �p �
q

r�

The slope of BC is m2 � �p �
q

r�

Then m1m2 � �
p �

q
r

� • �p �
q

r
� � �

p2
q
�

2

r2�

But C is on the circle, so p2 � q2 � r2 or q2 � r2 � p2

Then m1m2 � �
r
p

2

2
�
�

p
r

2

2� � �1

Then AC ⊥ BC and ∠ACB � 90º
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Part A

Use analytic methods to solve the following problems.

1. Prove that the diagonals of a rectangle are equal.

2. Prove that the midpoint of the hypotenuse of a right-angled triangle is equi-
distant from the three vertices of the triangle.

Part B

3. Prove that the midpoints of successive sides of a quadrilateral are the vertices
of a parallelogram.

4. Prove that the line connecting the midpoints of two sides of a triangle is paral-
lel to the third side and equal to one-half of it. 

5. Prove that if the diagonals of a parallelogram are equal, the parallelogram is a
rectangle.

6. Prove that the length l of the tangent from an external point P(x1, y1) to a 
circle with equation (x � h)2 � (y � k)2 � r2 is
l � �(x1 � h�)2 � (y�1 � k)2� � r2�.

7. P is any point on the diameter AB of a circle. CD is any chord of the circle
parallel to AB. Prove that PC2 � PD2 is independent of the position of CD.

8. Prove that the lines joining the midpoints of opposite sides of a quadrilateral
bisect each other.

9. A convenient way of expressing equations briefly is to give them a name.
Hence, by writing C1: x2 � y2 � r2, we can describe the circle 
x2 � y2 � r2 � 0 as C1 � 0. Show that if P(x1, y1) is a point that subtends
equal tangents to two circles C1 � 0 and C2 � 0, then P lies on the line
whose equation is C1 � C2 � 0.

Application

Knowledge/
Understanding

Exercise 9.2
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Section 9.3 — Different Techniques of Proof

Many problems in most branches of mathematics can be solved by a variety of
approaches. In the last section, you proved a number of things that you had done
earlier by other methods. It is sometimes clear that one method is easier than oth-
ers, as you will see in the following examples. However, the best method is the
one that leads you to a solution.

There is value in trying different methods on a problem. By doing so, we
strengthen our understanding of concepts and increase our confidence that we can
find a solution.

EXAMPLE 1 Find a formula for the coordinates of the point N(x, y) that divides the line seg-
ment joining A(x1, y1) and B(x2, y2) in the ratio m:n.

Solution
You have already seen a development of a 
formula using vectors. Here we use analytic 
methods.

In the given diagram, we determine points 
X(x, y1) and Y(x2, y) by drawing lines parallel 
to the axes through A, N, and B, as shown.

In ∆NXA and ∆BYN,
∠NAX � ∠BNY (parallel lines)
∠NXA � ∠BYN (right angles)

Then ∆NXA � ∆BYN

Therefore �
N
AX

Y
� � �

X
Y

N
B
� � �

A
N

N
B
� � �

m
n

�

�
x
x2

�
�

x
x
1� � �

m
n

� and �
y
y2

�
�

y
y
1� � �

m
n

�

nx � nx1 � mx2 � mx
(m � n)x � mx2 � nx1

x � �
mx

m
2 �

�
n
n
x1�

Similarly y � �
my

m
2 �

�
n
n
y1�

The coordinates of N are ��mx
m
2 �

�
n
n

x1�, �
my

m
2 �

�
n
n

y1��.
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EXAMPLE 2 In quadrilateral ABCD, point P divides AB in the ratio 1:2; Q divides BC in the
ratio 2:1; R divides CD in the ratio 1:2; and S divides DA in the ratio 2:1. 
Prove that PQRS is a parallelogram.

Solution 1 
using analytic methods

Let the coordinates of A, B, C, and D be (0, 0),
(3a, 3b), (3c, 3d) and (3e, 0).

The coordinates of P are ��3a �
3

2(0)
�, �3b �

3
2(0)
��

or (a, b).

The coordinates of Q are ��2(3c)
3
� 3a
�, �2(3d)

3
� 3b
��

or (2c � a, 2d � b).

The coordinates of R are ��3e �
3
2(3c)
�, �0 �

3
2(3d)
��

or (e � 2c, 2d).

The coordinates of S are ��2(0)
3
� 3e
�, 0� or (e, 0).

The slope of PQ is �((
2
2
d
c �

�
a
b
)
)

�
�

a
b

� � �
d
c

�

The slope of SR is �(e �
2d

2
�
c)

0
� e

� � �
d
c

�

Then PQ � SR.

The slope of SP is �ba
�
�

0
e

� � �a �
b

e�

The slope of RQ is � �
a �

b
e

�

Then SP � QR

Therefore, PQRS is a parallelogram.

Solution 2 
using deductive methods

Join AC.

In ∆BAC, P divides BA in the ratio 2:1 and 
Q divides BC in the ratio 2:1.

Then PQ � AC (line parallel to base)

Similarly in ∆DAC, RS � AC
Therefore PQ � RS

Join BD.

In ∆ABD, PS � BD

In ∆CBD, QR � BD

Therefore PS � QR

Then PQRS is a parallelogram.

(2d � b) � 2d
���(2c � a) � (e � 2c)
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Solution 3 
using vector methods

From the diagram in Solution 2,

PQ�� � PB�� � BQ��

� �
2
3�AB�� � �

2
3�BC��

� �
2
3�AC��

SR�� � SD�� � DR��

� �
2
3�AD�� � �

2
3�DC��

� �
2
3�AC��

Then PQ�� � SR��

Therefore PQ � SR and PQ � SR
Therefore, PQRS is a parallelogram.

These solutions are quite different. Discuss the merits of the different approaches
with your classmates.

EXAMPLE 3 In the parallelogram ABCD, the point F is chosen on DC such that DF:FC � 3:1.
AF intersects DB at the point E. Determine the ratio in which the point E divides
AF and DB.

Solution 1
In ∆ABE and ∆FDE,

∠ABE � ∠EDF (alternate angles)
∠BAE � ∠DFE (alternate angles)

∴∆ABE � ∆FDE (equal angles)

Since DF � �
3
4�DC and DC � AB, then 

DF � �
3
4�AB or DF:AB � 3:4

Using similar triangles, �
D
AB

F
� � �

F
A

E
E
� � �

D
BE

E
� � �

3
4�

Therefore, E divides AF in a 4:3 ratio, and it divides DB in a 3:4 ratio.

Solution 2
Let DA�� � CB�� � a�� and AB�� � DC�� � b��

Since DF:FC � 3:1, then DF�� � �
3
4�b�� and FC�� � �

1
4�b��

In ∆ADF, AF�� � �
3
4�b�� � a��

Let AE�� � mAF��, m � R

Then AE�� � �
3
4
m
�b�� � ma��

Let DE�� � k(b�� � a��) � kb�� �ka��, k � R
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Now AE�� � DE�� � a��

or  �
3
4
m
�b�� � ma�� � kb�� � ka�� � a��

or  ��
3
4
m
� � k�b�� � (�m � k � 1)a�� � 0

Since a�� and b�� are sides of a parallelogram, they are linearly independent, so
1� �

3
4�m � k � 0

2� �m � k � 1 � 0

Subtracting, �
7
4�m � 1

m � �
4
7� and k = �

3
7�

Thus, AE�� � �
4
7�AF�� and so AE��:EF�� � 4:3 

DE�� � �
3
7�DB�� and so DE��:EB�� � 3:4

Solution 3
Let the coordinates of the parallelogram be as in the given diagram.

The equation of AF is y � 0 � �
a �

b
3c

�(x � 3c)

The equation of DB is y � �
a �

b
4c

�x

For the point E, �
a �

b
3c

�(x � 3c) � �
a �

b
4c

�x

(a � 4c)(x � 3c) � (a � 3c)x

(a � 4c � a � 3c)x � (a � 4c)3c

7cx � (a � 4c)3c

x � �
3
7�(a � 4c)

Then y � �
a �

b
4c

� ��
3
7�(a � 4c)�

� �
3
7�b

Then the coordinates of E and B are in the ratio of 3:7, so DE:EB � 3:4

Also AE � ��a � �
3	(a �

7
4c	)

��
2

� �	b � �
3
7�b	�

2	
� �

4
7� �(a � 3�c)2 � b�2�

and EF � ��3c �	�
3(a �

7
4	c)

��
2

�	���
3
7�b	�

2	
� �

3
7��(3c ��a)2 ��b2�

Then AE:EF � 4:3

Note that in this example the analytic approach is more difficult algebraically and
the deductive method is shortest. There is no best approach, although some
approaches may be better than others. Experience allows us to choose the most
likely approach, but to gain experience, we must do a number of problems.
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In this exercise, you should discuss different approaches with classmates, then
attempt the questions using the methods you have agreed upon. For some ques-
tions, pairs of students can agree to share approaches and then discuss their results
with classmates.

Part A

1. Prove that the line joining points that divide sides AB and AC in ∆ABC in the 

ratio 3:1 is parallel to BC and equal to �
3
4�BC.

2. In a trapezium, the ratio of the parallel sides is 5:3. Prove that a line through
the intersection of the diagonals and parallel to the base divides the non-
parallel sides in the same ratio.

3. A town K is 12 km from a straight railroad. Two stations on the 
railroad are 20 km and 13 km from K. How far apart are the stations?

4. In the given diagram, D bisects AB, E bisects AC, G bisects FB
and H bisects FC. Prove that DE � GH.

Part B

5. Square ABCD has sides of length 2. E is the midpoint of BC. 
AE and BD intersect at F.

a. What is the height from F of ∆BFE?

b. What is the ratio of ∆BFE:∆FAD?

6. Draw a quadrilateral ABCD. On each of the four sides of the quadrilateral
select a point (not the midpoint) so that when these four points are joined in
succession, a parallelogram is formed. Verify that your selection of points is
correct by the use of analytic and deductive methods.

Part C

7. Previously, we proved that if P is a point in the interior of 
rectangle ABCD, then PA2 � PC2 � PB2 � PD2. Prove that 
this result is also true if the point P is not contained in the 
plane of rectangle ABCD but is above the rectangle.

8. The Theorem of Apollonius states that in ∆ABC, if M is the midpoint of BC,
then AB2 � AC2 � 2AM2 � 2MC2.

a. Prove this theorem using analytic methods.

b. By letting ∠AMB � α and ∠AMC � 180 � α,
use the cosine law in ∆AMB and derive the result.

Thinking/Inquiry/
Problem Solving

Application

Exercise 9.3
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Section 9.4 — Locus

Locus is a fundamental concept in mathematics. From earlier work you are famil-
iar with examples of locus, like the path of a point that moves such that it is
always a constant distance from a fixed point (a circle), or the set of points that
are equidistant from two fixed points (the right-bisector of a line segment).

The purpose of this investigation is to examine the path of a moving point in dif-
fering situations. Where possible, use technology in the study.

INVESTIGATION 1.  AB is a fixed horizontal straight-line segment. A point moves so that it is 3 cm
above AB. What is its locus?

2. What is the locus of an airplane flying at constant height from the equator to
the north pole?

3. A quarter is rolled around the circumference of a nickel, always in contact with
it. What is the locus of the centre of the quarter?

4. A set of points has the property that every point is equidistant from two fixed
intersecting lines. What is the locus of the set of points?

5. A stick moves so that one end is in contact with the wall and the other end is in
contact with the floor. What is the locus of the midpoint of the stick?

6. AB is a chord in a circle. A is fixed, and B is allowed to move along the circum-
ference. If AB is extended to C so that AB � BC, what is the locus of C as B
moves?

7. Chords are drawn from a fixed point on the circumference of a circle. What is
the locus of their midpoints?

In this section, we examine some methods of identifying loci (the plural of locus).
In problems of this type, technology can be helpful, and in some examples we
employ it.

EXAMPLE 1 A triangle ABC has a base BC � 8. Describe the locus of the vertex A so that the
triangle has an area of 40.

A locus is a set of points that satisfy a given condition, or the path traced 
out by a point that moves according to a stated geometric condition.
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Solution
Since the area of ∆ABC is 40, the height of ∆ABC
must be 10. The locus of A consists of all those
points such that the distance from A to BC, or BC
extended, is 10. Since the distance between paral-
lel lines is constant by definition, then A must lie
on a line parallel to BC, distance 10 away from it.
The locus of A is a pair of parallel lines, one on
each side of BC, and 10 away from BC.

EXAMPLE 2 The points A(3, 7) and B(�1, 5) are the vertices of the base of an isosceles 
triangle ABC. Determine the locus of vertex C.

Solution
Let the coordinates of C be (x, y).
Since ∆ABC is isosceles, then CB � CA.

Thus, �(x � 1�)2 � (y� � 5)2� � �(x � 3�)2 � (y� � 7)2�
x2 � 2x � 1 � y2 � 10y � 25
� x2 � 6x � 9 � y2 � 14y � 49
2x � y � 8 � 0

The locus of vertex C is the line having equation 2x � y � 8 � 0.
We must exclude point D(1, 6), the midpoint of AB, from our definition because
A, B, and C must form the vertices of a triangle. If we had said C is equidistant
from A and B, then D would be included.

EXAMPLE 3 A circle with a radius r units has diameter AB and its centre at O. From A, chords
of the circle are drawn to a moving point C on the circle. Determine the locus of
P, the midpoint of AC.

In order to see what the locus of P will look like, we use
Geometer’s Sketchpad to draw the locus. You can also
draw a number of chords manually, if you prefer.

The locus of P appears to be a circle. This is only a
strong hint; it does not constitute a proof. It does,
however, tell us what we are aiming for, and gives us 
confidence that we are proceeding properly.

Solution 1

∠OPA � 90º (P is the midpoint of AC).
Then OA is the diameter of a circle for all positions
of P (angle in a semicircle). The locus of P is a 
circle with AO as diameter; that is, it has radius �2

r
�

and its centre at the midpoint of AO.
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Solution 2
Let the circle have equation x2 � y2 � r2, and let A have coordinates (�r, 0). 
Let C(c, ��r2 � c�2�) be any other point on the circumference.
If P(x, y) is the midpoint of AC, then

x � �
c �

2
r

� or  c � 2x � r

and y � or  4y2 � r2 – c2

Substitute c � 2x � r to obtain

4y2 � r2 � (2x � r)2

Then (2x � r)2 � 4y2 � r2

4�x � �2
r

��
2

� 4y2 � r2

�x � �2
r

��
2

� y2 � ��2
r

��
2

This is the equation of a circle with centre ���2
r

�, 0� and radius �2
r

�.

EXAMPLE 4 Determine the equation of the locus of a point P such that the ratio of its distances
from X(2, 1) and Y(�1, �2) is 1:2, and identify the locus.

Solution
Let the coordinates of P be (x, y).
Since �

P
P

X
Y
� � �

1
2�

2PX � PY

Now PX � �(x � 2�)2 � (y� � 1)2� and

PY � �(x � 1�)2 � (y� � 2)2�

Then 2�(x � 2�)2 � (y� � 1)2� �

�(x � 1�)2 � (y� � 2)2�

4(x2 � 4x � y2 � 2y � 5) �

x2 � 2x � y2 � 4y � 5  (squaring both sides and expanding)

3x2 � 3y2 � 18x � 12y � 15 � 0

or x2 � y2 � 6x � 4y � 5 � 0

Rewriting as (x � 3)2 � (y � 2)2 � 8.

The locus is a circle with centre (3, 2) and radius 2�2�.

��r2 � c�2�
��2
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We know that the locus contains the point N, which divides XY in the ratio 1:2.
Our formula from Section 9.2 tells us that N is (1, 0). Substituting N into our
equation provides a simple way to check the accuracy of the work.

EXAMPLE 5 Triangle ABC is variable such that BC is fixed and ∠BAC is constant. For any
position of A, ∠ABC and ∠ACB are bisected, with their bisectors meeting at P.
What is the locus of P?

Solution
∠ABC � ∠ACB � 180º � ∠BAC (angle sum)

Then ∠PBC � ∠PCB � 90º � �
1
2�∠BAC

But ∠BPC � ∠PBC � ∠PCB � 180º  (angle sum)

Then ∠BPC � 90º � �
1
2�∠BAC

Since ∠BAC is constant, ∠BPC is constant for
every position of A. Then BC subtends a constant
angle at P. Therefore, P lies on a circle segment on
BC as chord (angles on a chord).
The locus of P is a circle segment with BC as chord.

EXAMPLE 6 The ends of a line segment of length 4 move along two intersecting lines.
Determine the equation of the locus of the midpoint of the line segment.

Solution
Let the intersecting lines be x � 0 (the y-axis) and 
y � mx. Let A be a point on x � 0 and B be a point 
on y � mx such that AB � 4. We represent the co-
ordinates of A by (0, a) and the coordinates of B by 
(b, mb). If P is the midpoint of AB, then its
coordinates (x, y) are given by x � �

b
2� and 

y � �
a �

2
mb
�.

Then b � 2x and y � �
a �

2
2mx
�

or a � 2y � 2mx
Now AB � 4, so (AB)2 � 16.
Then b2 � (mb � a)2 � 16

4x2 � (2mx � 2y � 2mx)2 � 16
4x2 � 4(2mx � y)2 � 16
x2 � 4m2x2 � 4mxy � y2 � 4
(4m2 � 1)x2 � 4mxy � y2 � 4

The equation of the locus is (4m2 � 1)x2 – 4mxy � y2 � 4.
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Note that if m � 0, so that the lines are perpendicular, the equation becomes 
x2 � y2 � 4, a circle with centre (0, 0) and radius 2.

Part A
1. A and B are points on the lines y � x and y � 2x, respectively. If AB has a

length of 6 units, determine the equation for the locus of P where P divides
AB in a 2:1 ratio.

Part B

2. If A and B are fixed points on a given circle not
collinear with centre 0 of the circle and if XY is a 
variable diameter, find the locus of P (the 
intersection of the line through A and Y and the 
line through B and X).

3. A point moves so that the sum of the squares of the lengths of the perpendicu-
lars from it to the four sides of a square is constant. Find an equation for the
locus and show that it represents a circle. (Use a unit square and a constant k.)

4. A and B are fixed points on a circle and XY is a diameter. XA and YB extended
meet at P. As XY revolves around the centre, the point P moves. Determine,
with proof, the locus of P.

Part C

5. From an external point, two equal tangents to a circle are drawn. Determine
the locus of the set of points such that these equal tangents are always 
perpendicular.

Exercise 9.4

9 . 4  L O C U S 343

O P

X

Y B

A



Key Concepts Review 
CHAPTER 9

In a problem where you wish to use analytic geometry, keep the following ideas
closely in mind:

• position figures so as to minimize the number of variables needed; place one
side of a figure on an axis

• choose coordinates for vertices to simplify your work as much as possible

• seek a solution that minimizes your work

In problems where you can consider different approaches, consider how you
might approach the question using deductive, vector, or analytic methods, and try
to determine which will yield the easiest approach for you. Remember that it is
not necessarily true that the easiest approach for one person is also easiest for
you. When possible, discuss different approaches with classmates, and develop
different approaches to a given problem yourself.

In locus problems, setting the problem up so that you can simplify necessary 
algebra is of great importance.
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A Steiner network for a given set of points is a set of line segments joining the
points in such a way that the total length of all the line segments is minimal.
Steiner networks are the topic of a significant amount of contemporary mathe-
matical research because of their application to data communications and com-
puter microchip design. Some of this research considers Steiner networks in three
dimensions, or in cases when only two perpendicular directions are permissible (if
the network must follow the grid of city streets, for example), or circumstances in
which the shortest total length is not necessarily the most cost effective.

Investigate and Apply
We will find a Steiner network for the points A(0, 0), B(�2, 5), C(7, 8), and 
D(6, 0). This can be done by using analytic geometry, but it will be much easier to
use Geometer’s Sketchpad (using the GRID feature). 

1. Draw the quadrilateral ABCD in a Cartesian coordinate system. What is the
sum of the lengths of the diagonals?

2. a. Construct equilateral triangles on the edges AD
and BC pointing away from ABCD. Label the 
two new vertices E and F. Draw the line 
segment connecting E and F.

b. Draw the circumcircles of the two equilateral 
triangles.

c. Find the points G and H where the two
circumcircles intersect E�F�.

d. Draw the network AG, DG, GH, HBH, , and HC. 
It should look a bit like the diagram shown. 
Find AG � DG � GH � HB � HC.

e. What are ∠AGD and ∠BHC?

3. Repeat the steps of Question 2 with equilateral 
triangles on the edges AB and CD. Either this 
network or the one produced in Question 2 is the 
Steiner network. Which one is it?

INDEPENDENT STUDY
The Fermat point of an acute triangle is the point for which the sum of the dis-
tances to the vertices is as small as possible. How do you find the Fermat point of
an acute triangle? What are some of its other properties? 

What are some other geometric problems that Jacob Steiner considered? ●

investigate and applywrap-up
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Review Exercise

1. Describe the following loci algebraically.

a. the set of points equidistant from the x- and y-axes

b. the set of points equidistant from A(0, 4) and B(0, 6) 

c. the set of points 1 unit away from O(0, 0) 

2. Determine the equation of the locus of a point P that moves so that the line
joining P to A(2, 5) always has an inclination of 45º.

3. The line segment AB has end points A(�3, 5) and B(9, 16). Determine the
coordinates of the point C where C divides AB in a 3:1 ratio.

4. In the parallelogram ABCD, the point P divides DC
in a 5:1 ratio. The line joining A to P and the 
diagonal BD intersect at E. Determine 

a. AE:EP

b. DE:EB

5. Find an equation for the locus of points P(x, y) such that P is always equidis-
tant from the line x � �3 and the point X(3, 1).

6. In the rectangle ABCD, P is a point in the interior of 
the rectangle as shown. If PA2 � PC2 � 85 and we 
are told that the lengths PB and PD are integers,
determine the possible values for PB and PD.

7. Find the equation of a locus such that its distance from the origin is numeri-
cally twice its distance from the line y � 6.

8. The point P is such that the difference between the squares of its distances
from the two points A(�3, 7) and B(4, �2) always equals 4. Find the 
equation of its locus.

9. Ian has a square garden that measures 10 m � 10 m. He constructs a pathway
around the square garden so that the pathway is always 1 m away from the
garden. What is the area of the pathway, given that the pathway is 1 m in
width?
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10. The slope of the line joining P(x, y) and the point (3, �2) is always 2 greater
than the slope of the line joining P to the point (0, 4). Find the equation of its
locus.

11. Show that the locus of the vertex of a right-angled triangle whose hypotenuse
is the line joining the points A(3, 5) and B(7, 11) is a circle.

12. Determine the coordinates of the point that is equidistant from the points 
A(2, 5), B(2, 7), and C(�6, 3).

13. Show that each of the following circles passes through the centre of the other.
x2 � y2 � 4x � 18y � 60 � 0  and  x2 � y2 � 2x � 10y � 1 � 0.

14. In the circle with equation x2 � y2 � 6x � 8y � 24, a chord is bisected by
A(5, �1). Determine the equation of the chord.

15. Find the equation of the circle that has its centre on the y-axis and passes
through O(0, 0) and the point A(2, 1).

16. a. Show that the set of points that bisects chords drawn through an end of the
horizontal diameter of the circle represented by x2 � y2 � a2 is a circle.

b. Find the coordinates of the centre and the length of the radius in a.

17. A point moves so that the sum of the squares of its distances from the vertices
of a triangle is constant. Identify this locus.

18. In parallelogram ABCD, AC is the shorter diagonal and a point P moves so
that AP2 � CP2 � BP2. Show that the locus of P is a circle with centre at D.
(Let the origin be at the centre of the parallelogram and the diagonal AC lie
on the x-axis.)
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Chapter 9 Test

1. Describe the following loci in algebraic terms.

a. the set of points equidistant from the lines at x � 3 and x � 5

b. the set of points equidistant from A(�3, 5) and B(1, 3)

c. the set of points 5 units away from A(�3, 2)

2. Describe each of the following loci in one sentence.

a. x2 � y2 � 2x � 6y � 3 � 0 b. (x � 1)2 � (y � 2)2 � (z � 3)2 � 9

3. Determine each of the following.

a. The coordinates of a point A that divides the line segment joining A(�3, 7)
and B(2, 17) in a 1:4 ratio.

b. The locus of a point P that moves so that P is the midpoint of the line 
segment joining the origin to any point on x � 4.

4. Determine the coordinates of a point that is equidistant from the points 
A(1, 4), B(1, 8), and C(5, 4). Determine the equation of the circle passing
through A, B, and C.

5. OX and OY represent two straight rulers placed at right angles to each other. 
A and B are the ends of a rod of length 10 units with A on OX and B on OY.
The rod is allowed to move so that the ends slide along the axes. Find the
locus of P, the point that divides AB in a 1:4 ratio.

6. An equilateral triangle has a side length of 2 units. A point P moves so that
the sum of the squares of the distances from P to the three vertices is 11.
Determine the equation of the locus of P and show that it is a circle.

7. Find the equation of the locus of the centre of a circle that passes through the
point (0, 0) and cuts off a length 2 k from the line with equation x � c.
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COORDINATE MEASURING MACHINES

Modern cars are made by mass production. Thousands of components are assembled to get a finished
vehicle. One necessary criterion for mass production to work is the ability to manufacture particular
components so that they are all essentially the same. For example, a rod (more fully called a connecting
rod) is part of the engine. A V6 engine requires one rod for each of its six cylinders.

Thousands of rods are manufactured every day. When the engine is assembled, the rods must be
interchangeable. This means that the dimensions of each rod must be very tightly controlled. For the
engine to run properly, the distance from the centre of the hole on the left (the larger end) and the
centre of the hole on the right (the small end) can vary by no more than a few microns 
(1 micron � 10�6 metres). How can this distance be measured to such a high degree of precision?

One common tool for measuring dimensions is a coordinate measuring machine, often called a CMM.
Use a search engine to find a picture and a description of a CMM on the Web. To measure geometrical
properties, a part is placed on the bed of the CMM. A computer-controlled arm with a stylus on the end
can be moved so that the stylus touches the rod at any point. The computer then calculates the x-, y- and
z-coordinates of the point on the part relative to a fixed origin. For example, to measure the thickness of
the rod at one of the yellow dots on the illustration, the rod can be mounted in a clamp. The CMM
determines the coordinates of the yellow dot and the corresponding coordinates of the point on the
opposite side of the rod. Then the standard geometric formula is used to find the distance between the
two points. 

1 3

2 4



For a harder problem, suppose we wanted to find the coordinates of the centre of the hole at the larger
end. There is no place to touch! Now we need to use some mathematical thinking. One algorithm is to
first determine the coordinates of three of the four yellow dots or, more precisely, the coordinates of
three points A, B, C on the edge of the circle at the larger end. We know that these three points form a
triangle on a plane. The centre of the circle is the point of intersection of the right bisectors of the edges
of the triangle. Instruct the computer to carry out the following calculations:

1. Find the equation of the plane � through A, B, C.

2. Find the coordinates of the midpoints P and Q of AB and AC.

3. Find the equation of the line l1 in � through P perpendicular to the line AB.

4. Find the equation of the line l2 in � through Q perpendicular to the line AC.

5. Find the point of intersection of the lines l1 and l2.

This gives us the coordinates of the centre of the circle. It is a good thing that we have computers to do
all this work. If we use the same procedure at the small end, we can then determine the critical distance
between the two centres.

This algorithm is relatively easy to describe and implement. What can go wrong? There is a long list.
For example, if we repeat the measurement, we will not get the same answer, because it is not possible
for the CMM to move the stylus to exactly the same three points on the edge of the circle. You might
think that this would not matter since we know that the centre of the circle is the same for any three
points on the edge. The problem is that the shape of the hole is not a perfect circle! In fact, we do not
know the exact shape, which will vary somewhat from one rod to the next. To deal with this
uncertainty, the above algorithm is modified. First, the coordinates of several points (say five) on the
edge of the circle are measured. Then, the algorithm is repeated for each of the ten subsets of three
points. Finally, the average coordinates of the ten centres are determined. 

There are many interesting mathematical problems associated with this algorithm. Where is the best
place to put the five points? Would it be better to use six or seven or more points? How much variation
will there be in the coordinates of the centre if the algorithm is repeated on the same rod? 

People who run CMMs are experts at three-dimensional geometry. They know all about points, lines,
planes, cylinders, and other geometric shapes. They exploit this knowledge to measure, often indirectly,
critical features of manufactured parts.

C H A P T E R  9350



Counting is wonderful, counting is marvelous,
counting’s the best thing to do…

The Count from Sesame Street had the right idea.
Counting is the oldest mathematical operation.
Ancient herdsmen counted their herds by matching
each animal with a stone. When evening came and
the herds returned, the herdsmen would know if
any animals were missing, even though they did
not use a number system. Today, the Census of
Canada counts people so that resources may be
allocated fairly. The properties of combinations are
used in statistics and probability. In this chapter,
you will be introduced to the mathematics of
counting or combinatorics.

CHAPTER EXPECTATIONS In this chapter, you will

• express the answers to permutation and
combination problems, Section 10.1

• solve problems using counting principles,
Section 10.1, 10.3, 10.4

• solve problems involving permutations and
combinations, Section 10.2, 10.5

Chapter 10
INTRODUCTION TO COUNTING



Review of Prerequisite Skills

Counting is a fundamental mathematical operation. However, with a moment’s
reflection, you will realize that there is much more to counting than pointing at
objects and saying one, two, three, …. For example, how can we count the 
number of combinations of six different balls that are drawn from the drum in the
6/49 lottery? In this lottery, the balls are numbered from 1 to 49 and you win a
very large prize if you hold a ticket that matches the set of six numbers drawn.
Your chance of winning the grand prize depends directly on the number of possi-
ble combinations. We also might be interested in knowing how many ways the
balls can be selected so that at least three of them match the number on our ticket.
In trying to answer these questions, since the numbers are obviously very large,
we must be careful not to miss any possibilities or to count any combination 
more than once. In other words, we must be very organized. The mathematics of 
counting is called combinatorics.

The following activity will help you understand the usefulness of what you will
learn in the next two chapters.

ACTIVITY With a partner, cut out six small squares of paper (approximately 5 cm � 5 cm)
and label them A, B, ... , F. Use the squares as a physical model to answer the 
following questions. You will have to invent a way to record all of the possibilities
so that you do not miss any.

1. Make a list of all possible ordered pairs of squares. One example is shown
below.

Note that in any pair there are two different letters and that 

is a different pair than the first. How many pairs do you have in your list?
How many pairs in your list have A in the first position?
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2. Repeat Question 1 using an ordered triple of squares. Since the list is long,
you will want to find a convenient way of writing it.

3. A set of two squares is not ordered. The squares A and B can be used to make
two different ordered pairs, but only one set. Make a list of all sets of two
squares that can be formed from the six letters. How many sets are in the list?
How many of the sets contain square A? Can you explain the relationship
between the answers here compared to those in Question 1?

4. List all sets of three squares that can be formed from your six squares. 
How many sets can you form? How does this number compare to the answer
in Question 2? Can you explain the relationship? 

In the next two chapters, we will look at ways to count lists of objects. As a result
of the activity, you may have discovered some of the fundamental rules that we
will use to solve such counting problems. 

To provide some organizational tools, we start this chapter with some ideas from
set theory. Sets are mathematical objects that describe how groups of things or
elements can be organized in a formal way. Here, we use sets to specify the 
elements that we are trying to count. In the following sections, we use the 
notation and properties of sets to develop some rules and strategies for counting
the number of elements in a set.
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In March 1998, the holders of one Canadian lottery ticket collected $22.5 million.
The possibility of winning such a large sum of money entices millions of people to
try their luck at lotteries. One of the most popular lotteries in Canada is Lotto
6/49. Players choose six numbers and hope to match the six numbers selected on
draw night. Many times there is no winning ticket. Sometimes there are four or
five winning tickets. If nobody wins, the prize amount keeps growing. If more
than one ticket matches the six numbers drawn, the prize is divided equally
among all the winners. With only a small chance of winning, are lotteries worth
playing? One way to answer this is through the concept of expected value.

Investigate 
The expected value of a lottery ticket is the
amount of money you can expect to lose, per
ticket, by playing over a long period of time. 

Consider the following simple lottery: 

You buy ticket #17 for $5.00. A number
between 1 and 100 is drawn at random. If the
number drawn is 17, you win a $200.00 prize.If
the number drawn is 16 or 18, you win a $50.00
prize. Otherwise, you lose. The probability

of winning $200.00 is �1
1
00� and the probability

of winning $50.00 is �5
1
0�. Hence, if you play this game about 100 times at a cost

of $500.00, you expect to win $200.00 once and $50.00 twice. 
Your total lossess are $500.00 � $200.00 � (2 � $50.00) = $200.00. Divide this
by the 100 times that you played, and you will find that the expected loss per
play is $2.00. In other words, you lose on average $2.00 every time you play this
lottery.

DISCUSSION QUESTIONS

1. Some people only play Lotto 6/49 when the prize is very large. Does this
strategy reduce their expected loss?

2. Approximately one-half of Lotto 6/49 numbers are quick picks (i.e., randomly
selected). The other half are people’s own choices, and they are not evenly
distributed among all 49 possible numbers. Lottery statistics show that people
favour lower numbers, especially numbers between 1 and 12. Numbers less
than 31 are also chosen more frequently than numbers larger than 31. Why
do you think this is the case? What does this suggest about strategies for
picking lottery numbers? ●

CHAPTER 10 :  LOTTERIES  AND EXPECTED VALUES
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Section 10.1 — Sets

In this section, we look at some basic properties of sets. 

The collection of numbers A � {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} is the set A with 
elements that are integers from 1 to 10. We name the set using a capital letter and
enclose the elements or members of the set in braces {}. If there is no possibility
of misunderstanding, we specify the rule by the pattern of the elements listed. 
For example, the set of integers from 1 to 49 can be written B � {1, 2, …, 49}.
We often use a partial listing such as this, even if the rule is not obvious and must
be stated separately, so that we can improve our understanding of what the 
elements are.

There are two further considerations when we are specifying a set. First, the order
in which we list the elements does not matter. The sets {1, 8, 15, 22, 29, 36} and
{36, 8, 15, 1, 22, 29} are the same. Second, the elements of a set are unique; no
two can be the same. Therefore, {1, 8, 15, 22, 29, 29} is not a set, since 29
appears twice. Here are some examples.

EXAMPLE 1 A spreadsheet program uses cells that are labelled by their column and row 
position. The columns are designated by letters A, B, C, ... and the rows by 
numbers 1, 2, 3, .... . Write down the set of all cells that are in rows 1, 2, and 3
and columns A, B, C, D.

Solution
We can label a cell uniquely using its column letter and row number so A1 is the
cell in the first column and first row. The set of all cells in the specified region is

U � {A1, A2, A3, B1, B2, B3, C1, C2, C3, D1, D2, D3}

Here, the 12 elements of the set U are cells.

In Example 1, we do not need to write out the rule that defines U because U is
small enough that we can list all of its elements. The next example is more 
complicated.

EXAMPLE 2 Postal codes are used to help sort mail automatically. An optical character reader
scans the postal code on each letter to help direct the letter to a particular location.
A Canadian postal code is a sequence of length six; for example, N2L 3G1. 

A set is a collection of elements. It is identified by a rule for 
deciding whether or not a particular element is in the set.
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The first, third, and fifth terms are upper-case letters, and the second, fourth, and
sixth terms are digits from 0 to 9. Not all letters are used. The letters 
D, F, I, O, Q, U, and W are left out because they look too much like other digits
or letters to the character reader. Specify the set of possible postal codes.

Solution
The collection of all postal codes is a set U (a very large one).

U � {A0A 0A0, A0A 0A1, ..., Z9Z 9Z9}

Each element in the set is a postal code. We can imply the rule by writing the
postal codes in alphabetic/numeric order. That is, we list the terms that are letters
in alphabetic order and the other terms in numerical order. In the next sections,
we will learn how to count the number of postal codes.

In counting problems, we usually start with the set of all the possible elements of
the type being counted. This set is called the universal set. We will consistently
name the universal set U. The set of all postal codes in Example 2 is the universal
set if we are interested in counting postal codes with various properties. It is 
helpful to specify the universal set to be sure that we understand the objects that
we are counting.

Another important idea is a subset of the universal set. A subset A of U is a set
whose elements are all elements of U. If the universal set is the integers from 
1 to 10, U � {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, then A � {1, 3, 5, 7, 9} is a subset of
U. B � {0, 1, 2} is not a subset of U. Note also that C � {1, 3} is a subset of U
and also a subset of A. It is important to distinguish between the elements of a set
and the number of elements. If we wish to refer only to the number of elements,
we use the notation n(A). For this example, n(A) � 5 and n(C) � 2.

To make the idea of a universal set and its subsets clearer and also to demonstrate
some games that we can play with subsets, consider the next example.

EXAMPLE 3 Suppose three coins are tossed. Each coin can come up either heads (H) or tails
(T). We can describe the eight possible outcomes by the universal set U.

U � {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

where, for example, the sequence HTH indicates that the first coin came up heads,
the second tails, and the third heads. Define the subsets corresponding to the 
following statements, and state the number of elements in each.

a. E: the second coin has come up heads
b. F: exactly one coin has come up heads
c. G: two out of the three coins have come up the same
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Solution
a. All the sequences in E have an H as the second term. 

Hence, E � {HHH, HHT, THH, THT}, and n(E) � 4.

b. The sequences in F are made up of one H and two Ts, so 
F � {HTT, THT, TTH}, and n(F) � 3.

c. The sequences in G have two Hs and one T or one H and two Ts. 
Hence, G � {HHT, HTH, THH, TTH, THT, HTT}, and n(G) � 6.

We can display the universal set and selected subsets
in a picture called a Venn diagram. We display a
subset by enclosing the appropriate elements within 
a closed curve. Here we show a Venn diagram for
subset E, given in Example 3. A Venn diagram is 
useful for showing the relationships among subsets.

In Example 3, the object was to specify subsets based on a verbal description.
Sometimes we need to play the game in reverse. We assume the most logical rule
to describe a set when not all the elements are listed. The answers to the following
example might be different for different people.

EXAMPLE 4 Consider the universal set U of integers from 1 to 100. That is,
U � {1, 2, …, 100}. Describe the following subsets of U in a simple sentence.

a. A � {1, 2, 3, …, 10}

b. B � {1, 4, 9, …, 81, 100}

c. C � {1, 10, 11, 12, …, 19, 21, 31, …, 91, 100}

Solution
a. A is the subset of U consisting of all integers from 1 to 10.

b. B is the subset of U consisting of all perfect squares up to 100.

c. C is the subset of U consisting of all integers from 1 to 100 that contain at
least one digit 1. (Notice how many elements had to be listed to make this rule
obvious!)

If A is a subset of U, then the complement of A is the subset of U containing all
the elements of U not in A. We usually denote the complement of A by A�, that is,
A with a bar over the top. For instance, in Example 4, we have

A� � {11, 12, …, 100} is the subset of integers in U greater than 10; 

B� � {2, 3, 5, …, 99} is the subset of integers in U that are not perfect squares; 

and C� is the subset of integers in U that do not contain the digit 1.
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By definition, the complement of a subset A contains all the elements of U not in
A. When we are counting the number of elements, n(A) � n(A�) � n(U),
or more usefully,

If it is difficult to count the elements in A, we
can determine this number indirectly by finding
n(A�) and n(U). A Venn diagram demonstrates
the rule clearly. All the elements in U are 
divided into two distinct groups, those in A
and those in A�.

In Example 5, it is difficult to count the elements in A but easy to count those 
in A�.

EXAMPLE 5 How many integers from 1 to 1000 are not divisible by 5?

Solution
Let U � {1, 2, 3, …, 1000} be the universal set so that n(U) � 1000. If A is the
subset of integers not divisible by 5, then the complement of A is the set of 
integers divisible by 5. 

A� � {5, 10, 15, …, 1000} � {1 � 5, 2 � 5, 3 � 5, …, 200 � 5}

We can see that n(A�) � 200, so it follows that 
n(A) � n(U) � n(A�) � 1000 � 200 � 800. There are 800 integers from 1 
to 1000 not divisible by 5.

This simple rule is surprisingly useful. If it looks difficult to count the number of
elements in a subset directly, try instead to count the elements of the complement.
You will also have to define U and find n(U).

Part A

1. Suppose that U is the set of all two-digit integers and A is the subset of U of
integers containing the digit 7. List the elements of U and A.

Exercise 10.1

n(A) � n(U) � n(A�)
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2. A restaurant serves four main courses and three desserts. If a meal consists 
of a main course and a dessert, list the set U of all possible meals.

3. A school library has five different calculus books. A student is allowed to sign
out two books at one time. List the set of all possible ways that two books can
be signed out.

4. The universal set U is made up of the letters of the alphabet. If V is the subset
of vowels, list the elements of V and its complement and find n(V) and n(V�).

5. The three letters of the word cat can be re-arranged to form other three-letter
words, most of which are not real words. Let U be the set of all such words.

a. List all the elements in the universal set U.

b. What is n(U)?

c. List the elements in the following subsets of U.

A: all words beginning with the letter a

B: all words ending with t

d. Show A, B, and U on a Venn diagram.

e. Describe the complements A� and B� in words.

Part B

6. A binary sequence is a sequence of 0s and 1s. Consider the universal set U of
binary sequences of length 3.

a. List all the elements in U.

b. What is n(U)?

c. List the elements in the following subsets of U.

E: the sequence has exactly one 1

F: the sequence has at least one 1

d. If F� is the subset of all elements in U that are not in F, describe F� in
words.

e. Verify directly that n(F) � n(F�) � n(U).

7. Consider the set of integers U � {1, 2, 3, …, 100}.

a. Describe the following subsets in words.

R � {5, 10, 15, …, 100}, S � {53, 54, 55, …, 75, 76}, R�
b. Indicate the elements in the following subsets of U.

P: all integers that are greater than 70

Q: all integers that end in the digit 7

c. For P and Q given in b, describe P� and Q� in words.

Knowledge/
Understanding

Knowledge/
Understanding

Application
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8. Suppose U is the set {1, 2, 3, …, 1000} with subset 
S � {10, 20, 30, …, 1000}. In words, describe S and its complement. 
What are n(S) and n(S�)?

9. Two subsets of the set U � {1, 2, …, 100} are X: the integers from 1 to 100
that are prime, and Y: the integers from 1 to 100 that are perfect squares.

a. Do X and Y have any elements in common? Explain. Note that 1 is not a
prime number.

b. Is Y the complement of X? Explain.

10. Let U be the set of all subsets of size 2 with elements selected from the 
six letters a, b, c, d, e, f. 

a. Write out all of the elements of U.

b. Find n(U).

c. Find the following subsets of U.

W: each subset contains the letter a

V: each subset contains at least one of a or f

d. Show V and V� on a Venn diagram.

11. In a simple lottery, three balls are selected to form a three-digit number from 
a set of nine balls numbered from 1 to 9. Balls are not replaced once they
have been selected.

a. Let U be the universal set of all possible outcomes. Develop an appropriate
notation and rule to describe the elements of U.

b. Determine the number of elements of the following subsets of U.

A: the ball labelled 4 is selected first

B: the ball labelled 4 is selected

12. Repeat Question 11 if the balls are replaced on each draw. Suppose U1 is the
set of all possible outcomes. Explain why n(U1) � n(U).

13. Let U � {1, 2, 3, …, 1000} be the set of positive integers less than or equal to
1000. Find the size of the following subsets of U.

a. E: the subset of integers divisible by 7

b. F: the subset of perfect squares 

c. G: the subset of integers not divisible by 3

d. H: the subset of integers not ending in 9

Communication

Application

Communication
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Part C

14. Three letters that include the name of the recipients are folded and put into
three envelopes. Suppose we label the letters A, B, and C and the 
corresponding envelopes a, b, and c. Construct a notation for the universal 
set to describe all the possible assignments of letters to envelopes. List the
elements of the subset that corresponds to no letter being sent to the correct
person.

15. Suppose U is the set of points in the plane defined by 
U � {(x, y):0 � x � 1, 0 � y � 1}. V � {(x, y):x � y � 1} is a subset of U.
Draw a Venn diagram that shows U, V, and V�.

Thinking/Inquiry/
Problem Solving
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Section 10.2 — Combining Subsets

In this section, we look at two operations for combining subsets that will later be
helpful in solving counting problems. To demonstrate these operations, suppose
the universal set is the positive integers from 1 to 20. 

U � {1, 2, …, 20}

The subset A � {2, 4, 6, …, 20} corresponds to the
even integers in U (i.e., those divisible by 2), and the
subset B � {5, 10, 15, 20} corresponds to the integers
in U divisible by 5. We can display A, B, and U in a
Venn diagram.

The fact that A and B overlap in the picture indicates that they have one or more
elements in common. The elements 10 and 20 are found in both subsets. 
The subset corresponding to the common elements of A and B is called the 
intersection of A and B and is denoted by A � B. The intersection is represented
by the shaded area on the Venn diagram. In this case,

A � B � {10, 20}.

In words, A � B contains all positive integers less than or equal to 20 that are
divisible by both 2 and 5. 

The total area covered by A and B represents all the elements in U that are found
in either A or B or both. This subset is called the union of A and B and is denoted
by A � B. Here

A � B � {2, 4, 5, 6, 8 10, 12, 14, 15, 16, 18, 20}.

Remember the fundamental rule that we do not repeat elements in a set. Even
though 10 is found in both A and B, it appears only once in the union A � B. In
words, A � B is the subset of U of integers divisible by either 2 or 5.

The general case is displayed in the Venn diagram.
Note that this Venn diagram has been simplified by
omitting the individual elements.

In some cases, two subsets have no elements in common. We call these subsets
disjoint.

In the above example, let C � {5, 15} be the subset
of odd integers divisible by 5. The subsets A and C
have no common elements, so these two subsets are
disjoint. On the Venn diagram, A and C have no 
overlapping area.
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EXAMPLE 1 Consider the set U of binary sequences of length 4.

U � {0000, 0001, 0010, …, 1111}

Let W be the subset of binary sequences starting with 11, and V be the subset of
sequences that include three or more 1s.

a. Show U, W, and V on a Venn diagram.

b. Find the elements in W � V and describe this subset in words.

c. Find the elements in W � V and describe this subset in words.

d. On a test, a student explained that the complement of W is the subset of
sequences that end with 11. Is this answer correct? Explain.

Solution

a. We have W � {1111, 1110, 1101, 1100} and 
V � {1111, 1110, 1101, 1011, 0111}. The Venn dia-
gram is shown to the right.

b. W � V � {1111, 1110, 1101} and W � V is the
subset of binary sequences with at least three 1s
starting with 11.

c. W � V � {1111, 1110, 1101, 1011, 0111, 1100}
and W � V is the subset of binary sequences that
have at least three 1s or start with 11.

d. The complement of W contains all of the sequences in U that are not in W. For
example, 0000 is in W�, so the complement of W is not the subset of 
binary sequences ending in 11. 

We can build many subsets by using the union, intersection, and complement. 
For example, if A, B, and C are three subsets, then A � B � C is the subset 
containing all those elements that are common to A, B, and C. Similarly,
A � B � C is the subset containing all elements found in at least one of A, B,
or C. These definitions can be extended to any number of subsets.

Part A

1. Four books labelled A, B, C, and D are placed on a shelf. The universal set U
is the set of all possible arrangements. The subset R is all arrangements in
which A is to the left of B. The subset S is all arrangements in which B is at
the right end of the shelf. List the elements of U, R, S, R � S and R � S.

Exercise 10.2
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2. A store stocks jeans and shirts in three colours: blue, black, and grey. You
decide to buy a pair of jeans and a shirt. The universal set U is the set of all
possible selections you can make. If A is the subset of choices with a blue
shirt, find n(A) and n(A�).

3. If U is the set of all binary sequences of length 4, find n(E � F), where E is
the subset of sequences that start with 1 and F is the subset of sequences that
have at least two 1s.

Part B

4. A pizza special can be ordered with any three of nine toppings. Let P be the
subset of pizzas with pepperoni and M be the subset of those with mush-
rooms. Are P and M disjoint? Explain.

5. For any two subsets A and B, can n(A � B) � n(A) � n(B)? Explain.

6. Let U be the set of positive integers from 1 to 16, A be the subset of such 
integers divisible by 3, and B be the subset of such integers greater than 10.

a. Draw a Venn diagram to display U, A, and B. Do not include the individual
elements of U.

b. Determine A � B and describe this subset in words.

c. Are A and B disjoint?

d. Determine A � B and describe this subset in words.

e. Determine n(A), n(B), n(A � B), and n(A � B).

7. Suppose the 5 letters p, p, p, q, q are arranged in a sequence. Let U be the
universal set of all such sequences, C be the sequences in U starting with p,
and D be those sequences ending with p.

a. Write all the elements of U, C, and D.

b. Find C � D and describe this subset in words.

c. Find C � D and describe this subset in words.

d. Find a subset of U that is disjoint with C.

8. Suppose A and B are two disjoint subsets of U. Explain in words why 
n(A � B) � n(A) � n(B).

9. Five points in the plane, labelled A, B, C, D, E, are shown 
on the diagram. No three points fall on a line.

a. Construct the set U of all possible triangles that can be
formed using these five points. Note that triangle ABC
and triangle BCA are the same.

Communication

Thinking/Inquiry/
Problem Solving
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b. List the elements of the subset F of triangles that have the line segment 
AB as one side and the subset G of triangles that contain C as a vertex.

c. List the elements of F � G and F � G.

10. The digits 1, 2, 3, 4 are arranged to make a four-digit number. Let A be the
subset of those numbers that start with 1, B the subset with 2 in the second
place, C the subset with 3 in the third place, and D the subset with 4 in the
fourth place.

a. Is any pair of these subsets disjoint? Explain.

b. Does A � B � C � D � U, where U is the universal set of all of the 
possible arrangements? Explain.

c. Find A � B � C � D.

11. We want to select a committee of two people from six candidates, three 
girls named A, B, C and three boys D, E, F. Let U be the set of all such 
committees. By listing the elements in each subset, show that U can be 
written as the union of three subsets corresponding to a committee with two
girls, a committee with one boy and one girl, and a committee with two boys.

12. The letters of the word tree are scrambled. The universal set U is the set of 
all possible arrangements. If E is the subset of arrangements in which the two
es are side by side and F is the subset of arrangements in which the t comes
before the r, find n(E), n(F), n(E � F) and n(E � F).

13. Consider the set P of points in the Cartesian plane defined by 
(i, j), 1 � i, j � 4, where i and j are integers.

a. Draw a set of axes with a dot at each of the points in P.

b. On the plot, show the subsets corresponding to i � j � c, where c takes 
on values 2 to 8.

c. Is any pair of these subsets disjoint?

d. Does their union include all the elements of P?

Part C

14. Suppose A and B are two subsets of a set U.

a. In words, describe the subset A � B in terms of the elements of A and B.

b. In words, describe the subset A�����B�, the complement of A � B.

Thinking/Inquiry/
Problem Solving

Application
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c. In words, describe the subset A� � B�.

d. Explain why A�����B� � A� � B�.

e. Show the result in d by illustrating each set on a Venn diagram.

15. Use the results from Question 14 to show that A�����B� � A� � B�. 

16. A and B are two subsets of a set U as shown on the Venn
diagram. Show that U can be written as the union of four
pair-wise disjoint subsets defined in terms of A, B, and 
their complements. 

(The results in Questions 14 and 15 are known as De Morgan’s Rules, after
Augustus De Morgan (1806–1871), the first Professor of Mathematics at
University College, London.)
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Section 10.3 — The Sum Rule

In the previous section, we combined two subsets using the union and intersection
operations. Many of the problems we encounter require only that we determine
the number of elements in a set. For example, if we wish to know our chances of
winning a lottery, we need to determine the number of possible outcomes, but we
do not need a listing of them all. For this reason we will now focus on the number
of elements in sets. Here, for any two subsets E and F of some set U, we look 
at the relationship between n(E), n(F), n(E � F), and n(E � F). We can 
demonstrate this relationship with a simple example.

EXAMPLE 1 Four wooden blocks are arranged in a row. Two of the blocks are red, one is 
yellow, and one is blue. Let U be the set of all possible arrangements. 

U � {RRYB, RRBY, RYRB, RBRY, RYBR, RBYR, BRRY, YRRB, BRYR, YRBR,
BYRR, YBRR}

where, for example, RRBY represents the arrangement with two red blocks first,
then the blue block, and finally the yellow block. Let E be the subset of U
corresponding to the second block in the arrangement being yellow and F the 
subset corresponding to all arrangements in which the two red blocks are 
side by side. Then we have

E � {RYRB, RYBR, BYRR}
F � {RRBY, RRYB, BRRY, YRRB, BYRR, YBRR}

E � F � {RRBY, RRYB, BRRY, YRRB, BYRR, YBRR, RYRB, RYBR}
E � F � {BYRR}

and n(E) � 3, n(F) � 6, n(E � F) � 8, n(E � F) � 1
We observe that n(E � F) � n(E) � n(F) � n(E � F).

This rule is true in general and simply states that to count the number of elements
that are in one or both of E or F, we first count the number in E plus the number
in F. Since we have counted the elements in E � F twice, we must subtract the
number of elements that appear in both E and F. We call this result the sum rule.

Sum Rule
If E and F are two subsets, the number of elements found in one or both of
E or F is n(E � F) � n(E) � n(F) � n(E � F). 
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A Venn diagram can help to demonstrate the sum
rule. In the diagram, the number of elements that 
are in E but not in F is shown as n(E) – n(E � F).
Similarly, the number of elements in F but not in E
is n(F) – n(E � F).

The number of elements in the overlapping area is n(E � F). In total, the number
of elements in E or F is

n(E � F) � [n(E) � n(E � F)] � [n(F) � n(E � F)] � n(E � F)
� n(E) � n(F) � n(E � F)

We use the sum rule to count the number of elements in the union of two 
subsets, as illustrated below.

EXAMPLE 2 What percent of the integers from 1 to 100 are divisible by either or both of 2 or 3?

Solution
U � {1, 2, …, 100} is the set of integers from 1 to 100. Let E be the subset of
integers that are divisible by 2 and F the subset of integers divisible by 3. Then

E � {2, 4, 6, …, 100} � {1 � 2, 2 � 2, 3 � 2, …, 50 � 2}
F � {3, 6, 9, …, 99} � {1 � 3, 2 � 3, 3 � 3, …, 33 � 3}

The subset E � F is all integers in U that are divisible by both 2 and 3. That is,
this subset contains those that are divisible by 6. 

Hence E � F � {6, 12, 18, …, 96} � { 1 � 6, 2 � 6, 3 � 6, …, 16 � 6}.
The integers divisible by 2 or 3 are all those in E � F. 

We find n(E) � 50, n(F) � 33, n(E � F) � 16 by counting the elements directly.
Applying the sum rule, we get

n(E � F) � n(E) � n(F) � n(E � F) � 50 � 33 � 16 � 67

Hence, �1
6
0
7
0� or 67% of the integers from 1 to 100 are divisible by 2 or 3.

In many counting problems, the subsets E and F are disjoint. That is, they have 
no common elements, so that n(E � F) � 0. Then we can state the sum rule for
disjoint sets. Of course, we can always use the first rule, remembering that for 
disjoint sets n(E � F) � 0.

Sum Rule for Disjoint Subsets
If E and F are disjoint, the number of elements found in E or F is
n(E � F) � n(E) � n(F). 
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n(U)

n(E)–n(E�F)

n(E) n(F)

n(F)–n(E�F)

n(E�F)
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EXAMPLE 3 We want to form a committee of two people. There are six people available, three
boys and three girls. How many committees can we form so that both members
are the same sex?

Solution
Let the three girls be denoted by a, b, and c. If G is the subset of committees with
two girls, then

G � {{a, b}, {a, c}, {b, c}}

where, for example, {a, b} is the committee of a and b. Then n(G) � 3. Similarly,
if B is the subset of committees with only boys, n(B) � 3. Note that G and B are
disjoint. The subset G � B contains all committees with both members the same
sex, so we have n(G � B) � n(G) � n(B) � 6. The possible number of 
committees is six.

Part A

1. Suppose that U � {1, 2, 3, …, 100} is the set of integers from 1 to 100. If A
is the subset of perfect squares and B is the subset of integers divisible by 4,
verify that n(A � B) � n(A) � n(B) � n(A � B) by directly counting the
number of integers in each subset.

2. Six trees—three cedars and three pines—can be planted in a row in 20 differ-
ent ways. Considering the complement, determine the number of arrange-
ments that have at least two trees of the same type side by side.

3. Two dice, one red and one green, are rolled. The set U of possible outcomes
is given by all ordered pairs of the form (r, g) where 1 � r, g � 6. For 
example, the pair (3, 4) indicates that the red die came up 3 and the green die
came up 4. Consider the following subsets of U.

A: both dice have the same value

B: the sum of the values is 7

a. List all the pairs in these two subsets.

b. List all pairs that are in A � B.

c. Find n(A � B).

Application

Knowledge/
Understanding

Exercise 10.3
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Part B

4. Consider the set U of arrangements of the four letters a, b, c, d. That is

U � {abcd, abdc, …, dcba}.

Let A be the subset of arrangements that start with the letter a, and B the 
subset of arrangements that have b in the second position. By listing the 
elements, verify the sum rule for the subset A � B.

5. A student was asked to count the number of two-digit positive integers that
start or end with 7. She decides that there are 10 such numbers that start with
7 (i.e., 70 to 79) and 9 that end with 7 (i.e., 17, 27, …, 97). She concludes
that there are 19 such two-digit numbers. Explain why this answer is not cor-
rect.

6. Let U be the set of two-digit integers. V is the subset of such integers that
contain at least one 5 and W is the subset of integers that contain at least one
6. Describe the complement of V � W in words and, hence, find n(V � W).

7. How many integers in the set U � {1, 2, 3, …, 30} are not divisible by 3?
(Hint: First look at the subset of U corresponding to integers that are 
divisible by 3.)

8. A first-year calculus class has 90 students, of whom 42 are girls. Of the 90 
students, 37 take Business 101. If 19 of the girls do not take Business 101,
how many of the boys do?

9. The Venn diagram shows the subsets A and B of the
set U and gives the number of elements in each 
non-overlapping area.

a. Find n(A), n(B), n(A � B).

b. What is n(U)?

10. Suppose U is the set of binary sequences of length 3 and Ei, i � 0, 1, 2, 3 is
the subset of such sequences with exactly i 1s. Explain why 
n(U) � n(E0) � n(E1) � n(E2) � n(E3).

11. Prove that n(A � B) � n(A) � n(B) for any subsets A and B.

12. What is the maximum number of days in a non-leap year that can fall on the
weekend?

13. How many numbers from 1 to 1000 are

a. divisible by 5

b. divisible by 7

Thinking/Inquiry/
Problem Solving

Communication

Knowledge/
Understanding
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c. divisible by both 5 and 7

d. divisible by neither 5 nor 7

e. divisible by 5 but not divisible by 7

14. How many integers between 1 and 1000 are divisible by 7 or 13?

Part C

15. Suppose A and B are two subsets of a set U. Use De Morgan’s Rules 
(see Questions 14 and 15 in Section 10.2) to show that n(A � B) � n(U) �
n(A� � B�). Show this result on a Venn diagram.

16. Consider the set U of all binary sequences of length 4; that is,
U � {0000, 1000, …, 1111}.

Three subsets of U are

A: sequences that start with 1

B: sequences that end in 1

C: sequences that contain exactly two 1s.

a. By listing the sequences, find the number of elements in the following 
subsets.

A, B, C, A � B, A � C, B � C, A � B � C

b. Verify that 

n(A � B � C) � n(A) � n(B) � n(C) – n(A � B) – n(A � C) 
– n(B � C) � n(A � B � C).

c. Show this result, the sum rule for three events, on a Venn diagram.

17. Use the sum rule for three events to find the number of integers between 1
and 1000 that are divisible by 2 or 3 or 5.

18. Suppose we have n subsets E1, E2, …, En. State a formula for 
n(E1 � E2 � … � En) in terms of n(Ei), n(Ei � Ej), n(Ei � Ej � Ek), …,
1 � i, j, l, … � n. (This development is known as the Principle of Inclusion
and Exclusion.)

1 0 . 3  T H E  S U M  R U L E 371



Section 10.4 — The Product Rule

Suppose Eric has five shirts and three sweaters. How many different shirt-sweater
combinations can he make? He doesn’t worry about whether the colours match;
however, he does know that sweaters can be worn only over shirts.

We solve this problem with the product rule, the most useful and powerful 
counting tool. It will be used in almost every counting problem.

We label the shirts a, b, c, d, e and the sweaters A, B, C. The ordered pair bC
corresponds to shirt b and sweater C. We will always list the shirt first to avoid
confusion. To answer the question posed, we want to find n(U) where the 
universal set U � {aA, aB, aC, …, eC} represents all the possible shirt-sweater
combinations. We count the elements of U constructively.
That is, we look at how many ways we can build
an element of U by filling in the two boxes shown
to the right. Each way of filling the boxes will cor-
respond to a unique element of U.

The box on the left is the shirt choice and can be
filled in five ways, each way corresponding to 
a different choice of shirt. Once we have chosen
the shirt, there are then three ways to fill the 
second box corresponding to the choice of sweater.
Since there are three choices of sweater for each
choice of shirt, there are 5 � 3 � 15 different
combinations.

Note that we build the combination in order, first the shirt and then the sweater.
The set U has 15 elements listed below so that you can confirm the logic of the
argument.

U � {aA, aB, aC, bA, bB, bC, cA, cB, cC, dA, dB, dC, eA, eB, eC}

Product Rule
If the first of the two tasks can be done in p ways and, for each of these
ways, the second task can be done in q ways, then together the two tasks 
can be done in p � q ways.
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In the shirt and sweater example, there were only two tasks: choose the shirt and
then the sweater. In most applications, there are more than two tasks. For these
applications, we simply use the product rule repeatedly.

EXAMPLE 1 Suppose we have three copies of each of the letters of the alphabet and we want
to make a three-letter acronym such as IBM (which stands for International
Business Machines). The acronym IBM is different from BMI (an American 
performing rights organization that represents more than 140 000 U.S. 
songwriters and composers and over 60 000 U.S. publishers), even though both
acronyms use the same three letters. The order of the letters in the acronym is
important.

The set of all such acronyms is U � {AAA, AAB, …, ZZZ}

U has a large number of elements and we will
need a good strategy to find n(U). Note that we
can construct any three-letter acronym by placing
one of the 26 letters in each of the boxes.

The subscript on each box indicates which letter in the acronym it represents.

We find n(U) by looking at how we construct the
acronyms. To build an acronym, the first box can
be filled with any one of the 26 letters. Suppose
for example, we place an X in the first box.

Now let’s choose the second letter of the
acronym. For each possible choice for the first
letter, there are 26 choices for the second box.
Using the product rule, there are 26 � 26 � 676
ways to construct the first two letters of the
acronym. We might, for example, choose Y for
the second letter.

Finally, we complete the acronym by choosing
the third letter. For every possible choice for the
first two letters, there are 26 choices for filling
the third box, so any letter, including X and Y,
can be used.

There are 676 � 26 ways to construct the three-letter acronym. Hence, there are
17 576 three-letter acronyms.

The product rule was used twice in the above example. We can write out a general
form if there is a series of tasks to perform in sequence.
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EXAMPLE 2 A computer codes information in a binary sequence of length 8, using 0 or 1 for
each term in the sequence. Each such sequence is called a byte. How many 
different bytes can be formed?

Solution
It is always a good idea to identify the objects being counted. A typical byte is
01001110 and the set of all bytes is 

U � {00000000, 00000001, 00000010, …, 11111111}.

To count the bytes, we look at how we can construct them. Here we have eight
boxes to fill, corresponding to the eight terms of the sequence.

Each box can be filled in two ways and the conditions for the product rule apply,
so there are

2 � 2 � 2 � … � 2 � 28

binary sequences of length 8.

We can make counting problems more interesting by looking at subsets of the 
universal set.

EXAMPLE 3 A word is formed by arranging the four letters a, b, c, d with no repetition. U is
the set of all such words. B is the set of all words in U with last term a, and C is
the set of all words in U with third term b or c. List two elements of each set.
Then determine n(U), n(B), and n(C).

Solution
We have U � {abcd, abdc, …}, B � {bcda, bdca, …}, and C � {abcd, acbd, …}
To count the elements of U, we can construct a word by filling the four boxes as
shown.

Generalized Product Rule
If the first of a number of tasks can be done in p ways and, for each of 
these ways, the second task can be completed in q ways and, for each of
these ways, the third task can be completed in r ways, and so on, then 
the entire sequence of tasks can be done in p � q � r � …ways.

C H A P T E R  1 0374



We can select any one of the four letters for the first letter of the word. For any
one of these choices, there are three ways to select the second letter. There are
then 4 � 3 ways to choose the first two letters. For each of these, the third letter
can be selected in two ways from the remaining unused letters. Finally, for each
of these selections there is only one remaining letter and, hence, only one way to
choose the fourth letter. Applying the product rule, there are 4 � 3 � 2 � 1 � 24
words in U.

To count the words in B, we can again count the ways of filling the four boxes.
This time we start with the fourth letter in the word, which must be an a. There is
only one choice. For this choice, there are three ways to select the first letter, then
two ways to select the second. For each of these choices, there is one way to
select the third letter. Hence n(B) � 1 � 3 � 2 � 1 � 6.

To count the elements of C, we start with the third letter of the word, which is
either b or c. There are two choices. For each of these choices, the first letter can
be selected in three ways, then the second in two ways. For each of these choices,
the fourth letter can be selected in one way. Hence, using the product rule, we
have n(C) � 2 � 3 � 2 � 1 � 12.

In the above example, we see that we can construct sequences by starting with
different terms. A very good strategy is to start with the terms that are most
restricted. To find n(C), if we had started with the first letter (four choices) and
then selected the second (three choices), we would have a problem with the third
letter, since the number of possible letters would vary depending on whether we
had already selected b, or c, or both.

In the product rule, stated once again, the phrase and for each of these ways can-
not be ignored. When using the product rule in its simple or general form, you
must always check that this condition is satisfied. The next example shows what
can go wrong if the condition does not apply.

EXAMPLE 4 The digits 1, 2, 3, 4, 5 can be arranged to form five-digit numbers. How many of
these numbers are even?

Product Rule
If the first task can be done in a ways and, for each of these ways, the 
second task can be done in b ways, then together the two tasks can be 
done in a � b ways.
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Solution
A five-digit number is a sequence of length 5. Let E be all those five-digit 
numbers that are even. Then E � {12354, 14532, …}.

There are five boxes to fill.
Suppose we start with the first.
The first term can be any one
of 1, 2, 3, 4, or 5. There are
five choices.

The last term must be even, so we consider it next. There are two possibilities,
either 2 or 4. Then the second term can be selected in three ways, the third in two
ways, and the fourth in one way. Hence, there are 5 � 3 � 2 � 1 � 2 � 60 ele-
ments in E.

This is the wrong answer because our analysis is faulty. There are five choices 
for the first term. If that term is 1, 3, or 5, there are two choices for the last term.
However, if we use 2 or 4 for the first term, there is only one possibility for the
last term. Once the first digit is chosen in five ways, it is not true that for each of
these ways there are two ways to select a digit for the fifth place.

Rethinking the solution, we fill the final position first and have two choices. 
For each of these, there are four choices for position 1, three for position 2, two
for position 3, and one for position 4. Then n(E) � 4 � 3 � 2 � 1 � 2 � 48.

When you are using the product rule to count sequences and arrangements,
1. List some of the sequences you are counting by defining the universal set 

and appropriate subsets. This helps to develop a good notation and to clar-
ify any necessary restrictions.

2. Start by constructing the most restricted terms.
3. Make sure that the condition for each of these ways is met. Sometimes it

is not possible to do this. We will discuss these situations in the next sec-
tion. You can avoid mistakes by writing a brief explanation of the count-
ing process.
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Part A

1. A four-digit PIN number can be represented as a sequence with four terms. 
If each term can be any digit from 1 to 9,

a. list three different elements in the set U of all possible four-digit PIN 
numbers.

b. Using the product rule, write a clear explanation of how to find n(U).

2. Four different calculus books are arranged on a shelf. Explain why there are
24 different arrangements possible.

3. A restaurant menu has three appetizers, four main courses, and three desserts.
If you decide to order one appetizer, one main course, and one dessert, how
many different meals can you order? Explain.

4. A Canadian postal code has the form XxX xXx where X is an uppercase letter
and x is a digit from 0 to 9. How many postal codes are there if the letters 
D, F, I, O, Q, U, and W are not used?

5. How many possible seven-digit telephone numbers are there within a given
area code such that the first digit is 3, 5, or 6?

Part B

6. Six people arrange themselves in a row for a photograph. How many 
arrangements are possible if the two tallest people are at opposite ends of 
the row?

7. The solution to a clue in a crossword 
puzzle is an anagram (a rearrangement) of
the word alerting. Based on the clues
already solved, you know that the second 
letter is i and the last letter is e, as shown. 
A computer program is available to look 
at all the possible arrangements of the
remaining letters. How many possibilities
are there?
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8. The letters of the word cat can be rearranged to form six different words.
What is wrong with the following argument?

a. The first letter can be any one of the three letters; for example, A, C, or T.

The second letter can be any one of the three letters; for example, A, C, or T.

The third letter can be any one of the three letters; for example, A, C, or T. 

Hence, there are 3 � 3 � 3 � 27 possible arrangements of the letters 
of cat.

b. Write a correct argument using the product rule.

9. A pizza restaurant has a special deal: for only $6.99, you get a large pizza
with any three toppings chosen from mushrooms, extra cheese, pepperoni,
sausage, pineapple, onions, green pepper, anchovies, or olives. A student uses
the product rule to determine that there are 9 � 8 � 7 � 504 different pizzas
possible. Is this correct? Explain.

10. There are ten questions on a true/false test. Students attempt all questions.

a. Show how an answer sheet can be represented by a sequence of length 10.

b. How many different answer sheets are possible?

11. A mathematics contest has seven questions, each with four possible answers
A, B, C, D. As well, a student may choose not to answer any particular 
question. Suppose that 30 000 students enter the contest. Is it possible that
every answer sheet is different? Explain.

12. A three-letter acronym is a sequence of length 3 with terms that are letters of
the alphabet. Let U be the set of all such sequences. Consider the following
subsets.

A: acronyms that start with a vowel

B: acronyms using only the letters from the set P, Q, R, S, T.

C: acronyms made up of three different letters

a. List two elements in each of U, A, B, C.

b. Find the size of each of these sets.

c. Find n(A � B).

d. In words, describe the set of acronyms A � B.

e. Find n(A � B).

f. Find the number of three-letter acronyms that use one letter at least twice.

13. The letters a, b, c, d, e, f can be rearranged to form a number of words or
sequences of length 6 (no repeated letters are allowed). Let U be the set of all
such words. Find n(U) and the number of such words that do not begin with a.

Thinking/Inquiry/
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14. Repeat Question 13 assuming the word formed has only four letters selected
from the given six.

15. Consider the set of four-digit integers {1000, 1001, 1002, …, 9999}.

a. Use the product rule to explain why there are 9000 such integers.

b. How many of these integers end in 7 or 8?

c. How many of these integers have no repeated digits?

d. How many of these integers have repeated digits?

In these problems and elsewhere, “repeated” means that the same digit can be
used more than once, regardless of position.

16. A computer password must have eight symbols. These symbols can be either
upper- or lower-case letters or digits from 0 to 9, and any symbol can be used
repeatedly.

a. How many passwords can be formed?

b. How many passwords can be formed that start and end with a digit?

c. How many passwords can be formed with no repeated symbols?

d. How many passwords can be formed that have at least one 9?

17. We can always write a positive integer as the product of prime factors. For
example, 12 � 223. Every integer divisor of 12 can then be written in the
form 2a3b where 0 � a � 2, 0 � b � 1.

a. Show that every divisor is equivalent to a sequence of length 2 where the
first term is 0, 1, or 2 and the second term is 0 or 1.

b. How many such sequences can be formed?

c. How many divisors of 12 are there?

d. Use the same method to count the divisors of 144.

e. How many divisors of 144 are odd?

18. The integer 64 800 can be factored as 25 � 34 � 52.

a. How many divisors does 64 800 have?

b. What fraction of these divisors is even?

Part C

19. An integer n can be factored as n � 2a3b5c, where a � 1, b � 1, c � 1.

a. How many divisors does n have?

b. What fraction of the divisors is even?

Thinking/Inquiry/
Problem Solving
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20. Suppose we have m symbols available. How many sequences of length 
3 can be formed if

a. each symbol can be used at most once?

b. each symbol can be repeated up to three times?

21. Repeat Question 20 assuming the sequence is of length r. In part b, each 
symbol can be repeated up to r times.

22. The days of the year (not including leap years) can be labelled 1 to 365. If we
have five people in a room, we can create a sequence of length 5 to represent
their five birthdays. The first term gives the first person’s birthday, and so on.

a. How many sequences are possible?

b. What percent (to two decimals) of the sequences have five distinct 
birthdays?

c. What percent (to two decimals) of the sequences have two or more 
birthdays the same?

23. Suppose there are n people in a room.

a. Repeat Question 22 to find an expression for the fraction of sequences
with two or more birthdays the same.

b. Using a calculator or spreadsheet program, find the smallest value of n so 

that the fraction in part a exceeds �
1
2�.
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Section 10.5 — The Use of Cases

To this point, we have discovered several useful tools such as the sum and 
product rules for solving counting problems. In this section, we look at the use of
cases, another simple but handy strategy. When we use cases, we divide a prob-
lem into smaller (and hopefully easier) sub-problems and solve each of these sep-
arately. Then we combine the results to get the answer to our original problem.

For a simple example, consider the following question. In the list of numbers 
1, 2, 3, …, 99, how many digits are there in total? We consider two cases.

Case Number of digits

single digit numbers 1, 2, 3, …, 9 9
two digit numbers 10, 11, …, 99 90 � 2 � 180

Total 189

For each case, we can count the number of digits easily. Note that the two cases
are completely separate; there is no overlap. In the language of sets, to find the
number of elements in a set A, we divide A into disjoint subsets and count the
number of elements in each. This is simply a special case of the sum rule applied
to two or more disjoint sets. In any problem, the challenge is to identify the 
disjoint subsets where we can easily count the number of elements.

EXAMPLE 1 From year 1 to year 2000, inclusive, how many years started with 1?

Solution
Let A be the subset of years that start with 1. We partition A into four mutually
disjoint subsets of years.

A1: all years with a single digit starting with a 1
A2: all years with two digits starting with a 1
A3: all years with three digits starting with a 1
A4: all years with four digits starting with a 1

Every pair of these subsets is disjoint and 
A � A1 � A2 � A3 � A4. The Venn diagram is shown 
at the right.
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Using a simple extension of the sum rule, we have 
n(A) � n(A1) � n(A2) � n(A3) � n(A4).

Next, we count the number of years in each of the simpler cases. We have
n(A1) � 1 (1 year starting with 1; i.e., year 1), n(A2) � 10 (10 years starting 
with 1; i.e., years 10 to 19), n(A3) � 100 (100 years starting with 1; i.e., years 100
to 199), and n(A4) � 1000 (1000 years starting with 1; i.e., years 1000 to 1999).

Since the subsets are disjoint, n(A) � n(A1) � n(A2) � n(A3) � n(A4) � 1111.
There are 1111 years between 1 and 2000, inclusive, starting with the digit 1.

The formal extension to the sum rule is shown below.

EXAMPLE 2 A sequence of length 3 is formed from the digits 1, 2, 3, …, 9 with no repetition
allowed. What fraction of these sequences contains the digit 4?

Solution
Let U � {123, 124, …} be the set of all sequences of length 3 formed from the 
9 digits. Filling three boxes and using the product rule, we see that U has 
9 � 8 � 7 � 504 elements. Let A be the subset of U in which each sequence 
contains a 4. Let A1 be the subset of A in which the 4 is the first term, A2 be the
subset in which 4 is the second term, and A3 the subset in which 4 is the third
term. Now A1, A2, and A3 are pairwise disjoint and A � A1 � A2 � A3.

Again filling boxes (in each case place the 4 first in one way), we have 
n(A1) � 1 � 8 � 7, n(A2) � 8 � 1 � 7, and n(A3) � 8 � 7 � 1. Hence,
n(A) � n(A1) � n(A2) � n(A3) � 168. 

The fraction of sequences containing 1 is �n
n
(
(
U
A)

)� � �
1
5
6
0
8
4� � �

1
3�.

There are other solutions. For example, it is easy to find n(A�) here or,
alternatively, especially after you see the answer, to see that the number of
sequences containing 4 is the same as the number of sequences containing 2 
and so on. Since each sequence contains three out of nine digits, exactly 

�
1
3� must contain 4.

EXAMPLE 3 User identifications for a local e-mail system must be formed from upper-case 
letters and can be five to eight letters long. How many such identifications are
possible?

Extended Sum Rule
The subsets E1, E2, …, Ek of a universal set U are pairwise disjoint if every
pair of subsets is disjoint. In this case, E1 � E2 � … � Ek is the subset 
that contains all elements in any one of E1, E2, …, Ek.
Then n(E1 � E2 �…� Ek) � n(E1) � n(E2 ) �…� n(Ek).
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Solution
Let U be the set of possible identifications. To find n(U), look at four cases in
which the length of the sequence is fixed. That is, define B5, B6, B7, B8 to contain
the identifications of length 5, 6, 7, and 8, respectively. These subsets are pairwise
disjoint and U � B5 � B6 � B7 � B8. We have B5 � {AAAAA, AAAAB, …}.
Filling five boxes with 26 symbols, n(B5) � 26 � 26 � 26 � 26 � 26 � 265

B6 � {AAAAAA, AAAAAB, …}. Filling six boxes with 26 symbols,
n(B6) � 266.
B7 � {AAAAAA, AAAAAB, …}. Filling seven boxes with 26 symbols,
n(B7) � 267.
B8 � {AAAAAAAA, AAAAAAAB, …}. Filling eight boxes with 26 symbols,
n(B8) � 268.
Now using the extended sum rule, we have 
n(U) � 265 � 266 � 267 � 268 � 2.2 � 1011.

Sometimes a problem that seems like a straight forward application of the product
rule might be counted using cases because there are two restrictions, each of
which affects the other.

EXAMPLE 4 A four-digit number is formed using the digits 0, 1, 2,…, 9 without repetition. 
How many such numbers are divisible by 25?

Solution
Let A be the set of four-digit numbers divisible by 25. Let A1 be the subset of A
ending in 25, A2 be the subset ending in 50, A3 be the subset ending in 75, and A4
be the subset ending in 00. Then n(A) � n(A1) � n(A2) � n(A3) � n(A4). For A1
there are seven choices for the first digit, since we cannot use 0, 2, or 5; there are
then seven choices for the second digit, since we cannot use the one chosen for
the first digit but can now use 0.

Hence, n(A1) � 7 � 7 � 1 � 1 � 49. Similarly, n(A3) � 7 � 7 � 1 � 1 � 49.
For A2 there are eight choices for the first digit and seven choices for the second
digit, so n(A2) � 8 � 7 � 1 � 1 � 56.
Clearly, n(A4) � 0, since repetition of a digit is not allowed.
Then, n(A) � 49 � 56 � 49 � 0 � 154.

Part A

1. By defining appropriate disjoint cases based on the number of days in a
month, count the number of days in the year with a date of either 30 or 31.

Knowledge/
Understanding

Exercise 10.5
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2. A special password is a sequence of length 6 that uses the digits 0 to 9 
and the letters a to z (lower case only). How many such passwords can be
constructed that contain exactly one letter and no repeated digits?

3. What is the total number of binary sequences with length no greater than 5?

4. How many binary sequences of length 6, 7, or 8 begin with 0?

Part B

5. The symbols a, b, c, and d can be used to make words of length 1 to 4 if no 
repetition is allowed.

a. How many such words can be created?

b. How many of these words end with a?

c. How many of these words contain the letter a? (Hint: Look at the 
complement.)

6. Repeat Question 5 assuming repetition of the symbols is allowed.

7. The numbers 1 to 10 are stored in a spreadsheet in a rectangular array. This
means that the number of rows times the number of columns must be 10.
How many ways can the numbers be stored in the spreadsheet?

8. How many words with three, four, or five letters can be formed if each word
must contain at least one of a, e, i, o, u, and y.

9. The number of 5s in an integer is the highest power of 5 that divides evenly
into the integer, so, for example, the number of 5s in 10, 12, and 25 are 1, 0,
and 2, respectively. What is the total number of 5s in the set of integers {1, 2,
3,…, 1000}?

10. Six letters, A, B, C, D, E, and F, are arranged into a sequence of length 6.
How many such sequences start with A or end with F?

11. How many positive integers between 1 and 2000 inclusively have distinct 
digits? What fraction of these integers is odd?

12. A sequence of length 3 is formed by first selecting one of the three words cat,
mouse, or goldfish, then using three letters (without repetition) from the 
chosen word.

a. How many sequences are there?

b. How many sequences end in the letter s?

c. How many sequences start with a vowel?

d. How many sequences contain an o?

Thinking/Inquiry/
Problem Solving

Thinking/Inquiry/
Problem Solving

Knowledge/
Understanding

Application
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13. A sequence has terms selected from the digits 0, 1, 2, …, 9. Consider the set
U of all such sequences with length at most 10.

a. Find n(U).

b. A is the subset of U corresponding to sequences with unique digits. 
Find n(A).

c. B is the subset of U corresponding to sequences that contain at least 
one 0. Find n(B).

Part C

14. A sequence of length 3 is formed from r symbols that include the letter A.
How many of the sequences contain at least one A if

a. repetition of symbols is allowed?

b. no repetition of symbols is allowed?

15. U is the set of all sequences of length 3 that can be formed using the digits 1,
2, 3, …, 9 without repetition. Let A be the subset of U in which the terms of
the sequence form an arithmetic progression. Find n(A).

16. Prove that the number of binary sequences with length less than k is 2 less
than the number of binary sequences of length k.
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Key Concepts Review

This chapter introduced you to some tools and strategies for solving counting
problems. Once you are given a counting problem, how should you proceed?

First, write down a few of the objects you are counting. Sometimes this is obvious
(e.g., all the arrangements of the letters of the word dog). In other problems, you
will have to invent a notation to carry out this task. For example, if the problem is
to count the number of committees of three that can be formed from six people,
you might label the people A, B, C, D, E, F and denote a committee by a set such
as {A, B, C}.

If the objects you are counting are sequences or arrangements, then you should
consider counting the objects by filling in boxes and using the product rule.
Always start with the terms that are most restricted.

If the problem as posed seems difficult, then specify a set A so that the counting
problem is to find n(A) and consider the complement of the set. Note that you
need to define a universal set in order to specify the complement. We hope that it
will be easier to determine the size of the complement and the universal set and
then apply the rule of the complement.

Another good strategy for difficult problems is to use cases. That is, divide A into
disjoint subsets, determine the size of each subset as a smaller and possibly 
easier problem, and use the sum rule to combine the results.

As a last resort, we can sometimes write the set A in the form A � B � C, with B
and C not disjoint. To find n(A) we can use the sum rule if we can first find n(B),
n(C), and n(B � C).

When you work through the Review Exercise, remember to write complete solu-
tions. It is important that you be able to explain your solution to others. It is not
enough to just get the correct answer. When you study mathematics, you are
learning to communicate in a way that can be applied to all sorts of problems, not
just specified mathematical ones. Solving counting problems is a useful way to
practise these skills.
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People who buy tickets for lotteries offering multi-million-dollar prizes are 
attracted to the possibility of changing their lives. Psychological theories suggest
that in order to stay attracted to lotteries, many people need the occasional 
rewards associated with smaller prize amounts. You do not need to match all six
numbers to win some money playing Lotto 6/49. The expected loss of a Lotto
6/49 ticket is lessened by the possibility of winning on five, four, or even three
numbers.

Investigate and Apply
Lotto 6/49 draws involve randomly selecting six numbers and one bonus number
from the numbers 1 through 49. In the year 2000, Lotto 6/49 paid out prizes as
follows.

1. After the six numbers and bonus number have been drawn, how many
different tickets could win each of the prizes?

2. Use the results from question 1 and the average amounts won to determine
the expected loss of a $1.00 Lotto 6/49 ticket purchased in the year 2000.

3. Approximately how many people do you think won fifth prize in the year
2000?

INDEPENDENT STUDY
Research recent Lotto 6/49 payouts. Has the expected loss of a Lotto 6/49 ticket
changed since 2000?

Lotteries have been called a regressive form of taxation. Investigate this state-
ment. ●

investigate and applywrap-up
CHAPTER 10 :  LOTTERIES  AND EXPECTED VALUES

1st Prize: 2nd Prize: 3rd Prize: 4th Prize: 5th Prize: 
Match all 6 Match any 5 Match any 5 Match any 4 Match any 3

draw draw draw draw draw 
numbers number and numbers numbers numbers

the bonus 
number

Number of 114 749 31 324 1 640 264 N/Awinners: 

Average 
amount won: $2 532 204.99 $93 300.75 $1 798.53 $65.80 $10



Review Exercise

1. We have looked at four basic tools for solving counting problems. Write a
brief description of each tool. Use an example to demonstrate its use.

a. the rule of the complement

b. the sum rule

c. the product rule

d. cases

2. The letters of the word goldfinch can be rearranged into a large number of
sequences of length 9. Let U be the set of all such sequences and let

G: all sequences in U that start with gold

F: all sequences in U that end with finch

a. Find n(U), n(G), and n(F). 

b. Are G and F disjoint? Explain.

c. In words, describe the subsets G � F and G � F.

d. Find n(G � F) and n(G � F).

3. Canadian postal codes are a sequence of length 6. The first, third, and fifth
terms are upper-case letters (D, F, I, O, Q, U, W are not used) and the second,
fourth, and sixth terms are digits from 1 to 9. Let U be the set of all postal
codes. Consider the following subsets.

A: all codes in U starting with N

B: all codes in U ending with 8

C: all codes in U that use the letter A

D: all codes in U that use the letter N exactly once

a. List two elements in each of U, A, B, C and D.

b. Find n(U), n(A), n(B), n(C), and n(D).

c. Calculate n(A � B).

4. A sequence of length 3 can be formed from the digits 0, 1, 2, ..., 9 without
repetition. Let U be the set of all such sequences and let
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A: all such sequences starting with an even digit

B: all such sequences ending with an even digit

C: all such sequences containing an even digit

a. List two sequences in each of U, A, B, and C.

b. Find n(U), n(A), n(B), and n(C) 

c. List two sequences in the intersection of A and B and then find n(A � B). 

5. A student is trying to count the fraction of binary sequences of length 6 that
start or end with 1. He cannot remember the product rule but cleverly deduces

that since the first term is either 0 or 1, exactly �
1
2� of the sequences start with 1

and, similarly, exactly �
1
2� of the sequences end with 1. He then concludes that 

the fraction of sequences that start or end with 1 must be �
1
2� � �

1
2� � 1. In other 

words, all the sequences start or end with 1. Being well trained, he had origi-
nally listed some examples of binary sequences, one of which was 011110,
which does not start or end with 1, so that he knew his answer was wrong.
Help your poor fellow counter and show him the error in his thinking. It
would be friendly to give him a correct solution too. (If you are wondering
why we have included so many binary string problems, it is because they are
of fundamental interest in computer science.)

6. Local telephone numbers (within an area code) are a sequence of seven digits.
The first digit in an area code is selected from 2 to 9. How many usable 
numbers are there? What fraction of the numbers end in 99?

7. How many integers between 1 and 1000 include the digit 7?

8. A PIN number for a photocopier can be any sequence of three or four digits.

a. How many such PIN numbers are there?

b. How many such numbers start with 2?

c. How many such numbers contain at least one 2?
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Chapter 10 Test

1. U � {1,2,3,…,999} is the set of positive integers less than 1000. 

a. In words, describe the complement of the subset A � {5,10,15,…,995}.

b. What is n(A�)?

2. What is the product rule?

3. The set U is all six-letter words that can be formed by rearranging the letters
of euclid. Let A be the subset of such words that end id and B the subset of
such words that end ic.

a. In words, describe the subset A � B and A � B.

b. Find n(A � B). 

4. How many ways can the three letters selected from A, B, C, D, E, F, G
(with no repeats allowed) be arranged in a row if A or B must come first?
Explain your reasoning.

5. The set of binary sequences of length 5 is U � {00000, 00001, …., 11111}.
How many of these sequences start and end with the same digit?

6. A student is asked to count the number of integers in the set U � {1, 2, …,
50} that are exactly divisible by 2 or 5. He first notes that the subset 
A � {2, 4,…,50} � {2 � 1, 2 � 2, …, 2 � 25} has 25 elements all divisible 
by 2, and the subset B � {5,10, …, 50} � {5 � 1, 5 � 2,…, 5 � 10} has 10
elements all divisible by 10. He then concludes that there are 25 � 10 � 35
integers in U divisible by 2 or 10.

a. Explain the error in the student’s argument.

b. Provide a correct solution to the question.

Achievement Category Questions

Knowledge/Understanding all

Thinking/Inquiry/Problem Solving 8, 9

Communication 2, 3, 4, 6

Application all
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7. A password for a small computer system is a sequence of any four letters
from the alphabet with repeated letters allowed. 

a. How many such passwords are there?

b. How many have unique letters?

c. How many have at least one a?

8. The lines on the given diagram represent connections between five locations
labeled A, B, C, D, and E. How many different ways can you go from A to E
if you cannot pass through the same location twice?

9. A four-digit number is formed by selecting digits from the set {1, 2, 3, …, 9}
with no repetition allowed. How many of these numbers are both even and
greater than 5000?

10. How many integers between 1 and 1000 do not contain a digit 7?
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Life is full of strange coincidences — two people in
your class have the same birthday or a newspaper
reports that the same lucky person has won a lottery
twice. More importantly, we sometimes notice
clusters where a number of children living near a
power station or some high voltage lines all develop
the same unusual disease. Is this a coincidence or
does the observed pattern indicate that something
about the power station or high voltage lines is
causing the disease?

One way to examine such events is to use the
mathematical theory of probability. Probability (or
chance) is a tool that allows us to see if what
appears to be unusual is really so. The so-called
birthday problem is a good example. Suppose we
assume that every student in a class is equally likely
to be born on any one of the 365 days in the year. To
simplify the calculations, we omit babies born on
February 29 in leap years, since they hardly ever
reach the age of 25 in any case. It is also true that
more babies are born in some periods of the year
than others, but we ignore this point to keep matters
simple.  Suppose that there are 20 students in your
class. We can represent the set of all possible
birthdays by a sequence of length 20 with terms
selected from the set of digits {1, 2, ..., 365}. For
example, the sequence 332, 23, 124, ..., 243
indicates that the first student’s birthday is on day
332, the second’s is on day 23, and so on. With a
class of 20 students, there are 36520 possible
sequences. Based on our assumptions, all these
sequences are equally likely to occur. We are
interested in knowing about the subset of sequences
in which two (or more) of the birthdays are the
same. We consider the complementary subset of
sequences in which every term is different. There
are P(365, 20) � 365 � 364 � ... � 346 such
sequences. Hence, the probability that two or more
people have their birthday on the same day is 

1 � �
P(3

3
6
6
5
5
,
20
20)

� � 0.411.

That is, with 20 students in a class, the chance that 

two or more have the same birthday is more than 
40 percent. What appeared unusual is in fact quite
likely to happen. You might ask how likely it is that
someone in the class has the same birthday as you.
This is a very different question. With a little
thought, you should be able to show that for a class
of 20 students, the answer is just over 0.05, so it is
in fact quite unlikely for you to find someone who
matches your birthday.

We can perform the same type of calculations for
lottery winners. For the 6/49 lottery, the chance of
picking the 6 correct balls is   1   or approximately 

� �
1 in 14 million, so winning is very unlikely. To date,
there have been about 1800 runs of the 6/49. The
chance that any particular person wins twice, even a
person who bought a ticket at every opportunity, is
incredibly small. However, given the large number
of people who play every time, the chance that
someone wins twice is much, much larger. If about
2 million people bought one ticket on all 1800 plays,
then the chance of a double winner is about 3 percent.
As far as we know, this has not happened yet!

We can use similar arguments to show that a cluster
of cases of an unusual disease is not as rare by
chance as you might expect. The chance of finding a
few children with the same rare condition at a
particular site is very small. However, if you look at
all the opportunities for clusters across the large
number of such sites then the probability of one such
cluster occurring just by chance is much larger. This
is just like the birthday problem. Among your
classmates, the chance of finding a match to your
birthday is small. The chance of finding a match of
some two birthdays is surprisingly large. 

The fact that we can explain the occurrence of a
cluster of cases by chance does not rule out the
possibility that there is a connection between the
power plant and the disease. However, it can make the
decision to investigate further much more difficult. 

49
6

C H A P T E R  1 0392

COINCIDENCE AND CHANCE



How many cars, trucks, and trailers are there in
Ontario? If each license plate is of the form
XXXnnn, where X is any one of the 26 letters of
the alphabet and n is any digit from 0 to 9, do we
have enough plates available? Since the new plates
are in the XXXXnnn format, how many vehicles can
now be accommodated for licensing? Problems
such as this one, as well as the design of social
insurance numbers, postal codes, health card
numbers, and computer passwords require careful
counting techniques. In Chapter 10, you learned
how to develop rules and strategies for solving
certain counting problems. In this chapter, you will
expand your combinatorics knowledge to derive
general formulas that can be applied to a wide
variety of problems.

CHAPTER EXPECTATIONS In this chapter, you will

• solve problems using counting principles,
Section 11.1, 11.2, 11.5

• express the answers to permutation and
combination problems, Section 11.1, 11.3,
11.4, 11.5

• evaluate expressions involving factorial
notation, Section 11.2, 11.3, 11.5

• solve problems involving permutations and
combinations, Section 11.4, 11.5

• explain solutions to counting problems, 
Section 11.5

• solve problems by combining a variety of
problem-solving strategies, Section 11.5

Chapter 11
COUNTING METHODS
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In Canada, governments are elected by the people. Eligible voters choose from a
slate of candidates in their riding. The candidate with the most votes in a riding
wins a seat in the House of Commons. The political party with the most seats
forms the government. Provincial governments may be elected similarly. One
problem with this system is that governments may be formed by parties that do
not have the support of the majority of Canadians. For example, in the 2000
Federal election, the Liberals won 40% of the popular vote but gained 57% of
the seats in Parliament. There are many voting systems used throughout the
world, each with its own strengths and weaknesses. One of these is a system of
proportional representation.

Investigate 
Consider the simplified, albeit extreme, election
results tabulated below. There are 359 eligible vot-
ers in seven riding voting for one of three political
parties.

Using the current system in Canada, Blue would win 6 out of 7 seats with 49.3%
of the votes, Green would win no seats even though it had about 44.6% of the
votes, and Red would win one seat despite earning only 6.1% of the votes.

Proportional representation would award seats in the ratio 177:160:22. For seven
seats, the unrounded allocation is 3.45, 3.12, 0.43. Dealing with these decimals is
one of the issues generated by proportional representation. Typical methods
would award four seats to Blue and three seats to Green. (Should Red get the
seat in riding G?) The next question is, which party gets which particular seats?
Regional concerns may raise the importance of this question. 

Make a list of all the possible ways of assigning four seats to Blue and three seats
to Green. In this chapter, we will see that there are 35 different ways to allocate
the seats. Which of these 35 is the best way to allocate the seats? We will also
see just how big the problem of seat allocation can become.

DISCUSSION QUESTIONS

1. When the number of seats earned by each party is determined, what criteria
should be used for selecting the different ways of allocating them?

2. Do you think mathematical methods can determine a fairer system for
allocating seats? ●

CHAPTER 11 :  VOTING SYSTEMS

investigate 

Ridings Total
Votes

Parties A B C D E F G

Blue 29 24 25 18 39 34 8 177

Green 28 22 23 17 38 31 1 160

Red 1 2 2 1 3 2 11 22

Winner Blue Blue Blue Blue Blue Blue Red



Section 11.1 — Counting Sequences With Distinct 
Elements 

In Chapter 10, we developed rules and strategies for solving certain counting
problems. In doing so, we looked at each problem and example from first princi-
ples. In this chapter, we derive general formulas that can be applied to a wide
variety of problems.

Consider this question: if there are n different symbols available, how many
sequences of length r can be formed if no symbol can be used more than once?

In Example 1, we review how to count such sequences.

EXAMPLE 1 How many sequences of length 4 can be formed using the seven letters a, b, c, d,
e, f, g if no symbol can be used more than once?

Solution
Let U be the set of all such sequences. Some typical elements in U are 

U � {abcd, abce, …, gfed}

We can count the number of sequences by using the product rule.

The first term can be selected in seven ways. No matter which letter we choose,
there are six letters left. Since we can use a letter only once, the second term can
be selected in six ways. The third can then be selected in five ways and the fourth
in four ways. Hence, there are 7 � 6 � 5 � 4 � 840 elements in U. To get the
answer, we find the product of four factors, one for each term in the sequence.

We use exactly the same approach for the general problem. Suppose we have n
symbols and we want to count the sequences of length r if we can use each sym-
bol at most once. Note that r � n. If r � n, then the answer is 0 because in build-
ing the sequence we run out of symbols before we finish the construction.

In general, the first term can be chosen in n ways. For each of these ways, the sec-
ond term can be selected in n � 1 ways, the third in n � 2 ways, and so on. The
hard part here is to see how many ways there are for selecting the final term,
which is the rth term. There are as many factors in the product as there are terms
in the sequence. For example, if r � 2, then the last (second) term can be selected
in n � 1 � n � 2 � 1 ways. If r � 4, then the last (fourth) term can be selected in
n � 3 � n � 4 �1 ways. Following the pattern, the rth term can be selected in
n � r � 1 ways. Look at it another way. We started with n possibilities. By the rth

term, we have used r � 1 of these, so we have left n � (r � 1) � n � r �1 possi-
bilities. Hence, the total number of sequences is n � (n � 1) � … � (n � r � 1).
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We denote this quantity by P(n, r), which is the product of exactly r factors.

A sequence formed from symbols is sometimes called a permutation of the 
symbols. The P in P(n, r) refers to permutation.

The formula for P(n, r) has some special cases. First, look what happens if r � n.
Here we are counting sequences of length n that can be built from n different
symbols using each symbol once and only once. In this case, the first factor in
P(n, r) is n and the last is 1. The formula for P(n, r) is the product of all of the
integers from 1 to n. We call this product n factorial and use the notation 
n! � n � (n � 1) � … � 3 � 2 � 1.

Many calculators have a function to calculate n! For example, your calculator
gives 10! � 3 628 800 and 60! � 8.321 � 1081. Some calculators will go higher;
e.g., 100! � 9.333 � 10157. As n gets larger, n! increases rapidly and soon is larg-
er than the display of a calculator, so this function is useful only for small values
of n if exact values are desired. Your calculator may also have a function for 
P(n, r); it may use the symbol nPr.

Another special case occurs for r � n; in other words, the length of the sequence
is greater than the number of symbols. In this instance, one of the factors in the
product is 0, so the formula for P(n, r) gives the correct answer of 0.

It is sometimes convenient to express P(n, r) in terms of the factorial notation. To
see how this works, consider, for example P(9, 4) � 9 � 8 � 7 � 6. The right-
hand side is the product of the first four factors in 9! We can multiply top and bot-
tom by the remaining five factors without changing the value of P(9, 4). 

The number of sequences of length r that can be formed using n 
different symbols, where each symbol can be used at most once, is

P(n, r) � n � (n � 1) � … � (n � r � 1) 
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Calculating n! on a TI-83

1. Enter n
2. Go to MATH menu
3. Scroll across to PRB sub-menu
4. Enter 4 (gives the factorial function)

5. Hit (produces the value of n!)

Calculating P(n, r) on a TI-83

1. Enter n
2. Go to MATH menu
3. Scroll across to PRB sub-menu
4. Enter 2 (gives the P(n, r) operator)
5. Enter r

6. Hit (produces the value of P(n, r))ENTER

ENTER t chnologye



P(9, 4) � 9 � 8 � 7 � 6

�

� �
9
5

!
!�

In general terms,

Be careful not to abuse this result. For example, the formula tells us that 
P(100, 2) � �

1
9
0
8
0
!
!

�, which is correct but not very useful. In this instance, it is much
better to go back to the original form P(100, 2) � 100 � 99 � 9900. The original
definition can also be useful in algebraic situations. P(n, 3) � n(n � 1)(n � 2) is
much easier to work with than P(n, 3) � �(n �

n!
3)!�.

One final point about this notation. We know that the number of sequences of
length n that can be formed using n symbols is P(n, n) = n!. Using the formula 

given in the box above, P(n, n) = �
n
0
!
!�. We can define 0! = 1 so that the formula in 

the box gives the correct answer. This definition is one of convenience; many of
the formulas we develop will work in special cases if we define 0! = 1.

We now use the formula for P(n, r) to solve some problems. Other strategies and
tools, such as the sum rule, are also still important.

EXAMPLE 2 A five-digit integer is formed from the digits 1, 2, 3, ... , 9, with no digit used
more than once.

a. How many integers can be formed?
b. What fraction of these integers begin with 3?
c. How many of these integers contain the digit 6?

Solution
a. The number of integers is the number of sequences of length 5 formed from 9 

symbols using each at most once. There are P(9, 5) � �
9
4
!
!� � 15 120 integers.

b. If the integer begins with 3, the first position is fixed and the remaining four
positions form a sequence of length 4 chosen from the remaining eight digits. 
There are P(8, 4) � 1680 such integers. Hence, �1

1
5
6
1
8
2
0
0� � �

1
9� of the integers begin

with 3.
Using a calculator, this calculation can be done directly. The fraction of 

integers beginning with 3 is �PP
(
(
8
9
,
,

4
5
)
)� � .1111, or �

1
9�.

P(n, r) � n � (n � 1) � (n � 2) � … � (n � r � 1)

� n � (n � 1) � (n � 2) � … � (n � r � 1) �

� �(n �
n!

r)!�

9 � 8 � 7 � 6 � 5 � 4 � 3 � 2 � 1
����5 � 4 � 3 � 2 � 1
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c. If the integer contains a 6, then the 6 can be in any of five positions, with the
remaining four digits forming a sequence of length 4. The number of integers is
5 � P(8, 4) � 8400. Alternatively, the number of five-digit integers that do not
contain 6 is P(8, 5), so the number that contains 6 is P(9, 5) – P(8, 5) � 8400.
Part c of Example 2 demonstrates an important principle. We determine the
number of integers in two different ways. Equating the results gives a relation-
ship among the formulas we have developed. In this case, we can use the same
method to establish the general relationship P(n, r) � P(n � 1, r) �
r � P(n � 1, r � 1).

Proof 1
Suppose n different symbols a, b,… are available. There are two ways to count
the number of sequences of length r that contain a particular symbol, say a. First,
the a can be placed in any one of r places and then the rest of the sequence, an
arrangement of n � 1 symbols in r � 1 positions, can be constructed in 
P(n � 1, r � 1) ways. Hence, using the product rule, there are 
r � P (n � 1, r � 1) sequences that contain a.

Alternately, we consider the complement—those sequences that do not contain a.
Since we can now use only n � 1 symbols to build the sequences, there are 
P(n � 1, r) sequences that do not contain a. As there are P(n, r) sequences in
total, the number of sequences containing a is P(n, r) � P(n � 1, r). Equating the
two results gives the required result P(n, r) � P(n � 1, r) � r � P(n � 1, r � 1).

Proof 2
Now we have an algebraic proof. Starting from the left side, we have

P(n, r) � P(n � 1, r) � �(n �
n!

r)!� � �(n
(
�
n �

1 �
1)!

r)!� multiply the second fraction by 

�
n
n

�
�

r
r�

� �
n
(
(
n
n

�
�

r
1
)
)
!
!

� �

� [(n � (n � r)]�((
n
n

�
�

1
r)
)
!
!

�

� r since n � r � n � 1 � r � 1 �

(n � 1) � ( r � 1)
� rP(n � 1, r � 1)

Note that we can always use m! � m � (m – 1)! when it is convenient.

EXAMPLE 3 A ten-letter word is formed from the 26 letters of the alphabet. No letter may be
used more than once. How many such words are there if

a. there are no restrictions?
b. the first letter is a vowel, (a, e, i, o, or u)?
c. either the first or the last letter is a vowel?

(n � 1)!
���[(n � 1) � (r � 1)]!

(n � r)(n � 1)!
���(n � r)(n � r � 1)!
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Solution
a. If there are no restrictions, the number of words is the number of sequences of

length 10 formed from 26 symbols using each at most once. 
Hence, there are P(26, 10) � �

2
1
6
6
!
!� � 1.9275 � 1013 words. Using a 

spreadsheet program, we can evaluate P(26, 10) as exactly 
19 275 223 968 000.

b. If the first letter is a vowel, then the first term can be chosen in five ways. The
remaining nine terms are a sequence of length 9 formed from 25 symbols with
no repeats. The remaining nine terms can be formed in P(25, 9) ways. Hence
there are 5 � P (25, 9) words starting with a vowel.

c. This question is more difficult. Let E be the set of words with the first letter a
vowel and F the set with the last letter a vowel. We want to find n(E � F), the
number of words that start or end with a vowel. E and F are not disjoint.
Typical examples of words in E � F are {abcdefghio, abcdefghij, … }.
From part b, we know that n(E) � 5 � P(25, 9). By symmetry, n(F) � n(E). To
calculate n(E � F), there are five choices (one of the vowels) for the first letter
and then four choices for the tenth letter. The middle eight letters can then be
arranged in P(24, 8) ways, so we have n(E � F) � 5 � 4 � P(24, 8). Using
the sum rule, we have n(E � F) � 5 � P(25, 9) � 5 � P(25, 9) � 5 � 4 �
P(24, 8). This is the number of words that begin or end with a vowel. Using a
calculator, n(E � F) � 6.820 � 1012.

Part A

1. Evaluate the following expressions. Explain in each case whether or not using
a calculator would be effective.

a. 7! b. 8! � 7! c. �
8
7
!
!� d. P(8, 2)

e. P(8, 6) f. �
1
9
1
!
!

� g. �
3
2
1
8
!
!� h. �

7
7
9
6
!
!�

2. Simplify P(n, 2)/P(n � 1, 2), where n � 1 is an integer.

Part B

3. Each of the following questions involves forming sequences using the letters
of the name Euclid at most once. Express the answer in terms of P(n, r) for
the appropriate choices of n and r; do not calculate.

a. the number of sequences of length 6

b. the number of sequences of length 4 

Knowledge/
Understanding
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c. the number of sequences of length 5 that end with d

d. the number of sequences of length 6 that start with a vowel

e. the number of sequences of length 4 that start and end with a vowel

4. Which is larger, P(10, 5) or P(10, 6)? Explain.

5. A six-digit integer is formed by selecting digits from the set {1, 2, …, 9}
without replacement. What fraction of the possible numbers 

a. start with 6?

b. are even?

c. start with an odd digit?

d. start or end with an odd digit?

e. contain the digit 9?

f. contain both digits 8 and 9?

g. contain the digit 8 or 9 or both?

h. are less than 460 000? (Hint: Consider cases.)

6. Twenty-four students arrange themselves in three rows of eight for a class pic-
ture. How many different arrangements are possible if the eight tallest are in
the back row?

7. A sorting algorithm puts lists of numbers into increasing order. To check the
algorithm, a programmer prepares all possible lists of the integers 1, 2, …,
100. Of these lists, how many begin with an integer less than 10 and end with
an integer greater than 90? Leave your answer in terms of P(n, r).

8. If the digits 0, 1, 2, …, 9 are formed into a sequence of length 6 with each
digit used at most once, how many of the sequences start with 0 or end with 9?

9. Twelve different books—six mathematics text books and six novels—are
arranged on a shelf. How many arrangements are there in each of the follow-
ing? Leave your answers in terms of n! for appropriate n.

a. the six novels are to the left of the six mathematics books

b. the novels and the mathematics books alternate

c. a novel is on the left end of the shelf

d. a novel is on the left end of the shelf and a math book is on the right end

e. a novel is on the left end of the shelf or a math book is on the right end

10. Sequences of length 4 are formed from n symbols, each used at most once.
Using the P(n, r) notation, count the number of sequences in the following
sets.

Application

Knowledge/
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U: all possible sequences

A: all sequences that start with a particular symbol α
B: all sequences that have two particular symbols α and β side by side in the

order αβ
C: all sequences that have two particular symbols α and β side by side in

either order

11. A sequence of length r is formed from n symbols using each symbol at most
once. Using the P(n, r) notation, repeat the calculations in question 10.

12. Show that �P(
P
n,

(n
r
,
�
r)

1)
� is an integer for r an integer, 1 � r � n.

13. A set of 40 cards consists of cards numbered 1, 2, 3,...,10 in red, yellow,
green, and blue. Suppose the set is shuffled and the first five cards are set
down in a sequence. Find the number of elements in the following sets.

U: all possible sequences

A: all sequences with cards all the same colour

C: all sequences with two or more cards having the same number

B: all sequences that start with 2 and end with 8

14. The numbers 1, 2, …, 144 are arranged in a square 12 � 12 array. What frac-
tion of all possible arrangements have the perfect squares in increasing order
on the main diagonal?

15. Ten children’s blocks have the letters A, B, ..., J on one face. How many of
the different arrangements of the blocks do not have the blocks with A and B
adjacent?

16. What is the largest power of 10 that divides 20!?

Part C

17. By counting in two different ways the number of sequences of length r that
can be formed from n symbols, prove that P(n, r) � n � P(n �1, r � 1).
Hint: Consider building the sequence by selecting the first element and then
all the others.

18. Using algebraic manipulation, prove that P(n, r) � n � P(n � 1, r � 1).

19. Find two proofs that P(n, r) � P(n, k) � P(n � k, r � k) for any integer 
1 � k � r � 1.

20. Find the largest value of k so that 10k divides evenly into 100!.

Thinking/Inquiry/
Problem Solving
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Section 11.2 — Sequences With Unlimited Repeated 
Values

In this section, we look at the following question: If there are n symbols available,
how many sequences of length r can be formed, if each symbol can be used as
often as we like? If we change the question slightly so that each symbol can be
used only once then, from the previous section, we know that the answer is 
P(n, r) � n � (n � 1) � … � (n � r � 1). To see what difference allowing
repeats makes, reconsider the example from Section 11.1.

EXAMPLE 1 Let T be the set of sequences of length 4 formed from the seven letters
{a,b,c,d,e,f,g}, where we can use a letter as often as we like. Find n(T).

Solution
We can count the elements of T using the product rule. The first term can be cho-
sen in seven ways, the second term can be selected in seven ways, the third in
seven ways and the fourth in seven ways. 
Then n(T) � 7 � 7 � 7 � 7 � 74 � 2401. 

There are four factors in the answer, one for each term in the sequence. For the
general question, we proceed in the same way as in the example. To build a
sequence of length r, the first term can be chosen in n ways. For each of these
ways, the second term can be selected in n ways, the third in n ways, and so on
until the rth term, which can also be selected in n ways. Hence, there are 
n � n � … � n � nr sequences of length r that can be formed using n symbols as
often as we like.

EXAMPLE 2 The set U of binary sequences of length r has elements such as 01001…0, a string
of r 0s and 1s. In computing language, a binary sequence is called a bit string, so
U is the set of bit strings of length r. Let A be the subset of these strings that has
at least one 0 bit. Let B be the subset of strings that start with 0 and end with 1.
Find n(U), n(A), and n(B).

Solution

Here we have two symbols with unlimited repeats in a string of length r, so n � 2
and n(U) � 2r. To find n(A), consider the complement, the subset of strings with

If there are n symbols available, the number of sequences of length r that
can be formed if each symbol can be used as often as we like is

n � n � … � n � nr.
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no 0s. This set has exactly one element 111…1, so 
n(A) � n(U) � n(A)
� 2r � 1

A typical element of B is 0100…01. The first and last terms of these elements are
fixed by the definition of B. The r � 2 middle terms of the elements of B are all
the bit strings of length r � 2. Hence, n(B) � 2r�2.

EXAMPLE 3 A standard die has its faces numbered 1, 2, 3, 4, 5, 6. Suppose that six standard
dice, coloured red, yellow, blue, white, green, and orange, respectively, are rolled
simultaneously. In what fraction of the possible outcomes will six different values
occur?

Solution
Each die comes up with an outcome 1 to 6. To relate the question to sequences,
we can let the first term of the sequence be the outcome of the red die, the second
term the outcome of the yellow die, and so on. Thus the possible outcomes of
rolling six dice can be described by a sequence of length 6 made using the digits
1 to 6. For example, the sequence 222333 corresponds to the red, yellow, and blue
dice coming up 2 and the remaining three dice coming up 3. The total number of
possible outcomes is the number of such sequences, which is 66. One example in
which all six different values occur is the sequence 654321. The outcomes in
which all six values occur correspond to sequences of length 6 in which each digit
from 1 to 6 is used once. From the previous section we know there are 6! such 
sequences. The fraction of sequences with distinct outcomes is �6

6
6
!
� � �3

5
24�.

EXAMPLE 4 We can indicate the day of the year by a number between 1 and 365 (ignoring
leap year). Suppose there are n people in a room. Of all the possible arrangements
of birthdays, what fraction has two or more people with their birthday on the
same day? For what values of n does this fraction exceed 0.5?

Solution
We can proceed by finding what fraction of the possible cases have all the people
in the room with birthdays on different days. This corresponds to a sequence of
length n, using 365 possible symbols in which the terms are all different. There
are P(365, n) such sequences. The number of possible cases is found by counting
the same sequences with repetition allowed. There are P(365, n) such sequences.
The fraction of sequences corresponding to all people having their birthdays on
different days is 

t(n) � �
P(3

3
6
6
5
5
,
n

n)
� � 365 � 364 � … � (365 � n � 1)

����365n
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The fraction we require is 1 � t(n). We could evaluate t(n) recursively by noting 

that t1 � �
3
3

6
6

5
5� � 1; t2 � �

3
3

6
6

5
5

�
�

3
3
6
6
4
5� � t1 � �

3
3
6
6
4
5�; t3 ��

3
3
6
6
5
5

�
�

3
3
6
6
4
5

�
�

3
3
6
6
3
5�� t2 � �

3
3
6
6
3
5�

and, in general, tn � tn�1 � �
365 �

36
n
5

� 1
�. A spreadsheet program will give 

t2 � 0.997, t3 � 0.992, t4 � 0.984, and so on. The first value of t(n) 	 0.5 

is t(23).

The fractions we just calculated can be interpreted as probabilities. For example,
if you are in a group of 23 people (perhaps one of your classes) and everyone in
the group is equally likely to have a birthday on any day of the year (no twins),
the probability that there are two people in the group who have their birthday on 
the same day is about �

1
2�. If there are more people, the probability is greater, since 

t(n) is decreasing. In a group of 60, the probability is greater than 0.99.

Part B

1. In a plan for North American telephone numbers, each number is a sequence
of 10 numbers of the form xyy xyy yyyy, where 2 � x � 9 and 0 � y � 9.
How many different telephone numbers can be formed?

2. A sequence of length 7 is formed from the digits 0, 1, …, 9. Each digit can be
used as often as you like. What fraction of these sequences

a. begins with 1?

b. begins and ends with 1?

c. uses only even digits?

d. begins and ends with an even digit?

e. does not contain a 0?

3. A sequence of length 12 is formed using n different symbols including A.
Each symbol can be used repeatedly. How many of these sequences

a. begin with A?

b. begin with AA?

c. include at least one A?

4. A sequence of length 10 is formed using the letters a, b, c with unlimited 
repetition. How many of these sequences use only two symbols?

Knowledge/
Understanding

Application
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5. Let U be the set of bit strings (binary sequences) of length r � 2. How many
of these strings 

a. begin with 1?

b. begin and end with 1?

c. begin or end with 1?

6. How many binary sequences of length 12 start with 1 or end with 0?

7. Eight plain and eight blue tiles are available to 
cover the rectangular table top that is shown. 
How many different patterns can be made if the 
spaces labelled x must have the same type of tile,
the spaces labelled y must have the same type of 
tile, and the tiles on x and y must be different?

8. In a series of licence plates, the first three symbols are any of the 26 letters in
the alphabet and the last three are any of the 10 digits from 0 to 9.

a. How many license plates can be formed?

b. How many plates can be formed with all symbols different?

c. How many plates can be formed in which at least one symbol is repeated?

d. How many plates can be formed in which at least one of the digits and at
least one of the letters are repeated?

9. In a programming language, variable names are sequences of length 1 or 2
that use lower-case letters, upper-case letters, or digits. The name must start
with a letter. The second symbol, if used, can be any letter or digit. How
many different variable names can be constructed?

10. My password is a seven-symbol sequence formed from upper- and lower-case
letters and the digits from 0 to 9. Yesterday, I forgot the last three symbols in
my password. It takes me 20 seconds to try to log onto my computer.
Approximately how many hours will it take for me to check all the possible
passwords?

11. A voice-mail system has 1253 users. A password to open a mailbox is a
sequence of length r formed from the digits 0 to 9. To ensure confidentiality,
there should be at least 1000 possible passwords for every user. What is the
smallest possible value of r?

12. In a simple lottery there are 100 tickets numbered 1 to 100. You hold ticket
number 1. Three tickets are drawn one after the other. After each draw, the
ticket is replaced. In how many ways can the tickets be selected so that you
win at least one prize?

Thinking/Inquiry/
Problem Solving
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13. A coin is flipped eight times to produce a sequence of heads and tails. What
fraction of these sequences have the same result on the first and last flip?

14. Four switches each have three positions, up, middle, and down. How many
different ways can the switches be arranged?

15. A sequence of bits such as 101001 represents a six-digit binary number, one
that is expressed in terms of powers of 2. For example,

101001 � 1 � 25 � 0 � 24 � 1 � 23 � 0 � 22 � 0 � 21 � 1 � 20.
We can convert the binary number to a decimal by expanding the powers of 2
in decimal form so that 

1 � 25 � 0 � 24 � 1 � 23 � 0 � 22 � 0 � 21 � 1 � 20 � 32 � 8 � 1 �
41.

Conversely, we can represent any decimal number uniquely as a sequence of
bits by expanding in powers of 2. For example,

27 � 1 � 16 � 1 � 8 � 0 � 4 � 1 � 2 � 1 � 1

� 1 � 24 � 1 � 23 � 0 � 22 � 1 � 21 � 1 � 20

a. What is the largest decimal number that can be represented by a sequence
of length 6?

b. What decimal numbers can be represented by bit sequences of length 6
that end with 1?

c. What decimal numbers can be represented by bit sequences of length 6
that start and end with 1?

16. Suppose we want to represent all decimal numbers less than or equal to 1000
as bit sequences of length r, as in Question 15. How large must r be?

17. A subset is formed from the integers 1, 2, 3, …, 9.

a. How many possible subsets can be formed?

b. How many of these subsets contain 1?

c. How many of these subsets contain 1 or 2?

18. Six balls are drawn consecutively from a barrel that has 49 numbered balls
labelled 1, 2, …, 49. After each draw, the ball is replaced. What percentage of
the possible sequences have six different ball numbers?

19. A sequence of length r is formed using n symbols with unlimited repetition.
What fraction of these sequences have all terms different?

Part C

20. Suppose n symbols are available to construct a sequence of length r � 2. 
One of the symbols is A. Show that the fraction of all sequences that contain
exactly one A is greater if each symbol can be used at most once than if there
is unlimited repetition.

Application
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21. A sequence is a palindrome if it looks the same read from either end. For
example, the word level is a palindrome. Suppose that a sequence of length r
is built from n distinct symbols with unlimited repetition. How many of these
sequences are palindromes?

22. Suppose n � 2 symbols are available to construct a sequence of length less
than or equal to r where each symbol can be used an unlimited number of
times. Show that the total number of sequences with length less than r is
smaller than the number of sequences of length r.

23. A function from a set S to a set T assigns exactly one element of T to each
element of S. For example, if S � {a, b, c, d} and T � {0, 1}, then one func-
tion f from S to T is f(a) � 0, f(b) � 1, f(c) � 1, f(d) � 0. In general, how
many different functions can we construct from a set S to a set T?

24. In attempting to count the number of sets of any size that can be formed from
the six letters A, B, C, D, E, F, we can define a sequence of length 6 using the
symbols I (in) and O (out) to indicate whether a specific letter is included.
Then IOIOOI corresponds to the set {A, C, F} and OOOOOO corresponds to
the empty set 
.

a. Is there a one-to-one correspondence between the possible sets and the
sequences of length 6?

b. Determine the number of sets that can be formed from the six letters.
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Section 11.3 — Counting Subsets

Many problems involve counting subsets. For example, the results of the 6/49 lot-
tery depend only on the balls drawn, not their order. That is, the results depend
only on which subset of six balls is chosen. We can use the methods that we have
developed for counting sequences to count the number of subsets. In this section,
we look at systematic ways to count subsets. Remember that the fundamental dif-
ference between a subset and a sequence is that the order of the terms in a
sequence is important. For example, suppose a set of six letters {a, b, c, d, e, f } is
available. Two different sequences of length 3 are abc and bca. Note they are
made up of the same three letters. However, the subset {b, c, a} is the same as the
subset {a, b, c}. Two distinct subsets are {a, b, c} and {b, c, d}. Two distinct sub-
sets must have at least one element that is different.

EXAMPLE 1 How many subsets of size 3 can be selected from the six letters {a, b, c, d, e, f}?

Solution
Let x represent the unknown number of subsets. Our strategy is to use two differ-
ent methods to count the number of sequences of length 3 that can be formed
using the six letters at most once. First, we count the number of sequences direct-
ly, so that the answer is P(6, 3).

Alternatively, we can select a particular subset. Since there are x subsets, we can
do this in x ways. Suppose we choose {a, b, c}. The three elements of the subset
can be used to generate 3! sequences of length 3. In this case, the sequences are
abc, acb, bac, bca, cab, cba. If we choose another subset, say {a, b, d}, then these
three letters can be used to generate another set of 3! sequences that are all differ-
ent from those listed above because they include a term d. In other words, each of
the x subsets can be used to generate 3! different sequences. Using the product
rule, there are a total of x � 3! sequences that can be generated in this way. But
the terms of every sequence of length 3 make up exactly one subset of size 3.
Hence, we have counted all of the sequences of length 3. It follows that x � 3! �
P(6, 3) or, solving,

x � �
P(6

3
,
!
3)

�

� �
6 �

3
5
!
� 4
�

� 20

There are 20 subsets of size 3 that can be selected from {a, b, c, d, e, f}.

The key to this result is that we have counted the number of possible sequences in
two ways and noted that the two answers must be equal. The same strategy works
in general. Suppose we have a set of n elements and we want the number of 
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subsets of size r. Again, let x represent this unknown number. As in Example 1,
we use two different methods to count the number of sequences of length r that
can be formed from the n elements, using each at most once.

Using the direct method, there are P(n, r) such sequences. If we have x possible
subsets of size r, then each of these will generate r! different sequences and so
there are x � r! sequences in total. Equating the two counts gives x � r! � P(n, r)
and solving for the unknown number of subsets, we have

x � �
P(n

r!
, r)
�

�

A common but rather curious notation for the number of subsets of size r selected 

from n elements is � �. We read this expression as n choose r. We can also use the 

alternative form of P(n, r) in the numerator. Recall that P(n, r) � �(n �
n!

r)!�, so we 

can write n choose r as � � � �
P(n

r!
, r)
� � �(n �

n!
r)!r!�.

The expression � � can also be written C(n, r) or nCr. Here the letter C stands for 

combinations, just as P used earlier stands for permutations. Your calculator prob-

ably has a function for � �. Note also from the final expression in the box that

� � � � �
There are thus several choices for evaluating � �, with the best choice depending 

on the relative sizes of n and r. We can use the calculator function directly, or
evaluate the first expression in the box by calculator or by hand. 

Alternatively, we can first replace � � by � � and then proceed.
n

n � r
n
r

n
r

n
n � r

n
r

n
r

n
r

The number of possible subsets of size r that can be selected from a 
set of n different elements is

or � �(n �
n!

r)!r!�

n
r

n
r

n(n � 1)…(n � r � 1)
���r!
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EXAMPLE 2 Evaluate    a. � � b. � � c. � �
Solution

a. � � � 252 (using a calculator)

b. � � � � 75 287 520,

(this time using a calculator on the simpler form)

Note that the number of factors in the numerator and denominator is the same in
the fundamental definition. This is a useful check to avoid silly mistakes.

c. Using the last method,

� � � � � � � 3 921 225

Note also that if the numerical answer is not required, it is acceptable to 

leave the answer in the form � �. To complete the notation, note that there is one 

subset of size n that can be selected from n elements. That is, 1 � � � � �0
n
!n
!
!�. 

Since we have defined 0! � 1, the formula makes sense. It will also be useful to 

define � � � 1.

EXAMPLE 3 Eight people—six students and two teachers—are available to serve on a commit-
tee. How many different committees of size 4 can be formed if

a. there are no restrictions?
b. Bob, one of the students, must be on the committee?
c. the committee has exactly one teacher?
d. at least one teacher must be on the committee?

n
0

n
n

n
r

100 � 99 � 98 � 97
���4 � 3 � 2 � 1

100
4

100
96

100 � 99 � 98 � 97 � 96
���5 � 4 � 3 � 2 � 1

100
5

10
5

100
96

100
5

10
5

Calculating        on a TI-83
1. Enter n
2. Go to MATH menu
3. Scroll across to PRB sub-menu
4. Enter 3 (gives the C(n, r) operator)
5. Enter r
6. Hit              (produces the value of     )
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Solution
a. A committee is a subset of size 4 selected from the eight available people.

There are 

� � � �4
8
!4
!
!� � 70 such committees.

b. A typical committee that includes Bob is {Bob, a, b, c}, where a, b, c represent
three people other than Bob. To form such a committee, we select the three 

other people from the seven available in � � � �
P(7

3
,
!
3)

� � 35 ways. There are 
35 committees that include Bob.

c. Here we build the possible committees in two steps. First, we can select the 

one teacher from the two available in � � ways. For each of these selections,

we can then choose the three students in � � ways. Using the product rule, the 

number of committees with exactly one teacher is � � � � � � 40. You should 
verify this calculation.

d. This problem is more difficult. One approach is to consider two disjoint cases.
Case 1: The committee contains exactly one teacher. From part c, there are 40

such committees.
Case 2: The committee contains exactly two teachers. Constructing the possible

committees in two steps as above, the number of committees in this 

case is � � � � � � 15. There are then 40 �15 � 55 committees that 

contain at least one teacher. An alternative approach is to use the com-
plement, since we know that there are 70 committees in total. The 
committees that do not contain at least one teacher are made up 

entirely of students. There are � � � 15 such committees, so the num-

ber of committees with at least one teacher is 70 � 15 � 55.

Be careful! It is very easy to make a mistake. Suppose we had used the following
argument. 

Since we know there is at least one teacher on the committee, start by choosing 

the teacher in � � ways. Now pick the other three committee members from the 

remaining seven people in � � ways. Thus there are � � � � � � 70 such com-

mittees. This answer is wrong because we know that there are only 70 committees
altogether and some of them have no teachers at all. What went wrong?

The error occurred because, when we separated the selection into two steps, we
had to select a teacher in the first step, and we could select the second teacher in
the second step. Every committee containing both teachers has been counted

7
3

2
1

7
3

2
1

6
4

6
2

2
2

6
3

2
1

6
3

2
1

7
3

8
4
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twice: once with teacher A selected separately and teacher B as one of the three
other members, and once with the selection reversed. There are 15 committees
containing both teachers, so our answer was too large by 15.

Whenever you see a problem like this—one containing the key words at least or
at most— divide the problem into cases so that each case corresponds to exactly
.… Remember that it may be easier to count the complement.

Part A

1. Evaluate the following.

a. � � b. � � c. � �
2. Evaluate � �

� �
3. A subset of five numbers is chosen from the set {1, 2, …, 10}.

a. How many subsets can be selected?

b. How many of these subsets contain only numbers less than or equal to 7?

c. How many of the subsets contain two even and three odd numbers?

d. How many of the subsets contain at least two even numbers?

e. How many of the subsets contain the number 10?

f. How many of the subsets contain 9 or 10?

4. A subset of size 3 is formed by selecting three letters from the set 
{A, B, C, D, E, F, G}. What fraction of the possible subsets

a. contain the letter A?

b. contain exactly one vowel?

c. do not contain either E or F?

Part B

5. Suppose a sequence of length 4 is formed by choosing four digits from the set
{0, 1, …, 9}.

a. How many such sequences can be formed if no term in the sequence can
be repeated?

Thinking/Inquiry/
Problem Solving

11
4

10

3

600
3

60
3

6
3
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b. For any subset of size 4 selected from the above set of digits, how many
different sequences of length 4 can be formed?

c. By counting the sequences in two ways, explain why � � � �
P(1

4
0
!
, 4)
�.

6. How many ways can two girls and two boys be selected from a class of 
12 girls and 10 boys?

7. In how many ways can a subset of six letters be selected from 
{A, B, C, …, Z} so that both A and Z are included?

8. Explain without any calculation why P(n, r) � � �. When are the two quan-
tities equal?

9. A set of 12 distinct wooden blocks has three that are red, five that are blue,
and four that are yellow. The blocks are labeled R1, R2, R3, B1, …., B5, Y1,
…,Y4, where the letter matches the colour. Consider the following subsets of
U, the set of all possible subsets of two blocks.

A: all subsets of two red blocks

B: all subsets with one red and one yellow block

C: all subsets with two blocks the same colour

a. Find n(U), n(A), n(B), n(C). 

b. How many subsets have two blocks of different colours?

10. How many committees of size 5 can be selected from 11 people—five men
and six women—if

a. there are no restrictions?

b. the committee has three women and two men?

c. the committee must contain at least one man and one woman?

d. Ron and Enzo refuse to serve on the same committee?

11. In a lottery, six balls are selected from 49 balls numbered 1, 2, …, 49. For the 

following questions, express your answers in terms of � � for various choices
of n and r.

a. How many possible subsets of six balls are there?

b. How many of these subsets contain ball 49?

c. How many of these subsets contain only even-numbered balls?

d. How many of these subsets contain three even-numbered and three odd-
numbered balls?

n
r

n
r

Communication
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4
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12. To learn how students feel about a proposed dress code, the principal decides
to survey a sample of 60 students from the school population of 1200 stu-
dents. 

a. How many different samples can be selected?

b. If there are 300 students in each grade from 9 to 12, how many samples
can be selected that have 15 students in each grade?

c. How many samples can be selected that have 60 grade 12 students?

13. A box of 100 electronic components contains three that are defective. If a
sample of five components is tested, what fraction of the possible samples
contain at least one defective item?

14. How many sequences of length 4 can be constructed using the digits 
{1, 2, …, 9} if two of the terms are even and two are odd?

15. A subset of three blocks is selected from a population of six blocks, of which
three are red. A student is trying to count the number of subsets with at least 

two red blocks. She reasons that she can select the two red blocks in � � ways

and then the remaining block in � � ways. Using the product rule, the stu-

dent calculates that there are � � � � � � 12 subsets with at least two red 

blocks. Label the blocks R1, R2, R3, A, B, C, where the first three blocks are
red.

a. List all subsets that have at least two red blocks and count them directly.

b. Explain why the student got the wrong answer.

Part C

16. A carton of 100 light bulbs (labelled 1, 2, …, 100) has three that are defective
(labels 1, 2, 3). A sample of five bulbs is selected. 

a. How many different samples are possible?

b. How many of the samples have no defects?

c. How many of the samples have exactly one defect?

d. How many of the samples have exactly two defects?

e. How many of the samples have exactly three defects?

f. Explain how the results of parts a to e show that 

� � � � �� � � � �� � � � �� � � � �� �3
3

97
2

3
2

97
3

3
1

97
4

3
0

97
5

100
5

4
1

3
2

4
1

3
2
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17. A diagonal of a regular n-gon is a line joining two vertices and lying inside
the figure. 

a. How many diagonals are there?

b. How many of these diagonals pass through the centre?

18. Eleven stars are arranged in a row as shown.

* * * * * * * * * * *

The object of the game is to divide the row into three groups—a left group, a
middle group, and a right group. Each group must have at least one star. We
can create a group by placing two vertical bars in the spaces between the
stars. For example, in the diagram below,

*  * | * * * * * | * * * *

the left group has two stars, the middle has five stars, and the right group has
four stars.

a. How many ways can the three groups of stars be formed?

b. Consider the equation x � y � z � 11 where x, y, z are positive integers.
How many different solutions are possible?

19. Be sure to do Question 18 before you attempt this one. 
Suppose that x, y, z, w are positive integers.

a. How many solutions are there to the equation x � y � z � w � 21?

b. How many of these solutions have x � 3?

c. How many of these solutions have x � y?

20. Suppose you want to count the solutions to x � y � z � 11, where we allow
x, y, z to be non-negative integers.

a. Show that any solution to x � y � z � 11 with x � 0, y � 0, z � 0 is the
same as a corresponding solution to x1 � y1 � z1 � 14 with x1 � 0,
y1 � 0, z1 � 0.

b. Find the number of solutions to x � y � z � 11 with x � 0, y � 0, z � 0.

21. Find the number of solutions to the equation x � y � z � w � 21 where x, y,
z, w are integers with x � –2, y � –1, z � 0, w � 1.
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Section 11.4 — Counting Sequences With Repeated 
Elements

In earlier sections, we looked at counting two types of sequences. We considered
questions such as this one:

How many four-letter words can be formed from the seven letters a, b, c, d, e, f, g if
i)  no letter may be repeated?

ii)  a letter can be repeated as often as we like?

Using the product rule, the answers are P(7, 4) and 74, respectively. You might
wonder what happens if some of the letters can be used two or three times. We
can create many new questions by varying how often the letters can be used in the
sequence.

In this section, we count sequences in which some of the elements are the same.
In Section 11.3, we counted the number of possible subsets by counting
sequences in two different ways. This time we use the methods that we have
developed for counting subsets to count sequences with repeated terms. 

EXAMPLE 1 A bit string is a sequence in which each term is 0 or 1. For example, 0001110100
is a bit string of length 10 with six 0s and four 1s. How many bit strings of length
10 can we make using six 0s and four 1s? 

Solution
Since we are counting sequences, a good strategy is to look at how many ways we
can build the sequence. Consider filling the following ten boxes.

Let’s look at the example 0001110100 in more detail.

Note that the four 1s are found in positions {4, 5, 6, 8}. Once we specify the posi-
tions for the 1s, the sequence is completely determined. Hence building the
sequence corresponds to selecting the four boxes from ten that will contain 1. The 

order of selection does not matter. There are � � such selections and, hence, there 

are � � � 210 bit strings of length 10 with six 0s and four 1s. We could have 

specified the positions for the 0s; our answer would then be � �, the same 

answer. In doing this example we showed that each bit string of length 10 with 

10
6

10
4

10
4
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four 0s corresponds to one subset of size 4 selected from the set of boxes 
{1, 2, …, 10}. Conversely, each of these subsets corresponds to exactly one bit
string. Formally, there is a one-to-one correspondence between the set of bit
strings of length 10 having four 0s and the set of subsets of size 4 selected from
{1, 2, …, 10}. It then follows that these two sets have the same number of ele-
ments.

In Example 1, we used only two symbols to form the sequence. In Example 2, we
look at a more general question.

EXAMPLE 2 How many sequences of length 9 can be formed using four as, three bs, and two cs?

Solution
We count these sequences by looking at how many ways we can construct them.

We can select the four positions for the as in � � ways. For each of these ways,

we can then select the three positions for the bs from the remaining five positions 

in � � ways. Finally, we can select the two positions for the cs from the remain-

ing two positions in � � ways. Hence, there are � �� �� � � 1260 sequences

of length 9 that can be formed.

We can rewrite this answer in a more memorable form

� �� �� � � �5
9
!4
!
!��2

5
!3
!
!��0

2
!2
!
!�

� �4!
9
3
!
!2!�

The two examples can be generalized as follows.

The number of sequences of length n that can be formed using k symbols
with n1 of the first type, n2 of the second type, ..., and nk of the kth type,
where 

n1 � n2 � … � nk � n is

�              �… � �

The number of binary sequences of length n with r 1s and (n � r) 0s is

� �(n –
n

r
!
)!r!�

2
2

5
3

9
4

2
2

5
3

9
4

2
2

5
3

9
4
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r

n!
���n1! � n2! � … � nk!� �n

n1
� �n � n1

n2
� �nk
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Each of these formulas can be developed using the methods shown in Examples 1
and 2. Now we look at some applications.

EXAMPLE 3 How many sequences of length 9 can be made from the letters of the name
Descartes? Of these sequences, how many have the two es side by side?

Solution
In the nine letters, there are two es, two ss, and five other distinct letters. Thus, the 
number of sequences is �2!2!1!

9
1
!
!1!1!1!� � 90 720. To count the sequences in which 

the two es appear side by side, we put the two es together as a single symbol 
E � ee. Now there are eight symbols to arrange, two ss and six other distinct ones
including E. Thus, the number of such sequences is �

8
2
!
!�. Note that we can leave out

all the 1! factors for convenience.

EXAMPLE 4 Suppose 12 different coloured dice are rolled. What is the probability of getting
two 1s, two 2s, …, and two 6s?

Solution
Any possible outcome can be represented by a sequence of length 12, where each
term represents the outcome on a die of a particular colour, and with elements
selected from {1, 2, 3, 4, 5, 6}. For example,

112233445566

corresponds to the first two dice coming up 1, the third and fourth dice coming up
2, and so on. The set of all outcomes U is the set of sequences of length 12 using
any of the numbers from 1 to 6 as often as desired. Thus we have n(U) � 612. 
The subset of sequences P with two 1s, two 2s, etc. is 

P � {112233445566, 121233445566, …}. Each element of P is a sequence of 
length 12 with two 1s, two 2s, and so on. There are n(P) � �2!2!2

1
!
2
2
!
!2!2!� such 

sequences. The probability that the required sequence will occur is 

�
n
n
(
(
U
P)

)� � �
12!

6
/(
1
2
2
!)6

� � 0.0034.

EXAMPLE 5 How many sequences of length 4 can be made using the letters a, a, b, b, c, c?

Solution
Let the set of all such sequences be U � {aabb, aabc, …}.
We know how to count the sequences once we know which letters are to be used.
For example, if there are two as, one b, and one c, then there are �

4
2
!
!� � 12 different

sequences. Consider these two cases:

C H A P T E R  1 1418



Case 1: Three different letters, two of one type and two others distinct (e.g., aabc)
Case 2: Two different letters, two of each type (e.g., aabb)

These cases correspond to disjoint subsets A and B with the property that 
A � B � U so that n(U) � n(A) � n(B). 

For Case 1, there are � � � 3 ways to select the letter which appears twice. For 

each of these choices there are 12 different sequences as shown above. Hence in
Case 1, there are 36 different sequences.

For Case 2, there are � � � 3 ways to select the two letters, each of which 

appears twice. For each of these choices, the letters can be arranged in �2
4
!2
!
!� � 6 

ways. Hence, Case 2 contains 18 sequences. Combining the two results, we have
36 � 18 � 54 sequences in U.

Part A

1. A binary sequence of length 5 is formed using 0s and 1s by filling the five
boxes shown below.

a. List three such sequences.

b. How many such sequences can be made?

2. A sequence of length 5 is formed from the digits 1, 1, 2, 2, 3. How many
sequences can be formed?

Part B

3. The letters of the name Mississauga are rearranged. Such an arrangement is
called an anagram.

a. How many possible anagrams can be formed?

b. How many of these anagrams start with the letter s?

c. How many of the anagrams start and end with s?

d. How many of the anagrams have the two is side by side?

e. How many of the anagrams start with a vowel?

Knowledge/
Understanding

Knowledge/
Understanding

Exercise 11.4

3
2

3
1
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4. A string of lights has 12 sockets. How many arrangements can be made if
there are two bulbs of six different colours available?

5. What fraction of sequences of eight flips of a coin, each giving H or T, results
in exactly four Hs?

6. How many binary sequences of length 5 have two or more 1s?

7. Ten trees—four pines, four cedars, and two spruce—are planted in two paral-
lel rows of five trees. How many arrangements are possible if each row must
have the same composition of trees, not necessarily in the same order.

8. Count all of the arrangements of the letters of the word Descartes that end
with s.

9. Each of seven switches has two positions—off (O) and on (I).

a. How many different ways can the switches be configured?

b. Of these, how many configurations have exactly four switches turned on?

c. How many of the configurations have at least two switches turned on? 

d. How many of the configurations have exactly four switches turned on
including switch 1?

10. A bit string of length 10 is formed using two symbols, 0 and 1. Of all such
strings with exactly six 1s, what fraction have exactly three 1s in the first five
terms?

11. Suppose we want to create subsets of the ten digits {0, 1, 2, …, 9}.

a. How many subsets can be created, including the empty set?

b. How many of the subsets contain only digits less than 7?

c. How many of the subsets contain 0 or 9?

12. In a statistically designed experiment, there are four treatments labelled A, B,
C, D, which are applied to 16 subjects in a random order. Each treatment is
used four times, so that every subject receives exactly one treatment.

a. How many different ways can the treatments be ordered? This is called a
completely randomized design.

b. Alternately, the subjects can be divided into groups of four people on a
specific characteristic. Within each group, the four treatments appear once
in a random order. For example, group 1 is the four heaviest members of
the group, group 2 is the next set by weight, and so on. Given the four
groups, how many different ways can the treatments be assigned? (This is
called a randomized block design.)

Application
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13. a. How many of the anagrams of the word Mississauga are palindromes?

b. How many are there for the word Mississippi?

14. Six different dice are rolled. What fraction of all the possible outcomes have

a. at least one repeated value?

b. two 2s, two 4s, and two 6s?

c. three odd values and three even values? (Hint: Count how many ways such
a sequence can be constructed.)

15. In a binary sequence of length 10 made from 0s and 1s,

a. how many sequences are possible?

b. how many sequences have exactly r 1s where 0 � r � 10?

c. Explain why � � � � � � … � � � � 210.

d. Verify this result by direct calculation.

16. Generalize the result in Question 10 to sequences of length n. Be sure to
explain your reasoning.

17. a. Explain what type of sequence is represented by �2!
1
3
0
!
!
5!�.

b. Without evaluating the expression, explain why �20!
5
1
0
5
!
!15!� must be a posi-

tive integer.

c. Is �(n � 1)
(
!
3
n
n
!
)
(
!
n � 1)!� always a positive integer for n � 1?

18. Consider a bit string of length 8 having five 0s and three 1s. How many of
these strings have at least two consecutive 1s?

19. How many bit strings of length 8 have at least one pair of consecutive 1s?

20. Consider arrangements of the symbols a, a, a, a, b, b, b, c, c, c. What fraction
of these sequences contain a pair of consecutive cs? (Hint: Start building the
sequence by arranging the as and bs.)

Part C

21. A random walk on the xy-plane starts at the point (0, 0) and moves at each
step one unit to the right or one unit upwards. How many random walks end
at the point (5, 3)?

10
10

10
1

10
0
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22. A random walk starts at the point (0, 0) and at each step moves to the right
one unit or upwards one unit.

a. Show an equivalence between random paths and binary sequences, using E
to represent a unit move to the right and V to represent a unit move verti-
cally.

b. How many paths are possible that end at the point (20, 12)?

c. Of these paths, how many pass through the point (10, 10)?

d. How many of the paths in part b pass through both the points (8, 4) and 
(12, 8)?

23. How many arrangements of six As, four Bs, and three Cs can be formed if 

a. all the As come before the first B?

b. at least one A comes before the first B?

c. at least one C occurs before the first A, and at least one A occurs before the
first B?

24. A point on the plane starts at (0, 0). At each step, it moves one unit to the
right and either one unit up or one unit down. That is, after one step, the pos-
sible positions are (1, 1) or (1, �1) and after two steps (2, 2) or (2, 0) or 
(2, �2). Note that there are two different paths to reach (2, 0). Consider the
situation after 12 steps.

a. What are the possible end positions?

b. Show that each possible path can be represented as a binary sequence.

c. How many paths end at the point (12, 0)?
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Section 11.5 — A Strategy for Counting Problems

You now have the tools and strategies to solve a wide variety of counting prob-
lems. In this section, we review the tools and give you some ideas on how to
approach a counting problem when you try to solve it.

The Tools

1. The product rule: If we can perform a first task in m ways and a second task
in n ways, then we can perform the two tasks together in m � n ways.

2. The sum rule: If A and B are two subsets of a set U, then n(A � B) �
n(A) � n(B) � n(A � B). This becomes n(A � B) � n(A) � n(B) if A and B are
disjoint.

3. The rule of the complement: n(A) � n(U) � n(A). We cannot use this rule
without defining the universal set U.

4. The number of ways of arranging n distinct symbols in a sequence of length is
a.  P(n, r) � n(n � 1)…(n � r � 1) � �(n �

n!
r)!� if each symbol can be used at

most once
b.  nr if each symbol can be used as often as we like

5. The number of ways to select a subset with r elements from a set of n elements
is

� � � �
P(n

r!
, r)
� � �(n �

n!
r)!r!�.

6. The number of ways to arrange n symbols, n1 alike of the first type, n2 alike of
the second, …, nk alike of the kth type, where n1 � n2 �…� nk � n,
is  �n1!n2

n
!
!
…nk!
�.

The Strategy

You have done enough of the exercises and problems in Chapters 10 and 11 to
realize that there is no single approach that we can use to solve every counting
problem. Counting problems have several peculiarities:
• They all involve words, which means that we have to translate the problem into

a mathematical notation before we can get started.
• They are easy to generalize, often in several different directions. We can exploit

this property in reverse by looking at particular simplifications of a problem to
make sure that we understand what is being asked and also to get an idea of
how to carry out the counting.

• With a small change, we can turn a relatively straightforward problem into one
that is much more difficult. This means that it is difficult to judge whether a
problem is hard or easy when you first read it. Without a good strategy, you can
be completely fooled.

n
r
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To demonstrate the strategy, we look at two examples.

EXAMPLE 1 The letters of the alphabet are used to form a word of length k. No letter may be
used more than once. How many of the words contain the letter z?

EXAMPLE 2 Suppose we have n symbols to arrange in a row. We are given that r of the sym-
bols are identical (here called special) and that the remaining n � r symbols are
all distinct. How many arrangements can we make that start or end with the spe-
cial symbol?

These two problems have been chosen because it is difficult to write down their
answers without some careful thought. We attack such problems using the follow-
ing steps. Not every step applies to every problem, but the steps give a useful
guideline.

Step 1: Understand the problem
• Invent a notation to describe the objects that you want to count.
• Write down some specific examples.
• Decide if the objects you are dealing with are sequences or subsets. Does the

order of the elements matter?

Step 2: Decide on an approach
• If the problem is general (i.e., if it involves ns and rs), try a simpler version

with specific small values and list (and then directly count) all possible objects.
Then try to find a formal counting approach that agrees with your direct count.

• Use a constructive approach—the number of objects is equal to the number of
ways that we can build them.

• Start the construction by satisfying the restrictions first. 
• If it is not obvious how to count the number of ways of constructing the objects

directly, consider cases or the complement. 

Step 3: Implement your approach
• Use the tools we have developed.
• Watch out for double counting or incomplete counting (especially with cases).
• Write an explanation that will be clear to someone else. Don’t rely on formulae

alone.
• If the problem is general, check the answer by looking at particular small cases

where the count can be done directly.
• If your approach does not seem to be working, go back to Step 2.

Different approaches can lead to different expressions. If these expressions lead to
numeric values, it is easy for you to see whether your answer agrees with that of a
classmate. For answers involving symbols, you can compare special cases.
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Now consider using this strategy for the examples. These examples are difficult
problems chosen to show the power of the strategy.

EXAMPLE 1 The letters of the alphabet are used to form a word of length k. No letter may be
used more than once. How many of the words contain the letter z?

Solution
We start with a special case, say k � 3, to make sure that we understand the prob-
lem. We want to count three-letter words such as zab or abz, all of which have
distinct letters and include the letter z. As the examples show, order matters
here—we want to count zab and abz as different words. Looking at the examples,
we notice that once we have the three letters selected, we can arrange them to
form 3! � 6 different words. We want to count the number of ways that we can
select the three letters. Since z must be included, we can choose the other two 

letters in � � ways. Hence, using the product rule, for k � 3, we obtain 

3! � � �. We apply the same method to the general case. Since z is included, we 

can select the other k � 1 letters for the word in � � ways. For each of 

these selections, we can arrange the k letters into k! words. Hence there are 

k! � � � words of length k that contain z.

Another approach to Example 1 is to use the rule of the complement to count the
total number of k letter words, P(26, k), and the number of such words that do not
include z, P(25, k). This approach gives an answer, P(26, k) � P(25, k), that
appears quite different from the first answer. With some effort, we can show that
the two answers are algebraically the same.

EXAMPLE 2 Suppose we have n symbols to arrange in a row. We are given that r of the sym-
bols are identical (here called special) and that the remaining n � r symbols are
all distinct. How many arrangements can we make that start or end with the spe-
cial symbol?

Solution
Step 1: Let’s start with a specific problem, say n � 6, r � 3. We do not want to
choose so small a problem that we lose the essential difficulties. Now we can
choose the symbols A, A, A, B, C, D where A is designated to be special. We want
to count how many arrangements we can make using these six symbols with A at
the beginning or end. Some typical examples are AABCAD, BCADAA, ABCDAA.
The third example raises an important aspect of the problem — are we counting
arrangements that can start and end with the special symbol? The answer depends

25
k � 1

25
k � 1

25
2

25
2
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on how we interpret the word “or.” Does it mean to include those arrangements
that both begin and end with A or not? There is no correct answer here—the lan-
guage of the question is too vague. Let’s agree that we will include arrangements
that begin and end with A.

Step 2: Based on Step 1, we might consider two cases:
Case 1: arrangements that start with A
Case 2: arrangements that end with A

One problem is that the cases are not disjoint. Some arrangements in Case 1 are
also in case 2. In set notation, if we let S be all the arrangements in Case 1 and T
all the arrangements in Case 2, then we want to find n(S � T), which means that
we would have to find n(S), n(T), and n(S � T).

An alternate approach is to consider the complement. That is, the set of all
arrangements that do not begin or end with A. To use this approach, we also need
to count the universal set of all arrangements of the symbols without restriction.
Let’s try this approach.

Step 3: We will start with the particular case n � 6, r � 3 to make sure that our
approach is feasible. This is not necessary but is often helpful for building up
courage to attack the general situation. The universal set U contains all sequences 
of length 6 made from A, A, A, B, C, D, so n(U) � �3!1

6
!1
!
!1!� � 120. 

To count the number of arrangements that start and end with a symbol other than
A, we can fill the first box in three ways, and the last box in two ways (using only
B, C, D). The middle four boxes are filled with an arrangement of four letters,
three As and something different. There are �3

4
!1
!
!� different arrangements for the 

middle four boxes. The total number of arrangements is then 3 � 2 � �3
4
!1
!
!� � 24. 

Using the rule of the complement, the number of arrangements that begin or end
with A is 120 � 24 � 96.

Since our approach works well, we can now attack the general problem. If U is
the set of all arrangements of n symbols with r that are alike and all the rest are
neither, then n(U) � �

n
r!
!
�. To count the number of arrangements that neither start

nor end with the special symbol, the first position can be filled in n � r ways,
and the last in n � r � 1 ways. The middle n � 2 positions can then be filled 

with an arrangement of n � 2 symbols, of which r are the same in �(n �
r!

2)!
� ways. 

Using the product rule, there are (n � r) � (n � r � 1) � �
(n �

r!
2)!

� possible 

arrangements. Finally, using the rule of the complement, the number of arrange-
ments that begin or end with the special symbol is 
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�
n
r!
!
� � (n � r) � (n � r �1) � �

(n �
r!

2)!
� �

� (n � r) � (n � r � 1) � �
(n �

r!
2)!

�

� �
(n �

r!
2)!

� � [n(n � 1) � (n � r)(n � r � 1)]

� �
(n �

r!
2)!

� � r � (2n � r � 1)

� �
(
(
n
r �

�
1
2
)
)
!
!

� � (2n � r � 1)

There is not much merit in this algebra since the final answer is not very illumi-
nating. The unsimplified version is likely just as useful. To make sure that there
are no errors, you should verify that we get 96 when n � 6, r � 3.

One final worry is whether we have covered all the possible situations. For exam-
ple, if r � 1 so that there are no repeated symbols, does our formula give the cor-
rect answer? Substituting in the above expression, we get �(n �

0!
2)!

� � (2n � 2) �

2 � (n � 1)!. This is the correct answer since we place the special symbol in two
ways at the beginning or end and then the other symbols in (n – 1)! ways. You can
also check that we get the correct answer in the other extreme case, r � n.

We have solved two difficult problems with tools and strategies. The following
problems are chosen to give you practice solving counting problems. Some of
these are also difficult. Be brave and you will succeed!

Part B

1. The letters of the alphabet are used to form a word of length k. How many of
these words contain the letter z if we allow letters to be repeated as often as
we like? See Example 1.

2. A subset of k integers is selected from the set 1, 2, …, 100. In how many of
these subsets are the selected integers consecutive?

3. A subset of five numbers is selected from the integers 1, 2, …, n. How many
of these subsets have largest element L where 1 � L � n?

4. Consider the set of numbers {1, 2, 3, …, 2n + 1}. How many subsets of size 
o � e can be formed with o odd numbers and e even numbers?

Exercise 11.5

n � (n � 1) � (n � 2)!
���r!
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5. An arrangement of length r is constructed from a set of n distinct symbols
that include the letter A. How many of these arrangements contain A if

a. no symbol may be used more than once?

b. each symbol may be used up to r times?

6. Suppose you have n symbols of which r are identical (called special as in
Example 2), and the remaining n � r are distinct. How many arrangements of
these symbols can you make if the arrangement must start with a special 
symbol?

7. A binary sequence of length n has exactly k 1s. How many such sequences
can you make if the sequence begins or ends with 1?

Part C

8 How many sequences of fixed length n can be formed by arranging the inte-
gers 1, 2, …, n so that 1 and n are separated by exactly one term?

9. A sequence of length r is formed using the integers 1, 2, …, 1000, at most
once. In how many of these sequences does 1 occur before 2?

10. A sequence of length 2n is formed using two 1s, two 2s, and so on to two ns.
How many of these sequences have at least one 2 before a 1?

11. How many arrangements can be formed from a As, b Bs and c Cs if no two of
the As are consecutive?
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Key Concepts Review

Most counting problems are variations of standard questions or can be converted
into such questions. We do not need basic concepts such as the product rule to
solve every question. We can define some expressions for common situations.

The first thing to decide is whether order matters. If it does, you are counting
sequences; if the elements are distinct, the terms permutation and arrangement
are also used. If it does not, you are counting subsets or combinations.

Next you must decide what restrictions have been placed on the objects you are
counting and whether you can deal with these restrictions and be left with a stan-
dard question. You may have to separate the objects into cases. This happens
when the way you deal with the restriction affects the number of ways to com-
plete the objects; it also occurs when counting subsets, if dealing with the restric-
tion imposes order on the object.

Section 11.5 gave some hints on problem solving. As was pointed out, you need
to remember the following formulas:

Counting Sequences
a. Arrangements of r elements from a set of n distinct elements (P(n, r) or nPr)

P(n, r) � n(n � 1)…(n � r � 1)

� �(n �
n!

r)!�

If r � n, we get P(n, n) � n! 
If r � n, P(n, r) � 0

b. Arrangements of r elements from a set of n elements, with unlimited repetition
allowed, number of sequences � nr

c. Arrangements of n symbols of k types, with n1 symbols of type 1, n2 of type 2,

etc., so that n1 � n2 �…�nk � n, number of sequences is �n1n2

n
!…
!

nk!
�

Counting Subsets
Subsets of r elements from a set of n distinct elements �� � or nCr�

� � � �(n �
n!

r)!r!� � �
P(n

r!
, r)
�

� � � � �
� � � � � � � �
� � � � � �…� � � � 2nn

n
n
1

n
0

n � 1
r � 1

n � 1
r

n
r

n
n � r

n
r

n
r

n
r
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Voting systems in Canada and around the world vary. Each has its own strengths
and weaknesses. Canada’s system gives voice to disparate regions but can result
in governments that do not have a majority of the popular vote. Proportional rep-
resentation gives seats in parliament in direct proportion to the popular vote, but
if regions are to be heard, allocating the seats can be a problem. In 1951, mathe-
matical economist Kenneth Arrow proved that there is no consistent method of
making a fair choice among three or more alternatives. That is, no election proce-
dure can always fairly decide the outcome of an election that involves three or
more candidates.

Investigate and Apply

1. How many ways can 12 seats in a small parliament be assigned to three
political parties if the votes are in the proportions 8 to 3 to 1?

2. How many ways can 120 seats in a parliamentary house be assigned to three
political parties if the votes are in the proportions 80 to 30 to 10? (Most
scientific calculators will not be able to answer this—try to find computer
software that can.)

3. A 120-seat parliamentary house represents three regions: 20 seats for the
east; 60 seats for the central region; and 40 seats for the west. Proportional
representation is used in each of these regions. After an election, Party A wins
8 seats in the east, 47 in the centre, and 25 in the west. Party B wins 10 seats
in the east, 8 seats in the centre, and 12 seats in the west. Party C wins 2
seats in the east, 5 seats in the centre, and 3 seats in the west. How many
ways are there to assign these seats?

INDEPENDENT STUDY
Research a recent federal or provincial election and determine the number of
seats each party would have if proportional representation seating had been used.
How many ways could these seats have been allocated? How does the propor-
tional representation seating compare to the actual number of seats awarded to
each party?

Research a voting system, past or present, that used proportional representation.
How did they deal with determining who gets what seat? 

What did Kenneth Arrow mean by fair choice? ●

investigate and applywrap-up
CHAPTER 11 :  VOTING SYSTEMS



Review Exercise

1. A sequence of length 6 is formed from the digits {0, 1, 2, …, 9}. If no repeti-
tion is allowed, how many of these sequences can be formed if

a. there are no restrictions?

b. the sequence starts with 7?

c. the sequence starts with a digit less than 7?

d. the first two terms are both less than 3?

e. the first two terms are both less than 7?

f. the sum of the first two terms is 7?

g. at least one of the first two terms is less than 7?

2. A password for a voice-mail system is a sequence of five digits selected from
{0, 1, 2, …, 9} with unlimited repetition allowed. How many passwords can
be formed if 

a. there are no restrictions?

b. the first digit cannot be 0?

c. the first and last digit are 9?

d. the first or last digit is 9?

e. the first and last symbol are the same?

f. all the digits are distinct?

g. at least two different digits must be used?

h. the digit 9 must be included?

3. A cable contains 12 wires that are colour coded. There are three green, three
red, three black, and three white wires. How many subsets of four wires can
be selected if

a. there are no restrictions?

b. there is exactly one wire of each colour?

c. only green and red wires are used? 

d. at least one green wire is used?

e. at least two green wires are used?

f. exactly two different colours are used?

g. exactly three different colours are used?
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4. A bit string of length 8 is a binary sequence made using 0s and 1s. How many
such strings can be constructed if 

a. there are no restrictions?

b. the string starts and ends with 0?

c. the string starts or ends with 0?

d. the string has exactly 2 0s?

e. the string has exactly 2 0s and starts with 10?

f. the string has exactly 2 0s, which occur consecutively?

g. the string has exactly two 0s, one in the first half and one in the second
half?

h. the string has at least 2 0s?

5. A landscaper plans to plant a row of ten trees. There are five cedars, three
pines, and two spruces available. How many different arrangements of the ten
trees can be planted if 

a. there are no restrictions?

b. all trees from each species must be planted side by side?

c. a spruce is planted at each end of the row?

d. the trees at the ends of the row are the same species?

e. the two spruces cannot be planted side by side?

f. the row starts or ends with a spruce tree?

g. no two cedars can be side by side? 

6. Explain, using words only, why P(100, 10) � � � � 10!.

7. A sequence of length 4 is formed using the letters {a, b, c, d, e, f} without
repetition. Explain what is wrong with the following arguments and provide a
correct solution with a clear explanation.

a. To count the number of sequences that start or end with a vowel, consider
two cases

Case 1: sequence starts with a vowel
Case 2: sequence ends with a vowel

In Case 1, there are 2 choices for the first letter, 5 choices for the second, 4
choices for the third, and 3 choices for the fourth, so there are 
2 � 5 � 4 � 3 � 120 sequences that start with a vowel. In Case 2, start
with 2 choices for the last letter and so on, so there are 120 sequences that
end with a vowel. Hence there are 240 sequences that start or end with a
vowel.

b. To count the number of sequences that contain at least one vowel, select 

the vowel in 2 ways. The remaining three letters can be chosen in � �5
3

100
10
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ways. Then the four selected letters can be arranged in 4! ways so there are

2 � � � � 4! � 480 sequences that contain at least one vowel.

8. The five letters {a, b, c, d, e}are arranged to form a word. If all possible
words are arranged in a list in alphabetic order,

a. how many words come before ceadb?

b. how many words are between adcbe and dacbe?

c. what is the 61st word in the list?

9. A subset of size r is formed from a set with n elements that include A and B.
How many of the possible subsets contain

a. both A and B?

b. A or B?

c. neither A nor B?

10. A sequence of length r is formed from a set with n elements that include A, B,
and C. How many of the sequences have 

a. A occurring before B?

b. A occurring before B occurring before C?

c. A and B occurring before C?

5
3
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Chapter 11 Test 

1. Evaluate P(10, 3) � � �.

2. A five-digit number is formed using the digits from the set {1, 2, …, 9} with
no repetition. How many of these numbers 

a. start with an even digit?

b. start and end with an even digit?

c. have exactly three even digits?

3. Given that P(n, r) is the number of sequences of length r that can be formed 

using n symbols with no repetition allowed, prove that � � � �
P(n

r!
, r)
�

4. A committee of four people is to be formed from six men and six women.
How many committees can be formed if

a. there are no restrictions?

b. both Bob and Mary must be on the committee?

c. Bob and Mary will not serve on the committee together?

You may leave your answer in unsimplified form. Be sure to explain your rea-
soning.

5. You are given a collection of 20 multiple choice questions, four each with
possible answers A, B, C, D, or E. How many different sets of ten questions
can be formed if the set has exactly two questions with each possible answer?

6. All the letters of the word Toronto are used to form words of length 7. How
many of these words have the two Ts separated by at least one other letter?

n
r

10
3
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7. Binary sequences of length n are formed using 0s and 1s. How many of these
sequences start or end with 1?

8. A password with 6, 7, or 8 characters is formed using the 26 letters of the
alphabet and the ten digits selected from the set {0, 1, 2, …, 9}. Digits and
letters may be repeated. How many passwords can be formed if a password
must contain at least one letter and at least one digit?

9. The universal set U has N elements, including the letter A. Show that the 
fraction of all subsets of size r that contain A is �

N
r
�.
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ASSESSING ALGORITHMS

An algorithm is a recipe that a computer uses to solve a specific class of problems. For example, there
are algorithms that sort lists or search strings of characters. A Web search engine uses a complex
algorithm to quickly search a huge text string in order to identify sites that you are seeking. Computer
scientists are interested in studying the properties of algorithms to see how efficient and fast they are.
Here, we examine one way to assess algorithms.

You have learned the Gauss-Jordan algorithm for solving systems of three linear equations, written in
matrix form, such as

� �
A computer can use the same algorithm to solve ten linear equations in ten unknowns or, in general, n
linear equations in n unknowns. To assess the algorithm, we count the number of additions,
subtractions, multiplications, and divisions it takes to solve the equations. The time taken to solve the
system is closely related to the total number of operations required. For the above example, let the
number of operations be a3, where the subscript indicates the number of equations we are solving.
Since we only care about how many operations are needed and not the actual solution, we represent the
entries in the matrix as *. 

� �
We do not worry about special cases when, for example, the (1, 1) entry is 1 or a 0 appears that requires
an interchange of rows.

The first step of the algorithm is to divide every entry in the first row by the first element. This requires
four divisions. Next, we multiply each element in the first row by the (2, 1) entry and subtract from the
second row. This requires another eight operations. We repeat this step for the third row, giving another
eight operations. We have used a total of 20 operations to reduce the matrix to the form

� �*
*
*

*
*
*

*
*
*

1
0
0

*
*
*

*
*
*

*
*
*

*
*
*

7
2
1

�1
3

�2

3
2

�1

3
1
2
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The last two rows correspond to two equations in two unknowns, and we require a2 operations to solve
these equations. Finally, to find the first unknown, we substitute the solutions of these two equations
into the equation corresponding to the first row and solve. This requires two multiplications and two
subtractions, so we have a3 � a2 � 24. You can use the same argument to show that a2 � a1 � 11, and,
obviously, a1 � 1, so we have a2 � 12, a3 � 36. 

A computer can use this algorithm to solve a system of n equations. You can use the same counting
method to show that an � (n � 1) � 2(n � 1)(n � 1) � 2(n � 1) � an�1 or, simplifying,
an � 2n2 � 3n � 3 � an�1, n � 2. We can use this formula to find an recursively for any value of n;
that is, we use the formula and a3 to find a4 and then repeat. The table gives the number of operations
required for solving up to ten equations in ten unknowns.

n an

1 1

2 12

3 36

4 77

5 139

6 226

7 342

8 491

9 677

10 904
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To assess the algorithm more generally, we can show that an � . Note that an is 

approximately proportional to n3 as n gets large; that is, �
a
n

n
3� � �

2
3� for large values of n. 

You might wonder if it is possible to find a better algorithm that requires substantially fewer operations;
for example, one in which the number of operations required is proportional to n2 as n gets large. The
answer here is no. However, in certain cases, when n is large and many of the coefficients are 0 (this is
called a sparse system of equations), a more efficient algorithm can be found.

4n3 � 15n2 � 7n � 6
���6
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If you release a tennis ball from your hand, will it
always drop directly to the ground? A scientist
would answer this question by repeating the
experiment many times in carefully controlled
circumstances before drawing a conclusion about
the consequence of a continuous or connected
series of actions. In mathematics, a set of numbers
can be arranged according to some rule or
sequence. A closer look at sequences of numbers
and sequences of functions, statements, and
diagrams will lead to important and practical
applications in finance, computer science, and
medicine.

CHAPTER EXPECTATIONS In this chapter, you will

• use sigma notation, Section 12.1 

• solve problems using counting principles,
Section 12.1, 12.2

• solve problems involving permutations and
combinations, Section 12.2

• prove formulas for the sums of series, 
Section 12.3

• understand mathematical induction, 
Section 12.3

• prove the binomial theorem, Section 12.4

• prove relationships between coefficients in
Pascal’s triangle, Section 12.4

• describe the connections between Pascal’s 

triangle, values of � � and values for binomial 

coefficients, Section 12.4

• determine terms in the expansion of a binomial,
Section 12.4

n
r

Chapter 12
SEQUENCES



Review of Prerequisite Skills

This chapter deals with sequences. Here we review some ideas about arithmetic
and geometric sequences. 

ARITHMETIC SEQUENCES

In an arithmetic sequence, the difference between consecutive terms is a constant.
In an arithmetic sequence having first term a1 � a and constant difference d,
successive terms are a2 � a � d, a3 � a �2d, a4 � a � 3d, and 
an � a � (n � 1)d. If a � 4 and d � 3, we obtain the arithmetic sequence 4, 7,
10, …, 4 � (n � 1)3, …. In this sequence, tn � 4 � (n � 1)3 � 3n � 1. Every
linear function defines an arithmetic sequence if the variable has the set of 
positive integers as its domain. For f(n) � 3n � 7, we obtain the sequence
�4, �1, 2, 5, …, 3n � 7, ….

The sum of the first n terms of an arithmetic sequence is 

Sn � a � (a � d) � (a � 2d) � … � (a � (n � 1)d) � �
n
2�[2a � (n � 1)d]

For the arithmetic sequence 2, 7, 12, …, 5n � 3, …, , the value of a is 2, d is 5,
and the sum of the first 15 terms is

S15 � 2 � 7 � 12 � … � 72 � �
1
2
5
�[4 � 14 � 5]

� �
1
2
5
�[74]

� 555

GEOMETRIC SEQUENCES

In a geometric sequence, the ratio of consecutive terms is constant. In a geometric
sequence having first term g1 � a and constant ratio r, successive terms are 
g2 � ar, g3 � ar2, g4 � ar3, …, gn � arn�1. If a � 2 and r � 3, we obtain the
geometric sequence 2, 6, 18, 54, …, 2 . 3n�1, …..

An exponential function of the form f(n) � a • bn�1 defines a geometric sequence
if the variable has the set of positive integers as its domain. For f(n) � 7 . 2n�1,
we obtain the sequence 7, 14, 28, 56, …, 7 . 2n�1, ….
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The sum of the first n terms of a geometric sequence is 

Sn � a � ar � ar2 � … � arn�1 � a�
r
r
n

�
�

1
1

�

For the geometric sequence with a � 7 and r � 3, the sum of the first 12 terms is

S12 � 7�33
12

�
�

1
1

�

� �
7
2�(312 � 1) 

1. For the following sequences, identify them as arithmetic, geometric, or 
something else. In all cases, n � 1.

a. tn � n

b. tn � (�2)n

c. tn � n � (�2)n

d. tn � n(�2)n

e. tn � 7n � 5

f. tn � 3 . 2n�1

2. In an arithmetic sequence, the second term is 7 and the fifth term is 16. 
Find the tenth term and the sum of the first ten terms.

3. If the sum of the first five terms of an arithmetic sequence is 30 and the sum
of the first ten terms is 10, find the sum of the first twenty terms.

4. If a1, a2, …, an, … is an arithmetic sequence with first term a and common
difference d and bn � a2n�1, n � 1, find an expression for the general term bn
and show that b1, b2, …, bn, … also form an arithmetic sequence.

5. In a geometric sequence, the first term is 2 and the fifth term is 32. 
Find the sum of the first ten terms.

6. Can a sequence be both arithmetic and geometric? Explain.

7. Consider the sequence tn � � �, n � 1.

a. Evaluate the first five terms of the sequence. Is it arithmetic?

b. Consider the new sequence defined by an � tn�1 � tn, n � 1. Is this
sequence arithmetic?

8. Suppose a geometric sequence with general term gn � arn�1, n � 1 has both
a and r positive. What can you say about the sequence with terms 
an � log(gn), n � 1?

n � 2
n

Exercise 
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All living things receive their DNA from the generation that came before them.
Changes to the DNA as it is passed along are fundamental to the evolution of
species. There are parallel ideas in sociology (cultural evolution) and in philosophy
(Hegel’s dialectic method). There are also parallels in mathematics. Fractals are
widely used mathematical objects that can be constructed by repeating a process
in which each step adds greater complexity to the results from the previous step.
Recursively defined sequences are numerical sequences in which each term is
found from the previous term (or terms) through some specific process. Among
other things, recursively defined sequences are used to solve complicated mathe-
matical equations indirectly when no direct method exists.

Investigate 
Possibly the most famous recursively defined
sequence in mathematics is the Fibonacci
sequence, named in honour of Leonardo da Pisa,
who lived around the beginning of the 13th centu-
ry and whose nickname was Fibonacci. He intro-
duced the sequence in his book Liber Abaci,
published in 1202, as the solution to the following
problem: How many pairs of rabbits will be pro-
duced in a year if every month each pair of adult
rabbits gives birth to a new pair that becomes
mature in the following month? The answer is the
twelfth term in the sequence defined by t1 � 1,
t2 � 2, tn � tn�1 � tn�2, n � 3, 4, 5, ...., . The first
few terms of this sequence are 1, 2, 3, 5, 8, 13,
21, 34, etc. The numbers themselves are called
Fibonacci numbers.

Fibonacci numbers arise in several other contexts. They answer questions like
“How many sequences of 0s and 1s of length n�1 have no 0,0 sub-sequence?”
and “How many subsets of the integers from 1 to n�1 contain no consecutive
integers?” 
The ratios of the Fibonacci numbers approach the Golden Ratio . 

This ratio occurs in nature and is used in art and architecture because it is consid-
ered to be aesthetically pleasing. It can also be approximated using the recursive 
sequence t1 � 1. Calculate the first ten terms of this sequence tn � 1 � �tn

1
�1
�, 

n � 2, 3, ....

DISCUSSION QUESTIONS

1. When is a direct formula for the nth term in a sequence preferable to a
recursive formula?

2. What are fractals and where are they used? ●

1 � �5�
�

2

CHAPTER 12 :  RECURSIVE  SEQUENCES

investigate 



Section 12.1 — Sequences

We define a sequence of numbers by its terms, one term for each positive integer.
That is, a sequence has the form t1, t2, …, tn, … where t1 is the first term, t2 is the
second term, and tn is the nth or general term.

Sequences are of practical importance. Financial calculations, such as monthly
mortgage payments, are based on sequences. In computer science, many algo-
rithms, such as those used to sort and merge lists, are defined as a sequence of
operations. In medicine, sequences are used to model the growth and decline of
epidemics of infectious diseases in a population.

In this chapter, we look at sequences of numbers and also sequences of functions,
statements, and diagrams. The terms of a sequence may be functions, such as
t1(x) � 1 � x, t2(x) � (1 � x)2, …, tn(x) � (1 � x)n, … or statements, such as S1,
S2, …, Sn, … where

S1: the sum of the first natural number is 1
S2: the sum of the first two natural numbers is 3
Sn: the sum of the first n natural numbers is �n(n

2
� 1)
�

We know that every term in this sequence of statements is true. In Section 3 of
this chapter, we use a method of proof called mathematical induction to investi-
gate other sequences of statements to see if they are true.

We can also construct sequences of diagrams. One use of these sequences is to
construct fractals, amazing computer-constructed diagrams, which are the subject
of modern mathematical research. Enter fractal in a search engine and you will
soon locate some beautiful examples. For example, the following sequence of dia-
grams, D1, D2, D3, leads to Sierpinski’s triangle, a simple fractal.

D1 D2 D3

To produce this sequence of diagrams, we start with the first term, an equilateral
triangle. To get the second term, join the midpoints of the three sides of the initial
triangle and remove the equilateral triangle in the centre. This leaves three smaller
equilateral triangles as shown. To produce the third term, repeat the removal 
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process on all the remaining triangles in the second diagram. In general, we pro-
duce the nth diagram by using the removal process on all the equilateral triangles
in the (n � 1)st diagram. Here is what happens after n � 6.

D6

As n gets large, the sequence of diagrams converges to Sierpinski’s triangle. There
are many Web sites that will show you dynamically how this sequence evolves.
The above sequence of diagrams is defined recursively. In recursive definitions
of a sequence, we do not give a formula for finding the nth term directly. Instead,
we specify the first term and then define each term by a process applied to the
preceding terms. Recursion as a way to define sequences is very important in
computer science and other areas of application.

EXAMPLE 1 Provide a recursive definition for 

a. the general arithmetic sequence
b. the general geometric sequence
c. the sequence of functions t1(x), t2(x), …, tn(x), … where tn(x) � (1 � x)n

Solution
a. The first term of the general arithmetic sequence is t1 � a and the difference

between two consecutive terms is d. That is, tn � tn�1 � d for all n � 2.
Rearranging this equation gives the recursive definition of the arithmetic
sequence t1 � a, tn � tn�1 � d, n � 2.

b. The first term of the geometric sequence is t1 � a and the ratio of two 
consecutive terms is r. That is, �tn

t

�

n

1
� � r for all n � 2. Again, we rearrange the 

equation to get the recursive definition of the geometric sequence t1 � a,
tn � r � tn�1, n � 2.

c. For any fixed x, the sequence is a geometric sequence. Applying the result from
above we have t1(x) � 1 � x, tn(x) � (1 � x)tn�1(x), n � 2.
Using the above examples, we can ask many mathematical questions about
sequences. For example, what happens to the terms of a geometric sequence as
n gets large? If you have taken calculus, then you know this is the limit of tn as 
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n → �. For the sequence of diagrams, we could ask about the area and the num-
ber of triangles in the nth diagram, especially as n gets large.

We can also generate interesting questions by creating new sequences from a
given sequence. There are many ways to do this.

Part A

1. The following sequences are defined recursively. Evaluate the first five terms.

a. t1 � 1, tn � 2 � 3tn�1, n � 2

b. f1 � 1, f2 � 1, fn � fn�1 � fn�2, n � 3

c. g1(x) � 1, gn(x) � xgn�1(x) � 1, n � 2

d. h1(x) � x, hn(x) � 1 � 2hn�1(x), n � 2

2. In an arithmetic sequence, the third term is 12 and the 15th term is �48.

a. Find the formula for the general term of the sequence.

b. How many terms in the sequence are positive?

Part B

3. A family is saving to pay for their child’s university education. On the child’s
tenth birthday, the family puts $2000 into a savings account that pays 5%
annual interest. On each subsequent birthday up to and including the 18th,
another $2000 dollars is added to the account. Let p10, p11, …, p18 be the
amount in the account after the payment is made on the 10th, 11th,..., 18th

birthday.

a. Show that the sequence pn, n � 10, 11, …, 18 satisfies the recursion 
p10 � 2000, pn � 1.05pn�1 � 2000, 11 	 n 	 18.

b. Using a calculator, evaluate p18.

4. For any arithmetic sequence, show that the sum of any 20 consecutive terms
is 20 times the average of the first and last term in the sum.

5. A geometric and arithmetic sequence have a common first term, 1. Show that
if the second and third terms are also equal, then all terms are equal.

Application

Knowledge/
Understanding

Exercise 12.1

1 2 . 1  S E Q U E N C E S 445



6. Consider the geometric sequence with general term tn � 3 � 2n�1, n � 1.
Create a new sequence according to the instructions given and determine
whether each new sequence is geometric.

a. The nth term of the new sequence is the square of the nth term of the given
sequence.

b. The terms of the new sequence are the odd-numbered terms of the given
sequence.

c. The first term of the new sequence is 3. The nth term of the new sequence
is tn � tn�1, n � 2.

7. A sequence has general term gn � tn � tn�1, n � 2, where tn � 3 � 2n�1,
n � 1. In that this is a geometric sequence, what must be the value of g1?

8. Suppose that the sequence v1, v2, …, vn, … is defined recursively so that 
v1 � 2 and vn � 3 � vn�1, n � 2. Verify that vn � 2 � 3n�1 satisfies this
recursive definition for all n � 1.

9. At the start of the nth month, the remaining debt owed on a student loan of
$5000 is pn, n � 1. Note that p1 � 5000. The monthly interest rate is 0.75%.
At the end of each month, the student makes a payment of $100.

a. Show that p2 � 4937.50

b. Explain why pn � 1.0075pn�1 � 100 for n � 2.

c. Use this recursive definition and a spreadsheet program or calculator to
determine how many months it takes before the loan is paid.

10. The numbers 1, 2, 3, … are written in a spreadsheet with ten columns. The
first row is 1 to 10, the second 11 to 20, and so on. Let rk be the number of
terms of the arithmetic sequence a1 � 4, an � an�1 � 3, n � 2 that appear in
the kth row of the array. Find an expression for rk.

11. An anti-arithmetic sequence a1, a2, …, an, … is defined with first term a and
the sum of any two consecutive terms a constant s. Find the general term of
the sequence.

12. A sequence of points in the plane P1, P2, …, Pn, … is defined recursively
with P1 given by (1, 0) and Pn�1 � (1, 2) � Pn, n � 2.

a. Sketch the position of the first four points in the sequence.

b. Prove that every point in the sequence lies on a straight line.

Communication

Thinking/Inquiry/
Problem Solving

Communication

Knowledge/
Understanding
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Part C

13. Consider the function f (x) � 2x(1 � x) and define a sequence x1, x2, …,
xn, … recursively, with x1 between 0 and 1, and xn � f(xn�1), n � 2.

a. If x1 � 0.5, evaluate xn for all n � 2

b. Suppose x1 � 0.3. Use a calculator or spreadsheet to evaluate x2, x3, …,
x15. Describe the behaviour of the sequence as n increases.

c. Repeat part b for a variety of values for x1, 0 	 x1 	 1. What can you con-
clude from this investigation?

d. Repeat parts b and c if f(x) � 3x(1 � x).

14. A sequence of lines l1, l2, …, ln, … is drawn in the plane so that no two are
parallel and no three intersect in a common point. The first four lines are
shown on the diagram. Let s1, s2, …, sn, … be a sequence of numbers corre-
sponding to the number of distinct regions that are created by the lines.

a. Evaluate s1, s2, s3 and s4.

b. Explain why sn � sn�1 � n, n � 2.

c. Show that sn � �
n2 �

2
n � 2
�, n � 2 satisfies the recursive definition in b.

15. A sequence of functions with general term fn(x) is defined recursively. The
first term f1(x) � g(x) � �1 �

x
x

� and fn(x) � g(fn�1(x)), n � 2.

a. Find an expression for fn(x) and show that it satisfies the recursion.

b. Sketch a graph of y � g(x) and the line y � x on the same set of axes.

c. Find all values of x0 for which the sequence f1(x0), f2(x0), …, fn(x0), … is
constant.

d. Are there any values x1 so that the sequence f1(x1), f2(x1), …, fn(x1), …
alternates in value?

16. In the sequence of Sierpinski triangles, let an be the number of equilateral 
triangles in the nth diagram.

a. Evaluate a1, a2, a3, and a4.
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b. Explain why the sequence a1, a2, …, an, … satisfies the recursion 
an � 3an–1, n � 2.

c. Verify that an � 3n�1, n � 2 satisfies this recursive definition.

d. If the length of the side in the original triangle is 1, develop a recursive
definition for the length of the side bn of the small equilateral triangles in
the nth diagram.

e. Find a formula for the general term bn.

f. Find a formula for An, the fraction of the area of the original triangle
remaining in the nth diagram. What happens as n gets large?

17. The Koch snowflake is produced by recursively operating on a sequence of
diagrams. The first term in the sequence D1 is an equilateral triangle with side
length 1. The second term D2 is formed by replacing the middle third of each
side by two other line segments of the same length as shown. Dn is produced
by replacing the middle third of all lines in Dn�1 by two line segments of
equal length. D1, D2, D3, and D4 are shown below. Determine what happens
to the area and perimeter of Dn as n gets large.
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Section 12. 2 — Partial Sums and Sigma Notation

In the introduction to this chapter, we reviewed the formulae for the sum of the
first n terms of both arithmetic and geometric sequences. For instance, if 
tn � a � (n � 1)d, n � 1, 2, … is an arithmetic sequence, then the sum is 

Sn � t1 � t2 � … � tn � �
n
a

�[2a � (n � 1)d]

Creating a new sequence in which each term is the sum of the terms of a given
sequence is so common that we use a special language and notation to describe it.
For any sequence of numbers t1, t2, …, tn, …, we determine the nth term Sn of the
new sequence to be the sum of the first n terms of the given sequence. That is,

S1 � t1, S2 � t1 � t2, …, Sn � t1 � t2 � … � tn

The terms Sn of the new sequence are called the partial sums of the terms of the
original sequence.

We use a special notation called sigma notation to express Sn compactly. We write

Sn � �
n

i�1
ti

Note that � is the upper case Greek letter sigma (the equivalent of our letter s),
chosen to remind us that we are constructing a sum. The i is called the index and
the values below and above � give the range of the index in the summation.
The notation tells us to add the terms ti as the index i ranges from 1 to n in steps
of 1. That is, Sn is the sum of the terms ti for i � 1, 2, …, n. There is nothing
magical about sigma notation—it is simply a convenient way to express the sum
of terms of a sequence.

EXAMPLE 1 For a sequence with general term tn, write the following sums in � notation.

a. The sum of the first 50 terms.
b. t4 � t5 � … � t25
c. The sum of the first 25 odd-numbered terms.

Solution
a. The sum is t1 � t2 � … � t50 � �

50

i�1
ti

b. The sum is t4 � t5 � … � t25 � �
25

j�4
tj

c. The sum is t1 � t3 � t5 � … t49 � �
25

k�1
t2k � 1

The index in sigma notation can be any letter. Its purpose is to tell us what terms
to include in the sum. By custom, we use lower case letters such as i, j, and k for
the index.
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EXAMPLE 2 Expand each of the following.

a. �
8

i�1
i2 b. �

56

j�50
arj c. �

5

k�0
� � d. �

7

i�2
3

Solution

a. �
8

i�1
i2 � 12 � 22 � 32 � 42 � 52 � 62 � 72 � 82

b. �
56

j�50
arj � ar50 � ar51 � ar52 � ar53 � ar54 � ar55 � ar56

c. �
5

k�0
� � � � � � � � � � � � � � � � � � � �

d. �
7

i�2
3 � 3 � 3 � 3 � 3 � 3 � 3 

EXAMPLE 3 Evaluate each of the following.

a. �
30

k�1
k b. �

6

i�2
i2 c. �

7

j�2
3

Solution

a. �
30

k�1
k � 1 � 2 � 3 � 4 � …. � 30

� �
30

2
. 31
�

� 465

b. �
6

i�2
i2 � 22 � 32 � 42 � 52 � 62

� 4 � 9 � 16 � 25 � 36
� 90

c. �
7

j�2
3 � 3 � 3 � 3 � 3 � 3 � 3 

� 18

EXAMPLE 4 Evaluate each of the following.

a. �
7

i�1
3i b. 3�

7

i�1
i

Solution

a. �
7

i�1
3i � 3 � 6 � 9 � 12 � 15 � 18 � 21   (an arithmetic sequence)

� �
7
2�[6 � (7 – 1)3]

� �
7
2�[24]

� 84

10
5

10
4

10
3

10
2

10
1

10
0

10
k

10

k
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b. 3�
7

i�1
i � 3[1 � 2 � 3 � 4 � 5 � 6 � 7]

� 3 � �
7

2
. 8
�

� 84

The rules of arithmetic apply to summation notation. If u1, u2, …, un, … and v1,
v2, …, vn, … are two sequences and a is a constant, then

�
n

i�1
aui � a�

n

i�1
ui �

n

i�1
(ui � vi)� �

n

i�1
ui � �

n

i�1
vi

The expression on the left uses the fact that a is a common factor for each term in
the sum. The expression on the right reflects the fact that when we add, we can
switch the order of the terms without changing the total.

EXAMPLE 5 For the arithmetic sequence defined by f(n) � 4n � 3, n � 1, determine the sum
of the first 40 terms.

Solution

S40 � �
40

i�1
(4i � 3)

� �
40

i�1
4i � �

40

i�1
3

� 4�
40

i�1
i � �

40

i�1
3

� 4[1 � 2 � 3 � … � 40} � [3 � 3 � 3 � … � 3]

� 4�
40

2
. 41
� � 40 � 3

� 3280 � 120
� 3160

EXAMPLE 6 If a1, a2, …, an, … are the terms of an arithmetic sequence with first term 7 and 

common difference 2, express sn � �
n

i�1
ai in terms of �

n

i�1
i, the sum of the natural 

numbers from 1 to n.

Solution
The ith term of the sequence is ai � 7 � (i � 1)2 � 5 � 2i. The partial sum sn is

Sn � �
n

i�1
ai

� �
n

i�1
(5 � 2i)

� �
n

i�1
5 � �

n

i�1
2i
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� 5n � 2 �
n

i�1
i

For any arithmetic sequence with general term ai � a � (i � 1)d � (a � d) � id,

we can see that �
n

i�1
ai � n(a � d) � d�

n

i�1
i. The advantage of this derivation is that 

you can work out the sum of the terms of an arithmetic sequence by remembering
only the sum of the natural numbers.

�
n

i�1
i � �

n(n
2
� 1)
�

EXAMPLE 7 For any sequence t1, t2, …, tn, …, , define a new sequence with general term 
dn � tn�1 � tn, the difference between consecutive terms of the original sequence.

Evaluate �
n

j�1
dj in terms of the original sequence.

Solution
The sum of the differences is 

�
n

j�1
dj � �

n

j�1
(tj�1 � tj) � �

n

j�1
tj�1 � �

n

j�1
tj

The two sums on the right side are almost the same. The first includes all terms
from the second to the (n � 1)st. The second includes all terms from the first to
the nth. Hence, taking the difference, the terms t2, …, tn disappear so we have 

�
n

j�1
dj � tn�1 � t1

This result is useful, and there are numerous other interesting sequence results
that can be determined by using similar techniques.

EXAMPLE 8 By using the result of Example 7 with the sequence defined by tn � n3, determine 

an expression for �
n

i�1
i2.

Solution
Using the result from Example 7, we have �

n

j�1
dj � (n � 1)3 � 13 � n3 � 3n2 � 3n.

dj � (j � 1)3 � j3 � 3j2 � 3j � 1 Substituting,

n3 � 3n2 � 3n � �
n

j�1
dj

� �
n

j�1
(3j2 � 3j � 1)

� 3�
n

j�1
j2 � 3�

n

j�1
j � �

n

j�1
1
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Since �
n

j�1
j � �

n(n
2
� 1)
� and �

n

j�1
1 � n, we can substitute to get an expression for 

�
n

j�1
j2.

3 �
n

j�1
j2 � n3 � 3n2 � 3n � 3�n(n

2
� 1)
� � n

�

� �
2n3 � 3

2
n2 � n
�

Then �
n

j�1
j2 ��

n(n � 1)
6
(2n � 1)
�

We can evaluate many other partial sums using the same method.

Do not be fooled by summation notation. In any situation, if you have doubts
about the notation, write the sum out explicitly. The exercises will give you lots of
practice using sigma notation.

Part A

1. Express the following sums in sigma notation. 

a. 1 � 2 � 3 � … � 25

b. the sum of the first fifteen terms of the sequence with general term 
tn � 3 � 2n�1, n � 1

c. the sum of the squares of the positive integers from 50 to 100

d. the sum of the first 30 odd-numbered terms of the sequence with general
term tn, n � 1

2. Expand the following sums expressed in sigma notation.

a. �
10

i�1
i b. �

7

j�3
(j � 1)2 c. �

n

i�1

�
1
i
�

3. On a statistics test, several students simplified the expression by cancelling an
xi from the numerator and denominator on the left side, as shown 

�
5

i�1
xi

2

� �
5

i�1
xi

�
5

i�1
xi

Communication
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2n3 � 6n2 � 6n � 3n2 � 3n � 2n
����2
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where x1, …, x5 were a sequence of numbers. Explain why the students all
lost marks for this simplification. (Hint: Pick any five numbers for the xi.)

Part B

4. Consider three sequences u1, u2, …, un, …; v1, v2, …, vn, … ; and w1, w2, …,
wn, …. Construct three such sequences of numbers with n � 3 to see if the
following is true.

�
n

i�1
uivi �

n

i�1
vi

� 

�
n

i�1

uiwi �
n

i�1

wi

Can we cancel the ui from the expression on the left?

5. Suppose that a1, a2, …, a100 is a sequence of 100 numbers with average 
value A.

a. Write an expression for A using sigma notation.

b. Consider the new sequence with terms defined by bn � an � A for
1 	 n 	 100. 

c. Show that �
100

n�1
bn � 0.

6. For the geometric sequence with general term gn � 3�(n�1), n � 1, determine

a. the sum of the first ten terms

b. the sum of the first n terms for all n � 1

c. �
8

j�1
g2j�1

7. Consider the geometric sequence with general term gn � arn�1. 

�
60

i�1
gi

Evaluate .

�
120

i�61
gi

8. Find the sum of the first n terms of the sequence 9, 99, 999,..... Use the result
to find the sum of the first n terms of the sequences 1, 11, 111, ... and k, kk,
kkk, … where k represents a digit from 2 to 8.

9. Use the fact that � � is the number of binary sequences of length n with 

exactly k 1s to evaluate �
n

k�0
� �.
n
k

n
k

Thinking/Inquiry/
Problem Solving
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10. Suppose that tn � a � (n � 1)d, n � 1 and sn � arn�1, n � 1 are an arith-

metic and a geometric sequence. Evaluate �
n

i�1
(�1)iti and �

n

i�1
(�1)isi.

11. Consider the arithmetic sequence with general term an � 1 � 3(n � 1), n � 1
and the geometric sequence with general term gn � 2n, n � 1.

a. Evaluate �
10

i�1
gi and �

10

i�1
ai.

b. Define a new sequence tn by selecting the gn
th term from the arithmetic 

sequence. That is, t1 � a2, t2 � a4, t3 � a8, and so on. Find �
10

i�1
ti.

12. Consider the sequence tn � n2, n � 1 and the sequence of differences 
dn � tn�1 � tn, n � 1. Use the method of Example 8 to find a simple 

expression for the sum of the first n natural numbers �
n

i�1
i.

13. Consider the sequence tn � �
1
n

�, n � 1 and the sequence of differences 

dn � tn�1 � tn, n � 1. Use the method of Example 8 to find a simple 

expression for �
n

i�1

�
i(i �

1
1)�.

Part C

14. Find a simple expression for �
n

i�1
ai

2, where ai � 2i � 3.

15. Suppose that t1, .., tn are the first n terms of a sequence and we construct a 

new sequence with sj � �
n

j�1
tj, j � 1, …, n. Prove that �

n

j�1
jtj � �

n

j�1
sj.

16. Use the result of question 15 to evaluate �
n

j�1
jgj, where gj is the general term

of a geometric sequence.

17. Use the method of Example 8 to show that the sum of the cubes of the first n

natural numbers is ��
n

j�1
i�2

, the square of the sum of the first n natural 
numbers.

Thinking/Inquiry/
Problem Solving
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Section 12.3 — Mathematical Induction

In this section, we introduce a new method of proof with the peculiar name 
mathematical induction. You will recall that we compared induction and deduc-
tion in the first chapter. Curiously, mathematical induction is a deductive method
of proof.

You can see the motivation for mathematical induction in the following activity. 

Suppose a sequence is defined by the recursion tn � 2tn�1 � 1, n � 2, with 
t1 � 1. Find an expression for the general term and prove that the expression is
correct.

We start by evaluating the first few terms of the sequence. We have t1 � 1,
t2 � 2(1) � 1 � 3, t3 � 2(3) � 1 � 7, t4 � 2(7) � 1 � 15, t5 � 2(15) � 1 � 31.

Looking at the pattern, the formula tn � 2n � 1 gives the correct answers for 
n 	 5. However, we have no idea if this is the correct formula for larger values of
n. For instance, we can easily check that the less obvious formula

tn �

also gives the correct answers for the first five terms. We use mathematical induc-
tion to verify that tn � 2n � 1 is the correct formula.

Suppose that we want to show that every term in a sequence of statements S1, S2,
…, Sn, …is true. There are three steps in the proof using mathematical induction.

Step 1: Show that the first statement in the sequence S1 is true.
Step 2: Given that any one term in the sequence is true, prove that the next term

is also true.
Step 3: Combine the results of the first two steps to conclude that every statement

in the sequence is true.

Why do these steps actually prove that all the statements are true? Step 1 verifies
that the first statement is true. Once we have finished Step 2, we use it recursively
in Step 3. Since we have shown that S1 is true, then Step 2 tells us that S2 is also
true. Now, given that S2 is true, and using the result from Step 2 again, S3 is also
true, and so on.

Now we use mathematical induction to prove that we have found the correct for-
mula in the above recursion.

12 � 18n � 23n2 � 6n3 � n4
����12
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EXAMPLE 1 If tn � 2tn�1 � 1, n � 2 with t1 � 1, prove that tn � 2n � 1 for all n � 1.

Proof
Step 1: Substituting n � 1, we get 21 � 1 � 1, so the formula is correct for 

n � 1.

Step 2: Now suppose it is given that the formula is correct for some value of n,
say n � k. That is, we are given that tk � 2k � 1. To complete Step 2, we
need to show that the formula is correct for the next value, n � k � 1.
Using the recursion, we have

tk�1 � 2tk � 1

� 2(2k � 1) � 1

� 2k�1 � 1

which is correct. This completes Step 2.

Step 3: Since the formula is correct for n � 1 (Step 1), we use Step 2 recursively
to conclude that the formula is correct for n � 2, then n � 3, and so on
for all n. The proof is complete.

One analogy for proof by mathematical induction is the task of devising a method
to reach any rung on an infinite ladder.

Step 1 gets us on the first rung. Step 2 gives us a way to go from any rung to the
next. That is, if we have already reached rung 4, we can use Step 2 to get to rung
5. Step 3 puts Steps 1 and 2 together to give us a way to reach any rung on the
ladder, one rung at a time.

A common use of mathematical induction is to prove the correctness of a formula
for the partial sums of the terms of a sequence. That is, if we are given a sequence
a1, a2, …, an, … with partial sum sn � a1 � … � an, n � 1 and a postulated for-
mula for sn, we use induction to prove that the formula is correct.
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EXAMPLE 2 Prove that 1 � 1! � 2 � 2! � … � n � n! � (n � 1)! � 1 for all n � 1.

Solution
Note that the left side of the expression is the partial sum sn of the terms of the
sequence with general term an � n � n! Our goal is to prove that 
sn � (n � 1)! � 1 for all n � 1.

Step 1: If n � 1, then s1 � a1 � 1 and (1 � 1)! � 1 � 1, so the formula is correct
for n � 1.

Step 2: Suppose the formula is correct for some value of n, say n � k � 1. Then

sk � sk�1 � ak
� (k! � 1) � k � k!
� k!(1 � k) � 1
� (k � 1)! � 1

as required. The formula is correct for k if it is correct for k � 1.

Step 3: Given that the formula is correct for n � 1, we apply Step 2 recursively to
conclude that the formula is correct for all values of n � 1.

Some Observations about Proof by Induction
1. In any proof using mathematical induction, we can do Steps 1 and 2 in either

order. Step 1 is usually easier, so we do it first. Note that if Step 1 fails, then S1
is false, and we can stop. It is not true that every term in the sequence of state-
ments is true. You might wonder if it is possible to carry out Step 2 if Step 1
fails. See Exercise 10 for an example of this.

2. To many students, a proof by mathematical induction feels wrong because, in
Step 2, it seems that we assume the truth of what we are trying to prove. The
ladder analogy is helpful. What we are trying to prove is that we can climb to
any rung. What we assume in Step 2 is that we have reached a particular rung.
Then, we prove that we can climb to the next rung. Step 1 puts us on the first
rung. Combining the two steps and using recursion (Step 3) gives us a way to
climb to every rung.

3. Step 3 is the concluding step and is the same in every application of mathemat-
ical induction. Steps 1 and 2 depend on the particular result we are trying to
prove. We always write Step 3 to demonstrate to the reader the logic of the
proof.

4. A key component of Step 2 is to find a connection between consecutive terms
in the sequence of statements. If the problem is to verify a formula for a partial
sum, that is, to prove for all n that

t1 � t2 � … � tn � f(n) 

where f(n) is a postulated function, then we can connect consecutive statements,
since
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t1 � t2 � … � tn � (t1 � t2 � … � tn�1) � tn

For other problems (see Example 3), it is more difficult to make the 
connection.

5. For Step 2, we show that if any one term in the sequence of statements is true,
then so is the next term. We can take the given term as the (k � 1)st term and
show that the kth term is true. If it is more convenient, we can take the kth term
as given and then show that the (k � 1)st term is true. For partial sums, it is
easier to start from the (k � 1)st term.

6. We only use mathematical induction to establish the truth of a sequence of
statements. This means that the statements can be ordered. There is a first state-
ment, second statement, and so on. Sometimes students are tempted to try to
use mathematical induction to prove theorems such as 

Prove that x2 � 2x � 3 � 0 for all real values of x � 1.

Mathematical induction cannot be used here because for a given value of x,
there is no next term. We cannot express this theorem as a sequence of 
statements.

7. Mathematical induction can be used only when we know the answer. For exam-
ple, if we are not given a formula for a partial sum, we cannot use mathemati-
cal induction. The reason for the name mathematical induction is that we often
guess the answer based on an observed pattern, and use this method of proof to
verify that our guess is correct.

8. Mathematical induction is only one method of proof. For a given sequence of
statements, there are often simpler and more illustrative methods.

EXAMPLE 3 Use mathematical induction to prove that an � �
n3

3
� n
� is an integer for all n � 1.

Solution

For Step 1, when n � 1, a1 � �
13

3
� 1
� � 0, which is an integer. The first statement 

in the sequence is true. For Step 2, we assume that the (n � 1)st statement is 

true. That is, we are given that an�1 ��(n � 1)3

3
� (n � 1)
� is an integer. With this

given information and a bit of algebra, we now prove that an is also an integer.
Note that if we can show that an � an�1 is an integer, then we can conclude that
an � an�1 � (an � an�1) is an integer. We have

an � an�1 � �
n3

3
� n
� ��(n � 1)3

3
� (n � 1)
�

�

�

� �
3n2

3
� 3n
�

� n(n � 1)

n3 � n � n3 � 3n2 � 3n � 1 � n � 1
����3

n3 � n � (n � 1)3 � n � 1
���3
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which is always an integer for n an integer. Hence, we have shown that if an�1 is
an integer, then so is an.

Applying Step 3, we know the first statement is true. Repeatedly applying Step 2,

we conclude that �n
3

3
� n
� is an integer for any value of n � 1.

There is a much easier way to prove the result in Example 3.

EXAMPLE 3 Prove that an � �
n3

3
� n
� is an integer for all n � 1.

(REVISITED)

Solution
We can factor the numerator of an to get 

an � �
n(n2

3
� 1)
� � �

(n � 1)n
3
(n � 1)
�

After factoring, we can see that the numerator is the product of three consecutive
integers. One of these must be divisible by 3, so the given expression is always an
integer. The proof is complete.

In summary, mathematical induction is a method of proof that can be used to
show that a sequence of statements is true. We start  by verifying the first term in
the sequence directly (Step 1). For Step 2, we prove that any term in the sequence
is true if we are given that the previous statement is true. Then in Step 3, we
repeatedly use Step 2 to conclude that the second statement is true, since the first
is, the third is true since the second is, and so on. We conclude that each statement
is true.

Part B

1. Consider the sequence t1, t2, …, tn defined recursively by t1 � 1 and 
tn � n � tn�1. We want to prove that tn � n! for all n � 1 using mathematical
induction. Here we break the proof down into its simplest pieces.

a. What is the first step in the proof?

b. Is it true that t1 � 1!?

c. Write clearly what is given for Step 2.

d. Complete Step 2.

e. Using the results from b and d, explain why t2 � 2!.

f. Explain how the results from b and d can be used to conclude that 
tn � n! for all n � 1.

Communication

Exercise 12.3
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2. Consider the arithmetic sequence with nth term tn � a � (n � 1)d, where a
and d are given constants. Use mathematical induction to prove that the sum
of the first n terms, Sn � t1 � t2 � … � tn, is given by the formula 

Sn ��
n[2a � (

2
n � 1)d]
� for all n � 1.

a. For Step 1, show that the formula is correct if n � 1.

b. For Step 2, establish a connection between Sn�1 and Sn. Explain why 
Sn � Sn�1 � tn.

c. For Step 2, we are given that the formula is correct for the sum of the first 

n � 1 terms. That is, we are given that Sn�1 � .

Show that the formula is correct for the sum of the first n terms using this
given information.

d. Combine Steps 1 and 2 to conclude that the formula is correct for all 
values of n � 1.

3. Using mathematical induction, prove that 1 � 2 � 22 � … � 2n�1 � 2n � 1
for all n � 1.

4. Using mathematical induction, prove that the following statements are true for
all n � 1.

a. 1 � 3 � … � (2n � 1) � n2

b. 1 � 4 � … � (3n � 2) � �
n(3n

2
� 1)
�

c. 12 � 22 � … � n2 ��
n(n � 1)

6
(2n � 1)
�

d. (1)(2) � (2)(3) � … � (n)(n � 1) � �
n(n � 1

3
)(n � 2)
�

e. �(1)
1
(2)� � �(2)

1
(3)� � … � �(n)(n

1
� 1)� � �

n �
n

1�

f. 1 � 1! � 2 � 2! � … � n � n! � (n � 1)! � 1

5. If tn � �
n3 � 3n

6
2 � 2n
�, n � 1, use mathematical induction to prove that tn is an 

integer for all n � 1. (Hint: show that tn�1 � tn is an integer for all n.)

6. The sequence an satisfies the recursion an � an�1 � (n � 1)2, n � 2 with 

a1 � 0. Use mathematical induction to prove that an ��
n(n � 1)

6
(2n � 1)
� for all

n � 1.

7. Consider the sequence defined by en � n2 � n for n � 1.

a. Use mathematical induction to prove that every term in the sequence is
even.

b. Construct a simpler proof.

8. Prove that n(n � 5) is even for all n � 1.

Knowledge/
Understanding

Knowledge/
Understanding

{n � 1}[2a � ({n � 1} � 1)d]
����2
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9. Prove that the sum of the cubes of three consecutive positive integers is
always divisible by 9.

10. A sequence with general term tn is defined recursively by tn � n � tn�1 for 
n � 1 with t1 � 2.

a. Suppose we try to prove that tn � n! for all n � 1. Show that Step 2 of the
induction proof works but that Step 1 fails. What do you conclude about
the statement tn � n!?

b. Prove that tn � 2(n!) for all n � 1.

11. Suppose A is the matrix � �. Prove that An � � �.

12. Consider expanding the product of n factors (a1 � b1)(a2 � b2) … (an � bn)
into a sum of terms. For example,
(a1 � b1)(a2 � b2) � a1a2 � a1b2 � b1a2 � b1b2.

a. Prove that the number of terms in the expansion is 2n for all n � 1.

b. Prove that every term in the expansion contains one letter from each of the
n factors.

13. Consider the sequence with general term defined by the recursion 
vn � 2vn�1 � n for all n � 1 with v1 � 2. Prove that vn � 5 � 2n�1 � 2 � n
for all n � 1.

14. Mathematical induction can be used to provide a formal proof to statements
that are obvious but difficult to prove. Here is an example. Suppose we have
two sequences of numbers, a11, a2, …, an, …, and b1, b2, …, bn, …. Use math-

ematical induction to prove that �
n

i�1
(ai � bi) � �

n

i�1
ai � �

n

i�1
bi for all n � 1.

15. Suppose a is a positive number. Prove using mathematical induction that 
(1 � a)n � 1 � na for all n � 1.

16. In a puzzle called the Tower of Hanoi, there are a number of disks, each with a
hole in the centre, that can fit over one of three pegs. The disks are all of differ-
ent radii and are initially placed on one peg in decreasing size from bottom to
top. The initial position for the game with four disks is shown in the diagram.

Application

Communication

1   0
na  1

1  0
a 1
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The object of the game is to move all the disks to another peg. Disks are
moved one at a time from one peg to another with the only restriction being
that a larger disk can never be placed on a smaller one. Let Mn be the mini-
mum number of moves (a move corresponds to moving one disk from one
peg to another), where n is the number of disks.

a. Show that M1 � 1 and M2 � 3.

b. Use mathematical induction to verify that Mn � 2n � 1.

Part C

17. Drawing conclusions from observed patterns can be dangerous. Therefore, we
need the formality of mathematical induction. Consider the sequence defined
by tn � 41 � n � n2 for n � 1.

a. Using a spreadsheet or other program, show that t1, t2, …, t39 are prime
numbers.

b. Can you conclude that tn is prime for all n � 1?

c. Verify that t40 is not prime.

18. Suppose n straight lines are drawn in the plane so that no two are parallel and
no three are concurrent (i.e., no three intersect in a common point). Let Tn be
the number of distinct regions that are formed.

a. Show that T1 � 2, T2 � 4, T3 � 7.

b. Show that Tn � Tn�1 � n.

c. Use mathematical induction to show that Tn � �
n2 �

2
n � 2
� for all n � 1.

19. Construct two proofs to verify that 2n3 � 3n2 � n is divisible by 6 for all 
n � 1.

20. Consider the sequence f(n) � �
1
n

� for n � 1 and the partial sum s(n) � �
n

i�1
f(i).

a. How many terms are in the sequence 2k�1, 2k�1 � 1, 2k�1 � 2, …,
2k � 1?

b. Verify for any positive integer k that f (2k�1) � f (2k�1 � 1) � … �

f(2k � 1) � �
1
2� (you do not need mathematical induction to show this).

c. Prove that s(2k) � �2
k

� for k � 1.

d. Discuss the behaviour of s(n) as n gets large.

21. Consider the sequence g(n) � �n
1
2� for n � 1 and the partial sum t(n) � �

n

i�1
g(i).

Prove that t(n) 	 2 � �
1
n� for all n � 1. (Remarkably, t(n) approaches �



6

2
� as n

gets large.)

1 2 . 3  M AT H E M AT I C A L  I N D U C T I O N 463

t chnologye



Section 12.4 — The Binomial Theorem

In this section, we look at the Binomial Theorem, one of the most famous results
in mathematics. The Binomial Theorem was known by the Islamic mathematician
al-Karaji in the 10th century and was rediscovered by the British scientist Sir Isaac
Newton in the 17th century. The idea behind the theorem is very simple. The alge-
braic expression a � b is called a binomial. You will remember or can quickly
deduce that

(a � b)1 � a � b
(a � b)2 � a2 � 2ab � b2

(a � b)3 � a3 � 3a2b � 3ab2 � b3

The binomial theorem gives the expansion in terms of powers of a and b for the
expression (a � b)n for any positive integer n.

At first glance, expanding (a � b)n looks like a difficult algebra problem. It is
remarkable that we can turn this algebra problem into a simple counting problem.
The trick is to look carefully at how the multiplication of binomial factors works.
Consider, for example, expanding the product of three binomials 
(a1 � b1)(a2 � b2)(a3 � b3).

Here we include subscripts in the binomials so that we can see what happens in
the expansion. A bit of work gives

(a1 � b1)(a2 � b2)(a3 � b3) � (a1a2 � a1b2 � b1a2 � b1b2)(a3 � b3)
� a1a2a3 � a1a2b3 � a1b2a3 � a1b2b3 � b1a2a3 � b1a2b3 � b1b2a3 � b1b2b3

The key observation is that each of the terms on the right contains exactly one let-
ter from each of the three binomials. For example, a1b2a3 has a from the first and
third binomials and b from the second. The first line of the expansion shows that
the same result is also true for the product of two binomials. To prove the 
Binomial Theorem, we first need to show that this observation is true for the
product of any number of binomials.

THEOREM In the expansion of the n binomial factors (a1 � b1)(a2 � b2)…(an � bn), each
term contains exactly one symbol from each factor.

Proof
We use mathematical induction. For Step 1, the statement is true for n � 1 and as
shown above, also true for n � 2 and n � 3. Now suppose we are given that in the
product of n � 1 binomials, each term contains exactly one symbol from each
factor. We write (a1 � b1)(a2 � b2) … (an�1 � bn�1) � t1 � t2 � t3 � … � tm,
where we are given that each term ti has exactly one symbol from each factor. Then
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(a1 � b1)(a2 � b2) … (an � bn) � [(a1 � b1)(a2 � b2)…(an � 1 � bn–1)]
(an � bn)

� [t1 � t2 � … � tm](an � bn)

� t1an � t1bn � … � tman � tmbn

Each term in this expansion has exactly one symbol from each factor. This com-
pletes Step 2. Combining the two steps, we conclude that the theorem is true for
all n � 1.

Now we look at expanding (a � b)n. We start with the special case n � 3 to see
how the proof works. We have (a � b)3 � (a � b)(a � b)(a � b). Taking an a or
b from each factor, we get terms of the forms a3, a2b, ab2, and b3. The question is
how many? We get a2b by selecting b from one of the factors and a from the other

two. Since there are three factors, we can select one b in � � ways. Having select-

ed the b, there is only one way to choose as and that is from every factor b is not
taken from. Each of these selections gives a term a2b and, combining like terms,

the coefficient of a2b in the expansion is � �. Similarly, the coefficients of a3,

ab2, and b3 are � �, � �, and � �, respectively. Thus, we have (a � b)3 �

� �a3 � � �a2b � � �ab2 � � �b3. We use the same process to expand (a � b)n.

THE BINOMIAL The expansion of (a � b)n is 
THEOREM

(a � b)n � � �an � � �an�1b1 � … � � �an�kbk � … � � �bn

Proof
In the expansion of the Binomial Theorem (a � b)n � (a � b)(a � b) … (a � b).
The terms in the expansion are formed by picking either a or b from each of the n
factors. A term with k bs and (n � k)as can be simplified to an�kbk. There are 

� � ways of selecting k bs from the n factors. For each of these, there is exactly 

one way to select the (n � k)as. Hence, there are � � terms in the expansion that 

simplify to an�kbk. Combining these terms we get � �an�kbk. Thus the expansion 

becomes

(a � b)n � � �an � � �an�1b1 � … � � �an�kbk � … � � �bn

The general term is � �an�kbk.

The first term in the expansion corresponds to selecting no bs and, therefore, a
from each of the n factors. The last term corresponds to choosing all bs from
every factor and, therefore, no as.
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Because the symbols for n choose k appear so prominently in the expansion, they
are often called the binomial coefficients. Here are some examples of the use of
the Binomial Theorem.

EXAMPLE 1 Find the coefficients of x2, x8, and xk in the expansion of (1 � x)20.

Solution
From the binomial theorem we have 

(1 � x)20 � � � � � �x � � �x2 � … � � �xk � … � � �x20

The coefficients of x2, x8, and xk are � �, � �, and � �, respectively.

EXAMPLE 2 Determine the coefficient of x4 in the expansion of (2 – 3x)7.

Solution
The general term in the expansion is � �(2)7�k(�3x)k. For the coefficient of 

x4, we set k � 4. The coefficient of x4 is � �23(�3)4 � 23 . 34� �. 

Expressions such as this can always be simplified to a numerical value. Unless a
numerical value is specifically requested, however, it is usual to leave the answer
as given here.

EXAMPLE 3 If the coefficient of x3 in the expansion of (1 � 2x)n is 160, find the value of n.

Solution
The general term in the expansion is � �(2x)k � � �2kxk.

For the coefficient of x3, k � 3, so � �23 � 160 or � � � 20.

Then �n(n � 1
3
)
!
(n � 2)
� � 20

n(n � 1)(n � 2) � 120

Solving, by trial and error, we get n � 6.

EXAMPLE 4 Prove that the sum of the binomial coefficients is � � � � � � � � � … � � �
� 2n.

Solution
This identity is easy to prove using the Binomial Theorem. We have 

(1 � x)n � � � � � �x � … � � �xr � … � � �xnn
n
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Substitute x � 1 to get (1 � 1)n � 2n � � � � � � � .. � � �, as required.

Exercise 28 at the end of this section gives another way to prove this result.

The last example gives one of many identities involving the binomial coefficients.
Note that in general, the sum of the coefficients in the expansion of (a � bx)n is
found by setting x � 1 to give (a � b)n.

If we write down the coefficients in the expansion of 

(1 � x)n � � � � � �x � … � � �xr � … � � �xn

in a series of rows, one for each value of n, we get an array of numbers called
Pascal’s triangle. It is named after its discoverer, the great French mathematician
and philosopher Blaise Pascal (1623–1662). Here are the first five rows.

� �
� � � �

� � � � � �
� � � � � � � �

� � � � � � � � � �
We set the first row to � � � 1 to preserve the symmetry. This means that the fifth

row, for example, corresponds to the binomial coefficients with n � 4. If we
replace the binomial coefficients by their values, we get 

1
1  1

1  2  1
1  3  3  1

1  4  6  4  1
1  5  10  10  5  1

1  6  15  20  15  6  1

Here we have listed the first seven rows of Pascal’s triangle. Several patterns are
apparent. Two sides of the triangle have only 1s, reflecting the fact that 

� � � � � � 1 for all values of n � 0. One number in from the edge, we see the 

sequence of natural numbers, since � � = n. The sum of the (n � 1)st row is 2n,

which restates the result of Example 4. In the interior of the triangle, we see that
every number is the sum of the two closest numbers in the row above. 

n
1

n
n

n
0

0
0

4
4

4
3

4
2

4
1

4
0

3
3

3
2

3
1

3
0

2
2

2
1

2
0

1
1

1
0

0
0

n
n

n
r

n
1

n
0

n
n

n
1

n
0

1 2 . 4  T H E  B I N O M I A L  T H E O R E M 467



For example, � � � � � � � �. We show below that this observation is generally 

true. We provide two proofs. In Exercise 25, you are asked to consider another.

EXAMPLE 5

Proof 1
Suppose we have n � 1 distinct letters, one of which is A. There are � �
subsets of size k that can be constructed from these letters. Now we count these
subsets in a second way. Every subset of size k does not contain A (Case 1) or 

does contain A (Case 2). The two cases are disjoint. There are � � subsets of size

k that can be formed from the n letters other than A. For case 2, A is in the subset. 

The remaining k � 1 letters can be selected in � � ways. Hence the number 

of subsets of size k that can be constructed from n � 1 distinct letters is 

� � � � �. Equating the two counts gives the identity.

Proof 2
Consider (1 � x)n�1 � (1 � x)(1 � x)n

� (1 � x)�� � � … � � �xk�1 � � �xk � … � � �xn�
From the binomial theorem, the coefficient of xk in the expansion of (1 � x)n�1 is 

� �. On the right side, the coefficient of xk is 1 � � � � 1 � � �. 

Since the two expressions are equal, the coefficients of every power of x are 

equal. It follows that � � � � � � � �.

In the following exercises and problems, we explore more consequences of the
Binomial Theorem.
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Part A

1. Write out the complete expansion of the following binomial expressions.

a. (a � b)5 b. (1 � x)6 c. (x � 2y)4

d. (1 � s2)5 e. �x � �
1
x

��7
f. (z3 � b2)5

2. a. How many terms are there in the expansion of (1 � x)25?

b. In unsimplified form, write the coefficients of x4 and x23.

c. Determine the coefficient of x17.

d. Determine the coefficient of x3 and x10.

e. Determine the largest coefficient.

f. Determine the sum of the coefficients.

3. Determine the general term for each of the following binomial expansions.

a. (1 � 3x)15 b. (5 � 10x)20

c. (a � x2)13 d. �a3 � �
a
1
2��

10

4. In the expansion of (2 � x)12, find

a. the term containing xk

b. the coefficient of x10

5. Determine the coefficient of x4 in the expansion of �2x � �
3
x

��
8
.

6. Determine the sum of the coefficients in the expansion of

a. (1 � 3x)4 b. (1 � 5x � 2x2)5

Part B

7. Explain why the sum of the coefficients in the expansion (1 � x)(1 � x)n is 0
for all values of n.

8. Evaluate the following.

� ���
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9. Determine the first four terms in the expansion of (1 � x � x2)(1 � x2)8 in
ascending powers of x.

10. Determine the coefficient of x3 in f(x) � (3 � 2x)(1 � x)12.

11. In the expansion of (1 � x)8 � (1 � 2x)7, determine the coefficient of x5.

12. Determine the coefficient of x4 in the expansion of

a. (2 � 3x)(1 � 3x)6 b. (1 � x � x2)(1 � 2x)7

13. Which term in the expansion of ��
1
a

� � 3a2�
24

contains

a. a�15 b. a10

14. In the expansion of (1 � x)n, the coefficient of x2 is 15. Determine the value
of n.

15. a. Determine the general term in the expansion of (z2 � 2z5)10.

b. Determine the middle term.

c. Determine the coefficient of z41.

d. In which term does z36 occur?

e. Does z30 occur in this expansion?

16. In the expansion of (1 – x2)(1 � x)2n, the third term is 189x2. Determine n.

17. In the expansion of (a � x)8, the coefficient of x7 is 24. Determine a.

18. Suppose x � 0. Explain why (1 � x)n � 1 � nx for all n � 1.

19. The first three terms of a binomial expansion are 1 � 21x � 189 x2.
Determine the function that gives this expansion.

20. By making use of the fact that (1 � x)3(1 � x)n � (1 � x)n�3, prove that 

� � � 3� � � 3� � � � � � � �.

21. Show that the coefficient of xk in the expansion of 

S(x) � 1 � (1 � x) � (1 � x)2 � … � (1 � x)n�1 is � �. Use the fact 

that S(x) is the sum of terms in a geometric sequence.

22. Suppose r and s are roots of the quadratic equation x2 � 2x � 1 � 0. Prove
that rn � sn is an integer for all values of n � 1.
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23. Use the fact that (1 � x)n � (x � 1)n to show that � � � � � for

0 	 r 	 n.

24. Suppose you have a set of n distinct objects that you want to divide into two
disjoint subsets of size r and n � r. Use this problem to explain why 

� � � � � without any calculation.

25. If n � 1, 1 	 k 	 n, prove that � � � � � � � � algebraically by 

expanding and simplifying the binomial coefficients.

26. Use the expansion of (1 � x)10 to prove that 

1 � � � � � � � � � � … � � � � � � � 0

27. Use the expansion of (1 � x)12 � (1 � x)12 to verify that 

� � � � � � … � � � � 211 � 1

28. In Example 4, we used the binomial expansion of (1 � x)n to prove that 

� � � � � � … � � � � 2n. To see another way to prove this identity,

consider the following counting problems.

a. How many binary sequences (a sequence with each term 0 or 1) of 
length n can you construct?

b. How many binary sequences of length n with exactly k 1s can you 
construct?

c. Combine the results of a and b to verify the identity.

29. One diagonal (a line parallel to the edge) of Pascal’s triangle begins 1, 3, 6,
10, …. Find the general term of this sequence.

30. Show that the sum of all the entries in Pascal’s triangle down to and including
the nth row is 2n � 1.

Part C

31. If the coefficient of x3 in the expansion of �2x � �
1
x

��
n

is 672, find the value of
n.

32. Consider Vandermonde’s identity

� � � � � � � + � �� � � ... � � �� �, where k 	 m, k 	 n.
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a. Use the fact that (1 � x)m�n � (1 � x)m(1 � x)n to establish the identity.

b. Verify the identity by counting the number of subsets of size k that can be
selected from a set of n red objects and m blue objects.

33. Suppose that you have n � 1 0s and r 1s.

a. How many binary sequences can you construct that end in exactly k 1s,
0 	 k 	 r?

b. Prove the identity � � � � � � � � � … � � � �

� �.

34. Suppose that r1 and r2 are the roots of the quadratic equation ax2 � bx � c � 0,
where a, b, c are rational numbers. Show that r1

n � r2
n is rational for all 

n � 1, n � N.

The Binomial Theorem is true for a negative integer exponent. The following
questions will help you to see what happens if the exponent is negative.

35. The expression � � � �(�n
(�

�
n)

k
!
)!k!� has no meaning, since the definition of 

factorial requires that we use positive integers. However, recall that 

� � � . Use this to prove that 

� � � (�1)k� �.

36. Since (1 � x)�1 � �1
1
– x
�, we can see what the expansion of (1 � x)�1 looks 

like by dividing 1 by 1 � x. Do the division for five terms, and note that the
series obtained appears to have an infinite number of terms. Repeat this divi-
sion for (1 � x)�1, (1 � x)�2, (1 � x)�2.

37. Let S1(x) � 1 � x � x2 � x3 � … � xn � …. Determine S1(x) � xS1(x).
From this, show that S1(x) � (1 – x)�1.

38. Let S2(x) � 1 � 2x � 3x2 � 4x3 � … � (n � 1)xn � …. Determine 
S2(x) � xS2(x). Use the result from the previous Question to show that 
S2(x) � (1 � x)�2.

n � k � 1
k

�n
k

n(n � 1)(n � 2)…(n � k � 1)
����k!

n
k

�n
k

n � r � 1
r

n � r
r

n � 2
2

n � 1
1

n
0
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39. From the previous questions, we can guess that the Binomial Theorem for
negative exponent must give

(1 � x)�n � 1 � � �(�x) � � �(�x)2 � … � � �(�x)k � …

� �
�

k�0
(�1)k� �(�x)k

where n � 1 and the series has an infinite number of terms. Use n � 2 in this
expression for five terms and compare the expansion with the one you
obtained in Question 38.

40. Determine the first four terms and the general term for each of the following.

a. (1 � x)�1 b. (1 � x)�2 c. (1 � x)�3

d. (1 � x)�4 e. (1 � 2x)�4 f. (1 � 3x)�5

41. Question 39 establishes the first step required for an inductive proof that the
Binomial Theorem is true for a negative integer exponent. For Step 2, by 

assuming that Sn(x) � (1 � x)�n � �
�

k�0
� �xk, use the induction 

method to prove that the theorem holds for all n � 1.

n � k � 1
k

n � k � 1
k

�n
k

�n
2

�n
1
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Key Concepts Review

You should be able to

1. interpret recursive definitions of sequences and identify a sequence by writing
out a number of terms

2. express sequences recursively

3. interpret arithmetic and geometric sequences

4. simplify expressions given in � notation

5. evaluate sequence sums expressed using � notation

6. determine, using mathematical induction or other means, whether or not a
given expression is true for all values of the variable

7. determine, using the Binomial Theorem, the value of the coefficient in any
given term in a binomial expression

8. use the Binomial Theorem in establishing simple combinatorial identities
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Recursively defined sequences are used in many areas of applied mathematics
where direct approaches to solving problems are not available. Sometimes they
provide a natural first step toward a direct solution. For example, many people see
the pattern in 1, 3, 7, 15, 31, ... as “each successive term is found by doubling
and adding one.” This is the sequence from the famous Tower of Hanoi puzzle.
People are usually less likely to notice that the nth term can be found directly as
2n � 1. 

Investigate and Apply

1. Prove, using mathematical induction, that the recursive formula t1 � 1, 
tn � 2tn�1 � 1, n � 2, 3, ..., is equivalent to tn � 2n � 1.

2. a. Calculate the first six terms of the sequence given by t1 � 1, 

tn � �
1
2� �tn�1 � �tn

2
�1
��, n � 2, 3, ....

b. Calculate the squares of each of the terms from part a.

c. What are the terms in the sequence from part a doing?

This question demonstrates an example of Newton’s Method. It is a recursive
method for finding successively more accurate approximations to solutions of
an equation (in this case the equation is x2 � 2).

3. a. Calculate the first 10 terms of the sequence t1 � 2�2�, 

tn � 2n�2 � �	4 � ��2
t		n

n
�
�

1
1��2		, n � 2, 3, ....

b. Calculate the first 20 terms of the sequence t1 � 4, tn � �1 � �(2n

1
�1)2��tn�1, 

n � 2, 3, ....

c. Which sequence approaches pi faster?

INDEPENDENT STUDY
Investigate extensions to the Tower of Hanoi puzzle.

How many decimal places of pi have been computed? What method was used?
What is the reason for calculating pi to so many decimal places? 

(For students who have studied calculus: What is Newton’s Method? Why does it
work?)

What are recursive function calls in computer programming? How are they similar
to recursively defined numerical sequences? ●

investigate and applywrap-up
CHAPTER 12 :  RECURSIVE  SEQUENCES



Review Exercise

1. An arithmetic sequence with general term an, n � 1 has the sum of the first 

two terms 5 and the sum of the third and fourth terms 17. Find �
10

i�1
ai.

2. Can a sequence be both arithmetic and geometric? Explain.

3. For the geometric sequence with general term tn � 3(�1)n��
1
2��n

, n � 1, find

a. the sum of the terms t1 � t2 � … � t99

b. the sum of the odd numbered terms t1 � t3 � t5 … � t99

c. the sum of the reciprocal of the terms �
t
1
1
� � �

t
1
2
� � … � �

t
1
99
�

4. Suppose a1, …, an, … is a sequence of positive numbers. The new sequences
with general terms An and Gn are defined as the arithmetic average and geo-
metric average of the first n terms a1, …, an. That is,

An ��
a1 � a2 �

n
… � an�, Gn � (a1 � a2 � … � an)�

1
n�, n � 1

a. Suppose that a1, a2, …, an, … is an arithmetic sequence. Find expressions
for An and Gn. Determine if the corresponding sequences are arithmetic,
geometric, or neither.

b. Repeat part a if a1, a2, …, an, … is a geometric sequence.

5. A sequence of numbers xn is defined by x1 � 1 and xn � 2 � 3xn�1, n � 2.

a. Evaluate the first six terms of the sequence.

b. Using mathematical induction, prove that xn � 2.3n�1 � 1, n � 1.

6. To model the population size of a country, let un be the size at the end of the
nth year. The birth rate in any year is 1.2% (that is, the number of births is
0.012 times the population size at the start of the year) and the death rate is
0.8%. The emigration rate is 0.5% and the country admits 100 000 immi-
grants in any year. At the start of year 1, the population is 30 000 000.

a. Establish a recursive definition for un.

b. According to the model, will the population grow or shrink over time?

c. What is the value for the number of immigrants needed to maintain a con-
stant population?
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7. A point P in the plane starts at the origin (0, 0). At any step n, the point
moves by adding the vector (2, �1) to the previous point. How many moves
are required before the point escapes the circle x2 � y2 � 400?

8. A sequence of diagrams D1, D2, … is constructed recursively by starting with 
the unit square. A second square is constructed on the top �

1
3� of the first square

as shown.

Diagram 1 Diagram 2

At each step, a new square is placed on top of the pile with one side the middle
one third of the supporting square.

a. Establish recursions for the height and enclosed area of Dn.

b. What happens to the height and area as n gets large?

9. Consider the sequence with general term ti � (i � 1)i, i � 1 and let the differ-
ence between two consecutive terms be di � ti � ti�1 for all i � 2.

a. Show that di � 2i.

b. Explain why �
n

i�2
di � tn � t1.

c. Combine the results of a and b to prove that the sum of the first n natural 

numbers is �
n

i�2
i � �

(n �
2

1)n
�.

10. Using mathematical induction, prove that for all positive integers n that 

�1 �
1

3� � �3 �
1

5� � .. � � �2n
n
� 1�.

11. A sequence xn is defined by x1 � 1 and xn � 3xn�1 � 1, n � 2. Use mathe-
matical induction to prove 

a. no term in the sequence is divisible by 3

b. the term x2k is divisible by 4 for all k � 1

1
���(2n � 1) � (2n � 1)
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12. Using mathematical induction, show that f (n) � 2n � n(n � 1) is positive for
all integer values of n � 5.

13. The sequence of Fibonacci numbers with general term fn satisfies the recur-
sion f1 � 1, f2 � 1, fn � fn�1 � fn�2, n � 3. Use mathematical induction to
prove that 

f1 � f2 � … � fn � fn�2 � 1

for all values n � 1.

14. Prove that 13 � 23 � … � n3 � (1 � 2 � … � n)2 for all n � 1. 
(Hint: Simplify the right-hand side first.)

15. Using mathematical induction, prove that pn � 1 can be factored as 
(p � 1) f(p) where f(p) is a polynomial of degree n � 1.

16. In the expansion of (x � y)12, find the coefficients of x6y6 and x8y8.

17. The coefficient of x2 in the expansion of (1 � 2x)n is 24. What is n?

18. In the expansion of �2x � �2
1
y
��

12
, find the coefficient of ��

x
y

��
6
.

19. Use the Binomial Theorem to evaluate

1 � � �2 � � �22 � � �23 � � �24 � � �25 � � �26.

20. Use the expansion of (1 � x)2n � (1 � x)2n to prove the identity

1 � � � � � � � … � � � � 22n�1.
2n
2n

2n
4

2n
2

6
6

6
5

6
4

6
3

6
2

6
1
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Chapter 12 Test

1. Explain the meaning of the expressionn �
99

i=1
i2.

2. In a geometric sequence with general term gn � arn�1, n � 1, evaluate 

�
n

i�1
gi

2.

3. A student buys a car and receives a loan of t0 � $4000 with an interest rate of
1% per month. At the end of each month, the student pays $200 on the loan.
Let tn, n � 1 be the amount remaining to be paid after the payment has been
made at the end of the nth month.

a. Evaluate t1.

b. Develop a recursion for the sequence tn.

4. If the sequence xn, n � 1 satisfies the recursion x1 � 1, xn � 2xn�1 � n � 2,
n � 1, use mathematical induction to prove that xn � 2n � n for all n � 1.

5. Prove that 12 � 32 � … � (2n � 1)2 � �
4n3

3
� n
� for all n � 1.

6. Consider the binomial expansion of �x � �
1
x

��
12

.

a. Find the coefficient of x4.

b. What is the coefficient of the term that does not depend on x?

7. Evaluate 1 � 2� � � 4� � � … � 2n� �.

8. Suppose that an, n � 1 is an arithmetic sequence and 
a1 � a3 � … � a17 � 27, a2 � a4 � … � a18 � 9. Find �

36

i�1
ai.

9. Prove the identity � � � � � � � � for 1 	 k 	 n � 1.
n � 1

k
n � 1
k � 1

n
k

n
n

n
2

n
1
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Achievement Category Questions

Knowledge/Understanding all

Thinking/Inquiry/Problem Solving 5, 7, 8

Communication 1

Application 3, 6, 9



THE CAUCHY SCHWARZ INEQUALITY

You have learned about setting up and solving many different kinds of equations in the mathematics
that you have studied in school. Mathematicians are also interested in studying inequalities. For
example, you may have seen the famous geometric–arithmetic inequality for a set of positive numbers
a1, a2, ..., an, which states that

exp {               }	

In words, if you calculate an average by first taking the natural logarithm of each number, then finding
the standard average, and, finally, exponentiating with base e, you will get an answer smaller than the
standard average. This process could have interesting consequences if your mathematics teacher
decided to use the geometric mean to report the class average on a test. Suddenly every student would
look better against the average.

Another famous inequality is the Cauchy Schwarz inequality, actually discovered by the Russian
mathematician Bunyakovskii in 1859, which applies to two sequences of numbers a1, a2, ..., an and 
b1, b2, ..., bn, with no restrictions on positivity. The inequality is

� �
n

i�1
aibi�

2
	 � �

n

i�1
ai

2�� �
n

i�1
bi

2�

This inequality guarantees, for example, that the correlation between two sets of numbers must fall
between –1 and 1. 

Surprisingly, we can prove this inequality with the simple properties of quadratic functions. Consider
the function

f (x) � �
n

i�1
(ai � bix)2

Since every term in the sum is a square, we know that f (x) � 0 for all values of x. If we expand each
term in the sum and group like terms, we get 

f (x) � � �
n

i�1
ai

2� � � 2�
n

i�1
aibi�x � � �

n

i�1
bi

2�x2
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�
n

i�1
ln(ai) �

n

i�1
ai

n n
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That is, f(x) is a quadratic function in x, which is always greater than or equal to 0. Hence, the
corresponding quadratic equation f(x) � 0 has at most one real root and the discriminant is less than or
equal to 0. That is

� 2�
n

i�1
aibi�2

� 4� �
n

i�1
ai

2�� �
n

i�1
bi

2� 	 0

Simplifying and rearranging terms, we have the Cauchy Schwarz inequality.

Equality holds only if the equation f(x) � 0 has exactly one real root. Since f (x) � �
n

i�1
(ai � bix)2

and every term in the sum is non-negative, we must have ai the same multiple of bi for each term if 

equality holds. For example, if ai � �2bi for each i, 1 	 i 	 n then � �
n

i�1
aibi�

2
� � �

n

i�1
ai

2�� �
n

i�1
bi

2�.

The inequality and its properties have a geometric interpretation that you have already seen for 
n � 3. Suppose we have two vectors a�� � (a1, a2, a3) and b�� � (b1, b2, b3). Then we can write the
Cauchy Schwarz inequality as

(a�� • b��)2 	 a��2b��2

or, rearranging the terms and taking the square root

�1 	 � cos � 	 1

In this case, the inequality is just a statement that the cosine of the angle between two vectors is always
between –1 and 1. Equality is achieved when a�� is a multiple of b�� so that the angle between the vectors
is 0.

This surprising connection between a purely algebraic expression and the geometric notions of angle
can be extended to higher dimensions (for example, n � 3). Vectors are defined by adding additional
coordinates, and the dot product and vector lengths are defined by making similar extensions. The
cosine of the angle between two vectors is specified by exactly the same formula and is equivalent to
the general version of the Cauchy Schwarz inequality.

a�� • b��
�
a��b��
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Cumulative Review
CHAPTERS 10–12

1. A sequence of length 4 is used as a password. The elements of the sequence
can be any of the digits selected from {0, 1, …, 9} and any of the 26 letters
selected from {a, b, …, z}. No letter or digit may be repeated. Let U be the
set of all such passwords and 

A: the subset of passwords that start with a digit

B: the subset of passwords that end with a digit

a. Find n(U).

b. What passwords are in the subset A � B?

c. Find n(A � B).

2. In the set of numbers U � {1, 2, …, 1000}, how many are not perfect
squares?

3. A binary sequence of length 6 is formed using any number of 0s or 1s. How
many such sequences are there if

a. there are no restrictions?

b. the sequence must have exactly three 1s?

c. the sequence starts and ends with a different digit? 

4. Find the coefficient of x10 in the binomial expansion of �2x � �
1
x

��
20

. Do not
simplify your answer.

5. What is the product rule used in counting arguments?

6. In an arithmetic sequence a1, a2, …, an, …, �
10

i=1
ai � 20, and �

20

i�1
ai � 60. 

Find �
60

i�1
ai.

7. Using mathematical induction, prove that 1 � 3 � … � (2n � 1) � n2 for all
n � 1.

8. Prove Pascal’s identity � � � � � � � �, n � 1, 1 	 r 	 n.

9. The sequence x1, x2, … is defined by the recursion x1� 4, xn � 3xn�1 � 2,
n � 2.

a. Evaluate x2, x3 and x4.

b. Guess and prove a formula for xn.

n � 1
r � 1

n � 1
r

n
r
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10. A mathematics club has five grade 12 students and six grade 11 students. 
A team of three students is to be picked for a contest. The team must have at
least one grade 11 student. To count the number of possible teams, a club
member uses the following argument.

Select one of the six grade 11 students. Then pick the remaining two students 

from the other ten students in � � � 45 ways, so there are 6 � 45 � 270 
possible teams

a. Explain why this argument is not correct.

b. Calculate the correct answer.

11. A sequence of length 7 or 8 is formed from the nine letters of the word
Descartes. How many of these sequences have the two letters S consecutively?

12. A sequence of length 5 is formed with terms selected from {1, 2, 3, …, n}
where no two terms have the same value. How many different sequences are
possible if the largest term must be less than or equal to r, 1 	 r 	 n?

10
2

C U M U L AT I V E  R E V I E W  C H A P T E R S  1 0 – 1 2 483



T E C H N O L O G Y  A P P E N D I X484

OVERVIEW

This Technology Appendix includes a range of investigations that are referenced throughout the student
text. A technology icon in the chapter margin refers you to a specific page in this appendix for inves-
tigative illustrations of concepts.  This appendix uses investigative applications to support your under-
standing of mathematical concepts and relationships and to help you apply concepts in realistic
problem situations through modelling.

Technology Appendix

Chapter 1 — Introduction to Proof
Section 1.1 — Is Proof Enough? 485
Section 1.3 — Example 4 487
Question 1.4.6 488

Chapter 2—Plane Figures and Proof
Review of Prerequisite Skills, Question 7 490
Section 2.1 — Congruency in Triangles,

Investigation 1 491
Section 2.1 — Congruency in Triangles,

Investigation 2 494
Section 2.1 — Congruency in Triangles,

Investigation 3 497
Section 2.1 — Congruent Quadrilaterals,

Investigation 500
Section 2.1 — Example 1 501
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Section 2.2 — Parallelogram Area Property
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Chapter 2 Review Exercise, Question 15 527
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Chapter 3 — Properties of Circles
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the Dot Product 531

Chapter 8 — Equations of Planes
Section 8.4 — Setting Up a Matrix Using 

the TI-83+ 532
Section 8.4 — Reducing a Matrix Directly 

to Reduced Echelon Form or Row
Reduced Echelon Form 533

Section 8.4 — Solving a Matrix Using 
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for 2 × 2 Matrices 542
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for 3 × 3 Matrices 543
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The dynamic geometry software used in this appendix is Geometer’s Sketchpad by
Key Curriculum Press.

SECTION 1.1 — Is Proof Enough?

Many great facts, theorems, and discoveries resulted from a person asking the
question “I wonder if….” Unfortunately, the majority of the mathematics that
you experience today involves proving theorems that have already been proven in
the past. With the use of dynamic geometry software, however, you can prove
theorems, as well as hypothesize. You can use your reasoning skills to construct
an educated hypothesis, use dynamic geometry software to test your hypothesis
(and watch it come to life — literally, in some cases), and finally, create a formal
proof for the hypothesis.  

You do not create a proof by creating a sketch, manipulating it, or even animating
it. A hypothesis cannot be considered a fact without a formal mathematical proof.
Consider even the simplest example:

It certainly appears as though the sum of the angles in any triangle is 180º, and
we may be completely confident that such a hypothesis is true, but even though
we have nine cases (and we could make as many more as we wish), we cannot
say we have proved the hypothesis. (Can you prove that the sum of the angles in
any triangle is 180º? What other facts have you assumed in your proof?)
Now consider the following example:

A

B
C

A

B C

A

B C

AB

C

A

B

C

A

B
C

A

B

C

A

B

C

A
B

C

m ABC + m ACB + m CAB = 180° m ABC + m ACB + m CAB = 180° m ABC + m ACB + m CAB = 180°

m ABC + m ACB + m CAB = 180° m ABC + m ACB + m CAB = 180° m ABC + m ACB + m CAB = 180°

m ABC + m ACB + m CAB = 180° m ABC + m ACB + m CAB = 180° m ABC + m ACB + m CAB = 180°

m ABC = 79°
m ACB = 32°
m CAB = 69°

m ABC = 58°
m ACB = 60°
m CAB = 62°

m ABC = 36°
m ACB = 85°
m CAB = 59°

m ABC = 43°
m ACB = 93°
m CAB = 44°

m ABC = 50°
m ACB = 35°
m CAB = 95°

m ABC = 72°
m ACB = 35°
m CAB = 73°

m ABC = 41°
m ACB = 70°
m CAB = 69°

m ABC = 41°
m ACB = 82°
m CAB = 57°

m ABC = 28°
m ACB = 103°
m CAB = 49°
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QUESTION: The midpoints of the sides of quadrilateral ABCD are joined to form
a new quadrilateral EFGH. Hypothesize what type of quadrilateral EFGH is.

Solution: Consider the following sketches and tables created with dynamic
geometry software:

It would be very tempting to conclude that EFGH is a parallelogram since all of
the specific examples shown (the three sketches and the seven sets of data in the
table) indicate that the opposite sides have equal slopes. But can we be sure that
this is always the case? We cannot, although we can be extremely confident that
our hypothesis is correct. Mathematics is built on proven facts, which lead to the-
orems, which are used to develop other, more powerful theorems. This is why we
need to develop formal (or rigorous) proofs that are universally accepted as being
true. Consider the following proof for the previous example:

FG�� � FB�� � BG��

but FB�� � CF�� and BG�� � GA�� since G and F 
are midpoints

FG�� � CF�� � GA��

but CA�� � CF�� � FG�� � GA��

or CA�� � FG�� � FG��

so CA�� � 2FG��

E

F

G

H

E

F

G
H

E

F

G

H

A

B

C

D

A

B

C

D

A

B

C

D

0.67

-1.35

0.67

-1.35

0.21

-6.46

0.21

-6.46

-0.18

6.44

-0.18

6.44

-0.10

31.17

-0.10

31.17

0.02

-80.00

0.02

-80.00

-0.31

2.63

-0.31

2.63

0.28

-2.30

0.28

-2.30Slope(HE)

Slope(GH)

Slope(FG)

Slope(EF)

Slope HE = -2.30

Slope GH = 0.28

Slope FG = -2.30

Slope EF = 0.28

Slope HE = -3.57

Slope GH = 0.15

Slope FG = -3.57

Slope EF = 0.15

Slope HE = 4.25

Slope GH = -0.22

Slope FG = 4.25

Slope EF = -0.22

Investigation—Joining the Midpoints of the Sides of a Quadrilateral

A 

B 

C 

D 

E 

F 

G 

H 
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Using an identical argument, you can show that CA�� � 2EH��,
which implies that EH�� � FG��, and by extension, EFGH is a parallelogram.

This proof does not depend on the position of the vertices of ABCD, so our dia-
gram, although only one specific quadrilateral, actually represents all possible
quadrilaterals when coupled with the formal proof.

It should be obvious that hypothesis and formal proof both have great value in
mathematics, and that dynamic geometry software is a powerful tool for develop-
ing a viable hypothesis. By hypothesizing, you can take ownership of a theorem
(rather than confirming what a mathematician discovered many years ago). By
using dynamic geometry software, you can remember your ideas and findings in
a dynamic and interesting form, and by proving an idea formally, you can con-
firm that your hypothesis is true. 

SECTION 1.3  — EXAMPLE 4

Use Geometer’s Sketchpad to investigate and explore star-crossed angles similar
to those in Section 1.3, Example 4. There are many different ways to produce
similar results using dynamic geometry software, especially with the constant
development of shortcuts available to software users. Therefore, you are always
encouraged to find alternative methods of creating these sketches.

A

C

E

B

D

A

C

E

B

D

A C

E

B

D

m BEC + m CAD + m DBE + m ECA + m ADB = 180°

m BEC + m CAD + m DBE + m ECA + m ADB = 180°

m BEC + m CAD + m DBE + m ECA + m ADB = 180°

m BEC = 35°
m CAD = 35°
m DBE = 39°
m ECA = 31°
m ADB = 39°

m BEC = 46°
m CAD = 24°
m DBE = 34°
m ECA = 28°
m ADB = 49°

m BEC = 44°
m CAD = 32°
m DBE = 38°
m ECA = 47°
m ADB = 18°

Angles in a Star
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1. Create a star freehand by drawing intersecting line segments in a continuous
path.

2. By selecting three points at a time using the shift key, measure the angles at
each vertex.

3. Under the Measure menu, choose Calculate to determine the sum of the
angles.

4. Manipulate the vertices or make multiple copies of the sketch. What do you
notice about the sum of the angles?

5. Develop a proof that this property is always true.

QUESTION 1.4 .6

Use Geometer’s Sketchpad to construct and explore diagonals of quadrilaterals
similar to those in Exercise 1.4, Question 6.

E

E

B

E

A

A
D

C

A

B

D

C

D

C

B

Slope CA )( Slope DB)(  = -0.43

BE = 2.63 cm

ED = 2.63 cm

CE = 2.63 cm

EA = 2.63 cm

Slope BD = 0.67

Slope BD)( Slope AC)(  = -1.00

BE = 1.58 cm

ED = 1.58 cm
EA = 3.44 cm

EC = 3.44 cm

Slope CA = -0.64

Slope CA = -0.61

Slope CA)( Slope DB)(  = -0.55

EB = 2.08 cm

DE = 2.08 cm

AE = 2.93 cm

EC = 2.93 cm

Slope BD = 1.63

Slope CA = -0.75

Slope DB = 0.73

Parallelogram

Diagonals appear to bisect each other!

Rectangle

Diagonals appear to bisect each other, and are equal in length.

Each diagonal is the perpendicular bisector of the other!

Rhombus
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Part 1 — Parallelogram

1. Construct a line segment and label it AB. Create another point, C. Then select
point B, hold down , and select point C. Under the Transform menu,
choose Mark Vector (B → C), select line segment AB and point A, and then
choose Transform, Translate. You will have to label the new point and
change the label to D by double clicking on the default name (with the label
tool ). Join BC and AD to complete the parallelogram, and try moving the
vertices to convince yourself that the shape remains a parallelogram when
manipulated. Note: There are a number of ways of creating a parallelogram.
Can you think of another way?

2. Construct segments DB and AC, and construct point E, the point at the inter-
section of the diagonals.

3. Select line segments DB and CA and choose Measure, Slope. Choose
Measure, Calculate, and then click on “Slope DB” in the sketch, hit multiply
(*), and then click on “Slope CA” in the sketch. What is the purpose of this
step? What are we hoping to find?

4. Measure the side lengths (or distances between points) and make a 
hypothesis.

Part 2 — Rectangle

1. Construct line segment AB. Select point B and line segment AB, and then
choose Perpendicular Line from the Construct menu. With the line selected,
choose Construct, Point on Object, and then move the new point along the
line to an appropriate position. Select the line and choose Display, Hide
Line.

2. Select point B and then point C. Under Transform, choose Mark Vector
(B → C), select line segment AB and point A, and then choose Transform,
Translate. Join AD to complete the rectangle, and try moving the vertices to
convince yourself that the shape remains a parallelogram when manipulated.
Note: There are a number of ways of creating a rectangle. Can you think of
another way?

3. Construct segments AC and BD and the point at intersection, E.

4. Measure the lengths and slopes as in Part 1 and make your hypotheses.

Shift ▲
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Part 3 — Rhombus

1. Construct line segment AB. Select point A, and then point B, and choose
Construct, Circle by Center + Point. With the circle still selected, choose
Construct, Point On Object. Label this new point D and join it to A. What is
the purpose of this step? Select the circle and choose Display, Hide Circle.

2. Select point A and then point B. Under Transform, choose Mark Vector
(A → B), select line segment DA and point D, and then choose Transform,
Translate. Label the new point C and join BC to complete the rhombus. Why
does the figure remain a rhombus when the vertices are moved around? Note:
There are many other ways of creating a rhombus. Can you think of any?

3. Construct segments AC and BD and the point at intersection, E.

4. Measure the lengths and slopes as in Part 1 and make your hypotheses.

5. Is a rhombus the only quadrilateral that exhibits this property? By creating a
random quadrilateral and moving the points, try to find another quadrilateral
with diagonals that share some of the properties shown here.

CHAPTER 2 — REVIEW OF PREREQUISITE SKILLS,
QUESTION 7

Use Geometer’s Sketchpad to investigate and construct equilateral heights as an
extension to Chapter 2, Review of Prerequisite Skills, Question 7.

h3

h1 h2

B

A

C

P

h1 + h2 + h3 = 6.72 cm

h3 = 1.44 cm

h1 = 2.75 cm

h2 = 2.53 cm

Distance A to CB = 6.72 cm (Height of Triangle)
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1. Create an equilateral triangle by first creating two points, A and B. Select
point A and choose Transform, Mark Center ‘A’. Select point B and then
Transform, Rotate, and enter 60º. Select the three points and Construct,
Segment to complete the triangle.

2. Create a point P somewhere inside the triangle.

3. Select BC and point P, then Construct, Perpendicular Line. Construct the
point of intersection of the new line and line segment BC, and join it to P.
Select the line and use Display, Hide Line to simplify your sketch. Repeat
this process on sides AB and AC.

4. Label the lengths from P as h1, h2, and h3. Use Measure, Calculate to calcu-
late the sum h1 � h2 � h3.

5. Select point A and side BC and Measure, Distance.

6. Manipulate point P and the vertices of the triangle to verify that the property
continues to hold.

7. Why does it work? Can you prove it?

SECTION 2.1  — CONGRUENCY IN TRIANGLES,
INVESTIGATION 1

The following investigations will validate three different postulates we use when
proving triangles congruent.

Open Geometer’s Sketchpad and follow the instructions below.

SET UP

• Choose the Graph menu.
• Select the Snap To Grid option.
• In the Display menu, choose the Preferences option and follow these instruc-

tions:
i)  Under the Measurements category, select Text Format.

ii) Under Autoshow Labels for, select Points. 
iii) Click OK.
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INVESTIGATION 1 (SAS)

First you will construct two triangles.

1. Draw a line segment between any two points on your grid. 

How? Click on the Line Segment tool . Put the � on any point on the
grid. Click and drag your mouse to another point on the grid to make a
line segment.

2. Label the segment to have endpoints A and B (if they are not already). 

How? First click on the Arrow tool . Now, left-click on one endpoint of
the line segment to highlight it. Go to the Display menu and click
Relabel Point. Here, choose the letter you want to represent your
point. Repeat the steps to label the other endpoint.

3. Measure the length of AB.  

How? First choose the Arrow tool. Now, left-click on your line segment. Go
to the Measure menu and click Length. You should see Length
(Segment AB) = (your length).

` 4. From point A, draw a second line segment to another point on the grid. Label
this new endpoint C. Measure the length of AC.

5. Measure ∠CAB.

How? First, click away from
your diagram anywhere
on the sketchpad (to 
deselect the line). While
holding down 
click on point C, then A,
and finally B. Release the
shift key and go to the
Measure menu and click
Angle.

Now, let’s create a second diagram identical to diagram CAB. Choose an area
away from your first diagram and do the following:

6. Using the Line Segment tool, draw a line segment from one point to another
on your grid, away from your first diagram.

Shift �

A

B

C

Length(Segment AB) = 3.2 cm

Length(Segment AC) = 3.2 cm

Angle(CAB) = 53°

Sample Sketch
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7. Label the segment having endpoints D and E. 

How? First click on the Arrow tool. Now, left-click on one endpoint of the
line segment to highlight it. Go to the Display menu and click Relabel
Point. Repeat the steps to label the other endpoint.

8. Measure the length of DE.

First click on the Arrow tool. Now, left-click on the line. Go to the Measure
menu and click Length. You should see Length (Segment DE) = (your
length).

9. Adjust the length of DE by clicking on the Arrow tool and grabbing one end-
point of your line segment (to do this, simply click on an endpoint and drag).
Drag your endpoint along until its length is exactly the same as AB in your
other diagram.

10. From point D, draw a second line segment. Label the endpoint F.

11. Now measure ∠FDE and line segment DF.

How? To do this, first select the Arrow tool. While holding down the shift
key, click on point F, then D, and finally E. Release the shift key and
go to the Measure menu and select Angle. To measure DF, click on it
and go to the Measure menu and select Length.

12. Deselect your points by clicking anywhere on the sketchpad. By dragging
point F around, make the line segment DF the same length as AC, and at the
same time make ∠FDE the same measurement as ∠CAB. 

13. Complete the triangle in both diagrams by drawing in line segment CB in 
triangle CAB, and line segment FE in triangle FDE.

A

B

C

D

E

F

Length(Segment AB) = 3.2 cm

Length(Segment AC) = 3.2 cm

Angle(CAB) = 53°

Sample Sketch

Length(Segment DE) = 3.2 cm

Angle(FDE) = 53°
Length(Segment DF) = 3.2 cm

Sample Sketch



T E C H N O L O G Y  A P P E N D I X494

Answer the following questions:

1. How are the measurements of side CB and side FE related?

2. How does ∠ACB relate to ∠DEF?

3. How does ∠ABC relate to ∠DEF?

4. Calculate the area and perimeter of each triangle by following these instruc-
tions:

Select all three points of your triangle. (Click on each while holding down
the shift key).

i) Go to the Construct menu and choose Polygon Interior.

ii) Now go to the Measure menu and choose Area.

iii) Go back to the Measure menu and choose Perimeter.

iv) Do the same for your other triangle.

a) Are these triangles congruent? Why or why not? Properly name the 
congruent triangles.

b) What did you do early in your construction to guarantee your two triangles
would be congruent?

c) List all the properties that exist between two triangles that are congruent.

SECTION 2.1  — CONGRUENCY IN TRIANGLES,
INVESTIGATION 2

INVESTIGATION 2 (SSS)

Open Geometer’s Sketchpad, and then
• Choose the Graph menu.

DID YOU KNOW?

You can also calculate the area of a triangle using Heron’s formula. This 
formula is based on the side lengths of a triangle. The formula is given by

A � �s(s � a�)(s � b�)(s � c�)�

where a, b, c are the side lengths of your triangle and

s � �
a �

2
b � c
�.

Show that Heron’s formula works using your two triangles as test cases. You
can use the built-in Calculate function in the Measure menu to assist you.
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• Select the Snap To Grid option.
• In the Display menu, choose the Preferences option and follow these instruc-

tions:
i) Under the Measurements category, select Text Format.

ii) Under Autoshow Labels for, select Points. 
iii) Click OK.

Construct two triangles using the following instructions:

1. Using the line segment tool, draw a line segment between any two points on
your grid. 

How? Click on the Line Segment tool . Put the � on any point on the
grid. Click and drag your mouse to another point on the grid to make a
line segment.

2. Label the segment to have endpoints A and B. 

How? First click on the Arrow tool . Now, left-click on one endpoint of
the line segment to highlight it. Go to the Display menu and click
Relabel Point. Here, choose the letter you want to represent your
point. Repeat the steps to label the other endpoint.

3. Measure the length of AB. 

How? First choose the
Arrow tool. Now,
left-click on your
line segment. Go to
the Measure menu
and click Length.
You should see
Length(Segment
AB) = (your
length).

4. From point A, draw a second line segment to another point on the grid. Label
this new endpoint C. Measure the length of AC.

5. Finally, connect B to C with a line segment. Measure side BC.

Now, let’s create a second diagram identical to diagram CAB.

Choose an area away from your first diagram and follow these instructions:

6. Using the Line Segment tool, draw a line segment from one point to another
on your grid.

7. Label the segment having endpoints D and E. 

A
B

C

F

Length(Segment AB) = 4.0 cm

Length(Segment AC) = 3.2 cm

Sample Sketch
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How? First click on the Arrow tool. Now, left-click on one endpoint of the
line segment to highlight it. Go to the Display menu and click Relabel
Point. Here, choose the letter you want to represent your point. Repeat
the steps to label the other endpoint.

8. Measure the length of DE.

How? First click on the Arrow tool. Now, left-click on the line. Go to the
Measure menu and click Length. You should see Length(Segment
DE) = (your length).

9. Adjust the length of DE by clicking on the Arrow tool and grabbing one end-
point of your line segment (to do this, simply click on an endpoint and drag).
Drag your endpoint along until its length is exactly the same as AB in your
other diagram.

10. From point D, draw a second line 
segment. Label the endpoint F. 
Measure DF.

11. Adjust the length of DF by click-
ing on the Arrow tool and grab-
bing one endpoint of your line
segment (to do this, simply click
on an endpoint and drag). Drag
your endpoint along until its
length is exactly the same as AC
in your other diagram.

12. Finally, connect E to F with a line segment. Measure side EF.

13. Now, move point F so that EF equals BC.

14. Measure the angles ∠BAC and ∠EDF. What do you notice about these
angles? Predict what relationship might exist between  

a) ∠ABC and ∠DEF

b) ∠BCA and ∠EFD

Check your prediction by measuring these angles.

Calculate the area and perimeter of each triangle by following these instructions:
i) Select all three points of your triangle.

ii) Go to the Construct menu and choose Polygon Interior.
iii) Now go to the Measure menu and choose Area.
iv) Go back to the Measure menu and choose Perimeter.
v) Do the same for your other triangle.

D

E

F

Length(Segment DE) = 4.0 cm

Length(Segment DF) = 3.2 cm

Sample Sketch
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15. Are these triangles congruent? Why or why not? Properly name the con-
gruent triangles. 

16. What did you do early in your construction to guarantee your two triangles
would be congruent?

17. List all the properties that exist between two triangles that are congruent.

SECTION 2.1  — CONGRUENCY IN TRIANGLES,
INVESTIGATION 3

INVESTIGATION 3 (ASA) 

Open Geometer’s Sketchpad, and then
• Choose the Graph menu.
• Select the Snap To Grid option.
• In the Display menu, choose the Preferences option and follow these instruc-

tions:
i) Under the Measurements category, select Text Format.
ii) Under Autoshow Labels for, select Points. 
iii) Click OK.

Construct two triangles using the following instructions:

1. Using the Line Segment tool , draw a line segment between points
A(�10,1) and B(�5,1) on your grid. 

2. Label the segment to have endpoints A and B. 

How? Click on the Arrow tool . Now, left-click on one endpoint of the
line segment to highlight it. Go to the Display menu, and click
Relabel Point. Here, choose the letter you want to represent your
point. Click OK. Repeat the steps to label the other endpoint.

3. Measure the length of AB. 

SOMETHING TO THINK ABOUT...

•  What would be the relationship between two circles whose centre is the 
circumcentre of two congruent triangles?

•  What would be the relationship between two triangles whose vertices are
the midpoints of the sides of two congruent triangles?
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How? Click on the Arrow tool. Now, left-click on your line segment. Go to
the Measure menu and click Length. You should see Length(Segment
AB) = (your length).

4. From point A, draw a second line segment to point (�9,�1) on the grid.
Label this new endpoint C. Measure ∠BAC.

5. From point B, draw a second line segment to point (�7,�1) on the grid.
Label this new endpoint D. Measure ∠ABD.

6. We have just created two fixed angles and a contained side. Let’s complete
the triangle by extending AC and BD until they intersect. Note: We must
maintain angle BAC and angle ABD when we do this.

7. Click on the intersection of AC and BD with the Arrow tool, and label this
point G.

8. Measure ∠AGB.

Now, let’s create a second diagram that contains the same fixed angles and con-
tained side.

9. Using the Line Segment tool, draw a line segment from E(2, 4) to F(7, 4) on
your grid.

10. Label the segment having endpoints E and F. 

How? First click on the Arrow tool. Now, left-click on one endpoint of the
line segment to highlight it. Go to the Display menu and click Relabel
Point. Here, choose the letter you want to represent your point. Repeat
the steps to label the other endpoint.

A B

CD

G

Length(Segment AB) = 5.0 cm
Angle(BAC) = 63°

Angle(ABD) = 45°

Angle(AGB) = 72°
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11. Measure the length of EF.

How? Click on the Arrow tool. Now, left-click on the line. Go to the Measure
menu and click Length. You should see Length(Segment EF) = (your
length).

12. Using the Line Segment tool, make an angle FEH that is equal to ∠BAC.
Measure to check.

13. Make an angle EFJ
that is equal to
∠ABD and going in
the general direction
of point H. Measure
∠EFJ to check.

14. Extend FJ and EH until they intersect. You must maintain the angles FEH
and EFJ as they were.

15. Click on the intersection point of FJ and EH using the Arrow tool. Label this
point K.

16. Measure ∠EKF. How does it compare with ∠AGB?

17. Are the two triangles you created congruent? Why or why not? Name the
congruent triangles.

18. What did you do early in your construction to guarantee the triangles would
be congruent?

19. Name all the corresponding congruent sides and angles in these triangles.

20. Show that the perimeter and area of each triangle is the same by constructing
the Polygon Interior in ∆ABG and ∆EFK and then measuring the area and
perimeter from the Measure menu.

21. List all the properties that exist between the two congruent triangles. 

E F

H J

Length(Segment EF) = 5.0 cm
Angle(FEH) = 63°

Angle(EFJ) = 45°

A B

A B

CD

G

E F

HJ

K

Length(Segment AB) = 5.0 cm

Angle(BAC) = 63°

Angle(ABD) = 45°

Angle(AGB) = 72°

Length(Segment EF) = 5.0 cm

Angle(FEH) = 63°

Angle(EFJ) = 45°

Angle(EKF) = 72°
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SECTION 2.1  — CONGRUENT QUADRILATERALS,
INVESTIGATION

In this activity you will investigate the properties that exist between congruent
quadrilaterals. At the end of this investigation you will be asked to 
i) list the properties of congruent quadrilaterals.

ii) explain how we prove that two quadrilaterals are congruent.

Open Geometer’s Sketchpad, and then
• Choose the Graph menu.
• Select the Snap To Grid option.
• In the Display menu, choose the Preferences option and follow these instruc-

tions:
i) Under the Measurements category, select Text Format.

ii) Under Autoshow Labels for, select Points. 
iii) Click OK.

1. Draw a quadrilateral having the following coordinates as its vertices:

A( �10, 3), B(�12, �1), C(�9, �2), D(�2, 0).

How? Using the Line Segment tool , draw a line segment from (�10, 3)
to (�12, �1). Draw another line segment from (�12, �1) to
(�9, �2). Then draw a line segment from (�9, �2) to (�2, 0), and
finally a line segment from (�2, 0) to (�10, 3).

2. Label the vertex at
(�10, 3) point A.

Label the vertex at 
(�12, �1) point B.

Label the vertex at 
(�9, �2) point C.

Label the vertex at 
(�2, 0) point D.

3. Create an identical quadrilateral on another part of the sketchpad using the
coordinates 

E(3, 3), F(1, �1),
G(4, �2 ), H(11, 0).

Label the vertices of this 
quadrilateral EFGH.

A

B

C

D

E

F

H

G
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4. Is quadrilateral ABCD � quadrilateral EFGH? Why or why not? 

5. Calculate the following measurements:

a) ∠ABC � _____________ and ∠EFG � _____________

b) ∠BCD � _____________ and ∠FGH � _____________

c) ∠DAB � _____________ and ∠HEF � _____________

d) ∠ABC � _____________ and ∠EFG � _____________

e) A�B� � _____________ and E�F� � _____________

f) B�C� � _____________ and F�G� � _____________

g) C�D� � _____________ and G�H� � _____________

h) D�A� � _____________ and H�E� � _____________

6. Calculate the area and perimeter of each quadrilateral using Polygon Interior
in the Construct menu. What relationship exists between the area and perime-
ter of these corresponding quadrilaterals?

7. Write out the properties that exist between corresponding congruent 
quadrilaterals.

SECTION 2.1  — EXAMPLE 1

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties to be proven in Section 2.1, Example 1.

1. Construct an isosceles triangle by first constructing any circle, plotting any two
points on its circumference, and joining the points on the circumference to
each other and then to the centre of the circle.

2. Construct a midpoint on the base side of the triangle and join the midpoint to
the top vertex of the triangle, which is also the centre of the construction cir-
cle. This is the median.

3. Measure the angles that the median forms at the top vertex to show that they
are equal.

EXTENSION

We have just shown that the two quadrilaterals ABCD and EFGH are 
congruent. Prove that the quadrilaterals ABCD and EFGH are congruent.



T E C H N O L O G Y  A P P E N D I X502

4. Drag the centre of the construction circle to show that this property remains
true for many isosceles triangles.

QUESTION 2.1 .7

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties required to be proven in Question 2.1.7:

1. Construct two equal sides of the quadrilateral AB and AD by constructing two
radii of the same circle. 

2. Construct an angle bisector of the angle between the two equal sides construct-
ed in step 1, and plot any point C on that angle bisector. Join that point to the
other two points on the construction circle to form the required quadrilateral.

3. Measure the lengths of the two sides BC and DC just constructed to show that
they are equal. Measure the two angles formed by the diagonal AC and vertex
C to show that they are also equal. 

4. Drag point C to show that these properties remain true for many such quadri-
laterals.

H FE

D

C

BA

m FCH = 43°
m ECH = 43°
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QUESTION 2.1 .11

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties required to be proven in Question 2.1.11.

1. Construct any two joined sides of a quadrilateral using Segment in the
Construct menu.

2. Construct two circles with radii the lengths of the segments in step 1 and cen-
tred on the unattached endpoints of these segments. The point of intersection
of these circles is the opposite vertex of the required quadrilateral. Plot this
point, and join it to the other endpoints to form the quadrilateral with oppo-
site sides equal. 

3. Construct the diagonals of the quadrilateral, and plot the point of intersection
of the diagonals. Measure the length of each part of the diagonals to show
that the diagonals bisect each other.

4. Drag any vertex of the quadrilateral to show that the properties remain true
for many such quadrilaterals.

D

C

B

A

E

m DC = 6.91 cm

m DCA = 23°
m BC = 6.91 cm

m BCA = 23°
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SECTION 2.2  — PARALLELOGRAM AREA
PROPERTY THEOREM

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties to be proven in Section 2.2, Parallelogram Area Property Theorem.

1. Construct any two parallel lines, one above the other, by first constructing a
line, a point above the line, and a line parallel to the first line through the
plotted point. 

2. Construct any line segment BC on the lower line, and join the endpoint B of
this segment to any point A on the upper parallel line to form side AB.
Construct a line parallel to AB that passes through the other endpoint C. Plot
the point of intersection of this line and the upper parallel line and label it D.
This completes the construction of the first parallelogram ABCD.

3. To create the other parallelogram, plot another point F on the lower parallel
line. Create base FG equal in length to BC using a construction circle with
centre F and radius BC. Create the remaining sides of this parallelogram
FGHE using the same method as in step 2. 

E

D

C

B

A

ED = 7.84 cm
AE = 7.84 cm
EB = 2.81 cm
CE = 2.81 cm
m DB = 7.04 cm

m CD = 9.45 cm

m AC = 7.04 cm

m AB = 9.45 cm
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4. Construct the polygon interior of each parallelogram by selecting all of its
vertices and using Polygon Interior in the Construct menu. The area will
appear shaded. Select each area and measure it using Area in the Measure
menu. Verify that the two areas are equal.

5. Check that this property remains true for many such parallelograms by drag-
ging one of the vertices of the first parallelogram or any parallel line.

SECTION 2.2  — EXAMPLE 2

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties to be proven in Section 2.2, Example 2.

1. Construct any two parallel lines, one above the other, by first constructing a
line, a point above the line, and a line parallel to the first line through the
plotted point. 

2. Construct any line segment AB on the lower line, and join the endpoint A of
this segment to any point D on the upper parallel line to form side AD.
Construct a line parallel to AD that passes through the other endpoint B. Plot
the point of intersection of this line and the upper parallel line and label it C.
This completes the construction of the parallelogram ABCD.

HD

G

EA

FCB

C

Area EFGH = 32.47 cm2
Area DABC = 32.47 cm2
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3. Construct any point E on the upper line, and join it to A and B to form the
sides of the required triangle. 

4. Construct the polygon interior of the parallelogram by selecting all of its ver-
tices and using Polygon Interior in the Construct menu. The area will appear
shaded. Construct the polygon interior of the triangle using the same method.
Select each area and measure the area using the Measure tool. Verify that the
area of the parallelogram is twice the area of the triangle by using Calculate
in the Measure menu to find the product two times the triangle area.

5. Drag any vertex of the parallelogram or either parallel line to verify that the
property holds true for many parallelograms and triangles.

QUESTION 2.2 .2

Use Geometer’s Sketchpad to investigate and construct midpoints in a triangle as
an extension to Question 2.2.2. In this case, investigate the relationship between
triangle areas rather than paralleloram areas.

DE C

A B B

C

Area DABC = 48.38 cm2

Area FDE)( 2 = 48.38 cm2Area EAB = 24.19 cm2
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1. Hold while drawing three points with the Point tool .

2. Select Construct, Point at Midpoint and then Construct, Segment.

3. Use the Label/Text tool to label all of the points as shown.

4. Select points A, B, and C and Construct, Polygon Interior.

5. Choose View, Display and change the colour if you want.

6. Under the Measure menu, select Area.

7. Select D, E, and F and repeat steps 4 and 5. 

8. Under Measure, select Calculate, and then click on the measurement for
“Area ABC” (on your sketch), press the division symbol ( / ) on the calcula-
tor, and click on the measurement for “Area DEF” on your sketch. This takes
a little while to get used to. You may have to move the calculator window out
of the way to click on your measurements. You should see the ratio of the
areas appear on the screen.

9. Select each of the segments in the triangles and then select Measure, Length.
Note: Since many of the segments such as DC do not exist as line segments
on their own (just as part of the sides of the larger triangle), it may be easier
to select the endpoints and then choose Measure, Distance.

Shift �

D

E

F

A

B

C

14.69

3.67

4.00

14.20

3.55

4.00

6.41

1.60

4.00

26.05

6.51

4.00

66.94

16.73

4.00

5.34

1.33

4.00

14.78

3.69

4.00

17.06

4.27

4.00

6.89

1.72

4.00

14.70

3.68

4.00Area(ABC)/Area(DEF)

Area(DEF)

Area(ABC)

Area ABC)(
Area DEF)(  = 4.00

Area DEF = 3.42 cm2

AC
AD  = 2.00

AB
AF  = 2.00

BC
FD  = 2.00

m AFD = 61°

m ADF = 42°

m DAF = 77°

m FBE = 61°

m FEB = 42°

m EFB = 77°

m DEC = 61°

m DCE = 42°

m CDE = 77°

m EFD = 42°

m EDF = 61°

m FED = 77°

AD = 3.04 cm

AF = 2.30 cm

FD = 3.39 cm

Area ABC = 13.67 cm2

AC = 6.09 cm

AB = 4.60 cm

BC = 6.77 cm



T E C H N O L O G Y  A P P E N D I X508

10. Calculate the ratios of corresponding sides using Measure, Calculate (as in
step 8).

11. By selecting three points in order and choosing Measure, Angle, you can dis-
play all of the angle measures.

12. Select one of the vertices of the triangle and move it to various positions.
Note which measurements change and which ones remain the same. What
does this mean?

13. Hold the shift key and select Area ABC, Area DEF and the Ratio (Area
ABC)/(Area DEF), and then choose Measure, Tabulate. A table will appear
with one set of data in it. If you don’t like the headings to the left of the
table, you can double click on them to give them a more meaningful name.

14. Manipulate the original triangle by moving point A, B, or C.

15. Add more data to your table by double clicking on the data in the table.

16. Add as many sets of data as you wish to the table.

17. How many hypotheses can you make from this single diagram? How many
could you prove?

QUESTION 2.2 .6

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties to be proven in Question 2.2.6.

1. Construct any triangle and plot the midpoint of one side. Join the midpoint to
the opposite vertex to form a median.

2. Construct the polygon interior of one of the smaller triangles by selecting all
3 vertices (one point being the midpoint) and using the Construct Interior
tool. The constructed interior will be shaded. Repeat for the other, smaller tri-
angle. 

3. Measure the area of each smaller triangle by selecting the area and using
Measure, Area. Verify that the areas are equal. 

4. Drag any vertex of the large triangle to check that the property holds true for
many triangles.
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QUESTION 2.2 .17

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties to be proven in Question 2.2.17.

1. Construct an isosceles triangle using a construction circle with two radii
drawn in it. Join the two points on the circumference to complete the 
triangle. 

2. Construct two perpendiculars from each equal side of the triangle to the
opposite vertices. Construct the points of intersection of these perpendiculars
with the triangle sides. 

3. Join these points of intersection to each other. Verify that this line is parallel
to the base of the triangle by measuring the slope of each line segment. 

4. Show that this property remains true for many isosceles triangles by dragging
any vertex of the triangle.

D

A
B

C

Area DAB = 32.14 cm2

Area CDB = 32.14 cm2



T E C H N O L O G Y  A P P E N D I X510

SECTION 2.3  — THE RIGHT BISECTOR THEOREM

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties to be proven in Section 2.3 — The Right Bisector Theorem.

1. Construct any segment, the midpoint of the segment, and then the line per-
pendicular to the segment, through the midpoint. This is the right bisector
line.

2. Plot a point anywhere on the right bisector and join it to the endpoints of the
line segment. 

3. Measure the lengths of the lines joining the point on the right bisector to the
endpoints of the segment to verify that they are equal in length.

4. Show that this property holds true in general by dragging the point on the
right bisector. 

5. To demonstrate the converse, construct an isosceles triangle using a construc-
tion circle with two radii drawn in it. Join the two points on the circumfer-
ence to complete the triangle. Plot the midpoint of the base of this isosceles
triangle and join it to the opposite vertex. 

D
E

C

B

B

A

Slope DE = 0.11

Slope BC = 0.11
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6. To verify that this line is the perpendicular bisector of the base, measure the
angles it makes with the base line. 

7. To show that this property holds true in general, drag any vertex of the
isosceles triangle.

D

C BA

m DA = 10.28 cm m DB = 10.28 cm

Proof A

EC D

A

B

m AEC = 90° m AED = 90°

Proof B
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SECTION 2.3  — ANGLE BISECTOR THEOREM

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties to be proven in Section 2.3 — Angle Bisector Theorem.

1. Construct any angle ABC by constructing two rays with a common starting
point B.

2. Construct any two points X and Y on the arms of this angle. Then, construct
perpendiculars to the arms of the angle, through the points plotted on the
arms of the angle. 

3. Plot the point of intersection of these two perpendiculars and label it P.

4. Measure the lengths of segments XP and YP and angles XBP and YBP.

5. To demonstrate Part 1 of the theorem, drag point P until the segments are
equal in length. Observe that the angles are equal. To demonstrate Part 2,
drag point P until the angles are equal. Observe that the segments are equal. 

P

Y

X
A

CB

m PBY = 13.8°

m XBP = 13.9°

YP = 2.4 cm

PX = 2.4 cm

Drag point P until the
segments are equal and
observe the equal angles, or
conversely, drag P until the
angles are equal and observe
the equal segments.
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QUESTION 2.3 .11

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties to be proven in Question 2.3.11.

1. Construct any triangle and plot the midpoints of each side.

2. Construct perpendiculars to two of the sides through each midpoint. These
are the perpendicular bisectors.

3. Plot the point of intersection of the perpendicular bisectors.

4. Construct the third perpendicular bisector, and verify that it passes through
the point of intersection of the other bisectors.

5. Show that this property holds true for many triangles by dragging any vertex
of the triangle. 

SECTION 2.4  — THE PARALLEL LINES THEOREM

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties to be proven in Section 2.4 — The Parallel Lines Theorem.

1. Construct any two non-intersecting line segments and a third line that crosses
these two.

F

D

E G

A

B

C
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2. Plot the points of intersection of all the lines.

3. Measure any pair of alternate angles and corresponding angles.

4. Drag a point on either of the non-intersecting lines until the alternate angles
and the corresponding angles are equal.

5. Show that the line segments are parallel by measuring the slopes of these line
segments.

QUESTION 2.4 .6

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties to be proven in Question 2.4.6.

1. To construct a triangle with one exterior angle, first construct a long line seg-
ment BD, plot a point C on it, and from that point, draw the other two sides
of the triangle AC and AB. 

2. Construct an angle bisector of the exterior angle ACD. Measure its slope and
the slope of the nonadjacent side AB. Also measure the angles ABC and BAC.

3. Drag point A until the slope of the angle bisector is the same as side AB.
Observe that the two measured angles are equal. 

G

H

A

B

C

D

E

F

m AGH = 65.42°

m GHD = 65.42°

Slope AB = -0.074

Slope CD = -0.074

Drag point B until alternate
angles are equal, and observe
that lines have equal slopes.
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SECTION 2.5  — THE TRIANGLE AREA PROPERTY

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties to be proven in Section 2.5 — The Triangle Area Property.

1. Construct two parallel construction lines by first constructing a line, a point
above the line, and another line through the point, parallel to the first line.

2. Construct the base of the first triangle by making a line segment on the lower
parallel line and by joining the endpoints of this line segment to a point on
the upper parallel line. Repeat this operation to construct another triangle
beside the first that will have the same height.

3. Measure the lengths of the two triangle bases and calculate the ratio of the
longer base to the shorter base using the Measure/Calculate menu. 

4. Construct the polygon interior of each triangle by selecting the vertices of
each, and measure the area of each triangle by selecting each interior and
using the Measure/Area menu.

5. Calculate the ratio of the larger area to the smaller area using the
Measure/Calculate menu, and observe that the ratios of the areas equal the
ratio of the bases.

6. Show that this property remains true for many triangles by dragging the
upper line up or down and/or dragging one of the endpoints of one of the 
triangle bases.

C

A

DB

Slope m = 2.6

m ACB = 43°

m BAC = 78°

m ABC = 59°

Slope AB = 1.7

Angle
Bisector

Drag point A until lines have
equal slopes, and then observe
that the triangle has two equal
angles.
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SECTION 2.5  — THE TRIANGLE PROPORTION
PROPERTY THEOREM

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties to be proven in Section 2.5 — The Triangle Proportion Theorem.

1. Construct any triangle PQR, plot points S and T on each of two adjacent
sides, and join these two points with segment ST. Measure the slopes of seg-
ments ST and QR.

2. Measure the lengths of segments PS and SQ and calculate the ratio of their
lengths. Repeat for segments PT and TR. 

3. Drag point S until the slope of ST equals the slope of QR, indicating that
these lines are parallel. Observe that the side ratios are also equal, or con-
versely, drag S until the side ratios are equal and observe that the line seg-
ment ratios are also equal.

KJ

IHGF

E

BA

Area KHI)(
Area JFG)(

 = 1.5
m HI)(
m FG)(

 = 1.5

Area KHI = 33.7 cm2

Area JFG = 22.4 cm2

m HI = 9.6 cm
m FG = 6.3 cm

Triangles with equal
heights have areas
that are proportional
to their bases.

T
S

P

RQ

Slope ST = -0.022

PS
SQ

 = 1.068 PT
TR

 = 1.068

TR = 5.0 cm

PT = 5.3 cm

SQ = 4.9 cm

PS = 5.3 cm

Slope QR = -0.022

Drag point S until the ratios
of side lengths are equal and
observe equal slopes, OR 
conversely, drag S until the
slopes are equal and observe
equal proportions.
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SECTION 2.5  — EXAMPLE 4

Use Geometer’s Sketchpad to construct and explore midpoint polygons similar to
those in Section 2.5, Example 4.

1. While holding the shift key down, draw three points. Choose Construct,
Segment, Construct, Point at Midpoint, and then Construct, Segment again.
You have created a “Midpoint” triangle. 

2. Label the vertices, and after selecting points A, B and C, choose Construct,
Polygon Interior and Measure, Area. Do the same for triangle DEF, and
choose appropriate display colours.

3. Using Measure, Calculate, determine the ratio of the area of the outer trian-
gle to the area of the “Midpoint triangle.” Manipulate the triangle. Does the
ratio appear to be always true? Can you prove it?

4. Construct the midpoint quadrilateral, pentagon, and hexagon and calculate the
area ratios. Manipulate the figures by moving the vertices. You may be sur-
prised by what you find….

5. Can you make any general hypotheses regarding the ratio of areas of poly-
gons formed this way?

E

F

G

H
A

B

C

D

Slope EF = 0.357

Slope GH = 0.357

Slope HE = -0.782

Slope FG = -0.782

Midpoints of quadrilateral form parallelogram
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QUESTION 2.5 .11

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties to be proven in Question 2.5.11.

1. Construct a parallelogram by using the method given in Section 2.5,
Example 4, or as follows:

i) Construct a construction line and construct a line segment AB on this line. 

ii) Plot a point D above the construction line and construct a line through
points AD. 

iii) Construct a line parallel to AB through point D and, finally, a line parallel
to AD through point B. 

iv) Plot the point of intersection of the last two lines constructed and label 
it C. 

v)  Join points A, D, C, and B, in that order, to finish the construction of par-
allelogram ABCD. 

2. Construct midpoints X and Y of sides AD and BC, respectively, and join
points BX, DY, and AC. Plot the point of intersection of XB with AC and label
it K, and also plot the point of intersection of DY and AC and label it L. 

3. Measure the lengths of AK, KL, and LC to confirm that BX and DY trisect AC.
Drag any vertex of the parallelogram to show that this property holds true for
many parallelograms.

L

K

YX

C

A
B

D

KL = 4.3 cm

LC = 4.3 cm

AK = 4.3 cm
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SECTION 2.6  — SIMILARITY IN TRIANGLES,  
INVESTIGATION

Use Geometer’s Sketchpad to explore the following problem involving similar 
triangles.

Problem

a) If two triangles are constructed such that two pairs of corresponding angles are
equal, are the triangles similar?

b) If two triangles are constructed such that two pairs of corresponding sides are
proportional and the contained angles are equal, are the triangles similar?

c) If two triangles are constructed such that all three pairs of corresponding sides
are proportional, are the triangles similar?

Write your predicted answer to each of the problems posed above, based on your
knowledge of similar triangles.

Solution a): AA~

1. Construct any small triangle with a horizontal base. Measure the three angles
of this triangle and move the measurements close to the angles they measure. 

2. Construct a horizontal line segment that is longer than the base of your first
triangle. Using the ray tool, construct any angles directed upwards, with ver-
tices that are the endpoints of this horizontal line segment. 

3. Measure these two angles, and adjust the size of the angles until they equal
the corresponding angles in the first triangle. Plot the point of intersection of
the rays to determine the vertex of the new triangle, and measure the angle at
that vertex. Observe that this angle equals the corresponding angle in the first
triangle.

4. Measure the sides of the triangles, and calculate the ratios of corresponding
sides. Observe that these are equal because the triangles are similar.

Solution b): SAS~

1. Construct any small triangle with a horizontal base. Measure the three angles
of this triangle and move the measurements close to the angles they measure.
Also measure the length of the three sides of the triangle and move these
measurements close to the sides they measure.

2. Construct a horizontal base for a second triangle that is longer than the base
of the first triangle. Measure the length of this new base. Construct a second
side for this triangle. Measure the length of this side and the angle it makes
with the base. Adjust the size of this angle until it equals the corresponding
angle in the first triangle. 
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3. Calculate the ratio of the length of the base of the second triangle to the
length of the base of the first triangle. Also calculate the ratio of the length of
the second side of the second triangle to the length of the corresponding side
in the first triangle. Adjust the length of the second side of the second triangle
until the two ratios of the side lengths are equal, making sure that the angle
equality is maintained. 

4. Complete the construction of the second triangle by joining the ends of the
two sides previously constructed with a line segment. Measure the remaining
angles of the second triangle and observe that the triangles are similar. 

Solution c): SSS~

1. Construct any small triangle ABC. The following steps will use the dilation
feature of Geometer’s Sketchpad to construct a triangle with corresponding
sides that are proportional. Plot any point D below the small triangle. Select
point D and click on Mark Centre in the Transform menu to select this point
as the centre of dilation.

2. Now select point A and create the image of A under a dilation by using the
Transform menu, choosing Dilate, and entering a dilation factor of any value
(Suggestion: use a a small factor like 2), and click on OK. This will plot
image point A’. Repeat this process for the other two vertices and join them
with line segments to create a triangle A’B’C.

3. Measure the lengths of all the sides of both triangles and calculate the ratios
of each pair of corresponding sides. Observe that these ratios are all equal,
showing that the sides of the triangles are proportional.

4. Measure all the angles in both triangles to verify that the triangles are similar.

Observations

In your report, include printouts of the sketches you made in this investigation.

Conclusions

Write a summary of your findings in this investigation as they relate to the prob-
lem statement given.
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I

HG

ED

C

BA

m DIE = 84.7°

m HED = 48.9°
m GDE = 46.4°

m ACB = 84.8°

m CBA = 48.9°
m CAB = 46.3°

Solution a): AA~

A B

C

D E

H

m DE)(
m AB)(

 = 1.088

m DH)(
m AC)(

 = 1.085

m AB = 7.25 cm

m AC = 4.60 cm

m DH = 5.00 cm

m DE = 7.89 cm

m CAB = 44.7°

m HDE = 46.5°

m CBA = 39.1°

m HED = 39.2°

C’

B’A’

D

C

BA

m A’B’)(
m AB)(

 = 2.000

m B’C’)(
m BC)(

 = 2.000

m C’A’)(
m CA)(

 = 2.000

m A’B’ = 10.00 cm

m C’A’ = 10.01 cm m B’C’ = 5.41 cm

m AB = 5.00 cm

m CA = 5.01 cm
m BC = 2.70 cm

m C’A’B’ = 31.4°

m A’C’B’ = 74.2°

m CAB = 31.4°

m ACB = 74.2°

Solution b): SSS~

Solution b): SAS~
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SECTION 2.6  — EXAMPLE 1

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties to be proven in Section 2.6, Example 1.

1. One way to construct similar triangles is to use the dilation feature in
Geometer’s Sketchpad. First, construct any small triangle ABC. Next, plot any
point D below the small triangle. Select point D and click on Mark Centre in
the Transform menu to select this point as the centre of dilation.

2. Now select point A and create the image of A under a dilation by using the
Transform menu, choosing Dilate, and entering a dilation factor of any value
(Suggestion: use a small factor like 2), and click on OK. This will plot image
point A’. Repeat this process for the other two vertices and join them with
line segments to create a triangle A’B’C’ similar to ABC. Verify that the trian-
gles are similar by measuring corresponding angles. 

3. Construct the altitude from the base of each triangle by selecting the base and
the opposite vertex and constructing a perpendicular. Plot the points of inter-
section of each perpendicular with the bases of their respective triangles. 

4. Measure the lengths of the bases and altitudes of each triangle, and calculate
the ratios of the longer length to the shorter length for the bases and the alti-
tudes to verify that they are equal. 

5. To show that this property holds true in general, drag any vertex of the origi-
nal triangle.

F

G

A’ B’

C’

A B

C

D

m C’F)(
m CG)(

 = 2.000

m C’F = 5.5 cm

m CG = 2.7 cm

m A’B’)(
m AB)(

 = 2.000
m A’B’ = 8.9 cm

m AB = 4.4 cm



523T E C H N O L O G Y  A P P E N D I X

SECTION 2.6  — EXAMPLE 2

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties to be proven in Section 2.6, Example 2.

1. Construct two similar triangles using the dilation method as follows:

i) Construct any small triangle ABC. 

ii) Plot any point D below the small triangle. 

iii) Select point D and click on Mark Centre in the Transform menu to select
this point as the centre of dilation.

2. Now select point A and create the image of A under a dilation by using the
Transform menu, choosing Dilate, and entering a dilation factor of any small
value. Click on OK. This will plot image point A’. Repeat this process for the
other two vertices and join them with line segments to create a triangle
A’B’C’ similar to ABC. Verify that the triangles are similar by measuring cor-
responding angles. 

3. Construct the polygon interiors of the triangles by selecting each vertex and
using the Polygon Interior tool in the Construct menu. The interior of each
triangle will be shaded. Measure each triangle’s area by selecting the interior
and using the Measure/Area tool. Calculate the ratio of the larger area to the
smaller area. 

4. Measure the lengths of the bases of each triangle, and calculate the square of
the ratio of the longer length to the shorter length using the Measure/Calcu-
late tool. Verify that this ratio equals the ratio of the areas. 

5. Show that this property holds true in general by dragging any vertex of either
triangle.

6. Repeat using 
a different 
dilation factor.

A’
B’

C’

A B

C

D

Area A’B’C’)(
Area ABC)(  = 4.840

m A’B’)(
m AB)(

2
 = 4.840

Area A’B’C’ = 40.0 cm2

m A’B’ = 15.8 cmArea ABC = 8.3 cm2

m AB = 7.2 cm
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QUESTION 2.6 .9

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties to be proven in Question 2.6.9:

1. Construct a pair of similar triangles using the dilation method as follows:

i) First construct any small triangle ABC. 

ii) Plot any point D below the small triangle. 

iii) Select point D and click on Mark Centre in the Transform menu to select
this point as the centre of dilation.

2. Select point A and create the image of A under a dilation by using the
Transform menu, choosing Dilate, and entering a dilation factor of any value.
Click on OK. This will plot image point A’. Repeat this process for the other
two vertices, and join them with line segments to create a triangle A’B’C’
similar to ABC. Verify that the triangles are similar by measuring correspon-
ding angles. 

3. Construct the polygon interiors of the triangles by selecting each vertex and
using the Polygon Interior tool in the Construct menu. The interior of each tri-
angle will be shaded. Measure each triangle’s perimeter by selecting the trian-
gle’s interior and using the Measure/Perimeter tool. Calculate the ratio of the
larger perimeter to the smaller perimeter using the Measure/Calculate tool.

4. Measure the lengths of two corresponding sides of the similar triangles and
calculate the ratio of the longer side to the shorter side. Observe that the ratio
of the perimeters equals the ratio of the side lengths. Show that this is true in
general by dragging any vertex of either triangle. 

A’ B’

C’

A B

C

D

m A’B’)(
m AB)(

 = 1.900

Perimeter C’A’B’)(
Perimeter ACB)(

 = 1.900

Perimeter C’A’B’ = 20.9 cm

m A’B’ = 9.2 cm

Perimeter ACB = 11.0 cm

m AB = 4.8 cm
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QUESTION 2.6 .11B

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties to be proven in Question 2.6.11b.

1. Construct a right-angled triangle ABC by first drawing segment AB and con-
structing a line perpendicular to AB through A. Plot a point C anywhere on
this perpendicular and construct segments AC and BC to complete the right
triangle. 

2. Construct the altitude AD by constructing a perpendicular to BC through A,
plotting the point of intersection of this perpendicular and segment BC, and
labelling the point D.

3. Measure the lengths of all the following segments using the Measure/Length
tool: AD, BD, DC, AB, AC, and BC.

4. Calculate the value of AD2 and verify that it equals the product (BD)(DC).

5. Calculate the value of AC2 and verify that it equals the product (BC)(DC).

6. Calculate the value of AB2 and verify that it equals the product (BC)(BD).

7. Show the Pythagorean theorem by calculating the sum AC2 � AB2 and com-
paring it with BC2

8. Show that all these relationships are true in general by dragging any vertex of
the right-angled triangle. 

D C

A

B

m BC)( m BD)(  = 29.000 cm2

m BC)( m DC)(  = 79.786 cm2

m BD)( m DC)(  = 21.269 cm2

m AD)( 2 = 21.269 cm2

m DC = 7.6 cm

m BD = 2.8 cm

m AD = 4.6 cm

m AC)( 2 = 79.786 cm2

m AC)( 2 + m BA)( 2 = 108.785 cm2

m BC)( 2 = 108.785 cm2

m BC = 10.4 cm

m AC = 8.9 cm

m BA)( 2 = 29.000 cm2

m BA = 5.4 cm

b)iii)

b)ii)

b)i)

c)



T E C H N O L O G Y  A P P E N D I X526

QUESTION 2.6 .12

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties to be proven in Question 2.6.12.

1. Construct any triangle ABC and midpoints D and E of sides AC and AB,
respectively. Join points B and D to form one median BD, and join points C
and E to form the other median CE.

2. Plot the point of intersection of the medians and label it point F. Measure
segments BF and FD, and verify that the product 2(FD) equals BF using the
Measure/Calculate tool. Repeat these calculations for the other median. 

3. Show that this property is true for many triangles by dragging any vertex of
the triangle.

QUESTION 2.6 .15

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties to be proven in Question 2.6.15.

1. Construct two similar pentagons using the dilation method as follows:

i) Construct any small pentagon ABCDE. 

ii) Plot any point F below the small triangle. 

iii) Select the point F and click on Mark Centre in the Transform menu to
select this point as the centre of dilation.

2. Now select point A and create the image of A under a dilation by using the
Transform menu, choosing Dilate, and entering a dilation factor of any small

F

E

D

C

BA

FE 2 = 5.8 cm

FD 2 = 4.8 cm

FE = 2.9 cm
CF = 5.8 cm
FD = 2.4 cm
BF = 4.8 cm
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value. Click on OK. This will plot image point A’. Repeat this process for the
other four vertices, and join them with line segments to create a pentagon
A’B’C’D’E’ similar to ABCDE. 

3. Construct the polygon interiors of each pentagon by selecting all the vertices
and using Construct, Polygon Interior. The interior area will be shaded. 

4. Measure the areas of each pentagon by selecting the interior and using Meas-
ure, Area. Calculate the ratio of the larger area to the smaller area. 

5. Measure the length of two corresponding sides of the two pentagons, and cal-
culate the square of the ratio of the longer side to the shorter side. Observe
that this result equals the ratio of the areas.

6. Show that this property is true for many similar pentagons by dragging any
vertex of either pentagon to change the shape of the pentagon.

7. Repeat using a 
different dilation factor.

CHAPTER 2 REVIEW EXERCISE,  QUESTION 15

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties to be proven in the Chapter 2 Review Exercise, Question 15.

1. Construct any scalene triangle and measure the length of all three sides.
Adjust side lengths so that none are equal (if necessary). 

2. Construct an altitude to one side by selecting one side and the opposite vertex
and using Construct, Perpendicular. Plot the point of intersection of the per-
pendicular line with the opposite side. Measure the length of the altitude
using Measure, Distance. Repeat for the other two altitudes.

A’

B’

C’

D’

E’

A

B

C

D
E

F

Area p2)(
Area p1)(  = 2.890

m A’B’)(
m AB)(

2
 = 2.890

Area p2 = 44.5 cm2

m A’B’ = 10.6 cm

Area p1 = 15.4 cm2
m AB = 6.2 cm
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3. Adjust the side lengths of the triangle by dragging one side until all three
sides are equal. This may require some careful adjustments of more than one
side. Observe that the altitude lengths are now also equal. Conversely, adjust
the length of the altitudes by dragging one of the vertices until they are all
equal, and observe that the triangle is equilateral.

4. A more accurate method would be to construct an equilateral triangle by the
following method, and then to construct and measure the altitudes as described
earlier. This method does not demonstrate that the converse is also true. To con-
struct an equilateral triangle, first draw any line segment, then draw a circle
with radius equal to the length of the line segment, centred at one endpoint, and
then construct another circle with the same radius, centred at the other end-
point. Plot the point of intersection of the two circles. Join this point to the end-
points of the first segment to complete the construction. Repeat step 2 above. 

D E

FA

B

C

AE = 

Method A

6.90 cm
BF = 7.37 cm
CD = 6.72 cm

m AB = 8.42 cm

m BC = 8.20 cm

m CA = 7.38 cm

D E

F

C

A B

DB = 10.9 cm
AE = 10.9 cm

CF = 10.9 cm

Method B
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CHAPTER 2 REVIEW EXERCISE,  QUESTION 17

Use Geometer’s Sketchpad to construct the following diagram that demonstrates
the properties to be proven in the Chapter 2 Review Exercise, Question 17.

1. Construct any triangle ABC and midpoints E and D, of sides AC and BC,
respectively. Join points A and D to form one median AD, and join points B
and E to form the other median BE.

2. Plot the point of intersection of the medians and label it point G.

3. Construct the midpoint F of side AB, and join F to G and G to C. This will
form the third median and complete the construction of the division of the tri-
angle into six smaller triangles. 

4. Construct the polygon interior of each of the six small triangles by selecting
its vertices and using the Construct/Polygon Interior tool. The colour of
each interior can be changed to a different colour by selecting the interior and
using the Display, Colour.

5. Measure the areas of the six interior triangles using Measure, Area. Observe
that all six areas are equal.

6. Show that this property holds true for many triangles by dragging any vertex
of the outside triangle. 

G

D

F
E

C

B

A

Area GAF = 8.870 cm2

Area GFB = 8.870 cm2

Area DGB = 8.870 cm2

Area CGD = 8.870 cm2

Area EGC = 8.870 cm2

Area EGA = 8.870 cm2
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SECTION 3.1  — PROPERTIES OF CIRCLES

Use Geometer’s Sketchpad to investigate and construct chords in a circle, similar
to various examples and exercises in Section 3.1.

1. Use the Circle tool to construct 
any circle.

2. With the circle selected, choose 
Construct, Point on Object.

3. Select the circle again and choose
Construct, Point on Object again.

4. Use the Label tool to label the 
newly created points A and B.

5. Join these two points using the Segment tool , or by selecting the points
using the Arrow tool and the shift key, and then choosing Construct,
Segment.

6. With the segment selected, choose Construct, Point at Midpoint.

7. Select line segment AB, hold the shift key, and then select the midpoint and
Construct, Perpendicular Line.

8. Grab either A or B and swing it around the circle and witness what happens.
(Alternatively, select point A, hold Shift, select the circle, and then choose
Display, Animate, Slowly and watch it happen).

9. State a hypothesis illustrating what you have just seen.

10. Develop a formal proof for this phenomenon. 

B

A
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SECTION 5.3  — USING MATRICES TO CALCULATE
THE DOT PRODUCT

Remember that the dot product can be calculated in component form as shown
below.
Given a�� � (3, 4, �2)  and  b�� � (�7, 4, 6)
then a�� • b�� � ((2)(�7) � (4)(4) � (�2)(6))

� 17

As we can see, the dot product of two vectors is a scalar.

We can also use matrix multiplication to calculate a�� • b��. Follow the steps below
on a TI-83+ calculator.

1. Define matrix [A] to be a 1 � 3 row vector containing the components of a��.
(See “Setting Up a Matrix Using the TI-83+.”). Print [A] on your screen.

Your screen should have the matrix [ 3  4  �2 ].

2. Define matrix [B] to be a 3 � 1 column vector containing the components of
b��. Print [B] on your screen.

Your screen should have the matrix � �.

3. To calculate a�� • b��, multiply the matrices [A][B] by following these steps.

MATRX

i) Press . Under NAMES, choose the defined matrix [A] and then 
press .

MATRX

ii.) Press .Under NAMES, choose the defined matrix [B] and then
press .

Your screen should look like this: ... [A] [B]. (Multiplication is implied 
here.)

iii.) Press to obtain the product of matrix [A] and [B]. The result is a 
1 � 1 matrix containing the dot product.

EXERCISE

Calculate the dot product using matrix multiplication for each of the following:
1.  a�� � (2, 1, �2); b�� � (0.5, �3.5, 1.75)
2.  m�� � (�2.75, 0, �1.45); n�� � (5, 7, 0)

Answers: 1. �6  2. �13.75

ENTER

ENTER

x -12nd

ENTER

x -12nd

�7
4
6
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SECTION 8.4  — SETTING UP A MATRIX USING 
THE TI -83+

Defining a matrix

MATRX

1. To set up your matrix, press to display the MATRX EDIT

menu, and then press ( means press the “cursor right” button).
You will have Matrix [A] followed by its dimensions at the top of your
screen.

MATRX

(If you wish to define matrix [B] or [C], etc., press to 
select EDIT, and then press the button and choose the matrix to define. 
Now press .)

2. Working with Matrix [A]: i) Enter the number of rows and then press 
.

ii) Enter the number of columns and then 
press .

3. Input each element in the matrix by typing a value and then . 
Note: For a negative number, use the white key in the bottom row. Input 
the values for row 1, then row 2, and so on.

QUIT

4. When you are finished entering values, press and the screen
will clear.

MATRX

5. To display your matrix, press . Under NAMES, choose your defined 
matrix by scrolling down and then pressing .

Example Define the matrix [C] to be the augmented matrix representing the sys-
tem of equations below.

x � 3y � 2z � �9
2x � 5y � z � 3

�3x � 6y � 2z � 8

Solution We need to define a 3 � 4 matrix.
MATRX

i) Press to select the EDIT option.
ii) Scroll down using the    key to [C]. Press .
iii) To define the first dimension, type 3 and press . For the 

second dimension, type 4 and press .ENTER

ENTER

ENTER�

��x -12nd

ENTERENTER

x -12nd

MODE2nd

�

ENTER

ENTER

ENTER

ENTER

�

��x -12nd

�ENTER

��x -12nd
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iv) Input the values of the matrix. 
Begin by typing 1 and pressing , and then type �3 and press

, and so on.
QUIT

v) When you have entered your final value, press and .
MATRX

vi) Now display matrix [C] by pressing , then scroll down 
to [C] and press . You should have the matrix 
shown below on your screen.

SECTION 8.4  — REDUCING A MATRIX DIRECTLY 
TO REDUCED ECHELON FORM OR ROW REDUCED
ECHELON FORM

The TI-83+ has built-in commands that allow the user to reduce an augmented
matrix directly to row echelon form or reduced row echelon form. The commands
are found under the MATRX MATH menu.

ref( will reduce a matrix to echelon form.

rref( will reduce a matrix directly to reduced row echelon form.

Example 
Given the matrix [C] below, solve the system with the TI-83+ by 

i) writing it in row echelon form and 
solving by back substitution.

ii) writing it in reduced row echelon
form and writing the solution 
directly.

ENTERENTER

x -12nd

MODE2nd

ENTER

ENTER
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Solution (part i)

1. Define [C] to be the matrix shown above. (See “Setting Up a Matrix Using
the TI-83+.”)

MATRX

2. Press to select MATH.

3. Use the cursor down arrow ( ) to highlight the command A:ref( . 
Press .

MATRX

4. Now press , and at the NAMES menu, scroll down to [C] and press 
. Close the brackets. Press .

5. The row echelon form of the matrix will be on your screen as shown below.
Now write the corresponding equations and complete the solution.

or 

To change your decimals to fractions, press and select 1: � Frac, then
press .

EXERCISE

1. Determine the intersection of the planes using a matrix and the rref( or ref(
command.

a) 3x � 4y � 8 � 0 b) 2x � y � 5 � 0       

x � y � 3z � 1 y � 2z � 5

6x � 5y � 2z � 7 3x � 12y � 6z � 15 � 0

c) 5x � 8y � 9z � 2 � 0

x � 3y � 2z � 6

10x � 16y � 18z � 4 � 0

Answers: a) x � �
6
1
0
7�, y � �

4
1
9
7�, z � �1

2
7� b) x � �

2
9
5
�, y � �

5
9�, z � �

�
9
20
�

c) z � t, y � �4 � �
1
7
9
�t, x � �6 � �

�
7
43
�t, t � R

ENTERENTER

MATH

ENTERENTER

x -12nd

ENTER

�

�x -12nd
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2. Turn to the Chapter 8 Review Exercise and repeat question 22. For each
part, write the row echelon form of the matrix and the reduced row echelon
form of the matrix. Give the solution to each and the proper geometrical
interpretation.

SECTION 8.4  — SOLVING A MATRIX USING 
GAUSS-JORDAN ELIMINATION

In Section 8.4 you were introduced to the intersection of two planes and how a
matrix could be used to describe the relationship of their intersection. You saw
how to make an augmented matrix to represent the planes and how to reduce this
matrix through Gauss-Jordan elimination. We will now use the TI-83+ to reduce
the matrix and find the relationship between the planes.

First, recall that when performing Gauss-Jordan elimination we may do the 
following:
• multiply any row by a non-zero constant.
• replace any row by the sum (or difference) of that row and a multiple of 

another row.
• interchange any rows.

The TI-83+ calculator provides commands to perform each of these operations.
These commands are found in the MATRX MATH menu. They are
• rowSwap( (Used to interchange rows.)
• row+( (Used to add rows together.)
• *row( (Used to multiply a row by a non-zero constant.)
• *row+( (Used to multiply a row by a non-zero constant and then

add that row to another row.)

Let us reduce the matrix given in Example 1 in Section 8.4 using the TI-83+.

EXAMPLE 1

Find the intersection of the two planes 

2x � 2y � 5z � 10 � 0  and  2x � y � 4z �7 � 0.

Solution

Define the matrix [A] as a matrix containing the coefficients from each equation.
(See Setting Up a Matrix Using the TI-83+).

Print matrix [A] on your screen. You should have an augmented matrix on your
screen like the one that follows.
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1. We now want to obtain a zero in position 2, 1 of our matrix. To do this we
must multiply row 1 by �1 and then add this row to row 2. We will then
replace row 2 with these new values.

Procedure
MATRX

i) Press , and then cursor right to the MATH menu and down to
F:*row+(. Press .

ii) On your screen you should have *row+(.

The format for this command is
*row+( constant multiplier, name of the matrix, row to be multiplied, row to be
added).

So, on our screen we want to have *row+(�1, [A], 1, 2). This says we will multi-
ply row 1 of matrix [A] by �1 and then add this to row 2.

We accomplish this with the following steps:

After *row+ (, follow these steps:

1. Type -1. (Remember to use the white key on the calculator).

2. Press the comma key , on the calculator.
MATRX

3. Press and select [A], then press .

4. Press the comma key on the calculator.

5. Type 1.

6. Press the comma key.

7. Type 2.

8. Close the bracket.

You should now have *row+(�1, [A], 1, 2) on your screen.

9. Press .ENTER

ENTERx -12nd

( � )

ENTER

x -12nd



537T E C H N O L O G Y  A P P E N D I X

You should have the following matrix 
on your screen:

iii) This operation does not actually change matrix [A]. To do this, press 
MATRX

, select [A], and press . Matrix [A] is now
equal to the matrix above.

2. We now want to divide row 2 by 3. In other words, we multiply row 

2 by �
1
3�. To do this we will use the *row( command. The format for this 

command is *row( constant multiplier, matrix name, row to be multiplied)

MATRX

• Press and select MATH.

• Cursor down to E:*row( , and then press .

• Type 1, press the key, and type 3. (This is one third.)

• Press the comma key.
MATRX

• Press and select [A], then press .

• Press the comma key.

• Type 2.

• Close the bracket.

You should now have *row(1/3, [A], 2) on your screen.

• Press .
MATRX

Now store this result in matrix [A] by pressing , selecting [A],
and then pressing .

You should have the following matrix 
on your screen:

ENTERENTER

x -12ndSTO➨

ENTER

ENTERx -12nd

�

ENTER

x -12nd

ENTERENTERx -12ndSTO➨
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3. We now want to make the value in position 1, 2 equal to zero. To do this, we
multiply row 2 by 2, add this to row 1, and replace row 1 by this amount.

MATRX

• Press and select MATH.

• Scroll down to F:*row+( , and press .

• Type 2.

• Press the comma key.
MATRX

• Press and select [A], then press .

• Press the comma key.

• Type 2.

• Press the comma key.

• Type 1.

• Close the bracket.

• Press .
MATRX

• Now store this result in matrix [A] by pressing , select-
ing [A], and then pressing .

The matrix on your screen should look 
like the following:

4. We now multiply row 1 by 1 so we obtain a leading 1 in that row.
MATRX

• Press and select MATH.

• Scroll down to E:*row( , and press .

• Type 1, press the key, and type 2. (This is one half.)

• Press the comma key.
MATRX

•  Press , select [A], and press .

•  Press the comma key.

•  Type 1.

•  Close the bracket.

•  Press .ENTER

ENTERx -12nd

�

ENTER

x -12nd

ENTERENTER

x -12ndSTO ➨

ENTER

ENTERx -12nd

ENTER

x -12nd
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The matrix on your screen should look like this:

You can now write the corresponding equations from the reduced matrix and
describe the relationship between the intersection of the planes. In this case, the
intersection is a line and we have written it below in parametric form. 

z � t; x � �4 � �
1
2�t and   y � 1 � 3t; t � R

SECTION 8.4  — SUMMARY OF GAUSS-JORDAN
COMMANDS USING THE TI -83+

Extension: Use a 3-D graphing program such as Winplot or Zap-a-Graph and
graph these planes to see their line of intersection.

SUMMARY OF GAUSS-JORDAN COMMANDS USING THE TI-83+

1. rowSwap( matrix name, row m, row n) • used to interchange rows m and 
n in the defined matrix.

2. row+( matrix name, row m, row n) • used to add row m to row n in 
the defined matrix, storing the 
result in row n.

3. *row( constant, matrix name, row m) • used to multiply row m in the 
defined matrix by a non-zero 
constant, storing that result
in row m.

4. *row+( constant, matrix name, row m, row n) • used to multiply row m, in the 
defined matrix, by a non-zero 
constant and then to add row m
to row n, storing the result in 
row n.

Remember, in all cases, the defined matrix is not actually changed until after you per-
form the commands:

MATRX

select [your defined matrix to store in], then .ENTERENTERx -12ndSTO➨
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EXERCISE

1. Return to Exercise 8.4 and complete question 6 using the TI-83+ calculator
and the row reducing commands available.

2. Use the TI-83+ calculator to give the geometrical interpretation of the system
of equations in question 1 of Exercise 8.4.

3. Using the TI-83+ calculator, complete questions 3, 4, 7, and 8 from Exercise
8.5.

SECTION 8.5  — MATRICES AND DETERMINANTS

In this activity, we will use determinants to investigate the conditions in which a
system of n linear equations in n variables has a unique solution. Also we will
look at using determinants to investigate whether sets of vectors are linearly
dependent or independent.

For our investigation, we will look at the determinants of matrices having sizes 
2 � 2 or 3 � 3.

The determinant of a 2 � 2 matrix [A] �� � is defined to be

det A �

� ad � cb

Example 

Calculate the determinant of the matrix 

H � � � and   B � � �.

Solution 1

det H � (2)(0.25) � (�1)(4) det B � (�6)(�25) � (10)(15)

� 4.5 � 0

Solution 2 

Find the determinant for H using the TI-83+ graphing calculator.

1. Set up matrix H and define it as [A].

15
�25

�6
10

4
0.25

2
�1

b
d

a
c

a  b
c  d
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MATRX

2. Press and select MATH.

3. Select 1:det( and press .

MATRX

4. Press , select [A], and then press .

5. Close the bracket.

6. Press .

Using the TI-83+, find the determinant for matrix B.

Investigation of Dependency Using Determinants

ACTIVITY 1

1. Are the vectors a�� � (�3, 8) and b�� � (12, �32) dependent? Explain.

2. Create a matrix A that contains the components of a�� and b�� written horizontally.
Calculate the determinant of this matrix.

Your matrix should look like � �.
3. What is the determinant?

ACTIVITY 2

1. Are the vectors m�� � (6, 5) and n�� � �3, �
5
2�� dependent? Explain.

2. Create a matrix A that contains the components of m�� and n�� written horizontal-
ly. Calculate the determinant of this matrix.

Your matrix should look like � �.
3. What is the determinant?

ACTIVITY 3

1. Are the vectors r� � (12, �5) and t� � (13, 1) dependent? Explain.

2. Create a matrix A that contains the components of r� and t� written horizontally.
Calculate the determinant of this matrix.

Your matrix should look like � �.
3. What is the determinant?

�5
1

12
13

6  5

3  �
5
2�

8
�32

�3
12

ENTER

ENTERx -12nd

ENTER

x -12nd



Conclusion

What can be said about the determinant of a matrix that contains dependent 
vectors?

SECTION 8.5  — CRAMER’S RULE FOR 2 ✕ 2
MATRICES

Determinants can be used to determine whether a system of linear equations in
two variables has a unique solution. We do this using Cramer’s Rule.

EXERCISE

Using the TI-83+ and Cramer’s Rule, determine whether the following systems
have unique solutions.  Where a unique solution does exist, give that solution.

a) 2x � 3y � 7 b) 4x � 2y � 7 c) 5x � 0.25y � 3
5x � y � 9 �6x � 3y � 1 �3x � 7y � 0.25

d) 4x � 3y � 8 � 0 e) y � 5 � 0
2x � 5y � 12 � 5 x � 10 � 7

Extension: Prove Cramer’s Rule or find a resource that has the proof and 
follow it through.

Construct a theorem that describes the determinant of a matrix containing
dependent vector components.
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� 	

Cramer’s Rule

Given the system of equations ax � by � k1
cx � dy � k2 

,

there is a unique solution if
D � � 0.

If D � 0, then the unique solution is

x � �
D
D

1�, y � �
D
D

2�, where   D1 � and   D2 � .

a  b
c  d

� 	

a  k1

c  k2

k1 b
k2 d
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SECTION 8.5  — CRAMER’S RULE FOR 3 ✕ 3
MATRICES

The determinant of the 3 � 3 matrix, A, where A � � �, is given by

det A � = a �b �c .

The three vectors contained in a 3 � 3 matrix are dependent if det A � 0 .

We can calculate the determinant using the TI-83+ by defining our 3 � 3 matrix
and using the det( function under the MATRX MATH menu. 

Example

Determine whether the given vectors in R3 are dependent or independent.

u�� � (4, 2, 5); v�� � (�4, 2, 9); w�� � (4, 6, 19)

Solution

We will represent the vectors in a 3 � 3 matrix and find the determinant using the
TI-83+. If the determinant is equal to zero, then the vectors are dependent.

1. Set up a matrix to represent these vectors and define it as [A].

MATRX

2. Press and select the MATH menu.

3. Select 1:det( and press .

MATRX

4. Press , select [A], and then press .

5. Close the bracket.

6. Press .

As you can see, the vectors are dependent because the determinant is equal to 0.
We knew this to be the case, and we can write the vectors as a linear combination
of one another:

2(4, 2, 5) � (�4, 2, 9) � (4, 6, 19)

ENTER

ENTERx -12nd

ENTER

x -12nd

e
h

d
g

f
i

d
g
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i

e
h

c
f
i

b
e
h

a
d
g

c
f
i

b
e
h

a
d
g
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As we did with systems of equations in R2, we can use Cramer’s Rule for 3 � 3
matrices to find the unique solution to a system when it exists.

Cramer’s Rule

A system of three equations in three variables has a unique solution if and 
only if the 3 x 3 determinant of the coefficients is not zero. If this is the case,
then the unique solution of the system given in

ax � by � cz � k1
dx � ey � fz � k2 is    x � �

D
D

1�, y � �
D
D

2�, z � �
D
D

3�,
gx � hy � iz � k3

where D � and   D1 � , D2 � , D3 � .

EXERCISE

Using the TI-83+ and Cramer’s Rule, determine the unique solution for each sys-
tem, where it exists. Interpret the unique solution.

a)    2x � 3y � z � 0 b)    2x � 3y � z � 7 c)    x � y � z � 2
x � y � z � 0 x � 4y � z � 2 2x � y � z � 3
3x � y � z � 0 �x � 2z � 5 5x � y � z � 8

d)  �
1
4�x � 3z � 8 e) 0.75x � 8y � z � 0

2y � 5z � 0 6x � 7y � 2z � 2 � 8
3x � 5y � 2 � 0 2x � 6y � 3z � 12 � 0

k1
k2
k3

b
e
h

a
d
g

c
f
i

k1
k2
k3

a
d
g

c
f
i

b
e
h

k1
k2
k3

c
f
i

b
e
h

a
d
g

� � � 			
� 	 � 	

� 	



Absolute Value: the positive value of a real num-
ber, disregarding the sign. Written as x. For exam-
ple, 3 � 3, �4 � 4, and 0 � 0. 
Acceleration: the rate of change of velocity with
respect to time.
Acute Angle: a positive angle measuring less than
90º. 
Algebraic Equation: an equation of the form 
f (x) � 0 where f is a polynomial algebraic function
and only algebraic operations are required to solve it.
Algorithm: derived from the name of a ninth-centu-
ry Persian author, Abu Ja’far Mohammed ibn al
Khowarizmi. A step-by-step description of a solution
to a problem.
Altitude: the line segment drawn from one vertex of
a triangle perpendicular to the opposite side. The three
altitudes of a triangle intersect at the orthocentre. 
Anagram: a rearrangement of all the letters of a
word to form a new word.
Analog: a device that uses physical quantities rather
than digits for storing and processing information.
Angle: given two intersecting lines or line segments,
the amount of rotation about the point of intersection
(the vertex) required to bring one into correspondence
with the other. 
Angle of Inclination (of a line): the angle α,
0 � α � 2�, that a line makes with the positive 
x-axis. Also known as the angle of slope or gradient of
a line.
Arc: a portion of a curve. For a circle, an arc is a por-
tion of the curved line (circumference) that encloses
the circle. A line drawn through a circle may divide
the circumference into two unequal arcs: a major and
a minor arc.
Arithmetic Progression (Sequence): an ordering
of numbers or terms where the difference between
consecutive terms is a constant.
Arithmetic Series: the sum of the indicated terms
of an arithmetic sequence.
Assumption: a statement that is to be accepted as
true for a particular argument or discussion.
Assymetric: unbalanced, without symmetry.
Asymptote: a straight line is an asymptote of a curve
if the curve and the line approach indefinitely close

together but never meet.
Augmented Matrix: a matrix made up of the 
coefficient matrix and one additional column contain-
ing the constant terms of the equations to be solved.
Axiom: a statement assumed to be true without 
formal proof. Axioms are the basis from which other
theorems and statements are deduced through proof.
Axis: a line drawn for reference in a coordinate sys-
tem. Also, a line drawn through the centre of a figure.
Axis of Symmetry: a line that passes through a 
figure in such a way that the part of the figure on one
side of the line is a mirror reflection of the part on the
other side.
Basis Vectors: a set of linearly independent vectors
such that every vector in that vector space can be
expressed as some linear combination of the basis
vectors. In the Cartesian coordinate system, the basis
vectors î , ĵ , and k̂ form a basis for the two- or three-
dimensional spaces in which vectors exist.
Biconditional Statement: a statement in which the
truth of either part of the statement depends upon the
truth of the other (expressed as p↔q). p is true if and
only if q is true or q is true if and only if p is true.
Binomial: an algebraic expression with two terms.
For example, 2x � 3y is a binomial.
Binomial Theorem: the expansion in terms of 
powers of a and b for the binomial (two-termed)
expression (a � b)n. It was first discovered by the
Islamic mathematician al-Karaji in the tenth century,
and later rediscovered by Newton in the seventeenth
century. 
Cardioid: a plane curve traced by a point on a circle
rolling on the outside of a circle of equal radius.
Cartesian Coordinate System: a reference system
in two-dimensional space, consisting of two axes at
right angles, or three-dimensional space (three axes) in
which any point in the plane is located by its displace-
ments from these fixed lines (axes). The origin is the
common point from which each displacement is meas-
ured. In two-dimensional space, a set of two numbers
or coordinates is required to uniquely define a posi-
tion; in three-dimensional space, three coordinates are
required.
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Cartesian (Scalar) Equation of Line: an equation
of the form Ax � By � C � 0 where the vector (A, B���)
is a normal to the line. There is no Cartesian Equation
of a line in three-dimensional space.
Cartesian (Scalar) Equation of a Plane: an equa-
tion of the form Ax � By � Cz �D � 0 where the
vector (A, B, C���) is normal to the plane.
Central Angle (of a circle): an angle subtended by
an arc of the circle that has the centre of the circle as
its vertex and the radii of the circle as its sides.
Centroid: the centre of mass of a figure. The centroid
of a triangle is the point of intersection of the three
medians.
Chord: a line segment joining points on a curve. In a
circle, the maximum length of a chord is the length of
the diameter.
Circle: the locus of a point that moves so that it is
always a constant distance (the radius) from a fixed
point (the centre). Also, the set of all points in the
plane that are equidistant from a fixed point.
Circle, Equation in Standard Form:
(x � a)2 � (y � b)2 � r2, where the centre of the cir-
cle is (a, b) and the radius is r.
Circle, Equation in General Form:
x2 � y2 � 2gx � 2fy � c � 0. The standard form of
the equation can easily be derived from the general
form and vice versa.
Circumcentre: the point at which the perpendicular
bisectors of the sides of a triangle meet, or the centre
of the circumscribed circle that passes through the
three vertices of the triangle.
Circumference: the boundary line enclosing a figure
or the length of that line. Usually applied to the
boundary line of a circle, where the length of the cir-
cumference or perimeter is 2�r.
Clockwise Rotation: a rotation in the same direc-
tion as the movement of the hands of a clock.
Coefficient Matrix: a matrix whose elements are
the coefficients of the unknown terms in the equations
to be solved by matrix methods.
Collinear: lying in the same straight line. Two vectors
are said to be collinear if and only if it is possible 

to find a non-zero scalar, a, such that x�� � au��.
Common Difference: the difference between any
two consecutive terms in an arithmetic sequence. For
example, in the sequence 5, 9, 13, 17, …, the common
difference is 4.

Common Ratio: the ratio of consecutive terms in a
geometric sequence. For example, in the sequence 
3, 12, 48, 192, …. the common ratio is 4.
Combinatorics: the branch of mathematics that
deals with systematic ways of counting the number of
arrangements in which a set of objects can be
arranged.
Commutative: the property that, for certain binary
mathematical operations, the order does not matter.
Addition and multiplication are commutative opera-
tions.
Complement of a Set: If U is the universal set and
A is any subset, the complement of A consists of all
elements of U not in A. The set A plus its complement
equals the universal set U.
Complementary Angle: two angles are called 
complementary if the two angles add up to a right
angle.
Complex Number: a number of the form z � a � bi
where a and b are real numbers and i � ��1�.
Complex Plane: a graphical method of representing
a complex number z � a � bi, where the real part a is
plotted along the horizontal real axis and its imaginary
part b along the vertical imaginary axis of a Cartesian
coordinate system. The complex number is displayed
as the ordered pair (a, b) in the coordinate plane or as
a vector drawn from the origin to the point (a, b).
Concurrency: the condition where lines meet togeth-
er at a common point. In a triangle, each of the medi-
ans, altitudes, angle bisectors, and perpendicular
bisectors of the sides are concurrent.
Concyclic Points: points that lie on a circle.
Conditional Statement: a statement in which the
first part of the statement implies the second part.
Expressed as p → q (if p is true then q is true).
Congruency: the condition of being equal in size
and shape. Two figures are said to be congruent if one
of them can be made to coincide at every point with
the other by either a translation or rotation in space.
Conjecture: a generalization or educated guess made
using inductive reasoning.
Conjugate Axis: the imaginary axis of symmetry of
a hyperbola that is perpendicular to the transverse axis.
Conjugate Complex Numbers: two complex num-
bers of the form a � bi and a � bi. The product of the
two numbers is a real number.
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Converse: a statement formed from another state-
ment by interchanging the subject and the predicate.
The result of the interchange may not necessarily be
true. For example, if p → q, the converse, q → p, may
be true or false.
Convex Polygon: a polygon in which each of the
interior angles is less than 180º.
Coordinates: a set of numbers that uniquely define
the position of a point with respect to a frame of refer-
ence. Two coordinates are required in two-dimension-
al space; three in three-dimensional space.
Coordinate System: a frame of reference used for
describing the position of points in space. See
Cartesian Coordinate System.
Consistent: a linear system is said to be consistent if
it has at least one solution. If there are no solutions,
the system is said to be inconsistent.
Coplanar: points or lines lying in a plane are said to
be coplanar. Three points uniquely define a plane.
Corollary: a theorem that follows so obviously from
the proof of some other theorem that virtually no fur-
ther proof is required.
Cosine Law: a formula relating the lengths of the
three sides of a triangle and the cosine of any angle in
the triangle. If a, b, and c are the lengths of the sides
and A is the magnitude of the angle opposite a, then
a2 � b2 � c2 � 2bc cos A. Two other symmetrical 
formulas exist involving expressions for the other 
two sides.
Counterclockwise Rotation: a rotation in the
opposite direction of the movement of the hands of a
clock.
Cross Product (Vector): a vector quantity that is
perpendicular to each of two other vectors and is
defined only in three-dimensional space.
Cube: the three-dimensional Platonic solid that is
also called a hexahedron. The cube is composed of six
square faces that meet each other at right angles, and
has eight vertices and 12 edges.
Cyclic Polygon: a polygon with vertices upon which
a circle can be circumscribed. Since every triangle has
a circumcircle, every triangle is cyclic.
Cyclic Quadrilateral: a quadrilateral whose four
vertices lie on a circle. The four vertices are concyclic
points.
Cylinder: a three-dimensional solid of circular cross-
section in which the centres of the circles all lie on a
single line of symmetry.

Deductive Reasoning: a method of reasoning that
allows us to prove a statement to be true by progress-
ing from the general to the particular.
Degree: the unit of angle measure defined such that
an entire rotation is 360º. The degree likely derives
from the Babylonian year, which was composed of
360 days (12 months of 30 days each). The degree is
subdivided into 60 minutes per degree and 60 seconds
per minute since the Babylonians used a base 60 num-
ber system.
Diagonal: a line connecting two non-adjacent 
vertices of a polygon.
Diameter: a line segment joining two points on the
circumference of a circle or sphere and passing
through the centre.
Dilatation: a transformation that changes the size of
an object.
Direct Proportion: two quantities x and y are said
to be in direct proportion if y � kx where k is a con-
stant. This relationship is commonly written as y � x.
Direction Angles (of a vector): the angles that a
vector makes with the x-, y-, and z-axes, respectively,
where the angles lie between 0º and 180º.
Direction Cosines (of a vector): the cosines of
the direction angles of a vector.
Direction Numbers (of a line): the components of
the direction vector of a line. If the direction vector is
normalized into a unit vector, the resulting compo-
nents represent the direction cosines of the line.
Direction Vector (of a line): a vector that deter-
mines the direction of a particular line.
Discriminant: in the quadratic formula, the value
under the square root sign: b2 � 4ac. It is used to
determine the nature of the roots of an equation.
Disjoint Sets: two sets that have no elements in
common. If set A and set B have no elements in com-
mon, then A � B � 0.
Displacement: a translation from one position to
another, without consideration of any intervening
positions. The minimal distance between two points.
Distance: the separation of two points measured in
units of length, or the length of the path taken between
two points, not necessarily the minimal distance (dis-
placement).
Dot (Scalar) Product: the multiplication of two
vectors resulting in a scalar quantity.  It is calculated
by multiplying the magnitude of each of the two vec-
tors by the cosine of the angle between the vectors
with the tails of the two vectors joined together.
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Element of a Set: any member of the set.
Equiangular Triangles: three-sided figures where
the three contained angles are equal to each other. (See
Similar Triangles).
Equilibrant Force: a force equal in magnitude but
acting in the opposite direction to the resultant force.
It exactly counterbalances the resultant force, resulting
in a state of equilibrium.
Equilibrium, State of: a state of rest or uniform
motion of an object that will continue unless the object
is compelled to change position by the action of an
outside force.
Equivalent: equal in value.
Explicit: precisely and clearly expressed or readily
observable; leaving nothing to be implied.
Exponent: the notation bp means the product of p
factors of b where b is the base and p the exponent of
the power bp.
Factorial: for any positive integer n, the product of
all the positive integers less than or equal to n.
Factorial n is denoted by n!. 
n! � n(n�1)(n�2) …3.2.1.  0! is defined as 1.
Fibonacci Numbers: the sequence of numbers 
1, 1, 2, 3, 5, 8, 13, 21, … in which each number is the
sum of the two previous ones. x1 � 1, x2 � 1, xn�1 �
xn � xn�1 n � 2.
Force: a physical influence that causes a change in
the direction of a physical object.
Formula: a mathematical equation relating two or
more quantities.
Fractal: a curve of surface that contains more but
similar complexity the closer one looks.
Frame of Reference: a fixed arrangement used for
describing the position of points or objects.
Frequency: the number of occurrences within a
given time period (usually 1 second) or the ratio of the
number of observations in a statistical category to the
total number of observations.
Gaussian Elimination: a matrix method used to
solve a system of linear equations, in which all ele-
ments below the main diagonal are made 0 by row
reduction, and the resulting lines are considered as
equations.
Gauss-Jordan Elimination: a matrix method used
to solve a system of linear equations, in which all ele-
ments on the main diagonal are made 1, and other ele-
ments above or below the main diagonal are made 0
using row reduction.

Geographic Profiling: a field developed by mathe-
maticians to help police determine where perpetrators
of crime are likely to live.
Geometric Progression (Sequence): a succession
of numbers in which each consecutive number is
found by multiplying the previous number by a fixed
multiplier (the common ratio).
Geometric Series: the indicated sum of the terms of
a geometric sequence.
Geometry: the branch of mathematics that deals
with the shape, size, and position of figures in space.
Golden Ratio: the division of a line segment AB by 

an interior point P so that �
A
A

B
P
� � �

A
P

P
B
�. It follows 

that �
A
P

P
B
� � , which is a root of x2 � x � 1 � 0. 

Gradient: the slope or steepness of a line or curve.
Gravity: the force of attraction exerted by one object
on another.
Hexagon: a six-sided polygon.
Hypotenuse: the side opposite the right angle in a
right-angled triangle. It is always the longest of the
three sides.
Hypothesis: a concept that is not yet verified but
that, if true, would explain certain facts or phenomena.
Identity: a mathematical statement of equality that is
true for all values of the variables. For example,
sin2	 � cos2	 � 1 is an identity, true for all values of
the variable.
Implicit: implied but not directly expressed. 
Inconsistent: a linear system of equations that has
no solution.
Indirect Proof (Proof by Contradiction): an
approach where all possible outcomes are listed and
all but one are eliminated through an intelligent rea-
soning process.
Inductive Reasoning: a method of reasoning that
allows us to prove a statement to be true by progress-
ing from specific examples of data or collected evi-
dence to a general conclusion.
Intercept: the directed distance along an axis from
the point of origin to a point of intersection of the
graph of a curve with that axis.
Intersection (of sets): a subset corresponding to the
elements common to two sets. The intersection of set
A and set B is denoted by A�B and contains only ele-
ments present in both sets.
Irrational Number: a real number that cannot be
expressed as the ratio of two integers.

1 � �5�
�2
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Isosceles: having two sides of equal length
Iteration: a method of evaluating a function where
an initial value is calculated, and each subsequent
term is calculated based on the output from the previ-
ous term.
Lever Arm: the distance along the shaft from the
axis of rotation to the point at which the force is
applied.
Linear Combination (of vectors): an expression
that consists only of scalar multiples of vectors (for
example, au�� � bv�� � cw��, a, b, c � R).
Linear Dependence (of vectors): a set of vectors 
u��, v��, w��, x��... is linearly dependent if a linear combina-

tion of them (for example, au�� � bv�� � cw�� � dx�� ...) 
produces the zero vector [0��] and not all of a, b, c and
d…  are zero.
Linear Independence (of vectors): a set of vec-

tors u��, v��, w��, x��... is linearly independent if the only 

linear combination  au�� � bv�� � cw�� � dx�� ... that pro-
duces the zero vector [0��] is the one in which all of the
scalars a, b, c, d…  are zero.
Linear System (of equations): a set of two or
more linear equations. A system of linear equations
may have a unique solution, an infinite number of
solutions, or no solution.
Locus: a set of points that satisfy a given condition
or the path traced out by a point that moves according
to a stated geometric condition. See Circle.
Magnitude: the property of relative size or extent.
The magnitude of a vector is the length of the vector
from the tail to the head.  
Mathematical Induction: a system of reasoning
applied to certain theorems about integers, leading
from specific facts to general conclusions.  
Matrix: a rectangular (or square) array of numbers
set out in rows and columns. The numbers are called
elements. The number of elements is the product of
the number of rows multiplied by the number of
columns.
Median: the middle term of a sequence of numbers
arranged in ascending order. If the sequence has an
even number of terms, the median is the average of
the two middle terms.
Median Line of a Triangle: the line in a triangle
drawn from a vertex to the midpoint of the opposite
side. The three medians of a triangle intersect at the
centroid.

Newton’s First Law of Motion: an object will
remain in a state of rest or equilibrium unless it is
compelled to change that state by the action of an
external force.
Normal: perpendicular; any vector that is perpendi-
cular to a line is called the normal to the line.
Obtuse Angle: an angle that measures greater than
90º and less than 180º.
Origin: the point of intersection of the coordinate
axes drawn in a Cartesian coordinate system.
Orthocentre: the intersection of the three altitudes
drawn in a triangle.
Orthogonal: meeting at right angles.
Palindrome: a sequence of symbols that reads the
same from either end (for example, the number 1331
or the word level).
Parallel: being everywhere equidistant but not inter-
secting.
Parallelogram: a quadrilateral with opposite sides
that are parallel.
Parallelepiped: a box-like solid, the opposite sides
of which are parallel and congruent parallelograms.
Parameter: a variable that permits the description of
a relation among other variables (two or more) to be
expressed in an indirect manner using that variable.
Parametric Equation: an equation in which the
coordinates are each expressed in terms of quantities
called parameters (for example, x � r cos 	, y � r
sin 	 	 � 0). 	, the parameter, may assume any posi-
tive value.
Pascal’s Triangle: a triangular array of numbers
where each number in a particular row is equal to the
sum of the two numbers in the row immediately above
it. The triangle was studied by Pascal (1623–1662),
although it had been described 500 years earlier by
Chinese mathematician Yanghui and the Persian
astronomer-poet Omar Khayyám. It is known as the
Yanghui triangle in China.
Pentagon: a five-sided polygon.
Perfect Square: a number that can be expressed as
the product of two equal factors.
Perimeter: the length of the boundary enclosing a
figure.
Permutation: an ordered arrangement or sequence
of a set of elements or objects.
Perpendicular: a straight line at right angles to
another line.
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Plane: a flat surface, possessing the property that the
line segment joining any two points in the surface lies
entirely within the surface.
Polygon: a closed plane figure consisting of n points
(vertices) where n � 3 and corresponding line seg-
ments. A polygon of three sides is a triangle; of four
sides, a quadrilateral; and so on.
Polyhedron: a solid bounded by plane polygons.
Position Vector: a vector drawn from the origin to
the point marking the head of the vector.
Prime Number: a natural number (counting number)
having no factors except itself and 1. The first primes
are 2, 3, 5, 7, 11, 13, … . It is not common to include
1 among the prime numbers.
Prism: a polyhedron with two congruent and parallel
faces.
Probability: the ratio of the number of favourable
outcomes to the total number of possible outcomes.
Projection: a mapping of a geometric figure formed
by dropping a perpendicular from each of the points
onto a line or plane.
Proof by Contradiction (Indirect proof): an
approach where all possible outcomes are listed and
all but one are eliminated.
Pyramid: A polyhedron with one face (the base) as a
polygon and all the other faces as triangles meeting at
a common vertex (the apex). A right pyramid is a
pyramid for which the line joining the centroid of the
base and the apex is perpendicular to the base.
Pythagorean Theorem: in any right-angled trian-
gle, the square of the hypotenuse is equal to the sum
of the squares of the other two sides.
Quadrant: any one of the four areas into which a
plane is divided by two orthogonal coordinate axes.
Radius: a line segment that joins a point on the cir-
cumference of a circle to the centre. 
Ratio: a number or quantity compared with another. It
is usually written as a fraction or with the symbol [:].
Rational Number: a number that can be expressed
as an integer or as a quotient of integers (a fraction).
Real Number: any rational or irrational number.
Rectangle: A parallelogram in which the angles are
right angles.
Recursion: a method of defining sequences in which
the first term is defined and each subsequent term is
determined by a process applied to preceding terms.
See Fibonacci Numbers for an example.

Reduced Row-Echelon Form: a matrix derived by
the method of Gauss-Jordan elimination that permits
the solution of a system of linear equations.
Reflection: a transformation of a point, line, or fig-
ure that results in a mirror image of the original.
Resultant Force: the single force that has the same
net effect of a group of several forces.
Rhomboid: a parallelogram with adjacent sides not
equal.
Rhombus: a parallelogram having equal sides. The
diagonals of a rhombus are at right angles to each
other
Scalar: a quantity having magnitude only. Quantities
having magnitude and direction are called vectors.
Scalar Dot Product: the multiplication of two vec-
tors resulting in a scalar quantity. It is the multiplica-
tion of the magnitude of each of the two vectors by the
cosine of the angle between them as they are joined at
their tails.
Scalene Triangle: a triangle with no sides equal.
Secant: a line segment that cuts through a circle or
other figure. In a circle, the portion of the secant
inside the circle is called a chord.
Sector: the part of a circle that is bounded by two
radii and the included arc.
Segment of a Circle: the part of a circle bounded
by a chord and the arc subtending the chord.
Semicircle: the part of a circle bounded by the diam-
eter and an arc.
Sequence: a set of numbers arranged in order
according to some rule.
Series: the sum of the terms of a sequence.
Set: a collection of objects. The individual members
of a set, called elements, share some property or rule
that determines whether each element is in the set. The
elements of a set are unique.
Set Theory: the systematic study of the properties of
sets.
Sierpinski’s Triangle: a simple fractal resulting
from the recursive manipulation of an equilateral trian-
gle.
Sigma Notation: a convenient method to express
the sum of the terms of a sequence. For example,

Sn � �
n

i�1
ti, where 
 is the upper-case Greek S indicat-

ing sum. The i is called the index and the values 1 and
n give the range (inclusive) of the index in summation.
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Similarity: two plane figures are similar if the angles
of one, taken in order, are respectively equal to the
angles of the other, in the same order, and the corre-
sponding sides are proportional.
Similar Triangles: two triangles are similar if the
angles of one, taken in order, are respectively equal to
the angles of the other, in the same order, and the cor-
responding sides are proportional.
Sine Law: the theorem that relates the lengths of
sides of a triangle to the sines of the angles opposite
those sides. In a triangle with sides of lengths a, b,
and c and angles opposite those sides A, B, and C,

�sin
a

A� � �sin
b

B� � �sin
c

C�.

Skew Lines: non-intersecting, non-parallel lines in
space. Two lines are skew if and only if they do not lie
in a common plane.
Slope: the steepness of a line or curve. In the plane,
the slope is equal to the tan 	, where 	 is the angle of
inclination.
Sparse System: a linear system of equations 
involving a large number of equations, many having
coefficients equal to zero.
Speed: the rate of change of distance with respect to
time but without reference to direction. The average
speed is the distance travelled divided by the travel
time. Velocity is the quantity used when direction is
indicated.
Sphere: the set of points in space at a given distance
(the radius) from a fixed point (the centre). In
Cartesian coordinates, the equation of a sphere is
x2 � y2 � z2 � r2.
Square: a rectangle having all sides equal.
Statistics: a branch of mathematics dealing with the
systematic collection and arrangement of large num-
bers of observations together with ways of drawing
useful conclusions from such data.
Subset: a subset A of a set B is a set whose elements
are all elements of B. A is called a proper subset if it
does not contain all the elements of B. If it contains
all the elements of B, it is called an improper subset of
B.
Supplementary Angles: two angles whose sum is
two right angles or 180º.
Symmetric Equation (of a line): the equation of a
line determined by eliminating the parameter from the
parametric equations of a line.
Symmetry: an attribute of a shape; exact correspon-
dence of form on opposite sides of a dividing line
(axis of symmetry) or plane.

Tangent: a line segment drawn to a figure that
touches that figure at one and only one point.
Theorem: a statement that has been proved to be
true, provided certain hypotheses (axioms) are true.
Such a statement might not be deemed to be a theo-
rem unless it is considered worthy of special attention
by the mathematics community.
Torque: the action of a force that causes an object to
turn rather than to change position.
Transformation: a change in the size, shape, or
position of a figure. Examples of transformations are
translations, reflections, rotations, and dilatations.
Translation: a transformation that changes only the
position of a figure. A transformation that maps each
point (x, y) on the figure to a new point (x � a, y � b)
where a and b are components of the translation 
vector (a, b��).
Transpose (of a matrix): the interchange of rows
and columns in a matrix. Row 1 becomes Column 1,
and so on.
Transverse Axis: the real axis of symmetry of a
hyperbola. See Conjugate Axis.
Trapezium: a quadrilateral with neither pair of oppo-
site sides parallel. See Trapezoid.
Trapezoid: a four-sided planar figure in which two
of the opposite sides are parallel.
Trigonometry: the study of the properties of
trigonometric functions and their applications to 
various mathematical problems.
Trigonometric Functions: the sine (sin), cosine
(cos), tangent (tan), and their inverses, cosecant (csc),
secant (sec), and cotangent (cot). Also called circular
functions.
Union (of sets): the set of elements made up of the
elements of a pair of sets. The union of set A and set B
is denoted by A�B and contains all elements present
in both sets. Elements found in each set are found
only once in the resulting set.
Unit Vector: a vector with a magnitude of 1. Such
vectors are denoted with a carat [ˆ] sign placed over
the symbol. For example, î , ĵ , and k̂ are unit vectors in
the direction of the x-, y-, and z-axes.
Universal Set: the set of all possible elements of the
type being counted. The universal set is designated as
U.
Variable: a quantity, represented by an algebraic
symbol, that can take on any one of a set of values.
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Varignon Parallelogram: a parallelogram formed
by joining the midpoints of the four sides of a quadri-
lateral.
Vector: a quantity possessing magnitude and direc-
tion. A directed line segment consisting of two points:
the tail (initial point) and the head (end point). The
distance between the tail and the head is the magni-
tude of the vector. The direction of the vector is the
direction of the arrow drawn from the tail to head in
reference to the basis vectors of the coordinate system.
Vector Cross Product: a vector quantity that is per-
pendicular to each of two other vectors and is defined
only in three-dimensional space.
Vector Space: an abstract system, first developed by
Peano, to enable the study of common properties of
many different mathematical objects, including vectors.
Velocity: the distance travelled per unit time where
the direction as well as the magnitude (speed) is
important.
Velocity (Relative): the velocity of an object that an
observer measures when he perceives himself to be
stationary (at rest).
Venn Diagram: a picture used to display the univer-
sal set and the relationship between selected subsets.
Sets and subsets are represented as circles; the bound-
ary of the universal set is a rectangle.
Weight: the vertical force exerted by a mass (of a
body) as a result of the force of gravitation.
Work: the action of a force on an object causing a
displacement of the object from one position to 
another.
Zero of a Function: the value(s) of x for which the
function f(x) � 0. A polynomial of the nth degree has
n zeros or roots.
Zero Matrix: a matrix in which all the elements are
zero.
Zero Vector: the zero vector [0��] has zero magnitude.
Its direction is undefined.
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CHAPTER 1
Exercise 1.1
1. true  2. f(5) � 31 is prime  3. true  4. a. not prime for n � 5
b. not prime for n � 11 c. not prime for n � 41  5. true  6. not true  
7. true  8. Not true

Exercise 1.3
9. a. 540° b. 180(n � 4)°

Exercise 1.4
3. a. 3x � y � 11 b. x � 6y � 10 e. they are concurrent
4. a. 3x � 4y � 12 b. x – 2y � �6 c. (0, 3) 
e. they are concurrent

Chapter 1 Test
4. 29°

CHAPTER 2
Review of Prerequisite Skills
1. a. 120 b. 60  2. a. 204 b. 15�1

9
3� 3. 168  4. 96  6. 15° 7. 3�

3
5�

Exercise 2.1
2. a. AE � AD 3. a. ∠DEF b. AC

Exercise 2.2
2. gmTQVU � gmTVRU � gmTPUV

Exercise 2.3
2. a. 1a, e, f are true b. converse of 1a, c are true c. 1a
3. b, e are true

Exercise 2.5
1. a. 1:3 b. 1:4 c. 1:2 d. 1:3 e. 1:2 f. 1:4  2. a. 2�

2
5� b. 6�

2
3� c. 4

3. a � 3�
3
4�, b � 5�

1
3� 4. PT:SQ � 4:3  7. 5:4  9. 1:36

Exercise 2.6
1. c, e, f, g, h 2. AC � 24, BC � 30  3. 40, 50, 65 cm  4. 3.5 m

5. XY � 6  6. a. 441 b. 360  7. 2:7  16. �
A
D

D
B� � �

1
4�

Review Exercise
1. c, d 2. P � 2L � �

2
L
A
� 3. 3:4  4. 72  5. a. 2:5 b. 4:25  

7. a. 2:25 b. 2:15  9. y � 6.0  10. a. 1:2 c. �ADE:rect 

ABCD � 1:8, �ABF:rect ABCD � 1:6  11. 45  14. 12�
1
4�

18. 3:11  19. 1:2  21. 21

Chapter 2 Test
2. a. 120 b. 6 c. 40 d. 12  3. MY � 4�1

8
3� 4. 288  6. 100

CHAPTER 3
Review of Prerequisite Skills

1. a. 36�, 9� b. 144�, 24� c. 25�, �
50

9
�
� d. 100�, �

10
3
0�
� e. 49�,

�
49

2
�
� f. 64�, �

80
9
�
�

2. For sector angle of s°, �
�
36

sr
0
2

� 3. a. 3:4 b. 4:9 c. 7:10  

4. a. 9:16 b. 1:9 c. 1:8 d. 1:9  5. a. 4 cm b. 8� cm  6. �81
4
�
� cm2

7. 2 cm  8. 36

Exercise 3.1
1. 8  2. 12  3. 7  4. 16  5. 3 � 4�3� 6. 2�13� 7. 4�21� 14. 24

Exercise 3.2
1. a. 62.5° b. 60° c. 42°, 118° d. 90° 8. 16

Exercise 3.3
2. ∠ACD � 50°, ∠BCA � ∠ADB � 30°, ∠DAC � ∠DBC � 70°,
∠CED � ∠BEA � 100°, ∠BEC � 80°, ∠BAC � ∠BDC � 30°
3. A, D, F, E; B, D, E, C 5. 100° 12. 1260°

Exercise 3.4
1. AC � 12, OA � 13  2. a. 24 b. 65° c. 120° d. x � 65°,
y � 115°, z � 50° 7. 20  9. 2�2� 12. 6

Exercise 3.5
1. a. 9 b. �

5
3
5
� c. 3�2� d. x � 50°, y � 80°, z � 40°

e. x � y � 30° f. x � 70°, y � 220° 2. ∠DEF � 50°,
∠EDF � 66°, ∠DFE � 64° 4. a. 3 b. 6 c. 22  5. a. 4
b. 27 c. 9 d. 4

Review Exercise
1. a. x � 60°, y � 100° b. x � 45°, y � 135° 2. a. �

2
5
4
� b. �

7
3�

c. 2�15� d. 50° e. 105° f. 38° 5. ∠ACD � 60°,
∠AEB � ∠DEC � 95°, ∠BEC � 85°,
∠BAC � ∠BDC � 25°, ∠ADB � ∠BCA � 20°,
∠DBC � ∠DAC � 75° 9. 12 � �39� 12. ∠HED � 60°,

∠HDE � 52�
1
2�°, ∠EHD � 67�

1
2�° 14. 20  15. �90°

2
� x
�

16. 20° 18. 30  21. ∠x � 60°, ∠y � 65°, ∠z � 55°

Chapter 3 Test
1. a. 50 b. 4�3� c. �

1
3
6
� d. x � 120°, y � 80° 2. 40° 3. 9

Cumulative Review Chapters 1–3
1. 9.45  3. 2x2 � 3x � 5  5. a. �EBF � 8 b. quad AEFD � 16
6. partial circle  15. 4:9  18. 6  20. 60° 24. 4.6

CHAPTER 4
Review of Prerequisite Skills 

1. a. b. �
1
2� c. d. ��3� e. f. 1  2. �

4
3� 3. 7.36,

6.78, 50° 4. 34°, 44°, 102° 5. 5.8 km  6. 8.7 km

Exercise 4.1
2. Vector: a, c, g, j, l  3. a. EF�� � CB�� b. FE��, AD�� c. AB��, DE��

d. AB��, BC�� e. FD��, EB�� 5. a. 45° b. 135° c. 90° 8. a. AG��

b. GF�� c. AF�� d. CA�� e. GA�� 9. a. AB�� � DC�� b. AD�� � �CB��

c. BD�� � 2PD�� d. AP�� � �
1
2�AC�� 10. 10.9° 11. a�� � 10, 37°; 

b�� � 5, 180°; c�� = �29�, 112°; d�� � 5, 217°; e�� � 3, 90°

�3�
�2

1
�
�2�

�3�
�2

Answers
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12. a. 300 km, N20°W; 480 km, N80°E; 520 km SW. b. 1300 km,

5 h 25 min  13. �2 � k � 6

Exercise 4.2
1. a. DB��, AC�� b. CA��, BD�� c. DK�� � AD��, u�� � v�� � BK��, AB�� 2. a. BC�� �

CE��, BC�� � CD�� � DE��, BC�� � CD�� � DF�� � FE�� b. BG�� � EG��,
BC�� � EC�� 3. a. PQ�� b. AG�� c. EC�� d. PR�� 4. a. 27.5,
24° to v�� b. 11.6, 51° to u�� 5. 36.5 km, S54°E  6. a. 4.4
b. 9.8  7. a. u�� ⊥ v�� b. 0° � 	 � 90° c. 90° � 	 � 180°
9. 7.7, 37° to a�� 10. a. 3x�� � y�� b. �2x�� � 4y�� c. 76y�� d. �7x�� � 2y��

11. a. 5î � 2ĵ � k̂ b. �2î � ĵ � 12k̂ c. 5î � 3ĵ � 15k̂

12. x�� � �1
2
1�a�� � �1

1
1�b��, y�� � �2

5
2�a�� � �2

3
2�b�� 17. 6, 60° to AB��

18. 20  20. a. ĵ � k̂ b. BH�� � ĵ � k̂, DH�� � î � ĵ ,
FE�� � �î � ĵ , CH�� � î � k̂, EG�� � î � k̂ c. �î � ĵ � k̂
d. AH�� � î � ĵ � k̂, CF�� � î � ĵ � k̂, GD�� � �î � ĵ � k̂
e. �2�, �3�

Exercise 4.3
2. a. 173.2N, 100N b. 52.1N, 15.3N c. 58.3N, 47.2N
d. 0N, 36N  3. a. 5N, W b. 13.9N, N30°E c. 10N, N82°W

d. 2N, NW  4. 5N  5. �F��12� � F���22�, 	 � tan�1��
F�

F�

�

�
1

2




��
6. a. 9.8N, 15° to 8N b. 11.6N, 32° to 15N
7. a. 57.7N, 146° to 48N b. 25.9N, 174° to 10N  9. 87.9N, 71.7N
10. 10�3�N  11. b. c.  12. b. 98° 13. 911.6N, 879.3N  
14. 375N, 0N  15. 937.9N, 396.4N  16. u��x � 0, u��y � 5; v��x
� 6.9, v��y � 5.8; w��x � 10.9, w��y � 5.1  17. 1420N  

18. a. 92N, 173N  19. a. 108N b. 360N  20. 54.5kN, 7.7kN
21. 1035N  22. 238N  23. 19N, 58°, 38° 24. 10° off the starboard
bow  25. b. Yes

Exercise 4.4
1. a. greater, south b. greater, north c. less, north d. less, south
2. a. 60° b. not possible  3. a. 15 km/h south  b. 77 km/h north
c. 92 km/h north d. 77 km/h south  4. a. 0.6 km b. 6 min
5. a. 1383 km b. N13°E  6. 167 km/h, N5°W 
7. 2.5 m/s, N56°W  8. 290 km/h, S81°E  9. a. 204 km/h, 66 km/h
10. a. S25°E b. 510 km/h  11. N62°E  12. b  13. 12 m/s  
14. 94.3 km/h, N32°E

Review Exercise
1. a. 0�� b. 1 c. 0  5. a. 5 b. 25 c. �a2 � b�2� 7. a. 32N b. 22°
8. a. 79N b. 32N  9. 605N, 513N  10. 18N, 8° with 12N and 32°
with 5N forces  11. 94N, 80N  12. a. N86°E b. 1 h 5 min
13. 140 km/h  14. a. 66 m b. 100 s  15. a. N69°E b. 451 km/h
c. 47 min  16. 7.9 knots, N54°E  17. 320 km, S70°E  
18. a � kv��, b � ku��, k � R 19. u�� � �v��

Chapter 4 Test
3. 7u�� � 6v�� 4. distributive property  5. 12.5 N  6. 294N, 392N
7. 68° upstream to the bank, 2 min 55 sec  8. 640 knots, S44°E

CHAPTER 5
Exercise 5.1
2. a. �5î  � 2ĵ b. 6ĵ c. �î � 6ĵ 3. a. (2, 1) b. (�3, 0)  
c. (5, �5)  4. a. �2î  � ĵ � k̂  b. 3î  � 4ĵ � 3k̂  c. 4ĵ � k̂  

d. �2î � 7k̂ 5. a. (3, �8, 1) b. (�2, �2, �5) c. (0, 2, 6)  
d. (�4, 9, 0)  6. a. (�6�2�, 6�2�) b. (18�3�, �18) 

c. (�15.8, �2.8) d. (0, �13)  7. a. 12, 150° b. 8�3�, 240°
c. 5, 37° d. 8, 90° 8. a. (�4, �3) b. (5, �2) c. (�5, 0, 6)
d. (4, �7, 0) e. (�6, 2, 6) f. (11, 12, 3)  10. a. on the z-axis  
b. yz-plane c. xz-plane d. xy-plane e. a line parallel to the 
z-axis through (1, 3.0) f. a line with x � y � z
11. a. xy-plane b. x-axis c. yz-plane d. z-axis e. xz-plane  
f. y-axis  13. a. 2�5�, 82° b. 6, 270° c. 15, 127° d. 1, 120°
e. �2�, 309° f. �6�, 180° 14. a. 14 b. 35.1 c. 1 d. 4

16. a. �17� b. � , , �, yes 17. a. 7 b. ��
2
7�, �

�
7
3
�, �

�
7
6
��

18. ��
�
13

3
�, �

�
13

4
�, �

�
1
1
3
2

�� 20. a. (5, 9) b. (9, �6) c. (�5, 6, 0)  

d. (4, �9, 11)  22. 55°, 125° 24. 7

Exercise 5.2
2. a. (3, 3) b. (5, 20) c. (0, 0) d. (1, �7) e. (0, 0, 6)  
f. (2, 2, �8) g. (6, �2, 0) h. (�8, 11, 3) i. (0, 2, 5) 
j. (4, �6, 8) k. (�12, �42, �20) l. (21, 6, 32) 
3. a. 6î � ĵ b. 6î � 18ĵ � 18k̂ c. �5î � 2k̂ 

d. 90î � 35ĵ � 35k̂ 4. a. (1, �10, 14) b. (�1, �9, 10)  
c. (�5, �15, 16) d. (13, 11, 0) e. (�5, 8, �15)  
f. (6, �18, 29)  5. a. 6î � ĵ � 7k̂ b. 2î � ĵ � 5k̂ 

c. 2î �3ĵ �3k̂ d. �2î � 3ĵ �3k̂ 6. a. �11� b. 3�3�
c. �149� 7. a. 5�2� b. �30� c. (�5, �3, 0) d. �34�
e. (5, 3, 0) f. �34� 9. a. AB�� �� CD��, AB�� � CD�� b. AB�� �� CD��,

AB�� 
 CD�� c. AB�� � CD��, AB�� � CD�� 10. (�13, �5)  
11. (�3, �7), (�7, 13), (17, �9)  12. (7, 6, 0), (6, 4, �3),

(5, 10, �1), (9, 10, �2)  13. a. (4, 3) b. ��
3
2�, �

�
2
7
�� c. (2, 6, 0) 

d. ��
9
2�, �

9
2�, �3� 14. a. 2, 1  b. �5, �

�
3
1
�, �20  15. ��

6
7�, �

2
7�, �

3
7��

16. a. (0, 1, 0) b. (1, 0, 2) 17. a. �
5
2� b. �

5
3� 18. a. �1, �

�
3
1
��

b. ��
1
3�, �

1
3�, �

1
3�� c. ��

1
4
5
�, 1� d. ��

1
4�, �

1
4�, �

1
4�� 19. a. ��

1
1

8
1�, �

�
1
4
1
1

��
b. ��1

2
1�, �

�
1
1
1
7

�, �
7
1

2
1��

Exercise 5.3
1. a. a��b��, 0, �a��b�� b. acute, obtuse, 90° 2. a. 6�2�

b. 15 c. d. 0  3. a. 0, perpendicular b. �29, not perpendi-

cular  c. 0, perpendicular d. �28, not perpendicular  4. a. 0 b. �14
c. 0 d. 25 e. 6  f. 130, a and c are perpendicular  5. a. (3, 2),

(�6, �4), ��1
3
3�, �1

2
3�� b. 2  6. a. (0, 1, 3), (3, 2, 0), (3, 4, 6) 

b. infinite number  7. a. 0.9931  b. �0.1750  8. a. 107° b. 89°
c. 55° d. 73° 9. a. �6  b. �

10
3

6
� 10. (0, 4, �3)  

11. y � �
�
3
4
� z � ��

2
3
0
� 14. a. �1 b. �3  c. 17  

15. a. 15a��2 � 38a�� • b�� � 24b��2 b. 4a��2 � b��2

16. �80  17. 60° 18. a. �
�
2
3
� b. �

�
2
11
� 19. , 72°, 108°

20. a. Pythagorean Theorem
b. c��2 � a��2 � b��2 � 2a��b�� cos 	 cosine law

22. ��
3
5�, �

4
5�, 0� 23. �

�
2
29
� 24. 71°

Exercise 5.4
2. a. 55.6, into b. 389.7, out c. 3.1, into  3. vectors are f, h, i, j;
scalars are a, c, e, k  4. a. (0, 1, 0) b. (1, 0, �1)  

c. (�10, 7, 9) d. (45, 20, 8)  5. �0, , �
6. (4, 2, 0), (�2, �1, 0)  10. a. 19 b. 19 c. 19 d. (�5, 1, 21)
e. (�1, 2, �23) f. (6, �3, 2)  15. a. �4, 2 b. (�2, �1, 1)

3
�
�10�

1
�
�10�

5�3�
�2

�27�2�
�2

�2
�
�17�

3
�
�17�

2
�
�17�
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Exercise 5.5
1. a. ��

4
1
8
3�, �

3
1
2
3��; b. ���1

4
3
2

�, �
2
1

8
3��; 

c. ��
4
8
0
9�, �

�
8
3
9
0

�, �
�
8
8
9
0

��; d. (0, 0, �4); 4  3. 2î , 3ĵ , �4k̂ 

4. �3î , �ĵ , 0�� 5. a. ��
1
3�, �

1
3�, �

1
3�� b. (1, 0, 0)  6. a. �65� b. 0  

7. a. �
4
2
9
� b. 8. 29  9. a. 2165 J b. 1.0 J c. �29 J d. 0 J  

10. greater than 225 J  11. 7240 J  12. 32819 J  13. 80 J  
14. 2114 J  15. a. 10 b. 22 c. 46�103 d. �88  16. 60�2� J
17. �19�30� J  18. a. 5 N b. 10 J, 	 � 90°

Review Exercise
1. a. î � 3ĵ � 2k̂ b. î � 5k̂  c. �6î � 8ĵ � 11k̂ 

d. 9î � 6ĵ � 2k̂ 2. a. (3, �2, 7) b. (�9, 3, 14) c. (1, 1, 0)
d. (2, 0, �9)  3. a. �3  b. 96° 4. (�16, 2, 3)  

5. a��2 � b��2 6. a�� • c�� � a�� • d�� � b�� • c�� � b�� • d�� 7. 4  8. 1  9. 84
12. b. �82� c. 16.2 d. (1, 5, 4)  13. a. 17î , �3ĵ , 8k̂ 

b. (17, �3, 0), (0, �3, 8), (17, 0, 8)  14. 36  15. a. (0, 0, 0),

(0, 1, 0), � , �
1
2�, 0�, � , �

1
2�, � b. � , �

1
2�, �

c. 17. �
19
3
7

�

Chapter 5 Test
1. a. u�� ⊥ v�� b. u�� � kv��, k � 0 c. u�� � kv�� d. u�� ⊥ v�� e. nothing f. u�� � kv��

2. a. 33î � 5k̂ b. �4 c. �5î � 12ĵ � 33k̂ 

d. î � ĵ � k̂ 3. b. ii. 5  iii. �13�

4. a. (0, �2, 1) b. 129° c. �185� 5. 1562.5 J  
6. a. perpendicular to the axis of the wrench b. 9 J, perpendicular
to the plane of the wrench and the applied force c. 30°

7. for a�� � b��

CHAPTER 6
Exercise 6.1
4. a. p�� � �4î � 5ĵ b. OA�� � 8î � 3ĵ c. î � ĵ d. �3�3�î � 3ĵ
5. a. yes b. �321u�� � 123v�� 6. No  7.a. yes b. no 8. a. parts (i),
(ii), (iii)  9. 4, �2  10. a. 2, 2, �1 b. �1, 1, 3  11. 

b. î � �1
1
4�u�� � �

1
3�v�� � �4

5
2�w��, ĵ � �1

3
4�u�� � �

1
3�v�� � �4

1
2�w��,

k̂ � �
1
7�u�� � �

1
3�v�� � �2

2
1�w�� 12. a. x�� � 2u�� � 3v�� � 8w��

b. x�� � 6�6�û� 27v̂ � 24ŵ 13. a. x� � �1.61u�� � 0.54v��

b. x�� � �7.88û � 7.52vv̂

Exercise 6.2
3. a. 0, 0 b. �5, 3 c. 2, �1 d. 5, �7  4. a. 0, �

1
2�, �

�
2
1
�

b. 2, �3, �
2
3� 5. a. not possible b. �

2
3� c. �2 d. not possible

10. a. yes, (�19, 9) b. no  11. a. (1, 4, �2) b. no  
c. (�1, �1, 3)  15. �1, 2

Exercise 6.3
2. a. 7:�3 b. 2:3 c. �2:5 d. 5:�3 e. �1:2  4. a. 1:1 b. 3:�1
c. �3:4 d. 4:�1 e. �2:3  7. a and c  8. a. 7:2 b. 13:�4
c. �4:5 d. �2:9  9. a. OA�� � �

2
5�OB�� � �

3
5�OC��

b. OA�� � 3OB�� � 2OC�� c. OA�� � �2OB�� � 3OC�� 10. �5, 6, �
3
2��

11. (4, 4, 5), (5, 2, 2)  12. a. ��
1
6
1
�, �

1
2
5
�� b. (0, �20) c. ��

1
3
0
�, 30�

d. ��
9
5�, 7� 13. a. �4:7 b. 1:2  14. a:b

Exercise 6.4
5. a. 1:1 b. 2:1  14. 1:3  15. a. 2:1, 5:4 b. 22:45  16. 1:2, 1:2

Review Exercise
1. b. (3, �1) � �1

5
8�(2, 3) � �

1
1

1
8�(�4, 3)  2. a, b, c are linearly 

dependent  3. �
3
2� 5. a. ��

5
2�, �3�, (1, 0), ��

7
2�, �3�, ��

7
3�, �2�

b. �5, 4, �
1
2��, (2, 3, 3), �3, 0, �

3
2��, ��

1
3
0
�, �

7
3�, �

5
3�� 6. a. 1:1 b. 5:�4

8. b. OM�� � �
�
2
9
�ON�� � �

1
2
1
�OQ�� 9. 14:9, 21:2  10. 20:3, 4:19

Chapter 6 Test
2. a. OP�� � �

�
7
3
�OQ�� � �

1
7
0
�OR�� b. OR�� � �1

7
0�OP�� � �1

3
0�OQ��

3. b. 2, �
3
2� 4. u�� � 0.17v�� � 0.19w�� 5. b. 5:2  

6. b. OP�� � �
�
3
2
�OA�� � �

5
3�OB��

CHAPTER 7
Exercise 7.1
2. a. (�3, 1) b. (4, 5) c. (1, 3) d. (4, 3) e. (1, 0) f. (0, 1)  
3. a. (3, 0), (11, �4) b. (4, 0), (4, 10)  
4. a. x � 2 � 2t, y � t; r� � (2, 0) � t(2, 1)
b. x � 3 � t, y � t; r� � (3, 0) � t(�1, 1)
6. a. x � 1 � t, y � 1 � t; (2, 0), (�2, 4) b. x � 5 � t, y � 3t; 
(6, 3), (3, �6)  7. a. x � t, y � 0 b. x � t, y � 5

8. a. r� � (�2, 7) � t(3, �4) b. r� � �2, �
3
4�� � t(1, 9)

c. r� � (1, �1) � t(��3�, 3) d. r� � (0, 0) � t(�2, 3)
9. a. d�� � (3, �1) b. d�� � (4, 3); (5, 4) c. d�� � (1, �10); (�1, 18)
10. a. perpendicular b. parallel  11. r� � (4, 5) � t(7, �3)

12. a. (6, 0) b. (�7, 0), (0, 35) c. (11, 0), �0, �
1
3
1
�� 13. 87°

14. a.  (i) 127° (ii) 11° 15. a. x � 24 � 85t, y � 96 � 65t

b. 1h 12 min c. (126, 18)  16. b. (i) �
x
�
�

8
5

� � �
y �

5
3

�

(ii) �4
x

� � �
y �

1
4

� c. �
x �

6
7

� � �
y �

1
2

� 17. b. x � 7 � 2t,

y � 3 � 5t, �1 � t � 5  18. b. 0 � t � 1 d. t � �
1
2�

19. a. r� � (5, 2) � t(2, �1); r� � (5, 2) � s(1, 2)  c. yes

Exercise 7.2
2. a. (2, 1) b. (1, �2) c. (2, �1) d. (1, 2)
3. a. 2x � 7y � 6 � 0 b. 2x � 1 � 0 c. x � y � 6 � 0
d. x � y � 0  4. a. n�� � (4, 3), d�� � (3, �4), P(3, 0)

b. n�� � (1, �2); d�� � (2, 1), P��
1
3
4
�, 0� c. n�� � (1, 0); 

d�� � (0, 1), P(5, 6) d. n�� � (3, �1); d�� � (1, 3), P(2, �4)
6. a. x � 4y � 28 � 0 b. x � 2y � 5 � 0 c. 7x � 2y � 0
d. y � 2 � 0  7. a. 2x � 3y � 22 � 0 b. 2x � 3y � 14 � 0
c. 3x � 2y � 6 � 0 d. 3x � 2y � 18 � 0  
8. 3x � 5y � 14 � 0  9. a. r� � (0, 5) � t(3, 5); x � 3t,

y � 5t � 5; �3
x

� � �
y �

5
5

� b. r� � �0, �
�
2
3
�� � t(3, 2); x � 3t,

y � 2t � �
3
2�; �3

x
� � 11. a. b. c. 0 d. 8

12. a. b. c. d. 0  14. b. 153°

c. �3�x � y � 4 � 6�3� � 0
15. a. x2 � y2 � 10x � 12y � 36 � 0

�5�
�

3
2�5�
�

3
7�5�
�3

12
�
�53�

7
�
�13�

y � �
3
2�

�
2

a��2 � b��2

��
a��2 � b��2

33
�
�1258�

12
�
�1258�

5
�
�1258�

�6�
�4

�6�
�12

�3�
�6

�6�
�3

�3�
�6

�3�
�2

�3�
�2

10�89�
�89

14�13�
�13

16�13�
�13
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Exercise 7.3
2. a. (4, �2, 5) b. (7, �2, 3) c. (�1, 2, 4)
3. a. (4, 0, 1), (�5, 3, 4) b. (4, �2, 5), (2, 3, 9)  
c. (4, �5, �1), (7, �1, �2)  4. a. r� � (2, 4, 6) � t(1, 3, �2); 
x � 2 � t, y � 4 � 3t, z � 6 � 2t; 

�
x �

1
2

� � �
y �

3
4

� � �
z
�
�

2
6

�

b. r� � (0, 0, �5) � t(1, �4, �1); x � t, y � �4t, z � �5 � t; 

�1
x

� � �
�
y
4� � �

z
�
�

1
5

� c. r� � (1, 0, 0) � t(0, 0, �1); 

x � 1, y � 0, z � �t 5. (�20, 10, �27), (�14, 8, �17),

(�8, 6, �7), (�2, 4, 3), (4, 2, 13), (10, 0, 23), (16, �2, 33)
6. a. P(2, 4, 2) b. a � �8, b � �1  7. x � 6t, y � �1 � 4t,
z � 1 � t 8. �6

x
� � �7

y
� � �

�
z
2� 9. a. parallel b. neither c. same

12. �
x �

6
6

� � �
y
�
�

5
4

� � �
z
�
�

2
2

� 13. b. x � 3t, y � t, z � 2 � 6t;

�3 � t � 2  14. r� � (4, 5, 5) � s(1, 5, 2)  15. b.

c. ��
15
7

5
4
5

�	
Exercise 7.4
2. a. (�5, �1) b. (1, �2)  3. a. coincident b. neither c. neither
d. parallel and distinct  4. a. (8, 2, 3) b. lines are coincident
c. skew d. parallel and distinct e. (�1, 1, 1) 
5. a. (�2, �3, 0) b. r� � (�2, �3, 0) � s(1, �2, 1)  6. (2, 3, 1)

7. x intercept is �4  8. ��
2
2
1
�, �1�

11. r� � (�5, �4, 2) � t(14, �5, 2); 

(9, �9, 4)  12. (2, �1, �1), (1, 2, 1), No  

13. r� � s(17, �15, �20)  14. a. ��A2
�

�
AC

B2� �
A

�
2 �

BC
B2��

b. 15. (0, 1, 2), (1, 1, 1)  16. a. �3� b. 6

Review Exercise
2. a. r� � (3, 9) � t(1, 1) b. r� � (�5, �3) � t(1, 0)  
c. r� � (0, �3) � t(2, �5)  3. a. x � �9 � 3t, y � 8 � 2t
b. x � 3 � 2s, y � �2 � 3s c. x � 4 � 2t, y � t
4. a. r� � (2, 0, �3) � t(5, �2, �1) b. r� � (�7, 0, 0) � t(7, 4, 0)
c. r� � (0, 6, 0) � t(4, �2, 5)  5. a. x � 3t, y � 2t, z � �t
b. x � 6, y � �4 � t, z � 5 c. x � t, y � �3t, z � �3 � 6t
6. a. 3x � 4y � 5 � 0 b. x � 2y � 1 � 0 c. 4x � y � 0
7. a. x � 6 � 5t, y � 4 � 2t, z � �3t b. m � 8, n � �2
8. a. coincident b. perpendicular c. parallel and distinct

d. neither parallel nor perpendicular  9. ��3, �
1
2
1
�, 0�, (8, 0, 22),

(0, 4, 6) 10. a. 5x � y � 13 � 0 b. r� � (0, 5) � t(2, 5)  
c. r� � (2, 2) � t(4, 3)  11. a. (6, 0, 0), (0, 8, 4)

b. x intercept is 6  12. a. cos 
 � , cos � � ,

cos � � ; 
 � 24°, � � 69°, � � 101°

b. cos 
 � �
8
9�, cos � � �

�
9
1
�, cos � � �

�
9
4
�; 
 � 27°, � � 96°,

� � 116° c. cos 
 � , cos � � , cos � � 0; 


 � 14°, � � 76°, � � 90° 13. a. (0, 0, 2)  14. a. 3�5�

b. c. �2� d. 15. (4, �1, 5)

Chapter 7 Test
1. a. r� � (9, 2) � t(3, �1) b. x � 9 � 3t, y � 2 � t

c. �
x �

3
9

� � �
y
�
�

1
2

� d. x � 3y � 15 � 0  2. 3x � 2y � 2 � 0

3. (�2, 2, 0), (0, 3, �1)  4. 3�2� 5. r� � (1, �1, �2�)s; 

r� � (�1, �1, �2�)t 6. (8, 2, 3)  7. b. P1(�10, 1, 2)  

c. P2(�1, �2, �3)  

CHAPTER 8
Exercise 8.1
2. a. (1, 0, 0), (4, 0, �3) b. y component is 0
3. a. (�3, 5, 2), (�6, 1, 2) b. (5, �5, 3), (1, 6, �2)
c. (4, �2, 1), (�1, 5, 2)  4. a. (9, 4, �3), (7, 4, 4)
b. (1, 1, 2), (1, 1, �2) c. (3, �2, �2), (9, �1, �1)
d. (5, 0, 1), (�3, 0, 2)  5. a. x � �4 � 5s � 4t
y � �6 � 2s � 6t, z � 3 � 3s � 3t
b. x � 3t, y � 2s, z � 1 c. x � s, y � 0, z � t
6. a. r� � (�4, �1, 3) � s(1, 3, 4) � t(3, �4, �1)
b. r� � (0, 4, 0) � s(7, 0, 0) � t(0, 0, �2)
c. r� � s(1, 0, 0) � t(0, 0, 1)
7. a. r� � (�4, 5, 1) � s(�3, �5, 3) � t(2, �1, �5)
b. r� � (4, 7, 3) � s(1, 4, 3) � t(�1, �1, 3)
c. r� � (8, 3, 5) � s(5, 2, �3) � t(11, �1, �1)
d. r� � (0, 1, 3) � s(2, 1, �2) � t(4, �4, 7)
e. r� � (2, 6, �5) � s(5, 5, �1) � t(4, �8, 7)
8. a. x � 7 � 4s � 3t, y � �5 � s � 4t, z � 2 � s � 4t
b. x � 5 � 2s � 4t, y � 4 � 2t, z � 2 � 9s � t
c. x � 8 � 5s � 2t, y � 3 � 2s � 2t, z � 5 � 11s � 5t
d. x � 3 � s � 3t, y � 2 � 2s � 2t, z � 2 � 4s � 2t
e. x � 2 � 5s � 4t, y � 6 � 5s � 8t, z � �5 � s � 7t
9. a. r� � (6, 4, 2) � s(0, 1, 0) � t(0, 0, 1)  
b. r� � s(1, 1, 1) � t(8, �1, �1) c. r� � s(1, 0, 0) � t(1, 4, 7)
10. a. the three points are collinear b. the point is on the line
11. r� � (7, 0, �7) � s(0, 0, 1) � t(1, 2, �1); x � 7 � t, y � 2t,
z � �7 � s � t 13. b. All points in and on the parallelogram
whose vertices have position vectors a��, b��, �a�� � b�� � c�� and c��

14. b. all points on and between the parallel lines

Exercise 8.2
1. a. 7x � y � z � 18 � 0 b. x � 5 � 0 c. 2x � 3z � 6 � 0
d. 2x � y � 4z � 0  2. a. y � 2 � 0 b. z � 3 � 0  
c. x � y � 2z � 3 � 0  3. a. Ax � By � Cz � 0 b. D � 0  
5. a. 12x � 8y � 13z � 0 b. 3x � 8y � z �15 � 0 c. x � 2 � 0
d. 3x �10y � 4z � 4 � 0 e. x � 2 � 0  
f. 12x � 8y � 13z � 0; a and f, c and e are coincident
6. a. 4x � 13y � 20z � 30 � 0 b. 9x � 6y � 2z � 22 � 0
7. a. 11x � 8y � 2z � 21 � 0 b. x � 3y � z � 0 c. y � 1 � 0
d. 6x � 2y � 5z � 0 8. y � 2z � 0  
9. 10x � 11y � 10z � 50 � 0  10. a. parallel and distinct
b. neither c. coincident d. coincident  
11. a. r� � (0, �24, 0) � s(1, 2, 0) � t(0, 3, 1)
b. r� � (0, 0, 3) � s(5, 0, 3) � t(0, 1, 0)
12. a. parallel to and on the plane b. parallel to the plane, not on
c. not parallel  13. a. 17° b. 90° 15. a. 6x � 4y � 4z � 3 � 0  
b. a plane passing through the mid point of AB and having normal
AB��.  16. b. 38x � 33y � 111z � 103 � 0  

17. x � 3t, y � �2t, z � 0 18. D will be the distance 

from the origin to the plane  20. �
a
x

� � �b
y

� � �
c
z

� � 1

5�3�
�

3
22�13�
�13

1
�
�17�

4
�
�17�

�1
�
�30�

2
�
�30�

5
�
�30�

C
��
�A2 � B�2�

�66�
�6
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Exercise 8.3
1. a. (4, 6, �2) b. (1, 1, 2) c. no intersection  
d. (x, y, z) � (2 � t, 14 � t, 1 � t) e. (5, 15, �5)

2. a. yes b. no  3. a. (2, 0, 0) b. (0, �3, 0) c. �0, 0, �
�
7
6
��

4. a.  (i) ��
2
2
8
7�, 0, 0� (ii) �0, �

5
5

6
5�, 0� (iii) �0, 0, �

�
2
7
��

b.  (i) r� � (�1, 2, 0) � k(�55, 54, 0)  

(ii) r� � (0, 8, 24) � p(0, 16, 55)

(iii) r� � (4, 0, 10) � u(8, 0, 27)  5. a. (9, 14, 0) 

b. ��
�
2
3
�, 0, �

7
2�� c. (0, 2, 3)  6. a. one point b. infinite number 

of points c. no points, one point, or an infinite number of points

7. ��
3
2�, �1, �

7
2�� 8. ��

1
5
4
�, �

�
5
2
�, �6� 9. a. 1, 4, 3 b. 5, �

�
2
5
�, �5

c. �4, 8, �8 d. 4, �16, 8  10. a. x-intercept is 4,
y-intercept is 4; intersection with: xy plane is 

r� � (u, 4 � u, 0), xz plane is r� � (4, 0, s),
yz plane is r� � (0, 4, t) b. x-intercept is 3; intersection with:
xy plane is r� � (4, t, 0), xz plane is r� � (4, 0, u)

c. y-intercept is ��
1
2�; intersection with: xy plane is 

r� � �t, �
�
2
1
�, 0�, yz plane is r� � �0, �

�
2
1
�, s�

d. x-intercept is 2, z-intercept is 6; intersection with: xy plane is
r� � (2, t, 0), xz plane is r� � (u, 0, 6 � 3u), yz plane is
r� � (0, s, 6)
e. y-intercept is 0, z-intercept is 0; intersection with: xy and xz plane

is r� � (t, 0, 0), yz plane is r�� (0, 2u, u), f. x, y, is and z-intercepts

are each 0; intersection with: xy plane is r� � (t, �t, 0),
xz plane is r� � (s, 0, s), yz plane is r� � (0, u, u)
11. a. no value b. k � 9 c. k 
 9

Exercise 8.4
2. a. yes b. no c. no d. yes  3. a. x � 7 � 5t, y � �3 �2t,
z � t b. parallel c. x � 8 � 7t, y � t, z � 11 � 10t
d. x � 0, y � 1 � t, z � t e. parallel

4. a. 
 � b. 
 �
c. 
 � d. 
 �
5. a. x � 4z � 9, y � 6z � 4 
b. 8x � 2y � 3z � �6, 2x � 6y � 6z � 9
c. 5x � 10y � 8, 3y � 4z � 6  d. x � 4z � 0, y � 9z � 0
6. a. r� � (10, �3, 0) � t(�15, 4, 1) 

b. r� � ��
5
9�, �

�
9
10
�, 0� � t(�3, 0, 1)

c. r� � ��
1
4
3
�, 0, �

1
4�� � t(�4, 1, 0)

d. r� � (0, 0, �2) � t(2, 1, 0)

e. r� � (7, �8, 0) � t(0, 3, 1) f. r� � (0, 0, �3) � t(1, 0, 2)

7. a. 3 planes intersect at the point ���3
2
0
53
�, �

1
1
0
5
6

�, �
1
1
5
5
4

��
b. no solution, the 3 lines are not concurrent
c. the 4 planes have no common intersection
8. b. 4x � 5y � 14z � 0 c. 8x � 8y � 12z � 15 � 0
9. x � z � 14 � 0

Exercise 8.5
2. a. coplanar b. coplanar c. coplanar d. collinear

3. a. �4, �
1
2�, �3� b. (0, 2, 0) c. (�1, 1, �1)  4. ��

4
5
7
�, �

�
5
27
�, �5�

5. a. 
 � b. 
 �
c. 
 � 6. a. x � 8, y � �6, z � 3 

b. x � 6z � 4, y � 5z � �5, 0z � 0 c. x � 0, y � 0, 0z � 1

7. ��
2
4
7
�, �

�
4
15
�, �

�
4
25
�� 8. a. unique solution point (x, y, z) � (2, 3, 4)

b. no solution, 3 distinct parallel planes c. infinite number of solu-
tions, the planes intersect in the line with equation 
(x, y, z) � (7 �t, t, 2) d. Infinite number of solutions, the 3 planes
are coincident, x � 2y � 3z � 1 e. no solution, 2 of the planes are
parallel and distinct f. no solution, 2 planes are coincident, and the
third is parallel and distinct g. infinite number of solutions inter-
secting in the line (x, y, z) � (6 � t, �1 � t, 2t) h. no solution,
planes form a triangular prism i. unique solution, the origin 

(0, 0, 0)  9. �
�
19

7
�

Review Exercise
2. a. r� � (�1, �1, 2) � s(5, 4, 2) � t(0, 0, 1); x � �1 � 5s,
y � �1 � 4s, z � 2 � 2s � t

b. r� � (1, 1, 0) � s(0, 1, 0) � t(3, 1, �3); x � 1 � 3t,
y � 1 � s � t, z � �3t
c. r� � (0, 0, 4) � s(2, �3, 0) � t(1, 0, 2); x � 2s � t,
y � �3s, z � 4 � 2t

d. r� � s(1, 1, 1) � t(3, 4, 5); x � s � 3t, y � s � 4t, z � s � 5t
e. r� � (3, �1, 2) � s(4, 0, 1) � t(4, 0, 2) x � 3 � 4s � 4t,
y � �1, z � 2 � s � 2t 3. a. x � 3y � 5z � 67 � 0
b. 2x � 3y � 11z � 33 � 0 c. y � z � 6 � 0
d. 8x � 2y � z � 18 � 0 e. z � 7 � 0 f. x � 3y � 3 � 0

4. a. �
1
3� b. k � 5 or k � �4  5. 7x � 2y �4z � 13 � 0

6. r� � s(1, 2, �1) � t(2, �3, 2)  7. 2x � y � 0
8. x � 3y � 2z � 14 � 0  9. 17x � 7y � 13z � 23 � 0

11. a. b. c. d. 12. �
2
7
2
� 13. ��

4
5�, �

�
5
2
�, 1�

14. (�5, 0, 0), (0, �4, 0), (0, 0, 20)  17. a. k 
 �
9
2�

b. will never intersect in a line c. k � �
9
2�

18. a. 3x � 4y � z � 1 � 0 b. r� � (0, 3, 3) � t(3, 4, �1)

c. ���1
1
3
2

�, �
2
1

3
3�, �

4
1

3
3�� 19. 27x � 11y � 7z � 53 � 0

20. a. 4x � y � z � 0  21. coincident  22. a. in R2 � 2 lines inter-

sect in the point ��
1
2�, �

3
2��, in R3 � 2 planes intersecting in the line 

r� � ��
1
2�, �

3
2�, t� b. no solution, 2 parallel planes 

c. line r� � (�1, 1, 0) � t(6, 5, 7) d. point (2, 3, �1) 
e. no solution, triangular prism 
f. line r� � (5, 1, 0) � t(�3, 0, 1) 
g. line r� � (1, �2, 0) � t(�1, 3, �5)
h. planes coincident with x � z � 4 i. no solution, 2 planes are par-
allel and distinct

Chapter 8 Test
1. a. planes are perpendicular and intersect in a line b. planes are
parallel c. planes are parallel  2. a. line is parallel to the plane, no
solution b. intersects the plane at (2, 2, 0)  4. a. (�5, 0, 0)
b. r� � (0, 0, 5) � t(1, 0, 1)  5. 4x � 4y � 7z � 0

3
�
2�30�

2
�
�5�

4
�
�14�

54
�
�37�

12
15
10

�3
0
6

4
5
0

0
2
4

0
8

�6

�3
0
2

1
5
3

�2
1
0

5
12

�3

1
�5

2

�2
1

�5

5
3
1

4
�4

�2
3

5
5

6
�2

16
�2

4
�8

0
1

1
0

4
5

2
�5

3
2

�4
0

12
�3

1
�2

�7
1

3
1
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6. planes intersect in a line with equation 
r� � (0, 1, �5) � t(1, �3, 5) 

7. a. �14� b. c. opposite side

Cumulative Review Chapters 4–8

3. 0 4. (0, 8) � �
8
5�(2, 4) � �

8
5�(�2, 1)  6. �

5
9�

7. a. �x�� � y�� b. (1 � �3�)y�� � (1 � �3�)x��

c. (�6 � 4�3�)x�� � (3 � 2�3�)y�� 8. �
1
2
9
� 12. b. (�5, 5, 5)

13. yes 14. 2x � 3y � 3z � 12 � 0  15. A��1
7
1�, �1

4
1�, 3�,

B��1
3
1�, �1

6
1�, �

2
1
7
1��

16. x � 2y � 2z � 20 � 0  17. a. no intersection

b. r� � (�1, 3, 0) � t(1, 2, �1) c. ��
�
2
5
�, 0, �

3
2�� 18. (2, �

1
2�, 0)

19. �2, �
5
2�, �

5
2�� 20. a. x � �1 � t, y � 3 � t, z � t

b. xy plane at (�1, 3, 0), xz plane at (2, 0, �3),

yz plane at (0, 2, �1) c. 3�3� 21. ��11013�, �
�
1
9
1
3

�, �
6
1

0
1��

22. (24, 36, 8)  23. � 24. a � �
1
2�b, b 
 �2

25. (x, y, z) � (3, �1, 0)  26. a. (i) k � 2 (ii) k 
 2, k 
 �1 
(iii) k � �1 b. planes intersect in the line (x, y, z) � (t, t, t)

CHAPTER 9
Review of Prerequisite Skills
2 a. isosceles b. isosceles c. isosceles d. right-angled

3 a. ��
7
2�, �1� b. ��

7
5�, �

9
5�� 4. (0, �7)  5. (6, 0)  6. a. x2 � y2 � 9

b. (x � 1)2 � (y � 4)2 � 16 c. (x � 3)2 � (y � 2)2 � 20

7. x � 9, �3  8. (4, 4), ��1, �
9
2��, �2, �

1
2
1
�� 9. y � 3

10. E�4, �
1
2
1
��, F��

9
2�, �

7
2��, G��

1
4
7
�, �

9
2��

Exercise 9.1
1. a. C(2, �1), r � 5 b. C(�1, �2), r � 3 

c. C(�1, �3), r � �
7
2��2� 2. a. point b. C�0, �

4
3��, r � �

4
3�, circle

c. imaginary circle  3. 2  4. 12  5. �10� 6. 8 
7. (0, 0), (�6, 0), (0, 2)  8. 6  9. (�5, �3)  10. x2 � (y � 4)2 � 68

11. (x � 5)2 � (y � 5)2 � 25  12. �
1
1
2
2
5

� 13. 3�5� � 5  14. 2�3�

Exercise 9.3
3. 21 km or 11 km  5. a. h � �

2
3� b. 1:4

Exercise 9.4
1. 61x2 � 78xy � 25y2 � 16  2. part of a circular arc

3. x2 � y2 � x � y �1 � �2
k

� � 0

Review Exercise
1. a. y � x, y � �x b. y � 5 c. x2 � y2 � 1  2. y � x � 3

3. �6, �
5
4
3
�� 4. a. 6:5 b. 5:6  5. x � �

(y �
12

1)2
� 6. PB � 6, PD � 7; 

PB � 7, PD � 6; PB � 9, PD � 2; PB � 2, PD � 9
7. x2 � 3y2 � 48y � 144 � 0  8. 7x � 9y � �21 or 
7x � 9y � �17  9. 52 m2 10. 2x2 � 12x � 3y � 12 � 0
11. the locus is a circle with equation (x � 5)2 � (y � 8)2 � 13

12. the required point is ��
�
2
5
�, 6� 14. 2x � 5y � 15 � 0

15. x2 � (y � �
5
2�)2 � �

2
4
5
� 16. b. ��

a
2�, 0�, �

a
2� 17. Circle

Chapter 9 Test
1. a. x � 4 b. y � 2x � 6 c. (x � 3)2 � (y � 2)2 � 25
2. a. a circle with C(1, �3) and r � �13�
b. a sphere with C(1, �2, 3) and r � 3  3. a. (�2, 9) b. x � 2
4. the circle has equation (x � 3)2 � (y � 6)2 � 8
5. the locus has equation x2 � 16y2 � 64
6. the locus is a circle with its centre at �1, � with a radius of 

��
7
3�	 7. equation of locus is y2 � 2xc � c2 � k2 � 0

CHAPTER 10
Exercise 10.1
1. U � {10, 11, 12, 13, ..., 97, 98, 99}
A � {17, 27, 37, ..., 70, 71, 72, ..., 79, 87, 97}
2. U � {M1, D1, M2D2, M1D3, M2D1, M2D2, M2D3, M3D1, M3D2,
M3D4, M4D1, M4D2, M4D3}
3. {C1C2, C1C3, C1C4, C1C5, C2C3, C2C4, C2C5, C3C4, C3C5, C4C5}
4. V � {a, e, i, o, u}
V� � {b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z}

n(V) � 5, n(V� ) � 21
5. a. U � {cat, cta, tac, tca, act, atc} b. n(U) � 6
c. A � {act, atc}, B � {cat, act}
d.

e. A�: words not beginning with a
B�: words that do not end in t
6. a. U � {000, 001, 010, 011, 100, 101, 110, 111}
b. n(u) � 8 c. E � {001, 010, 100}
F � {001, 010, 011, 100, 101, 110, 111}
d. F�: subsets that do not have a 1
7. a. R: multiples of 5
S: integers from 53 to 76 inclusive
R�: integers not divisible by 5
b. P � {71, 72, 73, ..., 100}
Q � {7, 17, 27, ..., 97}
c. P�: integers less than 71
Q�: integers that do not end in 7
8. S: multiples of 10
S�: integers not divisible by 10
n(S) � 100, n(S�) � 900
9. a. no, a square is not prime b. no, there are composite 
numbers that are not squares
10. a. U � {1b, ac, ad, ae, af, bc, bd, be, bf, cd, ce, cf, de, df, ef}
b. n(u) � 15 c. W � {ab, ac, ad, ae, af},
V � {ab, ac, ad, ae, af, bf, cf, df, ef}
11. a. U: 100a � 10b � c; a, b, c � {1, 2, 3, ..., 9}; a 
 b 
 c
b. n(A) � 56 n(B) � 168
12. U: 100a � 10b � c; a, b, c � {1, 2, 3, ..., 9}
n(A) � 81, n(B) � 217
13. a. n(E) � 142 b. n(F) � 31 c. n(G) � 667 d. n(H) � 900
14. (A, B, C):(x, y, z); A in envelope x, B in envelope y, C in 
envelope z

tca

cta

U

act cat

tac

atc

�3�
�3

3
�
2�109�

54
�
�14�

A N S W E R S558



(A, B, C):(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, b, a), (c, a, b),
(b, c, a), (c, a, b)

Exercise 10.2
1. U � {ABCD, ABDC, ACBD, ACDB, ADBC, ADCB, BACD,
BADC, BCAD, BCDA, BDAC, BDCA, CABD, CADB, CBAD,
CBDA, CDAB, CDBA, DABC, DACB, DBAC, DBCA, DCAB,
DCBA}
R � {ABCD, ABDC, ACBD, ACDB, ADBC, ADCB, CABD,
CADB, CDAB, DABC, DACB, DCAB}
S � {ACDB, ADCB, CADB, CDAB, DACB, DCAB}
R � S � {ABCD, ABDC, ACBD, ACDB, ADBC, ADCB, CABD,
CADB, CDAB, DABC, DACB, DCAB}
R � S � {ACDB, ADCB, CDAB, DACB, DCAB}
2. n(A) � 3, n(A�) � 6  3. n(E � F) � 7  4. no  5. no 
6. b. {12, 15} c. no d. {3, 6, 9, 11, 12, 13, 14, 15, 16}; integers
divisible by 3 or greater than 10 e. n(A) � 5, n(B) � 6,
n(A � B) � 2, n(A � B) � 9
7. a. U � {pppqq, ppqpq, ppqqp, pqppq, pqpqp, pqqpp, qpppq,
qppqp, qpqpp, qqppp}
C � {pppqq, ppqpq, ppqqp, pqppq, pqpqp, pqqpp}
D � {ppqqp, pqpqp, pqqpp, qppqp, qpqpp, qqppp}
b. C � D � {pppqq, ppqpq, ppqqp, pqppq, pqpqp, pqqpp, qppqp,
qpqpp, qqppp}; sequences starting with p or ending with p c. C �
D � {ppqqp, pqpqp, pqqpp}; sequences starting and ending with p
d. {qqppp, qpqpp, qppqp, qpppq}
9. a. U � {ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE,
CDE} b. F � {ABC, ABD, ABE} 
G � {ABC, ACD, ACE, BCD, BCE, CDE}
c. F � G � {CBA, CBE, CBD, CAE, CAD, CED, ABD, ABE}
F � G � {ABC} 10. a. no, all four sets have a common element
b. no c. {1234}  12. n(E) � 6, n(F) � 6 
n(E � F) � 9, n(E � F) � 3  16. u � (A � B) � (A�����B�)
� (A� � B) � (A � B�)

Exercise 10.3
1. n(A) � 10, n(B) � 25
n(A � B) � 5, n(A � B) � 30  2. 18
3. a. A � {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}
B � {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}
b. A � B = � c. 12
4. A � {abcd, abdc, acbd, acbd, adbc, adcb}
B � {abcd, abdc, cbad, cbda, dbac, dbca}
A � B � {abcd, abdc}  6. n(V � W) � 34
7. 20  8. 14  9. a. n(A) � 8, n(B) � 11, n(A � B) � 16
b. n(U) � 33  12. 105  13. a. 200 b. 142 c. 28 d. 686
e. 172  14. 208  16. a. n(A) � 8, n(B) � 8, n(C) � 6,
n(A � B) � 4, n(A � C) � 3, n(B � C) � 3,
n(A � B � C) = 1  17. 734

Exercise 10.4
1. a. 2828, 4136, 1333 b. n(U) � 6561  3. 36  4. 6859000
5. 3 � 106 6. 48  7. 720  10. b. 1024  11. yes
12. b. n(U) � 17576, n(A) � 3380, n(B) � 125, n(C) � 15600
c. 0 e. 3505 f. 1976  13. n(U) � 720, 600  14. n(U) � 360,
300  15. b. 1800 c. 4536 d. 4464  16. a. 628

b. 626 � 102 c. �
6
5
2
4
!
!� d. 628 � 618 17. b. 6 c. 6 d. 15 e. 3

18. a. 90 b. �
5
6� 19. a. (a � 1)(b � 1)(c � 1) b. �a �

a
1�

20. a. m(m � 1)(m � 2) b. m3

21. a. m(m � 1)(m � 2) ... (m � r � 1) b. mr 22. a. 3655

b. 97.29% c. 2.71% 

23. a. � b. n � 22

Exercise 10.5
1. 18  2. 4717440  3. 62  4. 224  5. a. 64 b. 16 c. 49  6. a. 340
b. 85 c. 220  7. 14515200  8. 8987928  9. 249  10. 216

11. 1242, �1
5
2
8
4
9
2� 12. a. 402 b. 54 c. 122 d. 162

13. a. 11111111110 b. 9864100 c. 7188478660
14. a. 3r2 � 3r � 1 b. 3r2 � 9r � 6  15. 32

Review Exercise
2. a. n(U) � 9!, n(G) � 5!, n(F) � 4! d. n(G � F) � 143,
n(G � F) � 1  3. b. n(U) � 5000211, n(A) � 263169,
n(C) � 748683 n(D) � 708588 c. 789507
4. b. n(U) � 720, n(A) � 360, n(B) � 360, n(C) � 660

c. n(A � B) � 160  5. �
3
4� 6. 8 � 106, �1

1
00� 7. 271

8. a. 11000 b. 1100 c. 3710

Chapter 10 Test
1. b. 800  3. b. 48  4. 60  5. 16  6. b. 30  7. a. 456976 b. 358800
c. 66351  8. 16  9. 756  10. 727

CHAPTER 11
Exercise 11.1
1. a. 5040 b. 35280 c. 8 d. 56 e. 20160 f. 110 g. 26970
h. 463474  2. �

n
n

�
�

1
1� 3. a. P(6, 6) b. P(6, 4) c. P(5, 4)

d. 3 � P(5, 5) e. P(3, 2) � P(4, 2)  4. P(10, 6)  5. a. �
1
9�

b. �
4
9� c. �

5
9� d. �

5
6� e. �

2
3� f. �1

5
2� g. �

1
1

1
2� h. �1

7
8� 6. 8! � 16!

7. P(9, 1) � P(98, 98) � P(10, 1)  8. 28560  9. a. 6! � 6! 
b. 2 � (6!)2 c. 6 � 11! d. 36 � 10! e. 96 � 10!
10. n(U) � P(n, 4), n(A) � P(n � 1, 3)
n(B) � 3 � P(n � 2, 2), n(C) � 6 � P(n � 2, 2)
11. n(U) � P(n, r), n(A) � P(n � 1, r � 1),
n(B) � (r � 1) � P(n � 2, r � 2)
n(C) � 2(r � 1) � P(n � 2, r � 2),
13. n(U) � P(40, 5), n(A) � 4 � P(10, 5),
n(C) � P(40, 5) � 45 � P(10, 5), n(B) � 16P(38, 3)

14. �
1
1

3
4

2
4

!
!� 15. 8 � 9!  16. 104 20. 24

Exercise 11.2
1. 64 � 108 2. a. �1

1
0� b. �1

1
00� c. �1

1
28� d. �

1
4� e. ��1

9
0��

7

3. a. n11 b. n10 c. n12 � (n � 1)12 4. 3066  5. a. 2r�1

b. 2r�2 c. 3 � 2r�2 6. 3 � 210 7. 16  8. a. 263 � 103

b. 1123200 c. 6344000 d. 553280  9. 3276  10. 1324 hours
11. 7  12. 29701  13. �

1
2� 14. 81  15. a. 63 b. odd numbers less 

than 64 c. odd numbers from 33 to 63 inclusive  16. 7

17. a. 512 b. 256 c. 384  18. 72.7%  19. �
P(n

n
,
r

r)
�

21. r even n
�2
r

�
, r odd n

�
r�

2
1

� 23. (n(T))n(s) 24. a. yes b. 64

Exercise 11.3
1. a. 20 b. 34220 c. 35820200  2. �1

4
1� 3. a. 252 b. 21 c. 100

d. 226 e. 126 f. 196  4. a. �
3
7� b. �

4
7� c. �

2
7� 5. a. 5040 b. 4!

6. 2970  7. 10626  9. a. n(�) � 66, n(U) � 3,

365 • 364 • 363 • ... (366 � n)
����365n
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n(B) � 12, n(C) � 19 b. 47  10. a. 462 b. 200 c. 455

d. 378  11. a. � � b. � � c. � � d. � � � � �
12. a. � � b. 
� ��4

c. � � 13. �3
4
2
6
3
5
4
7
0� 14. 1440

15. a. (R1, R2, A), (R1, R2, B), (R1, R2, C), (R1, R3, A),
(R1, R3, B), (R1, R3, C), (R2, R3, A), (R2, R3, B),
(R2, R3, C), (R1, R2, R3)

16. a. � � b. � � c. � �� � d. � �� � e. � �� �
17. a. �n(n

2
� 3)
� b. none if n is odd, �

n
2� if n is even  18. a. 45

b. 45  19. a. 1140 b. 460 c. 90  20. b. 78  21. 2600

Exercise 11.4
1. a. 00011, 01111, 10001 b. 32  2. 30  3. a. 415800 b. 151200
c. 45360 d. 75600 e. 189000  4. �

1
2
2
6
!

� 5. �1
3
2
5
8� 6. 26  7. 225

8. 20160  9. a. 128 b. 35 c. 120 d. 20  10. �
1
2

0
1� 11. a. 1024

b. 128 c. 768  12. a. �(
1
4
6
!)
!
4� b. (4!)4 13. a. 0 b. 30 

14. a. �
3
3
1
2
9
4� b. �25

5
92� c. �1

5
6� 15. a. 210 b. � �, 0 � r � 10

16. � � � � � � � � � ... � � � � 2n 18. 36  19. 201  20. �1
8
5�

21. 56  22. b. �20
3
!
2
1
!
2!� c. �10

2
!
0
1
!
0!� � �1

1
0
2
!2
!
!� d. �8

1
!
2
4
!
!� � �4

8
!4
!
!� � �8

1
!
2
4
!
!�

23. a. 286 b. 36036 c. � � • � � 24. a. (12, � 2k), k is an 

integer, �6 � k � 6 c. 924

Exercise 11.5
1. 26k � 25k 2. 101 � k for 2 � k � 100; 0 for k � 1 or 2

3. � � 4. � � • � � 5. a. rP(n � 1, r � 1)

b. nr � (n � 1)r 6. �((
n
r �

�
1
1
)
)
!
!

� 7. � � � � �
8. 2 � (n � 2) � (n � 2)!  9. �

r
2
!
� � � � 10. �

(2
2
n
n
)!

�

11. �(bb
�
!c!

c)!
� � � �

Review Exercise
1. a. 151200 b. 15120 c. 105840 d. 10080 e. 70560 f. 13440
g. 141120  2. a. 105 b. 9 � 104 c. 103 d. 19 � 103 e. 104

f. 30240 g. 99990 h. 40951  3. a. 495 b. 81 c. 15 d. 369
e. 117 f. 90 g. 324  4. a. 256 b. 64 c. 192 d. 28 e. 6 f. 7
g. 16 h. 247  5. a. 2520 b. 6 c. 56 d. 784 e. 2016 f. 952  g. 60

8. a. 67 b. 59 c. cdabe  9. a. � � b. 2� � � � �
c. � � 10. a. �

1
2�� �r! b. � � � �3

r!
!�

c. 2 � � � � �3
r!
!�

Chapter 11 Test 
1. 600  2. a. 6720 b. 2520 c. 4800  4. a. 495 b. 45 c. 450
5. 7776  6. 300  7. 3 • 2n�2

8. 1333 � 366 � 703 � 266 � 111 � 106

CHAPTER 12
Review of Prerequisite Skills 
1. a, e are Arithmetic; b, f are Geometric   c, d are something else
2. t10 � 31, S10 � 175  3. �180  4. bn � a � 2(n � 1)d 5. �682
7. a. 3, 6, 10, 15, 21; no b. yes

Exercise 12.1
1. a. 1, �1, 5, �13, 41 b. 1, 1, 2, 3, 5 
c. 1, x � 1, x2 � x � 1, x3 � x2 � x � 1
x4 � x3 � x2 � x � 1
d. x, 1 � 2x, 3 � 4x, 7 � 8x, 15 � 16x 2. a. tn � 27 � 5n
b. 5  3. b. $22053.13  6. a. gn � 9.4n�1 b. Tn � 3.4n�1

c. G1 � 31, Gn � 9 • 22n�3, n � 2  7. 4  9. c. 63 months
10. r1 � 31, r3k�1 � 3, r3k � 3, r3k�1 � 4  11. a if n is odd,
s � a if n is even  13. xn � 0.5, n � 1  14. a. 2, 4, 7, 11

15. a. fn(x) � �1 �
x

nx� c. 0 d. �
�
3
2
� 16. a. 1, 3, 9, 27

d. bn � �
1
2�bn�1 e. bn � ��

1
2��

n�1
f. An � , An → 0

17. A → , perimeter is infinite

Exercise 12.2

1. a. �
25

i � 1
i b. �

15

i � 1
3 � 2i�1 c. �

100

i � 50
i2 d. �

30

i � 1
t2i�1

2. a. 1 � 2 � 3 � ... � 10 b. 42 � 52 � 62 � 72 � 82

c. 1 � �
1
2� � �

1
3� � ... � �

1
n� 5. a. �1

1
00� �

100

i � 1
ai

6. a. �
3
2
10

�
�

39
1

� b. �2
3
�

n �
3n

1
�1� c. �9(

8
31

�

6 �
316

1)
� 7. �r

1
60�

8.�10(10n �
9

1) � 9n
�, �10(10n �

81
1) � 9n
�, 
�10(10n �

81
1) � 9n
��k

9. 2n 10. �
n
2�d for n even, �a � �

n �
2

1
�d for n odd; �(�a)[

1
1

�
�

r
(�r)n]
�

11. a. 2046, 145 b. 6118  12. �n(n
2
� 1)
� 13. �n �

n
1�

14.�n(4n2 � 1
3
2n � 11)
� 16. �a(

(
1
1

�
�

r
r
)
n

2
)

� � �1
na

�
rn

r�

Exercise 12.3
20. a. 2k � 1

Exercise 12.4
1. a. a5 � 5a4b � 10a3b2 � 10a2b3 � 5a4b � b5

b. 1 � 6x � 15x2 � 20x3 � 15x4 � 6x5 � x6

c. x4 � 8x3y � 24x2y2 � 32xy3 � 16y4

d. 1 � 5s2 � 10s4 � 10s6 � 5s8 � s10

e. x7 � 7x5 � 21x3 � 35x � �
3
x
5
� � �

2
x
1
3� � �x

7
5� � �x

1
7�

f. z15 � 5z12 b2 � 10z9b4 � 10z6b6 � 5z3b8 � b10

2. a. 26 b. � �, � � c. 1081575 d. 2300, 3268760 

e. 5200300 f. 225 3. a. (�1)k� �3kxk

b. (�1)k� �5202kxk c. � �a13�kx2k d. � �a30�5k

4. a. (�1)k� �212�kxk b. 264  5. 90720  6. a. 16 b. �32

8. 1  9. 1 � x � 7x2 � 8x3 10. 528  11. 728  12. a. 810 b. 196
13. a. t4 � �54648a�15 b. no term containing a10 14. 6

15. a. (�1)k� �2kz20�3k b. t6 � �8064z35 c. �15360

d. z36 does not occur in the expansion e. no  16. 10  17. 3

10
k

12
k

10
k

13
k

20
k

15

k

25
23

25
4

2�3�
�5

3n�1�3�
�4n

n � 3
r � 3

n � 3
r � 3

n � 2
r � 2

n � 2
r

n � 2
r � 2

n � 1
r � 1

n � 2
r � 2

b � c � 1
a

998
r � 2

n � 2
k

n
k

n
e

n � 1
o

L � 1
4

9
5

12

2

n
n

n
2

n
1

n
0

10

r

97
2

3
3

97
3

3
2

97
4

3
1

97
5

100
5

300

60

300

15
1200
60

25
3

24
3

24
6

48
5

49
6
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19. (1 � 3x)7 28. a. 2n b. � � 29. �(n �
2
1)(n)
� 31. 7

33. a. � � 36. (1 � x)�1 � 1 � x � x2 � x3 � x4 � ...

(1 � x)�1 � 1 � x � x2 � x3 � x4 � ...
(1 � x)�2 � 1 � 2x � 3x2 � 4x3 � 5x4 � ...
(1 � x)�2 � 1 � 2x � 3x2 � 4x3 � 5x4 � ...
40. a. 1 � x � x2 � x3; xk

b. 1 � 2x � 3x2 � 4x3; (�1)k(k � 1)xk

c. 1 � 3x � 6x2 � 10x3; �(k � 2)(
2
k � 1)xk
�

d. 1 � 4x � 10x2 � 20x3; (�1)k xk

e. 1 � 8x � 40x2 � 160x3; 2kxk

f. 1 � 15x � 135x2 �945x3; 

(�1)k 3kxk

Review Exercise

1. �15  3. a. ��
299

29
�
9

1
� b. ��6

5
(4
�

50

4
�
50

1)
� c. ��

2
9�(1 � 298)

4. a. An � a � �
n �

2
1

� • d; arithmetic

Gn � �n a(a ��d)(a �� 2d) ...� (a � (�n � 1)�d)�; neither

b. An � a��11�
�

r
r
n

��; neither, Gn � ar
�
n�

2
1

�
; geometric

5. a. 1, 5, 17, 53, 161, 485  6 a. Un � .999Un�1 � 100000
b. grow c. 30000  7. escapes on the 9th move

8. a. hn � hn�1 � ��
1
3��

n�1
, An � An�1 � ��

1
3��

2n�2
b. h → �

3
2�,

A → �
9
8� 16. 924, 0  17. 4  18. 924  19. 1

Chapter 12 Test

2. �a
2(
r
r
2

2n

�
�
1

1)
� 3. a. $3840 b. tn � 1.01tn�1 � 200, t1 � 4000

6. a. 495 b. 924  7. 3n 8. �576

Cumulative Review Chapters 10–12
1. a. 1413720 c. 684420  2. 969  3. a. 64 b. 20 c. 32

4. �� � • 25 6. 420  9. a. 10, 28, 82  10. b. 155  11. 25560

12. 0, 1 � r � 4; 5! � � for r � 5.
r
5

20
5

(k � 4)(k � 3)(k � 2)(k � 1)
����4!

(k � 3)(k � 2)(k � 1)
���3!

(k � 3)(k � 2)(k � 1)
���3!

n � r � k
r � k

n
k
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