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The Homogeneous Universe
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1.1 Geometry and Dynamics

1.1.1 Assumptions
e Cosmology rests on two fundamental assumptions:

1. When averaged over sufficiently large scales, the observable
properties of the Universe are isotropic, i.e. independent of
direction.

It remains to be clarified what sufficiently large scales are.
Nearby galaxies are very anisotropically distributed, distant
galaxies approach isotropy, the microwave background is al-
most perfectly isotropic.

If the universe is isotropic about all
points, it must be homogeneous.

2. Cosmological principle: Our position in the Universe is by
no means preferred to any other.

This reflects Copernican revolution of the world model,
when it was realised that the Earth is not at the centre of
the Universe.

By the second assumption, the first must hold for every observer
in the Universe. If the Universe is in fact isotropic around all of
its points, it is also homogeneous. Thus, these two assumptions
are often phrased as: the Universe is homogeneous and isotropic.

The galaxy distribution is mani-
festly anisotropic...

e These are bold assumptions, which have to be justified. An ide-
ally homogeneous and isotropic universe would not allow us to
exist. We need to carefully study how an idealised world model
following from these two assumptions can accommodate struc-
tures.

e Of the four interactions (strong, weak, electromagnetic and grav- ... but the microwave background is
itational), the strong and the weak interactions are limited to phantastically isotropic.
length scales typical for subatomic elementary-particle interac-
tions. Electromagnetism is limited in range by the shielding of
opposite charges, although magnetic fields can bridge very large
scales. The remaining force relevant for cosmology is gravity.

e Gravity is described by General Relativity. Newtonian gravity
was constructed for isolated bodies and has fundamental difficul-
ties in explaining space filled with homogeneous matter.

e General Relativity describes space-time as a four-dimensional
manifold whose metric tensor g,, is a dynamical field. Its dy-
namics is governed by Einstein’s field equations which couple
the metric to the matter-energy content of space-time.

e As the structure of space-time determines the motion of matter
and energy, which in turn determine the structure of space-time,
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general relativity is inevitably non-linear (in contrast to electrody-
namics). Solutions of Einstein’s field equations are thus typically
very difficult to construct.

1.1.2 Metric

e Due to symmetry, the 4 X4 tensor g,,, has ten independent compo-
nents, the time-time component g, the three space-time compo-
nents go;, and the six space-space components g;;. Greek indices
run over space and time, i.e. they take on values 0 < u < 3, while
Latin indices indicate spatial components only, 1 <i < 3.

e The two fundamental assumptions greatly simplify the metric.
Phrased in a more precise language, they read:

1. When averaged over sufficiently large scales, there exists
a mean motion of matter and energy in the Universe with
respect to which all observable properties are isotropic.

2. All fundamental observers, i.e. imagined observers follow-
ing this mean motion, experience the same history of the
Universe, 1.e. the same averaged observable properties, pro-
vided they set their clocks suitably.

e Consider the line element ds,
ds* = g, dx"dx” . (1.1)

Spatial coordinates attached to fundamental observers are called
comoving coordinates. In such coordinates, dx' = 0 for funda-
mental observers. Requiring that their proper time equals the co-
ordinate time d¢, we must have

ds® = goodf? = —c?dr* = ggo = —c. (1.2)

e [sotropy requires that clocks can be synchronised such that gy; =
0. If that was impossible, the components of g, singled out a
preferred direction in space, violating isotropy. Thus

goi = 0. (1.3)
e The line element is thus reduced to
ds? = —c*dr* + g;;dx'dx’ . (1.4)

Therefore, spacetime can be decomposed into spatial hypersur-
faces of constant time, i.e. it permits a foliation. Without violat-
ing isotropy and homogeneity, the spatial hypersurfaces can then
be scaled by a function a(t) which may only depend on time,

ds? = =cdf? + a*(HdP? (1.5)
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where d/ is the line element of homogeneous and isotropic three-
space. If the scale function depended on the spatial coordinates,
the expansion could not maintain spatial homogeneity. A special
case of @ 1s Minkowski space, for which d! is the Euclidean
line element.

. . negatively _
e Isotropy requires three-space to have spherical symmetry. We

thus introduce polar coordinates (w, 8, ) where w is the radial

coordinate and (6, ¢) are the polar angles: eyved

positively

dP = dw? + fo(w) [d6” + sin’ 0d¢’ | = dw” + fR(w)de® . (1.6)

The space-time of the universe can
be foliated into flat or positively or
negatively curved spatial hypersur-

where dw is the solid-angle element. The radial function fx(w)
is permitted because the relation between the radial coordinate w

and the area of spheres of constant w is still arbitrary. ;
aces.

e The metric expressed by the line element is manifestly
isotropic. It can be shown that homogeneity requires fx(w) to
be trigonometric, hyperbolic, or linear in w,

K2sin(K'"?w) (K >0)

Jxw) ={ w (K=0) , (L.7)
|K[7"/2 sinh(IK]'?w) (K < 0)

where K is a constant parameterising the curvature of spatial hy-
persurfaces. fx(w) and |K|~'/? have the dimension of a length.

e An alternative form of the line element ds is obtained substituting
the radial coordinate by r for fx(w), then

dr?

AP = ———
1 - Kr?

+ rAdw? . (1.8)

this is often used, but has the disadvantage of becoming singular
for K >0andr =K'

e We thus arrive at the metric for the homogeneous and isotropic
universe,

ds? = =2 + a* (1) |dw? + fR(w)de?] (1.9)

with fx(w) given by (1.7). This is called Robertson-Walker met-
ric.

1.1.3 Cosmological Redshift

e Spatial hypersurfaces can expand or shrink controlled by the scale
function a(?). This leads to a red- or blueshift of photons propa-
gating through space-time.
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e Consider light emitted from a comoving source at time ., reaching
a comoving observer at w = 0 at time #,. Since ds = 0 for light,
the metric (1.9) requires

cldt| = a(n)dw , (1.10)

where the modulus on the left-hand side indicates that time can
run with or against w, depending on whether w is measured to-
wards or from the observer.

e The coordinate distance between source and observer is

fo o cdt
Weo = f dw = f 2 const., (1.11)
fe fe a(t)

thus the derivative of w,, with respect to the emission time 7, must

vanish,
dwe, dz, dz, o
Weo o € T € Co_% (1.12)
dr, a(ty) dt.  a(t.) dt, a.

e Time intervals dz. at the source are thus changed until they ar-
rive at the observer in proportion to changes in the scale of the
universe between emission and absorption.

e Letdr = v! be the cycle time of a light wave, then

e /lo /lo_/le Iy
V—:—:1+ :1+z:a().
VO Ae /le a(te)

(1.13)

Thus, light is red- or blueshifted by the same amount as the Uni-
verse expanded or shrunk between emission and observation.
Conventionally, the scale factor at the time of observation is set
to unity, a(,) = 1, and the scale factor at emission abbreviated by
a(t,) =: a. Then,

1

1
- =1, 1.14
a 1+7° S (1.14)

1.1.4 Dynamics

e The dynamics of the metric (1.9) is reduced to the dynamics of
the scale factor a(7). Differential equations for a(f) now follow
from Einstein’s field equations, which read

8nG

LT 0p + Agap - (1.15)

G,z =

A is the cosmological constant originally introduced by Einstein
in order to allow static cosmological models.

e G,z 1s the Einstein tensor constructed from the curvature tensor,
which depends on the metric tensor and its first and second deriva-
tives.
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e T, is the energy-momentum tensor of the cosmic fluid, which
must be of the form of the stress-energy tensor of a perfect fluid,
characterised by pressure p and (energy) density p, which can
only be functions of time because of homogeneity,

p=p@®), p=pQ). (1.16)

e When specialised to the metric (1.9), Einstein’s equations (T.15])
reduce to two differential equations for the scale factor a(¢) (see
e.g. Chapter 12 in the script on General Relativity):

( a )2 817G Kc* AP

= -~ +

a 3 P 3
a 4nG 3p\ A
R il L P 1.17
a 3 (p cz) 3 (L17)

These are Friedmann’s equations. A Robertson-Walker metric
whose scale factor satisfies (I.17)) is called Friedmann-Lemaitre-
Robertson-Walker metric. The scale factor is uniquely deter-
mined once its value at a fixed time ¢ is chosen. We set a = 1
today.

. ) . . . . Alexander Friedmann
e The Friedmann equations can be combined to yield the adiabatic

equation
d 3 d /3 _
a(apc)+p&(a)—0 (1.18)
which intuitively states energy conservation: the left-hand side is
the change in internal energy, the right-hand side is the pressure
work. This is the first law of thermodynamics in absence of heat

flow (which would violate isotropy).

e Since energy conservation (I.I8) follows from the Friedmann
equations (I.17), any two equations from and (I.18)) can
be used equivalently to all three of them. We follow common
practise and use the first-order equation from (I.17), which we
will call the Friedmann equation henceforth, and @) where
needed.

Georges Lemaitre
1.1.5 Remark on Newtonian Dynamics

e Note that can also be derived from Newtonian gravity, ex-
cept for the A term. The argument runs like this: in a homoge-
neous and isotropic universe, a spherical region of radius R can be
identified around an arbitrary point, the matter density within that
sphere must be homogeneous. The matter surrounding the sphere
cannot have any influence on its dynamics because it would have
to pull into some direction, which would violate isotropy. Thus,
the size of the sphere is arbitrary.
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e Suppose now a test mass m is located on the boundary of the
sphere. It’s equation of motion is

G(4’T 3 ):—ﬁrp. (1.19)

this is already the second eq. (1.17) except for the pressure term.

e The pressure term adds to the density because pressure is a con-
sequence of particle motion, i.e. the kinetic energy of particles,
which is equivalent to a mass density and thus acts gravitation-
ally. For particles with a mean squared velocity (v*) we have

P :§<02> = %Ekin = pp =

Ewn _ 3p
— =7

(1.20)

C

thus the pressure adds an equivalent mass density p,, which we
have to add to p; (I.19) thus reads

4
';‘:—LGr(p+3—p) : (1.21)

¢ In analogy to (1.18]), energy conservation requires
3rfipc® + rPpct = 3prii . (1.22)
Dividing by r and combining terms yields
. 3]7 . 9.
2rrp+(p+g)rr+rp:0. (1.23)

Eliminating the term in brackets with (1.21)) yields

8nG di?)  8nG d(pr?)
2iF = ——(2ri 2 = ) 1.24
it 3 Qrip+r1r7p) = ” 3 m ( )
o Integrating, we find
"2 871G C
(f) L (1.25)
r 3 c?

with a constant of integration C. Putting K = —C/c? yields the
first eq. (1.17)) without the A term.

e We thus find that Friedmann’s equations can be derived from
Newtonian dynamics if we account for the mass density equiv-
alent to the energy density related to pressure and solve the equa-
tion of motion of a self-gravitating homogeneous sphere taking
energy conservation into account. The A term is purely relativis-
tic.
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1.2 Parameters, Age and Distances

1.2.1 Forms of Matter

e Two forms of matter can broadly be distinguished, relativistic and
non-relativistic. They are often called radiation and dust, respec-
tively.

e For relativistic bosons and fermions, the pressure is

p=— (1.26)

while non-relativistic matter is well approximated as pressure-
free, p = 0, because the pressure is much smaller than the rest-
mass energy pc? it needs to be compared with.

e For non-relativistic matter, (1.18)) reads

d 3 o _ p_ ,a
5(apc)—0 = ;——35 (1.27)
which implies

p(t) = poa™ , (1.28)

with the present density py and using the convention that a = 1
today. This behaviour simply reflects the fact that the density of
non-relativistic matter is decreasing because of dilution as space
is expanding.

e For relativistic matter, (1.18]) becomes

dosy o pctd oy p__,a
&(apc)+T&(a)—O:>/—)——4; (1.29)
implying \
p(0) = poa” (1.30)

From ((1.28)) and (1.30)) we see that the density of relativistic par-
ticles drops faster by one more power of a because particles are
diluted and lose energy as they are redshifted.

e We have thus exploited the adiabatic equation for deriving the
dependence of density on the scale factor for non-relativistic and
relativistic matter. Inserting (1.28)) and (1.30)) into the Friedmann
equation as appropriate, we thus obtain a single equation for the
dynamics of the scale factor.
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1.2.2 Parameters

e [t is convenient to introduce parameters, most of which are
dimension-less. The Hubble parameter is defined as the relative
expansion rate,

H() := g , Hy:=H() . (1.31)

Its value at the present time # is the Hubble constant. It has the
unit of an inverse time, but is commonly expressed in units of
kms~! Mpc™! because it quantifies by how much the recession
velocity of cosmic objects grows as their distance increases. The
Hubble constant is frequently expressed by the dimension-less
parameter A,

k
Hy = 100 h —2
s Mpc

=322%x 108 hs!, (1.32)

e The inverse of the Hubble constant is the Hubble time,

1
= o = 310x 107 h's=9.82x 10 yr.  (1.33)
0
The Hubble time times the speed of light is the Hubble radius,

ry = Hi =930x 10”7 A 'em =3.01 x 10° A ' Mpc . (1.34)
0

e The critical density is defined as

3H2(t) 3H§
s er0 -= Peorlly) = —= . 1.35
e Pero = Per(fo) e (1.35)

Writing it in the form

pcr(t) =

4nG ( Pl

a2
= ):— (1.36)

2

illustrates that in a sphere filled with matter of critical density the
gravitational potential is exactly balanced by the specific kinetic
energy.

e The critical density today is
Per0 = 1.86 X 1072 > gem™ (1.37)

corresponding to one proton mass in approximately 10° cm? of
the cosmic volume, or about a galaxy mass per Mpc?.

e Densities expressed in units of the critical density are the
dimension-less density parameters

PO = oy = P10 (1.38)

Q1) := ,
(t) pcr(t) Pecr0
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e The density parameter corresponding to the cosmological con-
stant, also often called cosmological constant, is

Ac? Ac?

QA(I) = 3H—2(1‘) . QA() = QA(IO) = 3_[-13 . (139)

e Distinguishing the densities of radiation, pg, and non-relativistic
matter, py;, we introduce the two density parameters

Q=P q =P (1.40)
Per0 Per0
Using (1.28)) and (1.30) yields
Pr = gerpcroa_4 > Pm = gszpcroa_3 . (141)

e Replacing p — (p; + pp) in Friedmann’s equation then yields

Kc?

— 1.42
e (142)

H*(a) = H3 [Qua™ + Quoa™ + Qap —

Specialising to a = 1, we have H*(a = 1) = H} on the left-hand
side and solving for the K-dependent term, we find

K 2
S = 10— Qo — Qo = O (1.43)
HO

the curvature parameter.

e We thus arrive at the final form for Friedmann’s equation

HYa) = Hj|Quoa™ +Quoa™ + Qo + Qka ™|
= HyE*(a). (1.44)

It is mostly used in this form for practical calculations.

e Note that all density contributions in square brackets scale with
different powers of a. Their relative importance thus changes over
time. Today, the radiation density is much smaller than the matter
density. However, going back in time, the radiation density grows
faster than the matter density, so there is a time 7.4 before which
radiation dominates. Expressing f.q by the scale factor a.q, we

have from (1.4T)
Q,
feq = Qm(; . (1.45)

Before that, the universe is called radiation-dominated. Later,
matter dominates while curvature is still negligible. Finally cur-
vature becomes important and , may take over.
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e The density parameters change with time. Ignoring radiation den-
sity, one has for non-relativistic matter

8nG -3 QmO
Qn(a) = 755 =Pmod~ = 3 .
3H*(a) a+ Quo(l —a)+ Qppla® —a)
(1.46)
and for the density parameter corresponding to the cosmological
constant
@) 3
Qu(a) = Aod (1.47)

3H2a)  a+ Quo(l—a)+ Qnod@ —a)

e Two interesting consequences follow from egs. (1.46) and (1.47):
first, they imply Q,(a) — 1 and Qx(a) — 0 for a — 0 regardless
of their present values o and Q,g. Second, if Q0 + Qpp = 1,
this remains valid fora < 1.

1.2.3 Parameter Values

e The cosmological parameters, most notably Hy, Qqo and Qxg,
were highly insecure for most of the last century. Only re-
cently, the situation has much improved mainly because of the
microwave-background measurements and wide-field galaxy sur-
veys like the 2-Degree-Field (2dF) survey and Sloan Digital Sky
Survey (SDSS).

e Combining cosmic microwave-background measurements with
baryonic acoustic oscillations and measurements of the Hubble
constant, the cosmological parameters are now constrained as fol-
lows (all errors are 1-o error margins):

Hubble constant h 0.704%0013
dark-matter density Qo 0.227 £0.014
cosmological  con- | Qxg 0.728*001

stant

baryon density Qp 0.0456 = 0.0016
radiation density Qo (4.67 £0.26) x 107

e Since Q is very close to zero, we will assume Qg = 0 in most of
what follows.

e The Hubble constant is
Hy=73+2kms' Mpc™ =(2.35+0.06) x 107857, (1.48)
i.e. the Hubble time is

1
oo (425+0.12) x 10" s = (1.35+ 0.04) x 10" yr . (1.49)
0

e From (1.45), the scale factor at matter-radiation equality is

deq = (1.95+0.19) x 107*. (1.50)
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1.2.4 Age and Expansion of the Universe

e Since H = a/a, the age of the Universe is determined by

4 _ paE@ = Hot f ¢ _da
— = aE(a = ,
dr 0 0 o @ E(@)

(1.51)

as follows from Friedmann’s equation (1.43) where we have as-
sumed that time starts running when a = 0. This integral cannot
generally be solved analytically, but limiting cases are interesting
to study.

e Early Universe: in the early Universe, radiation dominates be-
cause its contribution scales with ¢ in Friedmann’s equation.
During that time, E(a) = Q\/*a™? and

2

2V

Thus, at early times, the expansion of the Universe scales like
a « V/t until the radiation density drops near the density of non-
relativistic matter. At matter-radiation equality, the age of the
universe is

Hyt =

o a=[2vQeHd]” . (1.52)

fog = 1.65%10"0s = 522 yr . (1.53)

e Early matter-dominated era: after non-relativistic matter starts
dominating, and before curvature becomes important, we may ap-
proximate E(a) = VQuoa */? and obtain

2032 3 203
Hot = S a=|=VQuoHot . 1.54
o=y = o[ V8w 9

Thus the expansion scales like a o« ?/3. This case is called the
Einstein-de Sitter limit and is often used in studies of the early
universe.

e Very late Universe: if Q, # 0, it dominates at late times. Then,

E(a) = VQ, and

Hyt =

NN = aocexp[\/Q_AHot] , (1.55)

where we have ignored the lower integration limit because the
approximation of a dominating cosmological constant is only
valid after finite time. Then, the Universe expands exponentially,
i.e. the cosmological constant is driving the Universe exponen-
tially apart. This case is called the de Sitter limit and plays and
important role in the theory of cosmological inflation.
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e We have seen in (I.53)) that the period of radiation domination
is brief. For most of the cosmic time, radiation is negligible and
matter, cosmological constant and curvature co-exist in compa-
rable densities. We shall now study a few interesting simplified
cases ignoring the contribution from the radiation density.

e Einstein-de Sitter universe: if Q4 = 0 and Q0 = 1, (I.51) holds
throughout cosmic history, and

2 3 23
Hyt = §a3/2 & a= (EHOI) . (1.56)
The age of such a Universe today is
2
ty=——=897x10"yr. (1.57)
0 3H, y

This case is historically important.

e In a flat universe with Qo # Oand Q) = 1 — Q¢ # 0, the
curvature term vanishes and

“ Va'da'
0 \/QmO + QAa’3 .

This can be integrated substituting x := a*? and yields

Hyt = (1.58)

2 . /1 - Qo 3
Hyt = ——————— arcsinh L 1.59
0 3 Vl - QmO QmO ] ( )
The age of a universe with Qo = 0.24 is
1.03
fla=1)=—=140x10"yr. (1.60)
Hy

e The expansion of the spatially flat model becomes exponential
when

1_QmO 3/2 QmO 13
> 1 > ~ U. 1.61
\ o ¢ T R\ 068 (1.6

o As (1.55) shows, a universe expanding with H, today may never
reach a = 0 going back in time. The fact that the universe is
expanding today does thus not imply that it originated in a Big
Bang!

e However, it is straightforward to see that there must have been a
Big Bang because we know from the existence of the microwave
background that the radiation density is finite, from the existence
of luminous material that the matter density is finite, and from the
existence of objects with very high redshifts z that the scale factor
of the universe must have been as small as 1/(1 + z) or smaller in
the past.
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Figure 1.1: Cosmic age #(a) as a function of the scale factor a

1.2.5 Distance measures

e Distance measures are no longer unique in General Relativity. In
Euclidean geometry, a distance between two points is defined by
a measurement connecting the points at the same instant of time.
This is generally impossible for two reasons. First, what is con-
sidered simultaneous at the two points depends on their relative
motion. Second, connecting the points requires time because of
the finite speed of light. Distances in cosmology thus need to be
defined according to idealisations or measurement prescriptions,
which generally lead to different expressions.

e Distance measures relate emission events on a source’s world line
to an observation event on an observer’s world line. The emission
and observation times be #, and #;, respectively, are uniquely re-
lated to the scale factors a, and a; > a, of the universe at #, and
t1, which can in turn be expressed by the redshifts z, and z; < z5.

e The proper distance Dy, is the distance measured by the time
required for light to travel from a source to an observer. It is
thus determined by dD,,p = —cdt = —cda/a. The minus sign is
required because D, should increase away from, while 7 and a
increase towards the observer. Thus

(z1) da c (z1) da
Dro(Z,Z):Cf f:—f . (1.62)
o aw) @ HoJuz) aE(a)
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The integrand is the same as in (I.5T)), thus

2 . /1 - Quo 3
Dyron(z1,20) = ———arcsinh| 4|———a
’l -Q,
QmO Oa;/z]] (163)

e The comoving distance Dy, is the distance on the spatial hyper-
surface at ¢t = const. between the world lines of a source and an
observer comoving with the mean cosmic flow. This is the coor-
dinate distance between source and observer, thus dD.,, = dw.
Since light rays propagate according to ds = 0, adw = —cdt =
—cda/a, thus

@) da c @ dq
Dcom(Zl’ZZ) = wa - = F f\a T = w(Zl,ZZ) .
azy a4 Ho Ju,) a*E(a)

(1.64)

— arcsinh

for a spatially-flat universe.

e The angular diameter distance D, 1s defined in analogy to the
relation in Euclidean space between the area 6A and the solid
angle dw of an object, dw Dﬁng = 0A. Since the solid angle of
spheres of constant radial coordinate w is scaled by fx(w) in (1.6)),
we must have
0A _ ow
dras filw(zi, )] 4m

In words, the area of the object must be related to the area of the
full sphere like the solid angle of the object to the solid angle of
the sphere. It follows

(1.65)

SAN'?
Dung(z2) = (5] = ate) iz, 21, (1.66)
as the coordinate distance w(z;,22) = Deom(z1,22) and

Dang(Zl ,22) = a(ZZ)fK[Dcom(Zl ,22)].

e A fourth important distance measure is the luminosity distance
Dy, which is defined in analogy to the Euclidean relation be-
tween the intrinsic luminosity of an object and its flux. Counting
emitted and absorbed photons and taking redshift into account,
one finds

a(z))?

a(z2)

Dlum(zl ,22) = [%

fK[Dcom(Z] s ZZ)] .

(1.67)
The first equality in (1.67) is the Etherington relation and valid in
arbitrary spacetimes. It is physically intuitive because photons are

2
:| Dang(zl ,22)=
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redshifted by a; /a, between emission and absorption, their arrival
times are stretched by a;/a,, and they are spatially diluted by a
factor (a;/a»)?. This yields a factor (a;/a»)* between luminosity
and flux, and thus a factor (a, /a,)? in the luminosity distance.

10F  Dum ]

distance [c/H]

redshift z

Figure 1.2: Four different distance measures in a spatially-flat universe
with Q0 = 0.3.

e These distance measures can be vastly different at moderate and
high redshifts. For z < 1,a = 1 — z, and E(a) ~ 1, then

CcZ
D= — +0(7 1.68
Hy (z) (1.68)
for all distance measures introduced above. This local distance
measure is also known as “Hubble’s law”.

e The angular-diameter distance from redshift zero to redshift z for
an Einstein-de Sitter universe is

2c 1
H01+Z

Dang (Z) =

1
a +Z)1/2] . (1.69)
This shows that cosmological distances need not be monotonic.
in fact, Dyne(z) has a maximum for z = 5/4 in the Einstein-de
Sitter case (1.69) and gently decreases for increasing z. This is
a consequence of space-time curvature, to be distinguished from
spatial curvature!
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1.2.6 Horizons

e Between times #; and 7, > #;, light can travel across the comoving
distance t “
2 cdr ¥ da
Aw(ty, 1) = f — = Cf — (1.70)
o a(h) a(r) ad
cf. (L.64).

e Ast — 0,a — 0. The curvature and cosmological-constant terms
in the first eq. (1.17) become negligible and

871G

1= . 1.71
a=ay—=p (L.71)
Let p oc poa™, then
a(ty)
c da
Aw(ty, 1) = — Q! — g, 1.72
wlin, ) = 7 = (1.72)

which diverges fora — 0 if n < 2.

e Thus, if n > 2, light can only travel by a finite distance between
the Big Bang and any later time, thus any particle in the Universe
can only be influenced by events within a finite region. There
exists a particle horizon.

e A simpler definition of a horizon is often used, namely the time-
dependent Hubble radius

c c al? Qeq\1/2
f) = - — 1+ —) , 1.73
"u(®) H({) ~ H, Qmo( a (1.73)

where we have used the Einstein-de Sitter limit (1.54). Partic-
ularly important for structure formation is the Hubble radius at

a = Qeg,
3/2
C aeq
PHeq = — . (1.74)
S To
e Ast — oo, suppose a o t", then
Auw(ty, 1) o £, (1.75)

which converges for m > 1. This happens if the expansion of the
Universe is dominated by the cosmological constant at late times.

e Then, the region which can be seen by a particle remains finite.
There exists an event horizon.
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1.3 Thermal Evolution

1.3.1 Assumptions

o The universe expands adiabatically — isotropy requires the uni-
verse to expand adiathermally: no heat can flow because flow
directions would violate isotropy. Adiathermal expansion is adia-
batic if it is reversible, but irreversible processes may occur. How-
ever, the cosmic microwave and neutrino backgrounds dominate
by far the entropy of the universe, thus entropy generation is com-
pletely negligible.

o Thermal equilibrium can be maintained despite the expansion —
thermal equilibrium can only be maintained if the interaction rate
of particles is higher than the expansion rate of the Universe. The
expansion rate of the Universe is highest at early times, so thermal
equilibrium may be difficult to maintain as t — 0. Nonetheless,
for t — 0, particle densities grow so fast that interaction rates are
indeed higher than the expansion rate. As the Universe expands,
particle species drop out of equilibrium.

e The cosmic “fluids” can be treated as ideal gases — Character-
istics of an ideal gas are: There are no long-range interactions
between particles. The particles interact only by direct collisions
which is a good approximation for weakly interacting particles
like neutrinos, though this is even valid for charged particles be-
cause oppositely charged particles shield each other. As a con-
sequence the internal energy of an ideal gas does not depend on
the occupied volume. Cosmic “fluids” can be treated as possibly
relativistic quantum gases.

e Those assumptions are the starting point of our considerations.
They need to be verified as we go along.

1.3.2 Quantum Statistics

e We will need many relations later for the behaviour of ideal quan-
tum gases which we now derive in a brief detour.

e If a thermodynamic system has fixed internal energy, particle
number N, and volume, it is called a micro-canocical ensemble.
Its density in phase space is constant.

e If only the mean internal energy is specified, the ensemble is
canonical. The probability of finding a quantum state (symboli-
cally labelled by ) with energy €, occupied is given by the Boltz-
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mann factor
67 €o / kT

fo= 0 Ze= ) el (1.76)

where T is the temperature, and Z¢ is the canonical partition sum
over all accessible quantum states. The canonical phase-space
distribution minimises the Helmholtz free energy F(7T,V,N) =
—kT InZ..

e If, in addition, only the mean number of particles is specified,
the ensemble is grand-canonical. All accessible quantum states
(labelled by «) are then occupied by an unknown number N, of
particles such that ), N, = N. The total energy of that ensemble
is E(N,) = ), €zN,. The phase-space distribution function of a
grand-canonical ensemble is

e_[E(Nn)_ﬂNa]/kT e k k
o= S Ta= RN N (17
& N=0 {No)

where 1 is the chemical potential and Z, is the grand-canonical
partition sum, in which the second sum is over all sets {N,} of
occupation numbers which sum up to N. The grand-canonical
phase-space distribution minimises the grand-canonical potential
O(T,V,p) = —kT In Z,.

e We now evaluate the grand-canonical partition sum:

Zye = i D e RN AT (1.78)

N=0 {No}

Although the second sum is constrained, we have to sum over all
possible particle numbers N. Thus, ultimately all possible sets of
occupation numbers N, occur, and

Zye= ) | e« =] 2., (1.79)
Ny « a

Zy = ) e N (1.80)

No

with
e For fermions, N, = 0,1 because of Pauli’s exclusion principle,
while for bosons, N, = 0,1, ..., c0. Thus

(1.81)

1 + e~ (@ /KT fermions
Z, = -1
“ (1 - e‘(f“‘/‘)/”) bosons ,

where we have used the geometrical series

i e = i (e™)' = N —1e‘x : (1.82)
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e The mean occupation number of a quantum state « is

_ 1 kT 0Z
N(I - Na/ _(E(Y_N)Na/kT — __(I , 1.83
Z Zw: © Z, o (1.83)
which leads to the well-known result
_ 1
(1.84)

@7 Sl 4

where the + sign applies to fermions, the — sign to bosons.

1.3.3 Properties of Ideal Quantum Gases

e In thermal equilibrium with a heat bath of temperature T, the
chemical potential of a system with N particles must vanish,
u = 0: the Helmholtz free energy F(T,V,N) = E — TS is min-
imised in equilibrium for a system at constant 7" and V, so from
dF = -SdT — PdV + udN =0

oF
— =u=0. 1.
v, =#=t 1

The particle momentum g = Ak is generally related to energy by
e(p) = \c2p?* + m3c* . (1.86)

For particles confined in a volume V, the number of states per

k-space element is
14

(2m)}
where g is the statistical weight, e.g. the spin degeneracy factor.
Summations over quantum states are now replaced by integrals
over k space weighted according to (1.84)).

dN =g &k, (1.87)

Using (1.84), the spatial particle number density in thermal equi-

librium is . -y
g tp-dp
= . 1.88

" (27rh>3fo exple(p)/AT] = 1 (1.88)

The mean energy density is the number of states per phase-space
volume element, times the mean occupation number, times the
energy per state, integrated over momentum space,

9 f *  4np’ e(p)dp
~ @nh)* Jy exple(p)/kT]+ 1"

u

(1.89)
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e Integrals like those in (I.88)) and (1.89) are most easily carried out
by substituting the geometrical series (I.82),

(9]

00 md 00 xm __xd 00
f *Z - ¢ . f dxx"e™ Z e ™
0 ex—1 l1—e>

0 0 n=0

me dxx"e™ = mlZm+1).  (1.90)
n=1 0

For fermions, use

R 2
e+1 ex—1 ex—-1"

(1.91)

e Using (1.79), (1.81) and (1.86)), the grand-canonical potential can
be written as

o gV * 2 JKT —e(p)/kT
O(T,V,u) = +kT(27rh)3 fo dpdnp ln[l + e 7P ] ,
(1.92)

with the upper sign applying to fermions, the lower to bosons.
From the expressions for the Helmholtz free energy F, the grand-
canonical potential ® and the thermodynamic Euler relation,

F(T,V,N) = U-TS
OT,V,u) = F-uN=U-TS —uN
U = TS -PV+uN, (1.93)
we find the simple relation
()
d=-PV = P:_V’ (1.94)

which enables us to directly compute the pressure of quantum
gases. Likewise, from the total differential of the grand-canonical
potential, d®(T, V,u) = —SdT — PdV — Ndu, we find the entropy

as
00

S=—-——=.
oT

(1.95)

e Example: relativistic bosons have € = ¢p, and in thermal equi-
librium their chemical potential vanishes, u = 0. Their grand-
canonical potential is thus

_ gV - 2 —ep/kT
(D(T,\/,p)—kT(Zﬂh)3fo 4xp*dpIn[1— ] . (1.96)

We substitute x := ¢p/kT and find

gv (D) [ -
WV = 5o ). FCdxIn(l-e™) . (1.97)
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The integral over the logarithm can be solved as follows:
00 xm+l *®
f XIn(l—e™)dx = In(1-¢™)
0 m+ 1 0
0 m+1 —X
B f X e dx
o m+ 11—-e>
= —ml{(m+2), (1.98)

where (1.90) was inserted. We thus find the grand-canonical po-
tential

n (kT)*
O(T,V,u) = —gV— , 1.99
(T,V,p) = —g 90 (hey? (1.99)
from which we obtain the pressure
() n* (kT)*
Pp=——=¢g——=, 1.100
BTV 7990 (hey? (1.100)
and the entropy density
S 160 27 (kTY
=—=—-———=gk—|— 1.101
TV T ver %45 (hc) (1.101)

Summarising, these equations yield the following expressions for
the number, energy, entropy densities and the pressure of rela-
tivistic boson and fermion gases as well as a non-relativistic gas
in thermal equilibrium (i.e., ¢ = 0):

relativistic distributions: non-relativistic:
Bose-Einstein Fermi-Dirac Maxwell-Boltzmann
u U = gn ;T—(z) i];lf;: Up = %Z—:MB n(%kT + mcz)
P PB:”;—B:ng((Z)): PF:L;—F—%Z—:PB nkT < u
el | i e

(1.102)
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e Some numbers are useful for later estimates. Note: 1eV = 1.6 X
1072 erg correspond to T = 1.16 x 10* K.

TV KT\
10g5 (K) cm™ = 1.6 x 108%gg (W) cm™

ng =
T\* erg kT\* erg
= 38x 107 (J-——:Z%xlw3 ) oL
“B g8 K/ cm3 98 eV/] cm3
s TV KT\
% = 36 (E) cm™ = 5.7 x 10%gg (W) cm™ . (1.103)

1.3.4 Adiabatic Expansion of Ideal Gases

e For relativistic boson or fermion gases in thermal equilibrium, the
pressure is a third of the energy density,

u_E
3 3y’

(1.104)

e The first law of thermodynamics in absence of heat transfer, dE +
PdV = 0, then implies

dE = —PdV =3d(PV) = P V3 (1.105)

1.e. the adiabatic index is v = 4/3. For non-relativistic ideal
gases, y = 5/3.

e According to (1.102)), pressure P scales with temperature T* for
relativistic particles, thus

TV B oal, (1.106)

where a is the cosmological scale factor. The temperature of non-
relativistic gases drops faster,

T o PV V3 g2, (1.107)

e The result is very important for cosmology. It implies that
the photon temperature drops inversely proportional to the scale
factor, which has an important consequence for the spectrum of
the microwave background, as we shall see later.

1.3.5 Particle Freeze-Out

e We have to verify the basic assumption that thermal equilibrium
can be maintained against the rapid expansion of the universe at
early times. For doing so, we compare the expansion rate of the
universe to the interaction rate of particles.
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e At early times, curvature and cosmological constant are negligi-
ble, thus Friedmann’s equation implies

a:a\/&TTG . (1.108)

The expansion time-scale 7., can be approximated by

a 3
foxp X — = ~ (Gp) % . 1.109
e $7Gp (Gp) ( )

During the radiation-dominated era in the early universe, p oc a™,
thus
fexp < @° (1.110)

as we have already seen in ((1.49) in the context of how the young
universe ages. The expansion time-scale thus increases rapidly as
the universe expands away from the Big Bang.

e Thermal equilibrium is maintained predominantly by two-body
interactions. The number of collision partners found by a particle
travelling for a time interval df with velocity v relative to the cos-
mic rest frame through a particle population with number density
nis

dN = n{ov)dr, (1.111)
where o is the collision cross section, which typically depends on
relative velocity v and is thus averaged with v.

e The collision rate experienced by a single particle species is thus

dN
I':= d—t:n(O'v)ocnocT3oca_3, (1.112)
where we have used (I.102) and (I.106) which are both valid
throughout the radiation-dominated early phase of the universe.

The collision time-scale is thus

teon =T e (1.113)

e As a — 0, the ratio between expansion and collision time scales
18 fexp/teoll a-' — oo, which implies that the collisions have
a much shorter time scale than the expansion in the early uni-
verse. Thermal equilibrium can thus be maintained despite the
expansion in particular at early times. As the universe keeps
expanding, collisions become rare and thermal equilibrium will
ultimately break down.

e In absence of collisions, the continuity equation for the number
density n of a particle species is

W+ Vi) =0. (1.114)
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In the homogeneous and isotropic universe, n is spatially con-

stant, and ¢ = HPF, where 7 is the physical distance of a particle
. . . =

from the origin. Since V - 7 = 3, we thus have

i+3Hn=0. (1.115)

e The right-hand side of will deviate from zero in presence
of collisions and thermal particle creation. We saw in (1.112])
that the collision rate is I' = n{ov). Likewise, the source term
for thermal particle creation is § = (a’u)n%. Thus, the continuity
equation changes to read

I’l2
A+3Hn=-Tn+S$ :—rn(l——g). (1.116)
n

e We now introduce the comoving number density N := a’n. sub-
stituting from N = a*>(3Hn + i) in (1.116)) yields

. N2
N:—I“N(I—N—Z) . (1.117)

Substituting further

d . d d d
d—t—Cl@—GHa—Hdlna, (1118)

yields

(1.119)

dlna = H\ N?

dinN T (1 N%)

e Thus, if the comoving number density is thermal, N = N, it does
not change. If N deviates from Nr, it needs to change for re-
adjustment to its thermal equlibrium value Nt. This is impossible
if ' < H because then the rate of change becomes too small.
Then, the particles freeze out of thermal equilibrium.

e For relativistic particles, n o« T3 o a3, thus N = a’n = const..
According to the freeze-out equation (1.119),

din N 3
dlna

0 = N=Np. (1.120)

This implies that relativistic particle species retain their thermal-
equilibrium density regardless of I'/H, i.e. even after freeze-out.

e For non-relativistic particles, the comoving number density in
thermal equilibrium is

Ny oc T3/2g M KT (1.121)
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For kT < mc?, Nt drops exponentially, i.e. very quickly Nt < N,

then dlnN r
n
~—— 0 1.122
dlna = H (1.122)

as the collision rate falls below the expansion rate. The actual co-
moving number density of particles then remains constant, while
its thermal-equilibrium value drops to zero.
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1.4 Recombination and Nucleosynthesis

1.4.1 The Neutrino Background

e Neutrinos are kept in thermal equilibrium by the weak interaction,
Vv e e +e (1.123)
which freezes out when the temperature drops to

T, ~ 10" K ~ 2.7MeV . (1.124)

e Due to their low mass, neutrinos are ultra-relativistic when they
freeze out of equilibrium, thus their comoving number density is
that of an ideal, relativistic fermion gas.

e The electron-positron decay reaction,
et +e o2y, (1.125)
is suppressed a little later, when the temperature drops below,
T ~ 2mec®> ~ 1MeV ~ 10'°K, (1.126)

because photons are no longer energetic enough for electron-
positron pair production afterwards.

e Electrons and positrons annihilate shortly after neutrino freeze-
out. Their decay entropy thus heats the photon gas, but not the
neutrinos. The temperature of the photon gas is therefore higher
than that of the neutrino gas.

e The entropies before and after electron-positron annihilation must
be equal. Let primes denote quantities before annihilation, then
the entropy densities must satisfy

Spr + S + 5, =8, (1.127)

e Before annihilation, the temperatures of electrons, positrons and

photons can be considered equal because thermal equilibrium was
maintained, 7., = T,_ = T; =:T.

e The statistical weights of electrons, positrons and photons are all
ge+ = ge- = g, = 2. Their entropy densities therefore differ only
by the fermion factor 7/8 from (1.102)),

7

St = 80 = 28, (1.128)
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and since they are proportional to 7>, the temperature 7 after an-
nihilation follows from (1.127) as,

(2%+1)(T')3 = 7
11\
= T = (T) T~ 14T . (1.129)

Hence the photon temperature is approximately 40% higher today
than the neutrino temperature.

1.4.2 The Entropy of the Universe Today

e Entropies of different particle species are additive. We generalize
the results provided in (1.102) to multiple (non-interacting) rela-
tivistic species and calculate the entropy density of the Universe

=5 () | ol 5 5 (7

hc
i=bosons Jj=fermions

. (1.130)

e Using (1.102)), we obtain the number density of relic CMB pho-
tons in terms of their temperature today as

_ 2B (kTy,o)3

2 fic

(1.131)

I’Ly’o

where the factor 2 accounts for the two polarization degrees of
freedom of photons.

e Today, the entropy of the Universe is dominated by CMB photons
and three species of neutrinos and their anti-partners,

n*n, 7 (T.o\ n'n,o 43
—k—1 |2+ 6= = k—2" = ~Tkn,,o, (1.132
So 455(3)[ "3 (T%o)l 1570311~ ko, (1132)

where we used (1.129), (I.13T])), and £(3) =~ 1.202.

1.4.3 Photons and Baryons

e Assuming for simplicity that all baryons are locked up in hydro-
gen, the number density of baryons today is

Qp 3H?
BB 2B %107 Qg K em’ (1.133)

ng
my,  my 3nG

where m,, is the proton mass, and Qg is the baryon density param-
eter, defined as in (1.39).
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e As we shall see later, the baryon density parameter is constrained
to be
Qph* ~ 0.025, (1.134)

1.e. baryons contribute only =~ 10% — 20% of the matter in the
Universe.

e The photon number density today is given by the temperature of
the microwave background through (1.102)),

n, =407 cm™ . (1.135)

e Both np and n, scale with temperature o< 7% o ¢, implying that
their ratio is constant,
ng

ni=—=27x10"Qgh* . (1.136)
ny

e There is approximately a billion photons per baryon in the uni-
verse. The entropy of the photon gas dominates the entropy of
the universe by a huge margin, justifying the assumption of adi-
abatic expansion, because any contribution to the entropy due to
irreversible processes can be neglected compared to the photon
entropy.

e [t is unclear how 7 is set. It is a fundamental physical problem
why there are baryons in the universe, because they should have
annihilated with anti-baryons. There must have been an asymme-
try between baryons and antibaryons, which is possible under the
Sakharov conditions (CP violation, interactions changing baryon
number, departure from thermodynamic equilibrium, e.g. during
phase transitions).

e When we speak of “the temperature of the universe” from now
on, we refer to the temperature of the photon gas.

e The smallness of n will turn out to be very important for nucle-
osynthesis and the recombination of the universe, i.e. its transition
from the fully ionised to the neutral state.

1.4.4 The Recombination Process

e As the temperature drops, electrons and protons combine to form
hydrogen atoms when the reaction

e +pteoH+y, (1.137)

freezes out.
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e For determining how recombination proceeds, we need to min-
imise the Helmholtz free energy F(T,V, N), which is related to
the canonical partition function Z,

F(T,V,N)=—-kTInZ. . (1.138)

e For the process (1.137)), the canonical partition function is given
by
Ne 7Np 7N,
_ L%,z
N!N,!\Ny!’

where Z., iy and N,y are the canonical partition functions and
numbers of electrons, protons, and hydrogen atoms, respectively.
Here we assumed independent, indistinguishable particles and a
density that is low enough to neglect degeneracy effects, i.e., g; =
1 for i € {e,p,H}. The photons do not contribute because they
provide the heat bath controlling the temperature 7.

(1.139)

C

e The baryon number is Ng = N, + Ny, the electron number is
N. = N,, thus Ny = Ng — N.. Given the total baryon number, all
other numbers can be expressed by the electron number N..

e Since the numbers N, will be very large, we can use Stirling’s
formula for the factorials, InN! ~ NInN — N.

e We now need to minimise the Helmholtz free energy with respect

to N.:
OF
=0
ON,
0
= [NeInZ. + N,InZ, + Ny In Zy

— Ne(InN, - 1) = Ny(InN, = 1) = Ny(In Ny = 1)]
= InZ.+InZ,-InZy - 2In N, + In(Ng — N.) (1.140)

where we have used

ON, SNy
=1 =-1. 1.141
ON, A ( )

e For the electron number, (I.140) implies

N2 7.7,

S

Ng—=N.  Zy

(1.142)

e Following (1.153) (Die Referenz kommt erst spiter im Text), the
canonical partition function for a single particle species is

ArgV 7 5 e
Z= d (ew/kT 1.143
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where € = mc? + p?/(2m) in the non-relativistic limit. Thus

_ gV(2rmkT)>"? - iT

z (2nh)3

(1.144)

e The total chemical potential must vanish in equilibrium
[cf. (T.T62)], thus u. + p, = pp, and the ionisation potential of

hydrogen is y = (me + m, — mg)c* = 13.6€V. inserting (1.144)
into (1.142)) and using these relations yields

x? _ (2amekT ) -
1-x (2nh)’ng ’

(1.145)

where x = N, /N3 is the ionisation degree, and ng = Ng/V is the
number density of baryons. This is Saha’s equation.

e According to (I.136) and (I.102)), the baryon density is

3) (kT
ng =1nn, = 27]§7T—2 ol I (1.146)
which yields
3/2 3/2
2 = (meCZ) AT 0.26 (mecz) -
L—x  4+2:@)0n\ kT n \ kT
(1.147)

e For recombination to be considered finished, x < 1 and x*/(1 —
x) ~ x2. Since 1/n is a huge number, kT < y is required for x to
be small. For example, putting x = 0.1 yields kT .. = 0.3eV, or

T = 3500K . (1.148)

e Since y = 13.6¢eV, one would naively expect Ty ~ 10° K. The
very large photon-to-baryon ratio 1/n delays recombination con-
siderably.

e Strictly, Saha’s equation is invalid for cosmological recombina-
tion because it assumes thermal equilibrium between the reaction
partners, which breaks down as recombination proceeds. How-
ever, due to the rapid progress of recombination, the deviation
between the ionisation degree predicted by Saha’s equation and
by an exact treatment remains small.

Two-Photon Recombination
e Direct hydrogen recombination produces energetic photons. The

final transition to the ground state is Lyman-a (2P — 15), so that
the energy of the emitted photon is hv > Eyy, = 3x/4 = 10.2¢€V.

Q Q o
> o 4
T T I
| | |

ionisation fraction x

bk
N}
T

—— 012=0.01 |
L —— Q=10
ol _
PRI TS RS T S N S S NI S|
0.2 0.4 0.6 0.8 1

T [ev]
Tonisation fraction as a function of
temperature for three different val-
ues of the baryon density parameter.
Once it sets in, recombination com-
pletes very quickly.
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e The abundant Lya photons keep reionising the cosmic gas be-
cause they cannot stream away as from hydrogen clouds. The
energy loss due to cosmic expansion is slow.

e Recombination can only proceed by production of photons with
lower energy than Lya. This is possible through the forbidden
transition 25 — 1S, which requires the emission of two photons.

e This process is slow, hence recombination proceeds at a some-
what lower rate than predicted by Saha’s equation.

Thickness of the Recombination Shell

e Recombination is not instantaneous, but requires a finite time in-
terval. There is thus a “recombination shell” with finite thickness.

e The optical depth along a light ray through the recombination
shell is

T= fnCO'Tdr = nBO'fodr, (1.149)

where ot is the Thomson scattering cross section,

8 2 2 1’_ /\n\ calculation |
or=—=(==) =6.65x 105 cm? (1.150) : /

3 \mec? o8 _
and dr = cdt = cda/a is the proper length interval. E 6.6 ]
e The probability distribution for a photon to be scattered between : 0al ]

zand z —dzis .
_dr = Gk ]

p(z)dz =e"—dz . (1.151) 02
dz

This distribution is well described by a Gaussian with mean z = °r L T
1100 and standard deviation o, ~ 80. e 0 it 1o

) ] ) ] ] ] Detailed calculation of and Gaus-
o The finite width of the last-scattering shell implies that microwave

ba.ckgrouI?d photons seen today were releasgd aF different red- ability distribution as a function of
shifts. Since the plasma cooled as recombination proceeded, . chift.

the CMB photons were released at different temperatures. Since

T =Ty + 2),

sian fit to the last-scattering prob-

0T = Tyoz = Too, = 200K . (1.152)
This is a sizeable temperature difference.

e Photons were redshifted after their emission. Those emitted
earlier from somewhat hotter plasma were redshifted somewhat
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more, and vice versa for photons emitted later. These effects can-
cel exactly in Friedmann-Lemaitre models because T o a~'. De-
spite the CMB photons originate from plasma with a range of
temperatures, the CMB is thus expected to have a Planck spec-
trum of a single temperature.

1.4.5 Nucleosynthesis

e As the universe expands and cools, it passes through a temper-
ature range which allows the fusion of light nuclei. The faster
the expansion, the less time there is for nucleosynthesis, thus the
light-element abundances measure the expansion rate in the early
universe.

e Protons and neutrons form at the QCD phase transition when
kT ~ 160MeV. Afterwards, they can interconvert through the
weak interaction, e.g.

n+vee p+e (1.153)

and remain in thermal equilibrium until weak interactions freeze
out at kT ~ 800 keV.

e At this point, the neutron-to-proton number-density ratio was

@ — e—Amcz/kT — l , (1154)
l’lp 6

where Amc? = 1.4 MeV is the mass difference between neutrons
and protons.

e Fusion builds upon two-body processes because the probability
for others is too low. The first element to form is deuterium, the
next are helium isotopes, followed by Lithium. Examples are

n+p — 2H+)/
’H+’H — °He+n
‘He+’H — “*He+p
H+H — °*H+p
‘He+°H — 'Li+vy. (1.155)

The absence of stable nuclei with atomic weights A = Sand A = 8
and increasing coulomb barriers make the production of heavier
elements highly inefficient.

e The equilibrium of deuterium formation n + p < *H + v is con-
trolled by Saha’s equation. As for recombination, high photon
density prevents >H formation through photo dissociation until
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temperature has dropped well below kT =~ 2MeV corresponding
to the binding energy. 2H formation is delayed until kT ~ 80keV,
about three minutes after the Big Bang.

e This is well before matter-radiation equality, thus the density of
relativistic particles (photons, neutrinos, others?) (Others?) con-
trols the expansion rate, and baryon-to-photon ratio 7 is the only
relevant parameter,

=101, o =273Qsh>. (1.156)

e Deuterium is crucial. If too much ?H is formed, neutrons are
locked up, no heavier elements can form. If too little *H is
formed, an important agent for further fusion is missing. The
2H production rate needs to be “just right”,

ng{ov)t ~ 1. (1.157)

This is the Gamow criterion. >

e The velocity-averaged fusion cross section {(ov) is known. The
time ¢ is determined by the expansion rate, i.e. the photon density
or photon temperature 7. The Gamow criterion can thus be used
for estimating T from constraints on the baryon density ng. o

Helium abundance as a function of

°

e Neutrons are in equilibrium with protons until k7" ~ 800 keV and

consumed in efficient fusion after k7 ~ 80keV. In between, they 7 o
decay with a half-life of
fy = 886.7+ 195 . (1.158) &
Accordingly, the neutron-to-proton ratio drops to o
n, 1 o
—==. 1.159 1 10
=7 (1.159)

Mo

. . . Deuterium abundance as a function
e Once *H exists, neutrons are efficiently locked up into “He be-

cause of its high binding energy. The expected primordial *He
abundance by mass (Y,) is thus

np — Ny 2 n 2 ny/n 1 107°F
Y l-xy~ -2 2 2wim) 1
n,+n, ny+n, l+mny/n, 4 :

where X, denotes the primordial hydrogen abundance by mass.

of n

Li/H

This number is relatively insensitive to the baryon density, and 0! 1
thus to 7.
Mo
e Expected trends of light-element abundances with 7 are: Lithium abundance as a function of
n

— Gentle increase of Y, with increasing 1 as nucleosynthesis
starts earlier.
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— 2H and *He are burnt by fusion, thus their abundances de-
crease as 7 increases, which implies more available time for
burning.

— "Li is destroyed by protons at low n with an efficiency in-
creasing with 7. Its precursor 'Be is produced more effi-
ciently as 1 increases. Thus, a ’Li valley is formed.

e Element abundances are calculated using Monte-Carlo codes.
The main uncertainties are the interaction rates and the half-life
of free neutrons. 2-o prediction uncertainties are ~ 0.4% for “He,
~ 15% for ?H and *He, and ~ 42% for "Li at ;9 = 5.

Comparison with observations is difficult because light elements
get produced and consumed (e.g. in stars) during cosmic history.
Objects need to be found which either retain the primordial ele-
ment mix, or in which abundance changes can be constrained:

— 2H is observed in neutral hydrogen gas via resonant UV ab-
sorption from the ground state, or via the hyperfine transi-
tion of the ground state, or via 2H-H molecule lines.

— 3He" is observed via the hyperfine transition of the ground
state.

— “He is probed by optical recombination line emission in
1onised hydrogen (HII-regions).

— 7Li is observed in the spectra of cool, low-mass stars in the
Galactic halo (very old, local stellar population).

Heavy elements are formed by stars as early as z ~ 6, so observa-
tions need to concentrate on gas with lowest metal abundance.
Possibly observed dependence of light-element abundances on
metal abundance may allow extrapolation to zero enrichment.

It is assumed that evolutionary corrections for 2H, “He and "Li are
low or negligible, but highly uncertain for *He because of later
production in pre-main sequence stars and destruction in stellar
interiours.

2H is ideal baryometer because of monotonic abundance decrease
with increasing 7. Destroyed by later fusion, so observed abun-
dances are lower bound to primordial abundance. (Folgender Satz
hat keinen Hauptsatz) Can be observed in high-z quasar spectra
which require high resolution to allow accurate continuum sub-
traction, corrections for saturation and velocity shifts in hydrogen
lines. Such measurements find

PH_(3-4)x107,
ny

(1.161)

QSO 1937-1009
[ 2g, = 3572
20

10 -

Flux (107 erg s™! em™ &71)

1 1
6000 7000

0.5

Normalized Flux

0r . . : ? 1
5555 5560

Wavelength (&)

Deuterium line in a high-redshift
quasar spectrum.

T T
Li total ol

F 7Li primordial
L = 7Li GCR

-4 -3 -2 -1 0
[ Fe/H ]

The Spite plateau in the Lithium
abundance.

Fraction of critical density

0.01 0.02 0.05
g T

S 025 F E
5 [ —a]
goaeb E
» 023 F E
17}

S o2t E
Q
&

—4

= 1074 D i
3

o

2

= 3

® 10750 He i
;.

o

£ 107°] 4
2 "Li

10710 i
1

1 4 5
Baryon density (1073 g em™®)

Results from Big-Bang nucleosyn-
thesis.



CHAPTER 1. THE HOMOGENEOUS UNIVERSE 36

at 95% confidence. Substantial depletion is unlikely because it
should have increased metal abundance. Somewhat lower values
are seen in the interstellar medium consistent with consumption.

e “He observations suffer from systematic uncertainties due to nec-
essary metallicity corrections, the interpretation of stellar absorp-
tion spectra and collisional excitation of observed recombination
lines. A conservative range for the “He abundance is

Y, =0.238+0.01. (1.162)

e ’Li is observed in low-metallicity halo stars which should have
locked up very nearly primordial gas, but they may have pro-
cessed it. Cool stellar atmospheres are difficult to model. Stel-
lar rotation is important because it induces mixing. 'Li may also
have been produced by cosmic-ray spallation on the interstellar
medium.

e Li abundance against iron abundance shows the Spite plateau
with very little dispersion,

n

L _22+0.1. (1.163)

Arip =12 +log
ny

Necessary corrections seem to be moderate.

e Results from Big-Bang nucleosynthesis theory and observations
can be summarised as follows:

— Through (I.156)), density of visible baryons implies 77,9 >
1.5.
— 2H abundance (1.161)) implies 4.2 < ;9 < 6.3

— ’Li abundance predicted assuming this range of 77 is 2.1
Avip < 2.8, consistent with the observed value (1.163)).

IA

— This yields 0.244 < ¥, < 0.250, overlapping with measured
range (1.162).

e The baryon density implied by Big-Bang nucleosynthesis is
Qgh* = 0.019 +0.0024 , (1.164)

at 95% significance. It is mainly based on the high-z deuterium
abundance, but yields a consistent set of light-element abun-
dances.
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2.1

The Growth of Perturbations

2.1.1 Newtonian Equations

There are pronounced structures in the universe on scales from
stars to galaxy clusters and filaments. While filaments and the
voids they surround can reach sizes of ~ 50 h~'Mpc, they are still
small compared to the Hubble radius. In this chapter, we describe
the basic theory for structure growth in the expanding universe.

Strictly, this theory should be worked out in the framework of
general relativity, which is a complicated exercise. With the in-
homogeneities being “small”, i.e. much smaller than the typical
scale of the universe, we can neglect effects of curvature and
the finite speed of information propagation and work within the
framework of Newtonian dynamics.

The dynamics of stars in galaxies, and of galaxies in galaxy clus-
ters, shows that these objects need to contain much more matter
than can be inferred from the light they emit. This is evidence for
the existence of “dark matter” in the universe which dominates its
matter content.

We thus need to describe inhomogeneities in a cosmic fluid which
contains at least radiation, dark matter, and baryonic matter and
which moves according to Newtonian gravity.

We begin with the continuity equation, which formulates mass

conservation,

o
8—€+V-(p17)20, @.1)

where p(t, X) and #(¢, ¥) are the density and velocity of the cosmic
fluid at position X and time 7. In contrast to the homogeneous
universe, they now depend on position.

The second equation is Euler’s equation which formulates the
conservation of momentum,

—+ (@ V)= V. 2.2)
The terms on the right-hand side represent the pressure-gradient
and gravitational forces.

The Newtonian gravitational potential @ satisfies the Poisson
equation
V20 = 4nGp . (2.3)
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2.1.2 Perturbation Equations

e We now decompose density and velocity into their homogeneous
background values pq and &, and small perturbations §p and 67,

pt, %) = po(t) + op(t, X) , U, %) = p(t) + 00, ¥) .  (2.4)

e Let 7 and X be physical and comoving coordinates, respectively,
then 7 = aX and the velocity is

U=F=aX+aX=Hr+aX =10+ 00, (2.5)

i.e. Uy = HF is the Hubble velocity, and 60 = ai is the peculiar
velocity deviating from the Hubble flow.

e Inserting (2.4) into (2.1) and keeping only terms up to first order
yields
d(po + 6p)
ot
The background quantities o, and 7 need to satisfy mass conser-
vation separately,

+V - (0ol + 6pily + podd) = 0 . (2.6)

%o
ot

W0 | 3Hp, =0 2.7)

+poV - Tl o

where i, = HF and V - 7 = 3 were used. Thus
0op

E+170-65p+p06-517+5p6-170:0. (2.8)
e Defining the density contrast,
S
5= (2.9)
Po
we find 55
=2 = 8o + Spo = ~0pa¥ - 8y + Sp . (2.10)

using the unperturbed continuity equation (2.7). The perturbed
continuity equation (2.8) can now be written

5+0,-Vo+V-67=0. (2.11)

e Likewise, we split the momentum conservation equation (2.2
into unperturbed and perturbed parts, where we introduce the
pressure and potential perturbations ép and 6@, and keep only
terms to linear order,

68 » Vép o
a—t” (67 Vi + (@ - V)07 = ——L Vo0 . 2.12)
Po

Written in components, the term (67 - 6)1‘)’0 reads

[(517 6)170] = (5vjai) Hr,~ = H5,J(617)J = H(617))l . (213)

i rj
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e Treated similarly, the Poisson equation becomes

V26D = 47Gp6 . (2.14)

e We now convert to comoving coordinates, ¥ = 7/a and comoving
peculiar velocities, ii := 60/a, and introduce the gradient with
respect to the comoving coordinates,

=3 1 =3
V,=-V,. (2.15)
a

e Likewise, we have to transform the time derivative. The total

differential of an arbitrary function f(7,¢) is

df = ‘E—J:d”ﬁ,f-d?:%dt+€,f-a(Hfdz+dx)
9 R R
= (a—J;+Hx’-fo)dt+fo-d)?,

hence, the partial time derivative in physical coordinates needs to
be replaced according to

0 > 0
— +HxX-V —. 2.1
6t+ TR (2.16)

In order to keep notation simple, V abbreviates ﬁx hereafter.

e We are now left with the three perturbation equations

§5+V-i = 0
: Vop Vod
i+2Hd = ——L- 1
apy a
V26D = 4nGpyd’s , (2.17)

for the four variables 6, i, 6p, and 6®. The over-dots denote
partial time derivatives. We additionally need an equation of state
linking the pressure fluctuation to the density fluctuation,

8p = 6p(8) = c26p = cpyd , (2.18)

with the sound speed c;.

2.1.3 Density Perturbations

e Taking the divergence of the Euler equation, we find an equation
for ﬁ(ﬁ) = d(ﬁ - 0)/dt, which can be inserted into the total time
derivative of the continuity equation. This yields the single equa-
tion for the density contrast

02V25)
. (2.19)

. - .
0+2Ho = (471Gp0(5 + e
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e We can decompose ¢ into plane waves,

S(X, 1) f ¢k S(k, e k¥ (2.20)

‘x, = 2 b .
(2n)?

introducing the time-dependent Fourier amplitudes 3(1?, t) and de-

coupling the time evolution from the spatial dependence. Inserted

into (2.19)), this yields

N A A 02k2
6 +2H5 = 6(477Gp0 - ) (2.21)
a

e Starting from special-relativistic fluid mechanics, and ignoring
pressure gradients, the perturbation equations for an ideal rela-
tivistic fluid (e.g. photons) can be derived in a very similar way.
This leads to the replacements V. (p0) — V. [(p + p/c?)V] in the
continuity equation, and p — p + 3p/c? in the Poisson equation.
With the pressure p = pc?/3 for radiation domination, this means
substituting V - (o) — 4/3V - (o?) in the continuity equation and
p — 2p in the Poisson equation. Ignoring pressure forces, the
result is the evolution equation

R A 4 A 32 A
6 +2HG =2 - 4nGpod = TﬂGpoé . (2.22)

e On a static background, H = 0, and (2.21]) becomes the oscillator
equation

212
czk
a2

S+ wd=0, wy:= — 47Gpy . (2.23)

The oscillation frequency is real for sufficiently large comoving
wave numbers k,

(2.24)

ky defines the comoving Jeans length

2r ¢ bs
Ayi=—=—_[—. 2.25
TN T a ’/Gpo (2.25)

Perturbations smaller than the Jeans length oscillate. Others grow
or decay. The Jeans length can be empirically derived by balanc-
ing the sound crossing time, t;, = adj/c; = 2na/(kycs), with the
gravitational free-fall time, ty = +/m/(Gpy), which yields the de-
sired result (2.24)).
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e We now study the behaviour of perturbations on scales much
larger than the Jeans length, or in pressure-less fluids. If Q = 1,
the perturbation equations read

~ A 3 A R A A
o+ 2HS = 5H25 , O+2H6=4H?* (2.26)

for the matter- and radiation-dominated cases, respectively, for

which we have from (1.52)) and (1.49))

a 2 a 1
_:H[:—, —:H[:—. 2.27
a ® 3t a ® 2t ( )

e The ansatz 3(/2, 1) oc 1" yields
o, n 2 2

+--==0, -1=0 2.28
w33 n (2.28)
hence n = —1,2/3 in the matter-dominated and n = +1 in the

radiation-dominated cases, which translates to

a .
32 matter-dominated era
0« ) (2.29)
a . .
a2 radiation-dominated era

Decaying modes are irrelevant for cosmic structure growth, so 2 ‘ ‘ e p—

19 -

6 o a* during the radiation-dominated era, and § o a afterwards. e
The phases of the waves determine whether a given cosmological ol
patch develops into an underdense region (i.e., a void) or a galaxy £ '/

o 14r

cluster. Constructive interference of the growing modes causes al
the development of overdensities, which then collapse into galax- o
ies (in the case of small-scale modes) or clusters (for large-scale o ‘ ‘ ‘ ‘
modes). Destructive interference leads to the growth of voids. ’ ’ b s ’ *
Linear growth factor D./a as a
function of redshift for different

cosmologies.

0=0.3,A=0.7 —— |

e During the matter-dominated era in models with Qo # 1 and
Qa0 the linear evolution of the density contrast follows

6(a) = 6pD.(a) , (2.30)

with the linear growth factor

g(a)
D, = =
(@ g(1)
5 ¢ da’
gla) = EQmoE(a) fo PE@) (2.31)

In excellent approximation,

5 1 1 -
g(a) = Eagm [9‘37 —Qp + (1 + 5Qm)(l + %QA)] . (2.32)
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The A term causes a faster growth of structure at earlier times
and slows down structure formation at late times (in comparison
to an Einstein-de-Sitter universe). Well after the dominance of the
cosmological constant, structure formation eventually comes to a
halt and structures that have not had time to virialize yet (such as
super clusters) can be pulled apart by the gravitational repulsion
of the cosmological constant such that they will never collapse in
the future.

e The sound speed defines the Jeans length, below which pertur-
bations cannot grow, but oscillate. For dark matter consisting of
weakly interacting massive particles, for instance, the concept of
a sound speed makes no sense because the dark matter behaves
like an ensemble of collision-less particles. In that case, one can
show that the comoving Jeans length (2.24) is replaced by

" =
Ay = p Gro , (2.33)

where v is the velocity dispersion of the particles. Perturbations
in collision-less matter smaller than the Jeans length are thus pre-
vented from growing because their gravity is insufficient for keep-
ing their particles bound.

¢ (Hypothetical) forms of dark matter with v — 0 are called “cold
dark matter” (CDM). They have 4; — 0, hence structures can
grow on all scales. If v is finite as it would be for neutrinos, the
matter is called “hot dark matter” (HDM).

2.1.4 Velocity Perturbations

e Ignoring pressure gradients, the second equation (2.17) says

il +2Hil = ——— | (2.34)

The peculiar velocity field must thus be aligned with the gradient
of the potential perturbation. We attempt solving the continuity
equation using the ansarz it = u(r)Vo®,

_do

u(H)V26D = u(t) 4nGpod®s = i (2.35)
a

e For linearly growing perturbations, we have

do dD.(a) 6dInD.(a) )
— =94 = — = —f(Q), 2.36
da O da a dlna af( ) ( )

where dinD

F(@Qu) = 102D oo (2.37)

dlna
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is an excellent approximation. Moreover, we insert

3H? 3H’Q,
4rGoo = 4G Q.= R 2.38
nGpo = 4nG o= > (2.38)
into (2.35)) and find
2f(Qm)
)= —————. 2.39
u(r) 3EHO, (2.39)

e The peculiar velocity field satisfying the continuity equation can
thus be written as

A A VAT (2.40)

This solution states that a potential well (that is caused by an up-
wards fluctuation of the density) gravitationally attracts matter in
the surroundings and pulls on it. This causes this matter to flow
in (hence the minus sign) and to accrete, which further deepens
the well. Additional solutions are possible which exhibit vortic-
ity, ii = Vx4, such that V - i = 0. Since & can either grow or
decay, 6 = 0 and V - il = 0 can occur only where ¢ = 0.
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2.2 Statistics and Non-linear Evolution

2.2.1 Power Spectra

e We have seen before (2.20) that it is convenient to decompose
the density contrast ¢ into plane waves. We introduce the Fourier
transform o of the density contrast ¢ as

3 5 P
§(R) = f K s@eits, 5@ = f Ero(DeT . (2.41)
(2m)?

e The density contrast is a random field, which must be isotropic
and homogeneous in order to comply with the fundamental cos-
mological assumptions. This means that the statistical properties
of 0, e.g. its mean or variance, do not change under rotations and
translations.

e By definition, the mean of the density contrast vanishes,

<5>:<m>:@—1:0. (2.42)
Po Po

The variance of ¢ in Fourier space defines the power spectrum
P(k),

(65 (k") = (2m)* Pk)ép(k ~ K') , (2.43)
where op is Dirac’s delta distribution, which ensures that modes
of different wave vector k are uncorrelated in Fourier space in

order to ensure homogeneity. The power spectrum cannot depend
on the direction of k because of isotropy.

e The correlation function of ¢ in real space is defined as

£(y) = (ODS(X+ 1)) , (2.44)

where the average extends over all positions X and orientations of
. The correlation function measures the coherence of the density
contrast between all points on the sky separated by a distance |].
Again, ¢ cannot depend on the direction of i because of isotropy.

e Inserting the Fourier integrals for §(¥) in (2.44)), we find

3k N
s < G J G R kW>
d3k d3k, AP R T —iif iﬁ’)?
-/ (zn)3f s OO0 e
Bk "
= P(k)e*? | (2.45)

(2m)?



CHAPTER 2. THE INHOMOGENEOUS UNIVERSE 46

which states that the correlation function is the Fourier transform
of the power spectrum (and vice versa). Hence, both statistical
measures carry an equivalent amount of information. Simplifying
furthermore, we obtain

kzdk g : —iky cos @
&y = 2nm (2ﬂ)3P(k) fo sin d@e™
k*dk sin ky
= 4 (zﬂ)3P(k) R (2.46)

where 6 was the angle between vectors k and ij. Obviously, the
variance of ¢ is the correlation function at y = 0,

k*dk

2
47 | ==
o T (27‘()3

P(k) . (2.47)

e The variance in real space depends on the scale which we are
considering. Let us introduce

(%) = fd3y5(f)WR(If— 7 (2.48)

1.e. the density contrast field averaged on the scale R with a win-
dow function Wx. The idea of the window function is that it ap-
proaches a finite constant well within R, and drops to zero outside
R.

J—

e The Fourier convolution theorem says f * g = f§, i.e. the Fourier
transform of a convolution is the product of the Fourier transforms
of the convolved functions. Applying this to (2.47) yields 5 =
6Wr. thus, the power spectrum of the density contrast filtered on
the scale R is P(k) = P(k)W2(k). Using , the variance of the
filtered density-contrast field is

k*dk u
2 _ 2
og =4n f 20y P(k)Wg(k) . (2.49)
The variance on a scale of 8 7~! Mpc, o, is often used for char-
acterising the amplitude of the power spectrum.

2.2.2 Evolution of the Power Spectrum

e We have seen in (2.29)) that density perturbations grow o a? dur-
ing the radiation-dominated era, and oc a afterwards.

e As the universe expands, the Hubble radius grows, and thus the
scale of perturbations which can be in causal contact. A density
perturbation mode is said to “enter the horizon” when its wave
length A equals the Hubble radius.
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e Modes entering the horizon while radiation dominates feel the ra-
diation pressure, which almost completely stops the growth of the
density perturbation until matter starts dominating and radiation
pressure quickly becomes negligible. Accordingly, modes which
are small enough to enter the horizon before a.q are relatively
suppressed compared to larger modes which enter the horizon af-
terwards.

e Modes of comoving wave number k enter the horizon at aq if

3/2
2 C ae(/]

A= = Aoyl = Py = — 0
0T T T YT Hy V200,

Thus, the wave number of modes entering the horizon at a.q is

H, /mm H, 2
ko = 2m—2 0 = 272=20,0 . (2.51)
c Ceq c Qo

Modes larger than this, i.e. with k < k, continue growing. Modes
with k > k( stop growing when they enter the horizon at depe, and
continue only after a., when radiation ceases to dominate.

(2.50)

e According to (1.68), the Hubble radius scales like o« a®> during
radiation domination and o @/? later, hence depye is determined

by
2
/l _ 27T aenter (aenter < aeq)
Uenter Aenter 7~ X 3/2
k Uonter (Genter > aeq)

k! (aenter < aeq)

- 2.52
k 2 (aenter > aeq) ( )

= Uenter X {

e While the growth of small modes is suppressed, modes larger than Groth SUPP_reSSion during  the
Ao continue growing o a? during radiation domination, hence the ~radiation-dominated era.
relative suppression of the small modes is

2 2
fsup _ (Clenter) — (lﬂ) ) (253)

Aeq k

e Suppose the initial power spectrum at very early times is P;(k).
If modes enter the horizon before a.y, the spectrum is Peper(k) =
at  Pi(k), and Peyer(k) = a? .. Pi(k) if they enter afterwards. In

enter enter

both cases, Peyer(k) = k~*P;(k) because of (2.52)).

e The total power in density fluctuations on scales 27/k is k> P(k).
Assuming that the power entering the horizon should not depend
on time, the initial power spectrum must satisfy

K Poier(k) = k> - k*Py(k) = const. = Py(k) « k . (2.54)

This is called the Harrison-Zel’dovich-Peebles spectrum.
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e For k < ky the shape of the spectrum is unchanged because all
such modes grow similarly. For k > ko, suppression oc fszup o k™
sets in. Thus, we expect the spectrum to behave like -

CDM, linear —

ko (k <k RN
P(k) oc{ > k) (2.55)

This is the shape of the spectrum for cold dark matter (CDM). ol

For hot dark matter (HDM), it is cut off above the Jeans wave

number k; corresponding to the finite velocity dispersion of the .

hot particles. T e "
Linear and non-linear CDM power

1 b

spectra.

2.2.3 The Zel’dovich Approximation

e Once the density contrast 6 approaches unity, the linear descrip-
tion of its evolution will break down. A kinematical treatment
for following the evolution further into the non-linear regime was
invented by Zel’dovich.

o [t starts by decomposing the cosmic fluid into particles and writ-
ing their (physical) trajectories as

A1) = a(HR+ b F(3) (2.56)

where ¥is the particle’s position at some very early time. The first

term describes the universal expansion, the second the peculiar
. . _). . .

motion. We assume that the displacement field f is irrotational,

f = V@, (2.57)
with some scalar potential /().

e Since trajectories cannot get lost, the evolution of physical density
is given by the Jacobian determinant of the mapping ¥ — 7,

p =podet ™! [%] = podet ! [a(t)(sij + b(z)%] . (2.58)

8xj ¥
e Let (4, A2, A3) be the eigenvalues of the deformation tensor f;; :=
df;/0x; = 8%/ dx,0x;, then the density is

_ Po
C(a+bA)(a+bh)a+bly)’

P (2.59)

where p, is the mean density at the present time. The mean den-
sity at later times is p = poa~, i.e. the density contrast is

1

(1+b/ad)(1 +b/a)(1 + blas) -1

b b
x —L+L+A43)=—-V-f (2.60)
a a

5 =
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e The velocity perturbation has to satisfy the continuity equation
- .
V - i = —4. Evaluating this equation in the appropriate approxi-
mation yields

_5:(‘1_5‘_”)6.]?:H(db<a) _é)e.fée.ﬁ, 2.61)

a a? da a
thus " ,
i= H( @ _ —)f. (2.62)
da a

e From the growth of the linear density perturbations (2.30), we can
immediately infer that

g =D.(a), 6 =-V-f, (2.63)
thus
4 _ D, + o3P+ _ D.[1 + f(Qu] . (2.64)
da da
and
il = HD.(a)f(Qu)f (2.65)

1.e. the displacement field f is directly proportional to the velocity
perturbation .

e Combining results, the particle trajectories according to the
Zel’dovich approximation are

?:a[f+D+(a)f1 =a

L&
X+ Hf(Qm)] . (2.66)

e An important result can be derived from the Zel’dovich approx-
imation assuming that the density contrast, and thus the pertur-
bation of the gravitational potential, are Gaussian random fields.
The theory of multivariate Gaussians allows to derive the proba-
bility distribution p(4;, A,, 43) for the eigenvalues of the deforma-
tion tensor Fj;. The result is

153
P, A, A3) = ——— (A3 — )(A3 — 4)(A — 4,1)[2.67)
87 V50
3
X exp {—272 2047 + B+ 2D) = (Lo + 145 + 4243)]} :

with o2 from . This result shows that the probability
for two eigenvalues of F;; to be equal is zero, implying that
isotropic collapse is excluded. Forming structures will therefore
be anisotropic, progressively flattening as the collapse proceeds.

The resulting flattened mass distributions were called “pancakes”
by Zel’dovich.
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2.2.4 Nonlinear Evolution

e When the density contrast reaches unity, linear perturbation the-
ory breaks down. The Zel’dovich approximation breaks down
when trajectories cross because they just pass each other, ignor-
ing their gravitational interaction.

e For a correct treatment, one has to resort to numerical simulations.
They decompose the matter distribution into particles whose ini-
tial velocities are typically slightly perturbed according to some
assumed power spectrum. The particles are then transported to
redshifts high enough for linear evolution to hold on all scales
considered. For later evolution, the equations of motion for all
particles are solved. In the following, the most popular numerical
techniques shall be presented:

1. Ideally, particles move under the influence of the gravity
from all other particles, but direct summation of all the grav-
itational forces of N—1 particles on N particles becomes pro-
hibitively time-consuming and the scheme attains numerical
complexity of O(N?) for every timestep. Several approxima-
tion schemes are therefore being employed.

2. The particle-mesh (PM) algorithm computes the gravita-
tional potential of the particle distribution on a grid (mesh)
by solving Poisson’s equation in Fourier space, making use
of fast-Fourier techniques, thereby reducing the numerical
complexity to O(N log N). The gravitational forces are then
given by the gradients of the potential at the particle posi-
tions. This technique has a spatial resolution limited by the
size of the mesh cells which makes it impractical for many
modern applications.

ACDM

SCDM

rCDM

3. The particle-particle particle-mesh (P*M) algorithm im-
proves the PM technique by adding corrections for nearby
particles which are determined by direct summation. Here,
the numerical complexity is also O(N log N) provided the
number of particle-particle operations per timestep 1S kKeptl  pu—
constant. However, this is not the case for high-resolution 1, virco comporation 199
“zoom” simulations of individually forming objects in cos-
mological environments.

0CDM

nonlinear structure evolution, sim-
ulated in different cosmologies
4. Tree codes bundle distant particles into groups whose grav-  (Virgo collaboration)

itational force on a particle is approximated as if they were

point masses, or masses whose spatial distribution has a few

low-order multipoles only, e.g. the monopole corresponding

to a point mass, plus a dipole corresponding to a linear de-

formation, and so on. Depending on the solid angle that is

subtended by the group on the sky seen by the particle, the
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“tree” is opened into its branches and leaves, i.e., higher-
order multipoles of this group are considered. Alternatively,
the monopole of that group, which is centered on its center-
of-mass, is subdivided into the monopole moments of sub-
groups of the parent group, which subtend a smaller angle
on the sky. It turns out that the numerical complexity of this
technique is also O(N log N). The particle tree is updated as
the evolution proceeds.

e Non-linear evolution causes density-perturbation modes to cou-
ple: while modes of different wave lengths evolve independently
during linear evolution, mode coupling in the non-linear evolution
moves power from large to small scales as structures collapse.
The effect on the power spectrum is that the amplitude on small
scales is increased at the expense of intermediate scales. Large
scales continue to evolve linearly and independently.

e Even if the original density perturbation field ¢ is Gaussian, it
must develop non-Gaussianities during non-linear evolution. This
is evident because ¢ > —1 by definition, but can become arbitrar-
ily large. An originally Gaussian distribution of ¢ thus becomes
increasingly skewed as it develops a tail towards infinite o.

e Typical behaviour seen in numerical simulations shows the for-
mation of “pancakes” and filaments as predicted by the theory of
Gaussian random fields. Gravitational fragmentation of filaments
into individual lumps causes galaxy-sized dark matter overden-
sities to form, which are called haloes. In the ACDM universe,
those merge into galaxy groups which gradually stream towards
the higher-density regions and larger mass concentrations at the
intersections of filaments—galaxy clusters. Those form at the
sites of constructive interference of long waves in the primordial
fluctuations and are enhanced through gravitational collapse. On-
going gravitational pull on the surrounding regions causes galaxy-
and group-sized haloes to continuously merge into clusters which
sit atop the cosmic mass hierarchy of haloes and thereby present
the largest gravitationally collapsed objects to date. Giant voids
form as matter accumulates in the walls of the cosmic network.
Equivalently, the formation of voids can be considered to result
from destructive interference of waves in the primordial fluctua-
tions.
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2.3 Spherical Collapse

2.3.1 Collapse of a Homogeneous Overdense Sphere

o The distribution of the dark matter in the universe can be consid-
ered as composed of individual so-called haloes, approximately
spherical overdense clouds of dark matter which can reach highly
non-linear densities in their centres.

e An approximate understanding of the parameters of such haloes
and their relation to the dark-matter density contrast can be ob-
tained by studying the dynamics of a spherical, homogeneous
overdensity, leading to the so-called spherical collapse modelE]
While considering a spherical collapse of matter formally contra-
dicts Zel’dovich’s collapse analysis, an exact analytical solution
that results from such an analysis nevertheless provides useful in-
sights into non-linear collapse of more realistic situations. In par-
ticular the analysis (1) relates time (or redshift) at which the ob-
ject collapses to its initial (linear) overdensity and (2) it maps the
collapse time (redshift) to the final density of dark matter haloes
that formed by collapse.

e The measured temperature anisotropies in the cosmic microwave
background imply 6 <« 1 at recombination. Thus, non-linear
collapse happens at a > ay., 1.e., in the matter- or vacuum-
dominated eras. We make the following assumptions in our anal-
ysis.

— We consider a spherical perturbation that has initially a uni-
form overdensity.

— The fluid is assumed to have zero pressure and is colli-
sionless (i.e., the analysis applies to dark matter and not
baryons). Later stages of baryonic collapse are different
from that of dark matter since baryons additionally feel the
pressure force, which causes the development of shocks in
converging flows. However, since baryons only contribute
16% of the total mass, they do not appreciably change the
collapse of dark matter.

— For simplicity, we set Q = Q. = 1, i.e., a flat matter-
dominated universe. This can be generalized to cases with
Qmo #1 andQA # 1.

e We consider a sphere of mass M and proper radius R and assume
that the universe outside the sphere remains spherically symmet-
ric such that it exerts no gravitational force on the matter in the

' An alternative derivation of the spherical collapse that employs the equations of
motions in dimensionless form is provided in Appendix
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sphere. Since M = const., we have

d*R  GM
TR (2:68)
which can be integrated to yield
1 (dR\" GM
= ——=9¢. 2.
2 ( dr ) R ¢ (2.69)

e We consider the gravitationally bound case, for which the energy
per units mass is ¢ < 0 and which leads to collapse. Adopting
R = 0 att = 0, we can integrate this equation and obtain

f o sin 6d6

V2 (GM/r+¢ \/T o0 V2/(T—cos®)—1°
(2.70)

where we suitably changed the integration variable, using the

transformation r = A(1 — cos#), where A = GM/(2|¢|). Em-

ploying trigonometric identities, we obtain

"1 cosarde = A Y. @)
t= —c0s0)dfd = ——(0 —sinb) . .
24

\/2| 0(0)

Thus, the spherical collapse problem has the following parametric
solution, which describes a cycloid,

GM
R = A(l — COS 9) , A= qul s (272)
. GM
t = B(@-sinf), B= W . (2.73)

e The solution is characterised by an initial expansion phase from
R =0atd = 0. It reaches a maximum radius R, = A at b, =«
at which it turns around and collapses back to R = 0 at 6. =
2n. In principle, it re-expands for 6§ > 2 but in practice, other
physical effects become important and complicate things. The
corresponding times are f, = B for the maximum (turn-around)
radius and . = 2B = 2¢,, for collapse at R = 0.

2.3.2 Connection to Linear Perturbation Theory

e The mean density inside the sphere is (2.72))

M 3M 1 o7
PE423R ~ 4743 (1 — cos )’ ° '
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while the mean density of the background universe with Q.o = 1

is
3H? 1 1 1

= = , 2.75
871G  6nGr2  6nGB? (0 — sin )2 2.75)
with H = 2/(3¢). The overdensity of the sphere (which is gener-
ally non-linear) can be obtained by combining these equations to

yield

p =

—ainA)?
1+5:/_)_2(9 sin 0)

p 2(1—-cos)}’ (2.76)

e To make the connection to linear perturbation theory, we consider
the behaviour of the collapse at small #, which corresponds to
small 6. Performing a Taylor series expansion of cos 6 and sin 6,

we obtain
1+6 = 1+ 2%92 +0Y (2.77)
B
t = 893 +0(6) . (2.78)

Solving for 8 gives (using t, = nB)

61 1/3 t 1/3
0 = (E) +...=(6m)'"3 (—) +..., fort<t,. (2.79)
ta

e Thus, § < 1 corresponds to t < t,. Substituting (2.79)) into (2.77)
gives

3 ¢\
5= %(671)2/3 (—) <1, fort<t,. (2.80)

ta
This yields the scaling of the density contrast in the spherical col-
lapse model, 6 o >3 oc a (since t < a*? in the Einstein-de Sitter
model), which is exactly the behaviour of the growing mode so-
lution of linear perturbation theory. Note that the decaying mode
solution is absent due to our choice of initial conditions at ¢ = 0.

e A corollary emerges from (2.80) that if the sphere has a uniform
initial overdensity (6;) at some early time (#), then all interior
spheres will have the same #, and hence the sphere remains uni-
form as it collapses!

e There is an important distinction between (1) the real overdensity
and (2) the overdensity extrapolated according to linear theory,

t
Olin = 0; (—
t

i

2/3 3 ¢ 2/3
) :2—0(67r)2/3(—) for all . (2.81)

ta

The maximum expansion radius at turnaround (¢ = f,) is

3
Olin(fta) = %(6702/3 ~ 1.062 (2.82)
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while the real (non-linear) overdensity is according to (2.76))

9 2
1+68(t) = —— ~ 5.55. (2.83)
16
e Atcollapse (f = . = 2t,,), we have
3
S := Onin(te) = %(12702/3 ~ 1.686. (2.84)
In terms of the initial overdensity ¢;, collapse happens at time
dc 2 -3/2
te = G| «o677, (2.85)
0;
6
1+ e = (1 + Zi) (6_) oC 51 , (286)

since ¢ o< a*/? oc (1 + z)73/2. Thus, perturbations that are initially
more overdense collapse earlier! Generally, 6. = 6.(Qn, Qn),
but the dependence on €, and Q, is weak so our result applies
quite generally although it was derived for the Einstein-de Sitter
model.

2.3.3 Final Density of a Collapsed Halo

e According to the spherical top hat collapse model, a uniform
sphere collapses to a point of infinite density and then re-expands.
In a realistic situation, the sphere contains inhomogeneities that
generate tangential random velocities in the dark matter during
collapse. This leads to an equilibrium configuration where the
dark matter velocity dispersion balances its gravity. This relax-
ation process is called virialisation.

e We assume that the final dark matter halo is in dynamical equilib-
rium and obeys the virial theorem

2Ky + Ve =0, (287)

where K denotes the total kinetic energy in random motions, V' is
the total gravitational binding energy, and we neglected the sur-
face pressure term due to further infalling material. We have

K = EO'f , and (288)
R dnrp 3GM?

Vi = -G dmghen = —= , 2.89

f f(; 37 Mghell 5 R, ( )

where o is the three-dimensional velocity dispersion, dmgpe; =
4nr’pdr and we assumed a uniform sphere of radius R;. Hence
1 3 GM?

Ec=Ki+V; ==V =—
f f f 2f 10 R

(2.90)
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e At turn-around, the sphere is at rest, i.e., K, = 0. The total energy
at turn-around is

3GM?

Ey,=Va= _g R
ta

(2.91)

Since dark matter is collisionless, the conservation of total energy
during the collapse yields Ey = E\, and hence, R; = R, /2.

e The final density is thus pr = 8p(#,). Assuming that virialisation
happens at t ~ t. and since p o ¢t and ¢, = 21, the overdensity
of the final halo is

Pc 2
1+6y:=1+6.=———— =32[1 +6(t)] = 187 =178 .
¢ p (tC/ttltl)_2 “ 180
292 —
Hence, the final halo density is ol //
150 | /’/7’
- - yzi
pr = (1 +6,)p(tc) = 187°p(t.) - (293) oo )/
Onn and 6, := A, are widely used in cosmology to characterise ‘2°"/ woon —— ]
dark matter haloes. Other popular choices are A, = 100, 200, 500, 0: acu w53 — |
where each definition has its merits and shortcomings. ’ ' - ) ’

Virial overdensity in different cos-
mologies as a function of the halo
collapse redshift.

e These two parameters derived from the spherical collapse model,
0. and A,, are very widely used in cosmology for characteris-
ing dark-matter haloes and their formation. Extending these cal-
culations into more general cosmological models is surprisingly
difficult and requires numerical solutions of the underlying dif-
ferential equations. Approximations to the solutions for Q,, < 1
are

s = 3(37\" [ (1.0+0.040610g,) Qm) (@0 = 0)
°=5\2 (1.0 +0.012310g,) Q) (Qp0 = 1 — Q)
(2.94)

1+0.1210(Q, — 1) + Q26756 (Qpg = 0)

and
A, = 91° 0.4403
1 +0.7076(Q, — 1) + Q) (Qpo =1-Qn)
(2.95)

where ), is the matter density parameter at the redshift of halo
collapse.

2.3.4 The Press-Schechter Mass Function

e An important piece of information is the distribution of haloes
over mass, the so-called mass function, which gives the number
density of haloes at redshift z within the mass range between M
and M + dM.
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e A characteristic length scale R(M) can be assigned to a halo of
mass M, which is defined as the radius of a homogeneous sphere
filled with the mean cosmic matter density having mass M,

4r ( 3M )”3

—RpeQn=M = RM) =

3 (2.96)

47Tp cr -Q'm
where Q., and p.; have to be evaluated at the redshift required.

e Aiming at haloes of mass M, we consider the density contrast
field filtered on the scale R(M). We therefore use ¢ as defined in
(2.48), i.e. the density contrast convolved with a window function
Wrx which has a characteristic scale R = R(M).

e It will be convenient to scale halo masses with the so-called non-
linear mass, which is the mass M, for whose characteristic length
scale R(M.,) =: R, the variance of the density contrast be-
comes 62,

~ =4 f Kdk P(k)W3 (k) = 67 (2.97)
Op =A4m = . .
R. 0 (2 )3 R, c

e For a Gaussian random field, the probability of finding at a given
point ¥in space a filtered density contrast 6(¥) is

1 [ 6%(%) ]
————exp ~252 ,
A/ 27r0’fe(a) ox(@)
where we have explicitly noted that the variance o will depend

on time or equivalently on the scale factor a through the linear
growth factor, or(a) = orD,(a).

p(6,a) =

(2.98)

e Press & Schechter suggested that the probability of finding the
filtered density contrast at or above the linear density contrast for
spherical collapse, 6 > &, is equal to the fraction of the cosmic
volume filled with haloes of mass M,

F(M,a) = f dép(0,a) = lerfc (L) , (2.99)
5 2 V20x(a)
where erfc(x) is the complementary error function. Obviously,
this equation implies that the fraction of cosmic volume filled
with haloes of fixed mass M is a highly sensitive function of the
scale factor a.

e The distribution of haloes over masses M is simply 0F (M)/0M,
so we have to relate o to M, which is accomplished by the char-
acteristic radius R(M),

0 doga) 0  dog 0

o _ _ , 2.100
oM~ dM dog(a)  dM dog (2100
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where we have inserted the variance o on the scale R at the
present epoch. Using

2
d%erfc(x) =7 - (2.101)
we find
‘6F(M) 1 6. _|dInog| ( 52
= VoD@ | am | TP\ 20202 (a))

(2.102)
where the absolute values have been added to ensure positiveness
of the Press-Schechter mass function.

e The normalisation of the mass function is wrong, however. It is

easy to see that

© | OF (M) 1

dM = - (2.103)
0 2

the reason for this problem is quite subtle, as we shall see later.
for now, we will arbitrarily multiply the mass function by a factor

of two.

dN/dM [10"*Mg,Mpc ™)

. ) . . Press-Schechter mass function for
e This fraction of the cosmic volume filled with haloes of masses the ACDM model at four different

within [M, M + dM] is converted to a (comoving) number density redshifts
by dividing with the mean volume M/p, occupied by M

on(M, a)
Madm = 250Dy 2.104
f(M, a) eI ( )
\F pode _|dInog| 62 \dMm
- Xpl-—=———|— .
roeDy@ | aM | P\ 20202 (@) M

e The Press-Schechter mass function has turned out to de-
scribe the mass distribution of dark-matter haloes in cosmological
simulations remarkably well. Only recently have modifications
been applied in order to improve its agreement with large, high-
resolution simulations, or to take into account that halo collapse
is not expected to proceed spherically, but elliptically.
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2.4 Halo Formation as a Random Walk

2.4.1 Correct Normalisation of the Press-Schechter
Mass Function

e The normalisation problem, however, is embarrassing and needs
to be resolved. The solution was given with an elegant argument
interpreting the statistics of halo formation in terms of a random
walk.

e Suppose the density-contrast field ¢ is given. A large sphere is
centred on some point ¥ and its radius gradually shrunk. For each
radius R of the sphere, the density contrast ¢ averaged within R
is measured and monitored as a function of R. By choosing a
window function Wy in the definition (2.48) of &6 whose Fourier
transform has a sharp cut-off in k space, 6 will undergo a random
walk because decreasing R corresponds to adding shells in k space
which are independent of the modes which are already included.

Progressive smoothing of the den-

e §(¥) is thus following a random trajectory. A halo is expected to sity field.

be formed at ¥ if 6(¥) reaches J, for some radius R. If 6(¥) < 6.
for some radius, it may well exceed 6. for a smaller radius. Or, if
0(X) > 6. for some radius, it may well drop below J, for a smaller
radius.

e For determining halo numbers correctly, it is thus necessary to
count all points in space which are part of haloes of any mass. As
R is shrunk around a point ¥, that point must be counted as being
part of a halo if there is a radius R for which 6(%) > 6.

e In the terminology of the random walk, we need to introduce an
absorbing barrier at 5. such that points ¥ with trajectories 6(%)
vs. R which hit the barrier are removed from counting them as not
being parts of haloes. To accomplish this, we follow the strategy
of counting trajectories that do not make it into haloes such that
the complement of that union represent trajectories of haloes.

Random walk with an absorbing

e A trajectory meeting the boundary has equal probability for mov- . ...

ing above or below. For any forbidden trajectory continuing
above the boundary, there is an allowed mirror trajectory con-
tinuing below it, and conversely. For any trajectory reaching
a point 6 < ¢ exclusively along allowed trajectories, there is
a path reaching its mirror point on the line 6 = &, exclusively
along forbidden trajectories, and conversely. Thus, the probabil-
ity for reaching a point 6 < &, along allowed trajectories exclu-
sively below the barrier is the probability for reaching it along
any trajectory, minus the probability for reaching its mirror point
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O + (6. — 6) = 26, — 6 along forbidden trajectories,

) V)
[exp (—6—2) — exp (—m)] , (2.105)

202 202

- = 1
ps(6)do =
V2mog

where o is the variance of ¢ on the scale R, as before.

o is the probability distribution for the averaged density
contrast to fall within [J,0 + dd] and not to exceed 5, when av-
eraged on any scale. The probability for ¢ to exceed 5. on some
scale is thus

c _ _ é‘c
1-P,=1- f dops(0) = erfc( ) , (2.106)
oo 20k
without the factor 1/2 in (2.99). The rest of the derivation of the 4
Press-Schechter mass function proceeds as before. >

2.4.2 Extended Press-Schechter Theory

e Considering the random walk of the density contrast field when
averaged over increasing or decreasing scales allows the statistics
of haloes to be greatly extended. In order to simplify notation, we W

abbreviate S := o2.

S

Trajectory of a halo in the S-w
plane. Increasing S means decreas-
ing mass, and w decreases with

e First, we note that we can either consider the barrier height ¢, to
be constant while o is increasing with time, or oy to be constant,
while 0. is decreasing with time, because only the ratio 6./ok en-

time.
ters the relevant expressions. Thus, the barrier can be considered
moving towards zero as time progresses, s,
O 3

w: D.@)° (2.107)
reflecting the fact that halo collapse becomes easier as structure
formation proceeds. Since d.(a) decreases monotonically with
increasing time, it can uniquely be used instead of time. The
evolution of a halo can now be expressed as a random walk in §
as time proceeds, or w decreases.

~

e Second, we note that S,
AP, ) o Trajectories of low-mass haloes at
~as s = ~as | dop, () early time, forming a massive halo

(S. w)dS w 0128 g g (2.108) at a later time
= ps(S,w = ———¢ , (2.
V2rS3
is the probability for 6 to hit the barrier J, for the first time when
the variance is increased from S to S + dS. It represents the
fraction of mass in haloes of a mass M corresponding to the scale
R.



CHAPTER 2. THE INHOMOGENEOUS UNIVERSE 61

e Consider now a trajectory passing through the barrier w, for the
first time at S,, continuing to eventually pass through w; > w;
at some S| > §,. It represents a halo of mass M, corresponding
to S, which, at a later time corresponding to w,, reaches mass
M, > M, corresponding to S,. The conditional probability for
the halo to pass within [S,S5; + dS] at w,, starting from S, at

w, is, according to (2.108)),

S1,wilS2, w2)dS | = TR A
P ) = S s eXp[ 2(51—52)] 1
(2.109)

because the probability (2.108) only needs to be transformed
shifting the origin of trajectories from (S, w) = (0,0) to (S, w) =
(82, wy).

e From (2.109) and Bayes’ theorem on conditional probabilities,
we can straightforwardly derive the probability for a halo which
for the first time reaches w; at S; to reach w, for the first time at
S 2.

Ps,(S2, WS 1, w1)dS 2 ps(S1, wr)dS
= ps,(S1,wi1|S2,w2)dS | ps(S2, w)dS

= Ps,(S2, wa|S 1, w1)dS
Ps, (S 1, wi]S 2, w2)dS | ps(S2, w2)dS»
ps(S1,w)dS
1 S 32 wr(wy — w»)

Ner: [stl —52)]
ex [ (W2S 1 —w152)2

w1

- ds, . 2.110
P zslszw]—sz)] ’ (110

This provides the conditional probability for a halo of mass M| to
have merged to form a halo of mass between M, and M, + dM,.

e The expected transition rate from S to S, within the times ¢#; and
1, corresponding to w; and w; is determined by (2.110) taking the

limit wy) — W) =. W,
d2p52
S S ds,d 2.111
dSzda)( 1 = Srlw)dSdw ( )
] 32 e
= [ 51 ] [_M] dS,dw .
\/ﬂ SZ(S]_SZ) 25152

This gives the merger rate, i.e. the probability that, in the time
interval corresponding to dw, a halo of mass M; will merge with
another halo of mass M, — M,.

e We finally need to substitute the masses M; and M, for S and S,
and the time for w. We wish to know the probability for a halo
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of mass M to accrete another halo of mass AM within the time
interval dr at time ¢. The transformation is

& as, |dw| &
pu 2 "" Ps, 2.112)

_SPM S Mol = o .
dinapar M = M0 = 7 [ ar | as0de

e By the definition (2.107)), the derivative of w with respect to ¢ is

5. dInD,(a)
D.(a) dlna

dw O
—| = D' (a)a=H 2.113
where H is the Hubble parameter at scale factor a.

e Since AM = M, — M;, and S was introduced for O'fe, we have

ds, AMdO-i(Mﬁ,

= 2.114
dlnAM dM, ( )

e With expressions (2.113) and (2.114), the merger probability
(2.112)) becomes

d2py \/E HS. dlnD, _ dlnog
— 2 = /= AM M+ AM
dIn AMdt norD, dlna dm ( )
0_2 -3/2
R2
X (1——0_2)
R
62 o3
X exp[— - 2(1——’;2)], (2.115)
20,D% O%

where oy := or(M>) = or(M + AM).

e In much the same way, the random-walk interpretation of halo
growth allows deducing halo-survival times and other interesting
quantities related to halo growth.

A “merger tree”, i.e. a graphical
representation of the accretion his-
tory of a halo
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2.5 Halo Density Profiles

e Generally, a self-gravitating system of particles does not have an
equilibrium state. The virial theorem demands that its total energy
(E = K + V) is minus half its potential energy (V),

Vv
2K+V=E+K=0 = K:—E:—E. (2.116)

Since V < 0 for self-gravitating systems, any inevitable energy
loss, e.g., through the ejection of a body by means of three-body
encounters, makes the potential energy become more negative.
As a result, the halo becomes more tightly bound, which in turn
increases its energy loss because the dynamical timescale is re-
duced by this contraction according to

R 1/2
ayn ~ (G—;) ~(Gp)™'?, (2.117)

where R, = GM/v* is the gravitational radius. Thus, any halo
density profile must reflect a potentially long-lived, but transient
state.

e Knowing global halo properties like their mass, their distribution
in mass and redshift, and their growth over time, their internal
density profiles are an important characteristic. We will discuss
two widely used models for the density profiles.

2.5.1 Isothermal Sphere

e A simple analytic model for the density profile is the isothermal
sphere, which is a spherically-symmetric, self-gravitating system
of non-interacting particles whose kinetic energy is characterised
by a constant “temperature” T = m/ko? where o denotes the
three-dimensional velocity dispersion.

e The equations describing the isothermal sphere are thus the Euler
equation of hydrostatic equilibrium,

dp GM
dp __GMO) (2.118)
dr r2

and the equation of state for the ideal gas

p="2ur, (2.119)
m

where m is the mean mass of the particles constituting the sphere.
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e Inserting (2.119) into (2.118)) yields

kT dl G (7
Kkl nop __Z 47rp(r')r'2dr' i (2120)
0

m dr r2

where we have expressed the mass as an integral over the density.
Differentiation with respect to r yields the second-order differen-
tial equation for p,

d (,dl 4
4 (pdinp) _ _d2Gm, @2.121)
dr dr kT

e One solution of (2.121) is singular and can be obtained by means
of a power-law ansatz in r to yield

o’ o2 = k_T
2nGr? T om

pi(r) = (2.122)
where o is the (radially constant) velocity dispersion of the par-
ticles. The mass and circular velocity of the singular isothermal
sphere (SIS) are given by

20 , GM(<r)

M(< r):?r and v 207 . (2.123)

¢ r

e The solution to (2.121)) depends on the boundary conditions. It
turns out that there is a second solution, which has a finite central
density po. To find this solution, we have to identify a charac-
teristic length scale such that we can obtain a general solution in
terms of dimensionless variables. The dimensional variables in
(2:121) are G, p, and the combination o> = kT /m. Those can be
combined to yield a length scale, o/ VGp, which represents the
typical distance a particle travels in the central dynamical time.
We define the King radius at which the density profile cores out,

2 \1/2
— , (2.124)
47(Gp0
and the dimensionless variables
=L and 7=L. (2.125)
Po 1o

e (2.121) cast into dimensionless form reads

d(,dnp )
— |7 =-97p. 2.12
d?(r a7 ) P (2.126)
The (numerical) solution is obtained by integrating this differen-
tial equation outwards from 7 = 0 with the central boundary con-
ditions p(0) = 1 and dp/d7 = O (the second condition is necessary
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since M(7) vanishes at 7 = 0). The resulting second solution can
be approximated by

3/2
. 1+7)" Fs<
p2(F) = .
gl"
1.e., the SIS is the asymptotic solution at large 7. Note that by
defining dimensionless variables, we have reduced the family of

solutions with different densities and temperatures to a single so-
lution for appropriately scaled variables.

o, (2.127)

e Both solutions have the advantage that they reproduce the flat ro-
tation curves observed in spiral galaxies. The rotational velocity
Uror Of @ particle orbiting at radius r is determined by

GM
o= — (2.128)
r

rot —

which is constant at r > r, for both density profiles of the isother-
mal sphere. However, the temperature within a stable “gas”
sphere cannot be constant because particles would evaporate from
it. Besides, the mass of the isothermal sphere diverges linearly as
r — oo. To get a halo of finite mass, we must truncate it at some
large radius by confining it with an external “pressure” that is
practise is provided by accretion of mass. The isothermal profile
is thus at best an approximation for the inner parts of haloes.

1000

=]
8

/

/

density and mass profiles

001 F non-singular isothermal ——
Vmass ——

2.5.2 Navarro-Frenk-White (NFW) Density Profile

Singular and non-singular isother-
mal and NFW density and mass

e Numerical simulations of halo formation in the cold dark matter

model consistently show density profiles like
profiles.

Ps r
=—, =—, 2.129
p) x(1 + x)? * s ( )
which have a characteristic scale radius r; beyond which they fall
off o« #73, and within which the density profile flattens consider-
ably.

e Using the identity x/(1 + x)> = (1 + x)~' — (1 + x)72, the mass of
such haloes within radius r can easily be derived,
M(r) = 4npr; ; % = dnp,r? |In(1 + x) — Txx
(2.130)
It rises oc x? for small x and diverges logarithmically for x — oo.
The divergence is not a fundamental problem because the halo
profile must become invalid at the latest where p drops to the cos-
mic background density. In practise, the assumption of spherical
symmetry starts to break down earlier, and becomes invalid at

scales beyond the virial radius.
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e The virial radius r;, of a halo is often defined as the radius 7, en-
closing a mean overdensity of 200 times the critical cosmic den-
sity, i.e., the contribution of A to the critical density is included
in the estimate of the reference density. Since (2, is constant, this
has the advantage that the mass of a halo that has decoupled from
the cosmic expansion can only grow by accretion but remains
constant otherwise (for a > aeqa). The factor 200 is a rough
approximation to the density contrast of 187% ~ 178 expected at
virialisation in the spherical collapse model. This implies

dr 4\ 3H?

Mg (?rgoo) = 200pc(a) = 200% , (2.131)
where M,y is often identified with the total halo mass M. We
obtain

(GM 200 )1 &
200 =

1002 (2.132)

e Other frequent definitions use the radius enclosing a mean over-
density of 200 times the mean matter density (i.e., without the A
contribution),

4 4

-1
M200m (?rZOOm) = ZOOpcr(a)Qm(a) . (2133)

This definition has the advantage that haloes of the same mass but
at different redshifts show the same amount of kinetic pressure
contribution or velocity anisotropy as a function of radius, i.e.,
this definition is close to a dynamical definition of the virial ra-
dius. However, it requires the knowledge of the ab initio unknown
cosmological parameter €,p and has the property that the halo
mass increases at late times because of the redshift dilution of the
mean matter density as p,, = pmoa > even in the absence of mass
accretion! Sometimes, people prefer a redshift dependent over-
density A(a) from the solution of a spherical top-hat perturbation
at the time of collapse rather than a constant overdensity
threshold. While this property is easily calculable in simulations,
the collapse time of a cluster is inaccessible in observations which
jeopardises detailed comparisons of observations and theory.

e The ratio ¢ := ry/rs 1s called concentration of the halo . It
turns out to be a function of halo mass and redshift and to depend
on cosmological parameters. Generally, c is the higher the ear-
lier haloes form. This reflects the hierarchical growth of haloes
and implies that smaller haloes form earlier when the mean back-
ground density was higher. As a result, these haloes have a higher
density at small scales in comparison to larger halos when radii
are scaled to Ryyy. Given the halo mass M, the (virial) radius is
given by (2.132)), the concentration parameter gives rs = rag/c,
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and the scale density ps is then determined from (2.130) by the
requirement that M(ry0) = Mop. Thus, the profile (2.129) is
essentially determined by a single parameter, e.g. its mass.

e [t is currently unclear how the density profile arises. Also, its
slope near the core is being discussed.



Chapter 3

The Early Universe

68
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3.1 Structures in the Cosmic Microwave
Background

3.1.1 Simplified Theory of CMB Temperature Fluctu-
ations

The Dipole

e We saw earlier that the universe is filled with a radiation back-
ground which has an ideal Planck spectrum with a temperature
of 2.726 K. This cosmic microwave background is spectacularly
isotropic, i.e. its temperature is almost the same everywhere on
the sky.

e The Earth is not at rest with respect to the microwave back-
ground. Its motion around the Sun, combined with the Sun’s
motion around the centre of the Milky Way, combined with the
Milky Way’s motion within the Local Group, combined with the
motion of the Local Group towards the Virgo cluster, causes an
effective net motion with velocity v with respect to the CMB.

e As can be shown by a Lorentz transformation from the CMB rest
frame to the rest frame of the Earth, this motion causes a dipolar
pattern in the CMB temperature,

2
T(0) = To(l + Ecose)+0("—2) 3.1)

c c
where Ty is the mean CMB temperature and 6 is the angle be-
tween the line-of-sight and the direction of motion. The CMB
temperature is slightly enhanced towards the direction of motion,

and decreased in its antidirection, corresponding to the Doppler
shift.

e The COBE satellite determined the velocity of the Earth with re-
spect to the CMB to be

v= 371+ Dkms™, (3.2)
pointing towards the Galactic coordinates
[=(2643+0.2)°, b=(481+0.1), (3.3)

the amplitude of the dipole is thus of order 107 K.

CMB dipole as measured by COBE
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Expectations from Structure Growth

e Structures exist in the universe with a density contrast well above
unity which, at the time when the CMB decoupled, must have had
a density contrast of

oa=1) q 3

——2a ~ 107 . (3.4)

D, (acwmp) MB

If the CMB energy density u were of equal magnitude, tempera-

ture fluctuations in the CMB should be of order 1073 K, because

d(acmp) =

su 6T
noe T4 = M -4 (3.5)
u T

i.e. of the same order as the CMB dipole.

o After the detection of the CMB in 1965, temperature fluctuations
were sought at this level, but not found. It was realised later that
the problem can be solved if dark matter does not electromag-
netically interact, because then structures can form in the dark
matter much before decoupling without leaving a direct imprint
on the CMB temperature fluctuations. This is the strongest argu-
ment that dark matter should not interact electromagnetically, and
probably only through the weak interaction.

e Based on the assumption of weakly interacting dark matter, the
expected temperature fluctuations in the CMB are expected to be
of order 6T /T ~ 107, i.e. in the regime of micro-Kelvins. They
were finally detected at this level by COBE in 1992.

Perturbation Equations and the Sachs-Wolfe Effect

e Studying the origin of the CMB fluctuations in detail is a com-
plicated process. One must begin with the collisional Boltzmann
equation for the photons and account for relativistic effects on
the photon propagation like curvature and time delay. However,
the simplified treatment shown here illustrates the main physical
effects.

e The number density, energy density and pressure of the CMB
photons are

neT?, uoeT*, p:gch“. (3.6)
Introducing the relative temperature fluctuation ® := o67/T),

where T is the mean CMB temperature, we have

5 5 5
Po30, Loge=2L.
no U Po

3.7
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e Ignoring expansion terms and setting @ = 1, the continuity and
Euler equations for the slightly perturbed photon gas read
. . Vép -
A+nV-i=0, i=-*—L V50,  (38)
Up + po
where 7' is the streaming velocity of the perturbations. They fol-

low from the divergence of the relativistic energy-momentum ten-
SOT.

e Using (3.7) and uy + po = 4/3 uy = 4py, these equations can be

written in terms of the temperature fluctuation

O+-V-7=0, =-*VO-Vob . (3.9)

W | —

e Inserting the divergence of the Euler equation into the time
derivative of the continuity equation yields

. C2 =2 1 =
O - gv ®—§V 00 =0. (3.10)

Transforming to Fourier space, this becomes

~ 2k2 A k2 A
O+ CT®+?5® -0. 3.11)

e We now need to add a relativistic effect by hand which would
appear in the equations if we derived them fully relativistically.
Perturbing the metric by the potential 6® causes the time delay

5t 6D

-, 3.12
” = (3.12)
which causes the photons to be redshifted such that
oT oD
== 3.13
To = (3.13)

Fluctuations in the potential thus produce temperature fluctua-
tions, and we have to add a source term

6=-2 (3.14)

to (3.11)), which then reads

. k. K . 5D
O+ 05+ = 0. (3.15)
3 3 c?
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e Combining temperature and potential fluctuations to form an ef-
fective temperature fluctuation ®+6®/c? =: 6, we obtain the os-
cillator equation for 6,

. 2,
9+CT9:0. (3.16)

Obviously, the solutions are trigonometric functions. If § = 0 at
t = 0, the solution at the time of recombination is

ck

.|

¢/ V3 tee =: rs is called the sound horizon.

O(tree) = 0(0) cos[ (3.17)

e The time delay (3.12) causes another temperature shift on the
photons escaping from the last-scattering surface. Because of the
Hubble expansion, the time delay causes a fluctuation in the scale
factor at which the photons escape,

oT oa aot

—=f0=—-—=-—, (3.18)

Ty a a
because T o a~'. In the matter-dominated era in the early uni-

verse, a « t*/3, thus

2 260
—== = 0==-—, 3.19
a 3t 3 ¢? -19)
such that the temperature fluctuation ® becomes
L. 0D 160
=—-—=—=—. (3.20)

This is the Sachs-Wolfe effect.

Effects of Baryons

e Baryons couple to the photons through Compton scattering. Since
the mean photon energy is of order 0.3 eV at the time of CMB de-
coupling, which is very small compared to the rest-mass energy
of the electrons in the cosmic plasma, the limit of Thomson scat-
tering is sufficient.

e In presence of baryons, Euler’s equation must be corrected by
multiplying the velocity and the potential gradient with the factor
(1 + R), where R is the ratio between the momentum densities of
baryons and photons,

_ psc’ + ps _3Qgo

R : x a.
uop + po 4 Qg

(3.21)
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e Replacing ¥ — (1+R)v'and Vod — (1 +R)65(D transforms (3.15))
to . ..

~ R@ C2k2 A k2 A 5(’\1)

O+ + ®=—50——. 3.22

1+R 3(1+R 3 c? (3-22)

Thus the sound speed ¢/ V3 is reduced by the baryons to
c/ V3(1 +R).

e Equation (3.22)) describes sound waves in the temperature fluctu-
ations which are driven by the gravitational potential fluctuation
0O and its time derivatives, and damped by the expansion of the
universe. On scales larger than the sound horizon,

2n - Clrec
kK \B3O+R)’

these acoustic oscillations are suppressed.

(3.23)

Damping

e Further damping occurs due to imperfect coupling between the
photons and the baryons. The photons exert a random walk and
can thus diffuse across the length scale

(1) = < A ZN: AJ-> = <ZN1 1%> +2 <Z /l,-/lj> = NA*, (3.24)

N
=1 j=1 i=1 i>)
where A is the mean-free path of the photons

1

1
A= , (3.25)

ne0T

with the Thomson cross section or. We assumed in the last step
of (3.24)) that the individual steps are uncorrelated. Thus,

o= ()" = VNa. (3.26)

The number of collisions per unit time is

dN = neorcdt (3.27)
thus,
Irec dt
2= f el (3.28)
0 neoT

e Structures smaller than the diffusion length are damped, hence
damping sets in for wave numbers
2
k>ko == (3.29)

D
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Polarisation Quadrupole
Anisotropy
e Thomson scattering is anisotropic. Its differential cross section is : &'
Y
do 3o071,, 2 Thomson
d0 T 8x |e 'é)l (3.30) Scattering

where ¢ and € are the unit vectors in the directions of the in- g
coming and outgoing electric fields, respectively. Evidently, the
scattered electric field with a field vector orthogonal to that of the

incoming field has zero intensity. Linear
Polarization

o I[f the infalling radiation is isotropic, the scattered radiation is un-
polarised. If, however, the infalling radiation has a quadrupolar
intensity anisotropy, the scattered radiation is polarised because
it has different intensities in its two orthogonal polarisation direc-
tions.

Origin of the CMB polarisation

e Since the electrons within the last-scattering shell are irradiated
by anisotropic light, the CMB is expected to be linearly polarised
to some degree. The intensity of the polarised light should be
of order 10% that of the unpolarised light, i.e. it should have an
amplitude of order 10° K.

3.1.2 CMB Power Spectra and Cosmological Parame-
ters

e Three effects were identified before which determine temperature , ,
fluctuations in the CMB: the Sachs-Wolfe effect on large scales, Ll /\
acoustic oscillations on scales smaller than the sound horizon, and | —
damping on small scales due to photon diffusion. \\ /\/\ S

acoustic \

e The visible temperature fluctuations on the sky are determined by 2| oscilations W

the projection on the sky of photon density fluctuations in three- Soche—Worte effect ‘
dimensional space. Due to that procedure, fluctuations of a single ot ; ; \ N
wave number k are smeared out over a range of angular scales. “omuiar scole i rc minvtes
Appearance of the three most im-

portant CMB effects in the power

e Fourier decomposition is not defined on the sphere. Instead, one
has to project the temperature fluctuations onto another set of ba-
sis functions which are orthonormal on the sky. These are the
spherical harmonic functions Y g”(ﬁ). If T(§) is the temperature at

spectrum.

position g on the sky, it can be expanded into a series

Tl = > am¥?'@), (3.31)

{m

with the (generally complex) coefficients ag,,.
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e Because of the orthonormality of the spherical harmonics,

2 T
f de f $in 6d6Y;"" (6, ¢) Y, (0, 9) = 60,6,0mm, »  (3.32)
0 0

the expansion coeflicients are given by

21 T
Apm = f dy f sin 6dOT (6, $)Y"(6, &) . (3.33)
0 0

Launch of the Boomerang experi-
ment.

e The power spectrum of the temperature map is defined by

Cr = (Jaml) (3.34)

which depends only on the multipole order £ because of statistical
isotropy. Conventionally, the quantity £(¢ + 1)C, is shown instead
of C, because it reflects the total power contained in the multipole
L.

e The shape of (£ + 1)C; is characteristic. As expected, the Sachs-
Wolfe effect dominates on large scales, i.e. small ¢, acoustic 0s-
cillations set in on scales smaller than the projection of the sound
horizon on the sky, and very small scales are damped.

e The many pronounced features of the CMB power spectrum, and
their tight relation to the cosmological parameters, allow cosmo-
logical parameters to be determined very accurately if the C; can
be measured with high precision. This has caused substantial ef-
forts to be put into the CMB measurements, with remarkable suc-
cess.

= AP

The WMAP satellite.

o After relatively noisy measurements of the CMB on small frac-
tions of the sky with balloon-borne experiments like Boomerang
or Maxima, or ground-based experiments like Dasi, VSA or CBI,
the NASA satellite “Wilkinson Microwave Anisotropy Probe”
(WMAP) has obtained accurate full-sky maps of the microwave
sky with an angular resolution of > 15" at frequencies between 23 e
and 94 GHz, and is continuing to measure. It has so far produced  pyjl-sky CMB map produced by the
a CMB power spectrum which covers the first two acoustic peaks  WMAP satellite.
with high accuracy.

e Although the WMAP results alone suffer from degeneracies be-
tween different cosmological parameters, their combination with
results from other cosmological experiments (in particular mea-
surements of supernovae of type la, galaxy correlation functions,
and structures in the distribution of neutral hydrogen) has pro-
duced the most accurate set of cosmological parameters to date:
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CMB temperature Temp | 2.728 £ 0.004 K
total density Qo 1017903
matter density Qn 0.2575¢!
baryon density Q, 0.045+0.50)
Hubble constant h 0.73 £0.03
baryon-to-photon ratio n 6.1*03 x 10710
fluctuation amplitude o 0.74700
scalar spectral index ng 0.951*913
decoupling redshift Zdec 1089 + 1
age of the Universe fo 13.7 £ 0.2 Gyr
age at decoupling Ldec 379f§ kyr
reionisation redshift (95% c.l.) | z, 10.9*37
reionisation optical depth T 0.09 +£0.03

Most of these parameters should remain as further CMB data
come in and are being analysed, but the error bars should continue
to shrink. The most insecure numbers in this table are probably
the redshift of reionisation and optical depth.

The power spectrum of the polarised radiation shows similarly
pronounced features as that of the temperature. Also, the struc-
tures in the polarisation map are expected to be correlated with
those in the temperature map, i.e. there is a non-vanishing cross-
power spectrum between temperature and polarisation.

Polarisation was first detected in the CMB by the DASI experi-
ment located at the Amundsen-Scott station at the South Pole. Its
amplitude, power spectrum and and cross-power spectrum with
the temperature agree very well with expectations from theory.
The WMAP satellite has measured the cross-power spectrum be-
tween temperature and polarisation only, which agrees very well
with the theoretical expectations derived from the temperature
power spectrum.

The European satellite Planck will obtain full-sky maps of the
CMB temperature and polarisation with an angular resolution of
> 5" at frequencies between 30 and 857 GHz, further substantially
improving upon the results from WMAP.

3.1.3 Foregrounds

e Originating at redshift z ~ 1100, the CMB shines through the
entire visible universe on its way to us. It is thus hidden behind a
sequence of foreground layers.

e The most important ones of those are caused by the microwave
emission from our own Galaxy. Warm dust in the plane of
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the Milky Way with a temperature near 20 K produces emis-
sion mainly above the CMB peak frequency. Electrons gyrat-
ing in the Galactic magnetic field emit synchrotron radiation
which has a power law falling from radio frequencies into the
microwave regime. Thermal free-free emission (bremsstrahlung)
from ionised hydrogen partially falls into the microwave regime.
Further sources include, e.g. the line emission from molecules
like CO.

e Hot plasma in galaxy clusters inverse-Compton scatters mi-
crowave background photons to higher energies, giving rise to
the so-called Sunyaev-Zel’dovich effect in the microwave regime.
The characteristic spectral behaviour of that effect will enable fu-
ture CMB missions to detect of order 10* galaxy clusters out to
high redshifts.

The European Planck satellite was
launched on May 14, 2009.

e Other types of point source appearing in the microwave back-
ground include high-redshift galaxies, and planets, asteroids, and
possibly comets in the Solar System. Also, dust in the plane of
the Solar System emits the so-called Zodiacal light, which adds
faint microwave emission.

e While these microwave foregrounds need to be carefully sub-
tracted from the microwave sky to arrive at the CMB, they them-
selves provide important data sets for cosmology, but also for re-
search on the Galaxy and possibly also the Solar System.
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3.2 Cosmological Inflation

3.2.1 Problems

Planck Scales

e Big-Bang cosmology offers a very successful, coherent picture
for the evolution of the universe, but at the same time has funda-
mental problems.

¢ Evidently, the naive picture of the Big Bang predicts the energy
density to grow beyond all boundaries. Heuristically, we ex-
pect this approach to break down at the latest when quantum-
mechanical effects set in. An estimate for when this may happen
is given by the following argument:

e A quantum-mechanical length scale for a particle of mass m is its
de Broglie wavelength,

2nh
A = — (3.35)
mc

while a gravitational length scale is given by its Schwarzschild

radius,

2Gm
rs =

) (3.36)

2
c
Quantum-mechanical effects are expected to become important in
general relativity at the latest when the two become equal, which
defines the Planck mass

7 GeV
mp= G *2x10°g~ 100 2= (337)

e Through (3.35), the Planck mass defines a length scale, the Planck
length

lp=—=4/—= ~10%cm, (3.38)
mpc c

and a time scale, the Planck time

tp=—=+/— ~ 105 (3.39)

At times closer to the Big Bang than the Planck time, the purely
general-relativistic treatment of cosmology is expected to break
down.
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The Horizon and Flatness Problems

e We have seen earlier that the particle horizon is given by
a) g
Ho Qg Jaty @

in the early universe, i.e. before curvature and cosmological-
constant terms became relevant.

Aw(ty, 1) =

(3.40)

e At recombination, the universe is well in the matter-dominated
epoch, so we can set n = 3. Inserting further a(¢;) = 0 and a(#,) =

Ay in (3.40) yields
2 TeC — -
Aw(0, free) = —= ,/g ~175 Vo ' Mpe . (3.41)
m0

H,

This is the comoving radius of a sphere around an given point in
the recombination shell which could have causal contact with this
point before recombination.

e The angular-diameter distance from us to the recombination shell
for a flat universe without a cosmological constant (2,0 = 1 and
Qpr =0)is

2c 2c _
Dang(ov Zrec) ~ ﬁoarec (1 - Varec) =~ ﬁoarec ~ Sh lMpC .
(3.42)

e The angular size of the particle horizon at recombination on the
CMB sky is therefore

areCAw(O’ arec) ~

Orec = R Ve = 1.7°, for Qo = 1. 343

Dang(o, Zrec) ‘ ( )
Repeating this calculation for a critical, low-density universe with
a cosmological constant (5 = 1 — Qo) yields almost the same
result.

) . ) Size of causally connected regions
e Given any point on the microwave sky, the causally connected re- | 1. cmB

gion around it has a radius of approximately one degree, i.e. four
times the radius of the full moon. How is it possible that the
CMB temperature is so very closely the same all over the full
sky? Points on the sky further apart than ~ 2° had no chance
of causally interacting and “communicating” their temperature.
This constitutes the horizon problem.

e Ignoring the cosmological-constant term, the Friedmann equation
can be written

&G Kc? Kc?
208 )
H'(a) = =P (a) [Qtotal(a) - ﬁ] . 344
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Thus the deviation of Q. from unity is

Kc?

|Qtotal - ll = ﬁ .

(3.45)

e We have already seen that Q@ — 1 for @ — 0 during the matter-

dominated era. During radiation-domination, a’?H? = a* « !,
during the early matter-dominated era, a>H? o t~%/3, thus
t radiation-dominated era
Qi — 1] ) 3.46
Ko = 1I { 1?3 early matter-dominated era. (3.46)

Therefore, if there is any tiny deviation of Qy, from unity at
early times, it moves rapidly away from unity. In order for Q.
to be anywhere near unity today, it must have been extremely
close to unity at early times, which constitutes an uncomfortable
fine-tuning problem, the flatness problem.

e The horizon problem is exacerbated by the observation that not
only is the temperature of the CMB very nearly the same all over
the sky, but also coherent structures exist in the CMB which are
much larger than the horizon size at decoupling. How could these
structures be formed?

Log (physical scalc)

e Apart from the problem of how structures can be coherent beyond
the horizon scale, it remains as yet unexplained where structures
originate from in the first place. Ultimately, cosmology needs to
explain why there are structures rather than complete homogene-

1ty.

3.2.2 Inflation

Log (time)

Effect of a shrinking comoving

The Idea of Inflation Hubble radius.

COMOVING

e Returning to (3.45)), we note that ¢/H is the Hubble radius, hence Hubble kngth
c/(aH) is the comoving Hubble radius. At least the flatness prob-
lem could be solved if the comoving Hubble radius could shrink
sufficiently for some time, because then the deviation of Qg
from unity would be driven towards zero. o

start

e The physical picture behind a shrinking comoving Hubble radius
is the following: the Hubble radius characterises the radius of
the observable universe, thus the comoving Hubble radius gives
the radius of the observable universe in comoving coordinates,
i.e. after transforming to non-expanding coordinates. If the co-
moving Hubble radius could shrink during some time, the ob- Horizon and causally connected re-
servable part of the universe could be moved within causally con- ~ gions.
nected regions, thus the contents of the entire observable universe

smooth patch
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could be brought into causal contact. After this phase ends, the
observable universe can expand again, but its physical state can
appear coherent everywhere thereafter.

Conditions for Inflation

e The condition for a shrinking, comoving Hubble radius is

d/c
—|—=1]<0. 3.47
dr (aH) < ( )
Since aH = a, this implies
d/c ca .
E(E):—¥<O:>a>0, (3.48)

1.e. it is equivalent to accelerated expansion.

e Accelerated expansion seems incompatible with gravity because
the gravitational force exerted by the matter inside a representa-
tive spherical section of the universe is expected to decelerate its
expansion.

e Friedmann’s 2" equation (without a cosmological constant) al-
lows accelerated expansion if

pct +3p <0, (3.49)

i.e. expansion can accelerate if and only of the pressure is suffi-
ciently negative,

p< P (3.50)
3
e Energy conservation requires
d 53 d 5 _ . _ 4 p
a(pca)+pd—t(a)—0ip——35(p+§). (3.51)

Since, by definition, the cosmological constant has p = 0, it must
correspond to a form of matter which has

p=-pc, (3.52)

1.e. the cosmological constant provides a suitably exotic equation
of state.

e Once the cosmological-constant term becomes appreciable in
Friedmann’s equation, it quickly dominates because it scales
with the highest power of the scale factor a. As we have seen,
it accelerates cosmic expansion, thus a grows rapidly, and the
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cosmological-constant term very quickly entirely determines the
dynamics. This is the case of de Sitter expansion mentioned ear-
lier in the context of the late cosmic evolution,

a o< exp (VQrHot) (3.53)

i.e. exponential expansion sets in once A starts dominating.

Inflation and Scalar Fields

e As an example for a simple physical system which may have neg-
ative pressure, consider a self-interacting scalar field ¢, which has
the Lagrangian density

1
L=50,00¢-V(©@), (3.54)

where V(¢) is the interaction potential and Einstein’s sum con-
vention was assumed. We adopted the following convention
for the scalar product, d,¢0"¢ = g,,0"$d"¢ with the metric of
Minkowski space given by g, = diag(1,-1,-1,-1).

o The field ¢ has the energy-momentum tensor

Tpv = u¢av¢ - gpv-E = diag(pcz, PP p) . (355)

Here, we adopted the energy-momentum tensor of an ideal fluid
that has no shear stress. Its time-time component is the energy
density,

P =Ty = 36 + V@) + 5(T6) (3.56)

while the pressure is given by one third times the trace over its
space-space components,

L aceTy = L6 - vigy - L (30
p = ytrace(Ty) = -4° ~ V(@) 6(V¢) . (3.57)

e Due to homogeneity, the terms 6(;5 must vanish. The requirement

(3.50) then translates to
Lie vy < -2 (Lp vy 3.58
§¢ - V() ~3 §¢ @], (3.58)
which is satisfied if,
P < V(9) . (3.59)

Thus the scalar field ¢ shows the desired behaviour provided its
kinetic energy is sufficiently small compared to its potential en-
ergy, i.e. if it “moves” sufficiently slowly.
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¢ Inserting the energy density of ¢ into Friedmann’s equation yields

8nG
H = = [ ¢ + V(¢>] (3.60)
and the continuity equation (3.51)) requires
dv(¢)
+3Hp = ———. 3.61
b+3Hp ==, (3.61)

These equations determine the evolution of ¢ in the expanding
cosmological background.

Slow-Roll Conditions

e Following the requirement (3.59), we impose the conditions

dV(¢) dV(¢)
dr d¢

for successful inflation, i.e. we want inflation to be strong and to
persist sufficiently long. These conditions simplify the evolution
equations to

P <V, d%¢>2 < = < , (3.62)

8nG

7~ —V( é) dV(¢)

3Hp ~ ———— = -V

a0 (3.63)

e Consequently, the condition ¢*> < V(¢) can be written as

. VY (V)2 1 (V)
2
= = V — | — = 1 364
¢ (SH) 247GV <V T dang\v) TEST GO
Additionally,
.dvV V'¢ V'H
__aevV __ , 3.65
$=~33m " 38 T3 (3.65)
and, with
8nG H 4nG oV
2HH = vy -2 3.66
3 b = H 3H? ¢ = 2V (3.66)
we find ) .
. V¢ (V)¢ , ;
b=+t ey <V =3Hb. (3.67)
and thus
V' (V)2 1 v 3 3
- = —le=n--e<3. 3.68
32 6VHE 8aG Vv 2° 1T (3.68)

V(o)

N

Slowly rolling field in a flat poten-
tial.

e

o
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e Thus, successful inflation is equivalent to the condition that the
two slow-roll parameters

4

1 4
= ) <1, pi=—
€ 247rG(V) < 87TG(V

) <1, (3.69)

are both much smaller than unity. Hence, we require the infla-
ton potential to exhibit a large gradient length L or equivalently a
shallow potential slope (since Ve ~ V'/V ~ 1/L < 1) as well as
a large curvature radius R (since 7 ~ VV”/V ~ 1/R < 1).

Amount and End of Inflation

e Today’s age of the universe is #, ~ 4 x 107 s. The Planck time,
which is a possible time for the onset of inflation, is tp ~ 107 s.
During the radiation-dominated era,

|Qtotal - 1| ocr. (370)
Thus, Q. ~ 1 today can be achieved if
|Qtotal - 1| ~ 1060 (371)

at the onset of inflation.

LogQ

Not to scale !!

e Since a o« t'/? during radiation domination, for inflation to solve
the flatness problem, the comoving Hubble radius thus needs to
shrink by a factor of ~ 10°°, which corresponds to an increase in =
the scale factor by a factor of approximately e®. This would at &
the same time solve the horizon (or causality) problem.

o ] ) ] ) Driving the universe spatially flat.
e During inflation, the energy density of the inflaton field is approx-

imately constant since pc> ~ V, and the changes in V are small
due to the slow-roll conditions.

e All other densities drop by huge amounts. Since p o a~> for
non-relativistic matter and p oc a~* for radiation, their densities
decrease by factors of ~ e 1% and ~ 2%, respectively.

e Since there is matter and radiation in the universe today, there
must be a way to convert the energy density of the inflaton field
into the energy density of radiation or matter as inflation ends,
i.e. when (¢,77) = 1.

e At this time, the kinetic terms ¢ and ¢ become important. The
inflaton field may oscillate around the minimum of its potential
energy.
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e [t is assumed that the inflaton field can decay through some cou-
pling to “ordinary” matter and thus turn its energy density back
into other constituents of the cosmic fluid. In particular, this “re-
heating” process should produce a “hot state” in thermal equilib-
rium at the end of inflation in order not to spoil the successes of
Big Bang nucleosynthesis. How this occurs in detail is an open
question.

Inflation and Structure Formation
e As any other quantum field, the inflaton field must have under-

gone vacuum fluctuations before inflation because of the uncer-
tainty principle.

The universe expands beyond the
horizon.

¢ Once inflation sets in, the vacuum fluctuations are quickly driven
outside of the horizon (or, in the language of the shrinking co-
moving horizon, the horizon quickly contracts below the length
scale of the quantum fluctuation), where they “freeze in” because
they lack causal contact.

e Assuming there exists a quantum field theoretical extension of
gravitation, there are two light quantum fields that fluctuate dur-
ing inflation: the “inflaton” field itself and the quantized gravita-
tional field, which would be mediated by the hypothetical “gravi-
ton”, a massless elementary particle of spin 2. These two dif-
ferent quantum fluctuations are inflated to macroscopic pertur-
bations with distict properties. Since the inflaton energy density
got eventually converted to radiation and matter by means of the
“reheating” process, inflaton fluctuations produce fluctuations in
the primordial density field (which are called “scalar” fluctuations
because of the scalar nature of the inflaton fields). Quantum fluc-
tuations in the graviton field are blown up to macroscopic grav-
itational waves during inflation and give rise to so-called “ten-
sor” fluctuations (because of the tensor nature of the metric field
that characterizes space-time). While an electromagnetic wave
is an oscillation in the electric and magnetic fields that propa-
gates at the speed of light, a gravitational wave is an oscillation
in the gravitational field that also propagates at the speed of light.
Most importantly, there exists a possibility of disentangling grav-
itational waves from density fluctuations, using the polarization
of the CMB: while density fluctuations give only rise to primor-
dial E mode polarization, gravitational waves produce B-mode as
well as E-mode polarization on large angular scales and provide
thus a unique signature to infer the existence of an inflationary
epoch.

Initial quantum fluctuations are in-

e For a highly simplified treatment of the qualitative properties of .4 o macroscopic scales.
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density fluctuations produced that way, consider a spherical over-
density. It must of course satisfy Friedmann’s equation, which we
write in the form (3.44)),

(3.72)

where Q is the density parameter inside the overdensity, from
which we obtain

3H*d? 3H*a> 3Kc*  pa®  3Kc?
2= Q= + =4 , 3.73
PE = "8G 87G 817G Q | 817G (3.73)
and thus .
pa’ (1 - ﬁ) = const. (3.74)

e For a linear overdensity in the early universe, Q = 1 + 6Q with
0Q < 1, thus dp = pdQ < p, and implies

1
pa® (1 - ﬁ) ~ pa*éQ ~ Spa* = const. (3.75)

i.e. the physical overdensity dp inside the spherical perturbation

must scale o« a2,

e The fluctuation 6® in the gravitational potential caused by the
spherical overdensity is

5o GOM _ 41G

R 3
where R is the physical radius of the sphere, and L is its comoving
radius. The last equality follows because §p o« a~2. The poten-
tial fluctuation caused by the perturbation thus remains constant

during inflation.

5
(aL)3—’z — const. L2, (3.76)
a

e The physical scale (aL) changes by ~ 30 orders of magnitude
during inflation, thus inflation predicts approximately identical
potential fluctuations on all accessible physical scales.

e The detailed theory of the inflationary origin of structures starts
with the vacuum expectation value of the inflaton field on the
scale corresponding to wave number k,

(0igel?| 0) (3.77)

and solves the equations for the field amplitudes. The result is
that the root-mean-square fluctuations in the gravitational poten-
tial scale as follows,

<5(D2>1/ ? %2 , (3.78)

which is approximately constant because of the slow-roll condi-
tions.
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e Due to Poisson’s equation, the Fourier modes of the potential and
density fluctuations are related by k>6®(k) o« —4(k), thus the (pri-
mordial) density power spectrum predicted by inflation is

16 o< KDk o« KBPi(k) = Pi(k) < k . (3.79)

This is the Harrison-Zel’dovich-Peebles spectrum which was
originally required for completely different reasons. Precise cal-
culations find

P;(k) oc k", (3.80)

withn < 1.

e Since the density fluctuations arise from superpositions of enor-
mous numbers of statistically independent vacuum fluctuations of
the inflaton field, they are expected to be Gaussian because of the
central limit theorem.

e Thus, inflation provides a physical picture for solving the horizon
and flatness problems of the Big Bang theory, and at the same
time provides a natural explanation for the origin of structures in
the universe, which are predicted to be nearly scale-invariant and
Gaussian.

e However, it also creates new problems as it does not provide a
theoretical motivation for the flat “slow-roll” shape of the inflaton
potential nor does it motivate the existence of the scalar field.
Besides, it requires reheating at the end of inflation to recover
the hot state of the Big Bang. This could be obtained through a
coupling of the inflaton field to ordinary matter, for which there
is no fundamental reason in the underlying theory.



CHAPTER 3. THE EARLY UNIVERSE 88

3.3 Dark Energy

3.3.1 Expansion of the Universe

e Observations force us to accept that the cosmological constant
today makes up ~ 70% of the energy density of the universe.

e Measurements of the CMB power spectrum reveal that the uni-
verse is spatially flat or very close to flat, i.e. the total energy
density contributed by all constituents of the cosmic fluid equals
the critical density.

e We know from the CMB itself, but also from other observations,
that the matter density, dark and baryonic, contributes approx-
imately 30% to the total energy density, and the abundance of
light elements requires the baryon density to be much lower. In
the framework of the Friedmann model, the remaining 70% of the
energy density must be contributed by the cosmological constant.

. ) . . Supernovae 1994 d
e The most important class of observations supporting this conclu-

sion is supernovae of type Ia. The progenitor system of a type la
supernova consists of a binary with at least one massive (= 1 Mg)
carbon-oxygen white dwarf:

— The single-degenerate scenario assumes that the companion
of the white dwarf is an evolved star. When the companion
star becomes a red giant, it grows over its Roche volume
and transfers mass to the white dwarf. White dwarfs are sta-
bilised by the Fermi pressure of a degenerate electrons gas.
This can only stabilise masses up to 1.4 M, against grav-
ity. When the companion star feeds the white dwarf beyond
this limit, a thermonuclear runaway burning is eventually
triggered, which explodes the white dwarf. This scenario
appears to be ruled out for explaining the majority of type la
supernovae.

A white dwarf fed by a companion
star.

— Alternatively, the double-degenerate scenario assumes the
existence of a binary consisting of two carbon-oxygen white
dwarfs. At the end of their evolution, they merge and cause
a thermonuclear runaway burning of carbon and oxygen in
the more massive progenitor. The resulting type la super-
novae explosion generates ~ 1 Mg *°Ni, which decays ra-
dioactively into *°Ni and eventually to °Fe. This decay is
responsible for the extraordinary brightness of type Ia su-
pernovae (~ 10'' times more luminous in comparison to a
star on the main sequence).

e The mass of the produced **Ni varies by nearly an order of magni-
tude and so does the intrinsic integrated bolometric luminosity of
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type la supernovae. However, the more °Ni there is produced, the SpEm '

higher is the opacity for the optical photons, which increases the &@f@

diffusion time through the explosives to the surface of the super- ]
novae. As a result, the light curve of more luminous supernovae 2f .
is broader and the peak luminosity is higher. There exists an em- o]

pirical relation between the width of the light curve and the peak
luminosity, which enables to calibrate them to an absolute lumi-
nosity. Thus, type Ia supernovae form a class of “standardisable
candles”.

o

e 2009
G

P 109 %
QeG?‘\e‘a o

Expands to Infinity

e Knowing their absolute luminosity and observing their apparent
brightness, their (luminosity) distances can be inferred. Their red-
shift can be determined from their spectra. Thus, it is possible to
reconstruct the luminosity distance as a function of redshift.

»
Recollapses o 20

e Initially very surprisingly, the distance turns out to be signifi-
cantly larger than expected in a universe without cosmological
constant. Observations of type-Ia supernovae first forced cosmol-
ogists to take seriously the possibility that the universe undergoes
accelerated expansion.

Cosmological parameter range
compatible with SN-Ia observa-
tions.

e Meanwhile, high-redshift supernovae have shown that the expan- ;=0 =% "8 0o
sion of the universe turned over from deceleration to acceleration ;. ferslsng -
around a redshift of unity. F der s ———ETE

TTmmm——m___ Constant D i
osE- Coasting, q(z)=0 T oo Soeleration, g=+, dg/dz=0 (=0
E___ Accelerafion+Deceleration, gy=- dg/dz=++

3.3.2 Modified Equation of State 5 5 5 :

The cosmic expansion turned from
e This is an unfavourable situation because we have no idea what deceleration to acceleration near z ~
the cosmological constant may be, and it is entirely unclear why 1.
at present the density parameters of matter and the cosmological
constant should be anywhere near equality.

e A simple estimate of the energy or equivalent matter density of
the cosmological constant produces an awfully wrong result. A
natural density scale would be the Planck mass divided by the
cubed Planck length, which gives

mp 107 -3 94 3
=8 — ~ 10 , 3.81
P 113; (10_33)3 gem gcem ( )
which is about 123 orders of magnitude larger than the critical

density of the universe p., ~ 1072 gcm™,.

e A similar answer is obtained by considering the zero-point energy
of a scalar field of mass m, momentum k, and frequency w. (For
this argument, we use natural units, 7 = ¢ = 1.) The zero-point
energy is given by E = w/2 = Vk? + m?/2. Summing over the
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zero-point energies of this field up to a cut-off scale kp, > m,
we obtain the vacuum energy density

(e Bk N2+ m? e dndldk kK,
Prac _f Qr} 2 Nfo Qny 2 1622

(3.82)

In the first step, we used the fact that the integral is dominated

by large-k modes since kpax > m. Taking kyn.x = m,, we obtain

Pvac = 107 GeV*, which is 122 orders of magnitudes larger than

the observed energy density of the cosmological constant, py =

10747 GeV*.

e The main reasons why the cosmological constant is considered
necessary are that the total matter density is much smaller than
unity, while the spatial curvature of the universe is close or equal
to zero, and that observations of supernovae of type Ia require the
expansion of the universe to be accelerated.

e Seeking a physical explanation for the cosmological constant, it
is useful to look at cosmological inflation, which also grew from
the requirement of accelerated expansion. As we have seen there,
this requires a form of matter whose pressure is

1,
p < —gpc , (3.83)
while the cosmological constant has p = —pc?.

e It is plausible to generalise the equation of state (3.83) as

1
p=upc’, w<-z, (3.84)
with a parameter w which may or may not depend on time.
Forms of matter with such equations of state have been termed
“quintessence”.

e Suppose for simplicity that w is constant. Then the continuity
equation requires

d 5 2 d gy
y (a 0QC ) + wpqc o (a ) =0, (3.85)
which implies
pQ = pooa (3.86)

where pq is the quintessence density today. Evidently, the be-
haviour of the cosmological constant is recovered for w = —1.

e Replacing Q) by Qq, and ignoring the radiation density, the
Friedmann equation reads

H(a) = Hy | Quoa™ + (1 = Quo = Qoo)a > + Qgoa | .
(3.87)
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For w = —1/3, the quintessence terms cancel, and the equation
looks like the Friedmann equation for an open model with Qo
only and Qg = 0.

e If wis not constant, the continuity equation leads to
1
pola) = pgo exp [—3f (1 +w)dIn a] . (3.88)

e As for cosmological inflation, a self-interacting scalar field is one
candidate for a form of matter which can have negative pressure.
The ratio w between pressure and density is

p2/2 -V
-2 _$R-V) (3.89)
pcs ¢ 2+ V($)
and the scalar field ¢ satisfies the evolution equation (3.61) ,
$+3Hp+V'(p)=0. (3.90)

3.3.3 Models of Dark Energy

e So far, the interaction potential V(¢) is completely unconstrained.
One suggestion is

V)=, (391
¢
the so-called Ratra-Peebles potential. The constant « has the di-
mension (mass)**®. It needs to be set such as to agree with the
quintessence density parameter today.

e For a power-law expansion, a « ", the Hubble function reads
H = a/a = n/t and the evolution equation (3.90) reduces to an
algebraic equation, which admits power-law solutions for ¢,

b = g2/ (3.92)
The kinetic term P
b= x foat_a/(zm) (3.93)

decays for @ > 0. Solving the algebraic equation imposes a con-
sistency relation for the amplitude of the scalar field evolution
(¢o) and the parameters of the potential,

_ a2 2(6n — a + 3an)
0 a2 + a)?

(3.94)
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e The energy density of the quintessence field then scales as

1.
pQ = 3¢ + V(g) oc 212, (3.95)
and its ratio to the density of matter or radiation scales as

PQ oc (220Cra) — AT (3.96)
Jo,

because the densities of matter and radiation both scale oc 2 while s

they dominate the expansion. For @ — 0, the quintessence den- e —
sity pg approaches a constant and reproduces the behaviour of o
the cosmological constant. For @ > -2, the quintessence density o
decays more slowly than that of matter or radiation, leading ¢ to 06
dominate the expansion of the universe at late times. 07

-0.4

w(z)

-0.8

o If @ > -2, the field grows arbitrarily large in this model, thus V e
approaches zero. For a > 0, the energy density pq — 0. ’ ’ * otz ’ *

) ) Equation-of-state parameter w as a
e A favourable aspect of the model (3.91) is that it has so-called

tracker properties, meaning that a wide variety of initial condi-
tions ¢ and ¢ lead to the same final solution for ¢. This may help
solving the coincidence problem, which states that nearly equal
values for Q, and Q,, today seem to require delicate fine-tuning
in the early universe.

function of redshift for two models
of dark energy.

¢ Another model, which is motivated by super-gravity theories, has
an exponential term in addition to the power-law potential,

V($) = —eG8 (3.97)
¢(Y

It shares the tracker property with the power-law model, but has
a significantly different behaviour.

3.3.4 Effects on Cosmology

e The modified expansion rate in quintessence models may have
pronounced cosmological consequences on age and distances,
nucleosynthesis, the microwave background, structure formation
and so forth.

e Since nucleosynthesis depends critically on how the expansion
time scale compares to the time scales of neutron decay and
the nuclear interactions, the cosmic expansion during nucle-
osynthesis is tightly constrained by observations of the light-
element abundances. Thus, at the time of nucleosynthesis, the
quintessence field must be negligible compared to the radiation
density which otherwise drives the expansion.
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e Changes in the expansion time scale during CMB recombination

changes the width of the recombination shell and thus modifies N
the height of the high-order acoustic peaks. If expansion is faster, 14 )
the temperature of the cosmic plasma drops more rapidly, the re- % wl L
combination shell becomes thinner, thus fewer small-scale fluc- =~ .,

tuations are projected onto each other looking into the recom-
bination shell, the damping of the high-order acoustic peaks is

ACDM

SU:SHA —

0 2 4 6 8 10

reduced, so they can be higher. itz
e Modified expansion behaviour changes the curvature of space- 0
time, and thus the angular-diameter and luminosity distances. o4 P ——

This influences the appearance of supernovae of type Ia, the ap-
parent size of fluctuations in the CMB, the cosmic volume of red-
shift shells, and the overall geometry of the universe, and thus
effects like gravitational lensing.

angular-diameter distance [c/Hg]
°
i
]

e The growth factor is modified, typically in such a way that struc- 00: D . sem ]
tures form earlier in quintessence compared to cosmological- ' stz '
constant models. Structures are thus expected to be present at
higher redshifts in quintessence models, and more pronounced at i el

given redshifts, compared to the cosmological-constant case. 0

ACDM

e Halo collapse against the universal expansion is modified, which
implies that the spherical collapse proceeds differently. Conse-
quently, the spherical-collapse parameters 6. and A, are modi-
fied, having pronounced effects on halo statistics (e.g. through ‘ ‘
the Press-Schechter mass function). . - T o

. ) Growth factor, angular-diameter
e The core densities of haloes appear to reflect the cosmic back- 0000 and halo concentrations in

ground density at their formation times. Since quintessence A cpM and two dark-energy mod-
makes haloes form earlier, they tend to be denser in their cores,
which may have strong effects on their appearance (e.g. through
gravitational lensing, X-ray emission, and so forth).

halo concentration
®

els.

e The modified growth factor in quintessence models changes the
time evolution of fluctuations in the gravitational potential. Pho-
tons propagating from the CMB recombination shell throughout
the universe thus experience changes in the gravitational potential
which are stronger than in the cosmological-constant model. A
larger fraction of the CMB amplitude is thus of secondary rather
than primary origin, possibly changing the normalisation of the
power spectrum.
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4.1

Galaxies and Gas

4.1.1 Ellipticals and Spirals

Galaxies are objects with typical sizes of a few kpc, while their
typical distances are of order Mpc, so they are clearly distin-
guished entities.

Galaxies typically consist of a central, more or less amorphous,
nearly spherically-symmetric part, called the bulge, and a flat-
tened, structure, called the disk.

Bulges contain predominantly old, metal-poor, red population-1I
stars which have an almost isotropic velocity dispersion.

Disks contain more metal-rich, younger, blue population-I stars
which move around the centre in nearly circular orbits.

Galaxies are classified by the ratio between bulges and disks.
Those dominated by the bulge are called ellipticals, those dom-
inated by the disk are called spirals, and there is a continuous
classification range in between, the Hubble sequence. Histori-
cally, ellipticals are also called early-type, and spirals late-type
galaxies.

Disks have near-exponential intensity profiles,

1 = I exp(—r—’;) : (@.1)

with the scale length ry, while bulges have the less steep de-
Vaucouleurs- or r'/# profile,

A\
I(r) = Iyexp {— (—) l . 4.2)

ro

Other types of galaxy are less easily fit into this scheme, such as
the irregular, dwarf, or blue compact galaxies.

Spectra of ellipticals show signatures of old stellar populations.
They correspond to a temperature near 5000 K, are rich in metal
lines, and dominated by giant stars moving off the stellar main
sequence.

Spectra of spirals are characterised by signatures of recent star
formation. They contain young, hotter, bluer stars with less ab-
sorption features. The radiation of the young stars can ionise am-
bient gas and thus produce narrow nebular emission lines.

Galaxy morphologies are classified
by the ratio between bulges and
disks.
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e The metal abundances in galaxies reflect metal production by
type-II supernovae, which are the end products of massive-star
evolution. Typically, metal abundances increase with increasing
galaxy mass (a consequence of hierarchical bottom-up growth of
galaxies) and towards galaxy centres (which form stars earlier
than the more dilute external regions of the galaxies).

e Ellipticals and spirals are characterised by a completely different
dynamics of their collisionless stellar systems: ellipticals are sup-
ported by the three-dimensional velocity dispersion o of the or-
biting stars while spirals are rotationally supported, i.e., the stars
orbit with v, in nearly circular orbits. Galaxy luminosities and
dynamical properties obey

1. the Faber-Jackson relation (for ellipticals), and

2. the Tully-Fisher relation (for spirals),

1/a
o (L) @ v
O s

L , a=x=3...4. 4.3)

Ve s

Both velocity scales are of the same order, v.. =~ 220 km s~

.. Since v, = \/50'1,, ellipticals with the same luminosity are
more massive than spirals. While the scatter of the Faber-Jackson
relation is about 1 magnitude, that of the Tully Fisher relation
only amounts to about 0.4 magnitudes. By adding information
about the central surface-brightness I, the Faber-Jackson relation
for ellipticals can be replaced by a tighter relation, the fundamen-
tal plane, which is defined by

Lo %07, (4.4)
with a scatter of about 0.4 magnitudes.

e Elliptical and spiral galaxy populations inhabit different regions
of space. While spirals dominate in low-density regions (well
outside galaxy clusters), ellipticals predominantly inhabit high-
density regions like cluster cores. Apparently, disks do not sur-
vive in dense environments.

4.1.2 Spectra, Magnitudes and K-Corrections

e The intensity of electromagnetic radiation is characterised by the
energy (&) received per unit time and unit detector area (A) from
unit solid angle on the sky (£2) and per unit frequency interval.
This is called the specific intensity,

d*e

I=——0" . 4,
drdAdQdv (*45)
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When integrated over the solid angle of a source, it is called the
flux density S,, which is consequently the energy received per
area, time and frequency. Its conventional unit is Jansky,

erg

A%
1ly=102° ——— =102 —=—— . 4.6
y m2 Hz scm? Hz (4.6)

Elliptical

o We will loosely speak of the flux below, which can be specific in-
tensity if not integrated over solid angle, flux density if integrated
over solid angle, or flux if integrated over detector area. If f, is
the flux per unit frequency, the flux f, per unit wavelength is -

She Spiral
Irregular

dv

fi= |z

C
fv: Efv (47)

0.01
3000 4000 5000 6000 7000 8000 9000 10000

ATAnastrom, 10%cm1

Spectra of different galaxy types.

¢ Intensities are measured through filters with transmission func-
tions 7, or T,. Sets of transmission curves define a filter system,
such as the Johnson-UBVRI system or that used by the Sloan
Digital Sky Survey (SDSS).

Johnson filter system

u
Vv
R

e

e The transmission curves define the effective wavelength

filter transmission T,

o
=

. [duar, ws) T
eff :: b . 0.001
f dAT/] wave length k‘[ionogoslrom]
o Transmission curves of the Johnson
and the sensitivity filter system.
0:= fdln vT, . 4.9)

e At least in optical astronomy, fluxes are commonly measured in
magnitudes, which provide a peculiarly defined logarithmic scale.
Generally, the magnitude difference of two objects is

R
Am:—zsm&Jﬁﬁ, Rﬁifdu@n (4.10)
2

if Ry, are the instrumental responses to the flux received from
objects 1 and 2. The zero point is commonly defined as the in-
strumental response to the flux of a standard star (e.g. a Lyrae,
which is an AQV star).

e For so-called AB magnitudes, the zero point is defined in terms
of the physical flux in Jy. For instance, the AB magnitude system
used by the SDSS is defined by

[dInv £ T,

m = —2.5log,, —48.6 4.11)
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e This can directly be related to the number of electrons released
in a CCD. The energy received per unit time and unit frequency
interval by a telescope with collecting area A is dE = Adrdvf,.
This energy comes in form of dN, = dE/(hv) photons, a fraction
T, of which can pass the filter. Thus, the number of photons arriv-
ing at the CCD, or the number of electrons released by the CCD
assuming 100% efficiency of the CCD in converting photons to
electrons, is

A
N, = ?tfdlnvaTy , (4.12)

where 7 is the total exposure time.

e For example, an object with an AB magnitude of m = 25 in a
given filter band with sensitivity Q = 0.1 has

fdlany =3.6x 107, (4.13)

and thus releases N
—~=55x%x10" 4.14
Y (4.14)

electrons per second exposure time and cm? collecting area.
Hence, a CCD attached to a telescope with 4 m mirror diameter
releases ~ 70 electrons per second from such an object.

e The absolute magnitude M of an object is the magnitude the ob-
ject would have if its distance was 10 pc from the observer. If
its true (luminosity!) distance is D, and its magnitude is m, the
absolute magnitude is

R(f») (10 pc)?

D% Rm

D
M = m + 5log,, (—L) = -2.5log, [

T0pc ] . (4.15)

e For objects at cosmological distances, the K-correction must be
applied which takes into account that the spectrum is redshifted
with respect to the fixed filter

f da f,T,

R(f2)
K(2) = 2.51l0g,, ——1 _ 9 510g, —)
10 fd/l f/l/(1+z)T/l 10 R(f/l/(1+z))

This modifies the absolute magnitude according to

R(fa/a+2) (10 pe)?
D> Ro |
4.17)

(4.16)

D
M = m+51logy, (TIL)C)+K(z) = —2.5log,,

e Since Af, = vf,, the K-correction for power-law spectra, f, occ v™¢,
is

fdln vy 2T,
[dInv (1 +z)-ottyerh2T,

K =25log,, = 2.5(a—1) log,,(1+2),

(4.18)
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i.e. the K-correction vanishes for spectra oc v~!. It becomes posi-
tive for bluer (steeper) spectra with @ > 1 and negative for redder
(flatter) spectra.

4.1.3 Luminosity Functions

e The number density of galaxies with luminosities between L and
L+dL is described by the luminosity function. Its measurement is
quite involved because it requires a detailed understanding of the
survey characteristics, in particular the survey selection function.

e Measured galaxy luminosity functions are typically well fit by the
Schechter function,

L\" L

o At the faint-end slope @ = —1.0 £ 0.15, quite independent of the
galaxy type. The cut-off luminosity L, is brighter for ellipticals
than for spirals. Its mean value is M, = —19.50 = 0.13 in the pho-
tographic B; filter band, rising from M, = —19.59 for ellipticals
to M, = —19.39 for spirals to M, = —18.94 for irregulars.

e Ellipticals contribute ~ 35% to ¢., spirals ~ 57%, and irregulars
~ 8%. The overall normalisation is ¢, ~ (0.0140 + 0.0017)A%,
but its exact value is uncertain because it still depends on galaxy
selection, and is locally sensitive to galaxy clustering.

e A cosmologically important number to derive from the luminosity
function is the luminosity density

pL= f i Ld¢(L) = (e + 2)¢.L. , (4.20)
0

where

I(x) = f et dt (4.21)
0
is the gamma function.

e The galaxy luminosity function in galaxy clusters is very similar
to that outside clusters at intermediate luminosities, but deviations
exist at the bright and the faint ends. At the bright end, luminous
cD galaxies exist in the centres of many clusters which are not
simply the brightest objects drawn from a Schechter function. At
the faint end, the luminosity function steepens considerably due
to a dwarf population which has @ ~ —1.8. Such a dwarf galaxy
population may also exist outside clusters.
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e There is no compelling evidence for brighter galaxies to be
more strongly clustered (luminosity segregation). However, the
Butcher-Oemler effect says that the fraction of blue galaxies in
clusters increases with increasing redshift. This is probably a
consequence of both enhanced star formation in cluster galaxies
at moderate and high redshifts, and later depletion of star-forming
galaxies due to mergers.

e While the luminosity function in the (near-infrared) K band does
not evolve with redshift out to z ~ 0.6, it exhibits strong evo-
lution in the B band. There is a significant population of faint
blue galaxies at moderate and high redshifts which seems to be
actively star-forming.

e Metals (i.e. all elements heavier than helium) are produced in
stars, mostly in stars more massive and less long-lived than the
Sun. Since metals are produced by nuclear fusion with a mass-
to-energy conversion efficiency near 1%, the luminosity density
of galaxies can be related to the metal abundance. The evolution
of the luminosity density with redshift then allows the metal pro-
duction to be deduced as a function of redshift. In turn, this yields
the star-formation rate as a function of redshift. Apparently, most
stars were formed between redshifts 1 and 2.

e Approximately 10% of the energy produced during that time
should be radiated in the narrow Lyman-a line, so that a popu-
lation of Lyman-a emitting galaxies should be seen. This has not
been observed in targeted observations, probably because a large
amount of star formation happens in environments with neutral
hydrogen (which absorbs Lyman-a radiation) or in dust-shrouded
environments which scatter the radiation into the infrared. The
cosmic infrared background is consistent with this picture. In-
deed, blind surveys have now delivered about 200 Lyman-« emit-
ters which are presumably associated with young starburst galax-
ies.

4.1.4 Correlation Functions and Biasing
e The density-fluctuation field has the power spectrum P(k) defined

in (2.43)). Its correlation function given by (2.46)), thus the power
spectrum is related to the correlation function by

fd3x§(x)e”?f:27rf xzdxg(x)f sin dgelk~cost
0 0

00 : k
Ar f Pdx () (4.22)
0 kx

P(k)
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e Observationally, the correlation function of the galaxies describes
the excess probability above random for finding a galaxy at dis-
tance x from another. Let dV; and dV, be two infinitesimally
small volume elements separated by r, and n the number density
of galaxies. Then, the probability dP for finding one galaxy in
dV; and another in dV, is dP = n*dV,dV,. If the galaxies are ran-
domly distributed. If the galaxies are correlated, this probability
becomes

dP = n’[1 + &(r)]dV,dV; . (4.23)

e This gives the principle for measuring £(r): in a volume-limited
survey of galaxies, count pairs of galaxies separated by a distance
between r and r + dr, and compare it to the pair counts expected
if the galaxies were randomly distributed. For instance, let (DD)
and (RR) be the pair counts in the data (D) and the randomised
(R) galaxy surveys, then

_ (DD}

T (4.24)

3

is one estimate for &.

e A simple assumption holds that the number density of galaxies is
related to the density contrast by
0
Do =bs=6+b-1)5, (4.25)
n
where b is the bias factor, which can be inferred from velocity
measurements, as we will see in the following.

e However, in order to measure the real-space galaxy correlation
function &g (7) = (Fgu(X)dga(X + 7)), we need three-dimensional
positions of all galaxies. Using a galaxy’s redshift, its observable
angular position can be turned into a transverse distance. The red-
shift itself can be turned into a line-of-sight distance, provided the
total line-of-sight velocity is solely interpreted as a Hubble veloc-
ity. If the galaxies’ peculiar velocities were random, averaging
over a large number of galaxies would reduce their contribution
to the correlation function and result in an unbiased measurement
of &. However, there are two systematic effects that bias the
galaxies’ peculiar velocities in a unique way and preclude such
an approach.

1. On large scales, galaxies are predominantly attracted by
clusters and super-clusters such that there is an infalling ve-
locity bias. This causes galaxies that are on the near side of a
cluster to recess (implying a redshift) and galaxies on the far
side of a cluster to approach (implying a blueshift). Overall,
this “Kaiser effect” implies a squeezing of the apparent ra-
dial scale while the transverse direction remains unaffected.
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2. On small scales, the galaxies’ motions within a gravitation-
ally bound structure such as a cluster are virialized and re-
flect its potential depth. This “finger-of-god-effect” leads
to an apparent elongation of scales along the line-of-sight
while the transverse scale remains unaffected.

e To quantify this and demonstrate how this can be used to infer
the linear bias parameter, we will now derive the Kaiser effect.
Density perturbations ¢ give rise to peculiar motion and displace-
ments

S|~

oX=--1%, (4.26)
from which ¢ can be inferred according to
§=-V-6%, 4.27)

which follows in the framework of the Zel’dovich approximation,

cf. Egs. (2.56] [2.60]and [2.63))

e Peculiar velocities i cause displacements

-

u
Hf(Q)
of the comoving coordinates (cf. [2.66).

0x =

(4.28)

e The peculiar motion adds to the Hubble velocity. The apparent
comoving distance to a galaxy is inferred from its observed line-
of-sight velocity

v=U-é =a(HX+i)-é,, (4.29)
where &, is the line-of-sight direction.

o Interpreting the total velocity as Hubble velocity implies that the
apparent comoving distance vector to a galaxy is

v i-e
x
-fapp = E = freal + Té)x . (430)

e An apparent displacement 6y, is thus related to the real displace-
ment 6 X, by

SRapp = Orcal + %8 = §%oea + [(Q(OFoea - 80, . (431)

e Because 67 o« VD, a density perturbation with wave vector K
causes a displacement parallel to K. Let u be the cosine of the
angle between the line-of-sight and K, then 0%y - &, = O Xreallds
k- é, = ku, and A

§ = —ik - 63 = ~iks5 . (4.32)

From this, we obtain

Sapp = Ot [ 1+ SQU] . (433)
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e The apparent density contrast in the galaxy counts is thus related
to the real density contrast by the term caused by the velocity
perturbations plus the biasing term,

a a (Qu?
5§pi> = 5real [1 + f(Q),UZ] + (b - 1)5real = 6rge;l 1+ f b K .
(4.34)
e The peculiar anisotropy caused by the factor u? can be used to
measure .
B = % : (4.35)

The ratio between the redshift- and real-space power spectra is

Papp 2\2
Prea1=(1+,8,u) : (4.36)
which can be written as
Pay 28 B . (4B . 4B 86°
1+ £ +2 2L 2 \p —P , (4.37 b
Preal(+3+5+3+7 2(#)+354(M)( )

where P, 4(u) are the Legendre polynomials. The redshift-space
power spectrum thus exhibits a characteristic quadrupolar pattern,
and the ratio between quadrupole and monopole can be used to
infer . o /e
Two-dimensional galaxy correla-

e On small scales, virialised motion within bound structures tion function measured from the
(e.g. galaxy clusters) leads to an apparent extension along the g Galaxy Redshift Survey.
line-of-sight (“finger-of-god effect”). This can approximately be
described by damping in Fourier space according to

6= 61 + KPP (4.38)

where o is the velocity dispersion of the galaxies within the
bound structure. The overall effect is then

2
Pup _ (1+51)
Preal - 1+ k2/~120-2 '

(4.39)

4.1.5 Intervening Gas

e The light from distant sources such as quasars (i.e., accreting su-
permassive black holes) passes through diffuse gas. The neutral
hydrogen within these clouds absorbs rest-frame Lyman-a pho-
tons. Quasar light that is emitted blueward of Lyman-« (with an
energy of E > hvyy,) is redshifted during propagation. Once it is
traversing neutral hydrogen (Hi) at redshift z, an absorption fea-
ture at E = (1 + 2)hvyy, is produced in the observer frame. The
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ubiquity of Hi clouds causes the emergence of a forest of Lyman- O
a absorption features. Characterising the (one- and two-point)
statistics of the resulting absorption lines offers an important way \
to study the large-scale structure and fundamental cosmology. A—>
A cartoon showing the origin of the
Lyman-a forest towards a quasar
d /2 it: Wri
ap _ / , (4.40) (credit: Wright).
do  (w=wy)*+ (I/2)?
which can be considered as the probability distribution for a pho-

ton of frequency w to be absorbed by an atom with a transition
frequency wy. I is the line width.

Flux

e The shape of absorption lines is given by the Lorentz profile

e The Lorentz profile arises in the theory of the damped classi-
cal harmonic oscillator, where I is the damping rate. Quantum-
mechanically, I'"! is the lifetime of the excited state resulting from
the absorption.

e The natural line width defined by the decay probability of the ex-
cited state is often increased by atomic collisions, which shorten
the lifetime and thus broaden the absorption line.

e If the gas moves thermally with respect to the line of sight, the
resulting absorption-line profile is a convolution of the Lorentz
profile with a Gaussian

d r ® g
P f © v . (4.4
do 2n)2%0 J_o (W—wy—wov/c)* + ([T/2)2

which is called the Voigt profile. It has a Gaussian core and

Lorentzian wings.

e The absorption cross section of the Lyman-a transition of a (neu-
tral) hydrogen atom in thermal equilibrium is

d
o (W) = 6.9 x 1072 ﬁ cm? | (4.42)

which gives rise to the optical depth

Thi(w) = o(w) f ndl .= oc(w) N, , (4.43)

which is the cross section times the column density N, i.e. the
hydrogen number density » integrated over the line-of-sight.

e The central optical depth of a Lyman-a line which is Doppler
broadened with a velocity dispersion o, the central optical depth

1S
o -1 N,
o ¢ . 4.44
THLO (kms“) (1.86><1012cm—2) (4.44)

Typical velocity dispersions are of order a few tens of kms™!,

thus measurable central optical depths of ~ 0.1 are reached with

column densities of N, ~ 10" cm™.
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e The observed probability distribution of column densities is very
wide and approximately follows a power-law

P(> N,) o< N;%7 (4.45)
up to N, ~ 10! cm™2.

e When N, ~ 108 cm™2, the optical depth becomes unity in the
Lorentzian wings rather than the Gaussian core of the lines. Such
saturated lines are called “damped” and the absorbers “damped”
Lyman-a absorbers.

e [f absorbers have the typical absorption cross section o(z) and a
physical number density of ny;(z), their expected number per unit

redshift is

derop
dN = 0 (2) ng(2)

dz, (4.46)

with the proper-distance Dy, given in (1.58). The redshift distri-
bution of absorbers is the power law

IV (1423204 (4.47)
dz

— T T T T

QSO 1937-1009
= 3.572

e Quasars typically have strong redshifted Lyman-a emission lines,
which are absorbed by intervening neutral hydrogen gas. The
total optical depth for that absorption is

Zabs

20 [
10|

. . P U R
5000 6000 7000

dDpyrop

dz . (4.48)

Flux (107*® erg s™! em™ &71%)

2Q
THI = f o[(1 + 2)wo] nui(z)
0

e If there was continuously distributed neutral hydrogen along the ~he Lyman-a forest blueward of the

line-of-sight to any distant quasar, all flux blueward of the Lyman-
« emission line should be absorbed, which is not observed. This
indicates that the intergalactic hydrogen must be ionised.

Lyman-a emission line.

e This Gunn-Peterson effect implies remarkably tight bounds on the
density parameter in neutral hydrogen. For instance, the absence
of complete absorption in the spectra of quasars near redshift zq =
5 implies

Qu s 1.5%x10°% 07", (4.49)

e Complete absorption has recently been detected in quasars just
above redshift zo = 6, which may indicate that the universe was
reionised around that redshift. However, even small admixtures
of neutral hydrogen are sufficient to cause complete absorption,
thus reionisation may have started considerably earlier. In fact,
the mean Thompson optical depth towards the CMB

ZCMB dD .
Te = 07 f ne(z) dp 2
0 Z

dz ~ 0.09 (4.50)
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by Planck implies a mean reionisation redshift of Z.j,n ~ 9 (as-
suming an instantaneous reionisation history).

e Hydrogen absorption lines trace the gas distribution, which
should follow the density distribution of the dark matter. Lyman-
a absorbers are thus an important tracer for large-scale structures
and constrain the density-fluctuation power spectrum on small
scales.
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4.2 Gravitational Lensing

4.2.1 Assumptions, Index of Refraction

e Due to space-time curvature, masses and other concentrations of
energy deflect light towards themselves, in a way similar to con-
vex glass lenses. This gives rise to an effect called “gravitational
lensing”.

e Basic assumptions in conventional lensing theory are that the
Newtonian gravitational potential ® of the lensing mass is small
in the sense ® < ¢?, and that the extent of the lenses L along the
line-of-sight is small compared to the Hubble length, L < ¢/H,.

e Under these conditions, the Minkowski metric of flat space-time
is modified. Instead of

ds? = A2d? - d&, (4.51)

the line element becomes
20 20
ds’* = (1 + —z)czdtz - (1 - —z)dx’z : (4.52)
c c

i.e. the coefficients of ¢*ds> and di® are perturbed away from
unity. According to the general assumptions above, these per-
turbations are small.

e Since light propagates according to ds*> = 0, the metric (4.52)
implies

() ()
(1 ¥ —Z)Cdl‘ - (1 - —2) dx (4.53)
C C
where we have used that (1 + 2x)"/2 ~ (1 + x) for x < 1.

e The speed of light is thus changed in presence of the perturbing
potential to

. |dX 20 c
=—=c(l+—]= -, 4.54
dr ¢ c? n ( )
where 5
o
n:= (1 — —2) > 1 (4.55)
c

is the effective index of refraction of a weak gravitational field.
Since ® <0,n>1,thusc¢’ <c.

e Consequently, there arises a time delay compared to light propa-
gation in vacuum. We have

dx dx dx 20
d(At) = 7 - ? = 7(1’1 - 1) = —?dx , (456)
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and obtain the Shapiro delay in a gravitational field
2
At=-— | @dx, (4.57)
C

where the integral is evaluated along the line-of-sight.

4.2.2 Deflection Angle and Lens Equation

e In complete analogy to geometrical optics, we can now use Fer-
mat’s principle to calculate the deflection of light caused by the
refractive index. Fermat’s principle requires the light-travel time
between fixed points 1 and 2 to be extremal, thus

2
6f n(xX)dx=0. (4.58)
1
Introducing a parameter A running along the light path, this reads
2
| mamiar, (4.59)
1

with @ := d/dA.

e Using |4 = (2)'/2, Euler’s equation reads

d oL oJL
——=-==0, 4.60
dlgg OX (4.60)

with L = n(®)(:2)"/2

e The derivative ¥ is proportional to the tangent vector to the light
ray. The curve parameter A can be normalised such that ¥ = &, the
unit tangent vector. We then find from Euler’s equation

-

%n()?)é’— Vn=né+(n-8-Vn=0. (4.61)

Sincen-1 <« 1, ﬁn/n = Vinn ~ ﬁn, and we obtain for the
change of the tangent vector along the light ray

2

= —gﬁcp : (4.62)

¢=Vn—(Vn-8é=V,n
i.e. &is determined by the component of the gradient of n perpen-
dicular to the line-of-sight.

e The total change of the direction of € is the deflection angle
2

== | V.odl, (4.63)
C

Qv

where the integral is carried out along an unperturbed, straight
line instead of the true, curved, line-of-sight in the spirit of the
Born approximation for small-angle scattering.
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e According to the second assumption, the thin lenses can be pro-
jected along the line-of-sight. Their surface-mass density is

(b) = f p(b, 2)dz (4.64)

and their deflection angle is the superposition of the deflection
angles of all infinitesimal mass elements,

L4 S5 - ¥
@=ﬁf®wﬁﬂéﬁ-
b—bP

v

> (4.65)

o If Dy, 45 are the angular-diameter distances from the observer to
the lens and the source, and from the lens to the source, respec-
tively, the relation A

DS = D — D4@ (4.66)

obviously holds, where ﬁ and 6 are the angular positions of source
and image on the sky relative to the optical axis. This is the lens
equation.

e Introducing the reduced deflection angle

Dy, ~
qi= =25 (4.67)
Dy
the lens equation becomes
B=0-aa@). (4.68)

e The surface-mass density X, scaled with the critical surface mass
density

470G DyDys |
Xep 1= [L s ] (4.69)

¢ Dy
is the convergence k := X/%,,.

e The lensing potential is a weighted projection of the Newtonian
potential

W) :=

Dy 2 R
— | (D . 4.7
mm@f‘(@“ (4.70)

Its gradient is the (reduced) deflection angle

= = =3 2 D s =3 - 5,2
Vo (6) = DgV ¥ = — d fVL(D(DdG, dz=a). @71

¢ Dy
Its Laplacian is the convergence

2 DdDds

Aw®=;l)

f AD(D4f, z)dz = 2k , 4.72)

where Poisson’s equation and the definition of the critical surface-
mass density have been used in the last steps.
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4.2.3 Local Lens Mapping and Mass Reconstruction

e The local imaging properties of a lens are described by the Jaco-
bian of the lens mapping

0B da;| Py |
A= o0 [% 59}'] - léij 59i39j] a [6ij wij] - @7

which is obviously symmetric. The local lens mapping is thus
determined by the curvature of the lensing potential .

e Images are locally magnified by a factor

a0 1
=det| —|=det(A )= — . 4.74
H © (aﬁ) © (ﬂ ) det A ( )
e The trace of the Jacobian is
trtA=2-Ay =2(1-«), 4.75)

subtracting it from A leaves the trace-free shear matrix

O
F,’j = ﬂij—?]trﬂ:Kéij—lﬂij . (476)
which is symmetric and has the components y; = (Y11 — ¥2,)/2
and y; = Y12
r:—( oo ) . (4.77)
Y2 Y1

Thus, the Jacobian can be decomposed into an isotropic part, re-
sponsible for isotropic image stretching, and an anisotropic, trace-
free part, responsible for image distortion.

e Convergence and shear are different linear combinations of sec-
ond derivatives of ¢, thus « can be reconstructed from measurable
image distortions. In Fourier space

k:—%(kf+k§)$, h=—s (=)D, 2= —kikoil

2
(4.78)
Thus .
‘j\/l _ i k] - kz N
( % ) = k2( 2kiky K. (4.79)
e This can easily be inverted noting that
(-2 \|
[ﬁ( el =1 (4.80)
so that

. L [(E=-E\(3 1 A A
°o ﬁ( ks )( Z; ): 2 [ =D+ 2kikada| . (481)
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This expression for & is easily transformed back into configuration
space

1 S
K= - f CoR|[DE- Ty (4.82)
Vs
with y := y; + iy, and the kernel
9% - 9% + 216,06,

D) = o

(4.83)

4.2.4 Deflection by Large-Scale Structures

e Light propagation in General Relativity, specialised to the
Friedmann-Lemaitre-Robertson-Walker metric, yields the result
that the comoving separation of two light rays ¥ evolves with the
radial coordinate w as

d?x

o tKw=0. (4.84)
w

with K given in (I.44). This is an oscillator equation with the
solutions fx(w) given in (1.7).

e Near localised inhomogeneities, space-time can be approximated
as Minkowskian, perturbed by the lensing potential ®, which
gives rise to the light deflection

d’x 2 5

w = _EVJ_Q N (485)
as shown in (4.62)), where the curve parameter A has been replaced
by w.

e The combined light deflection by the space-time curved on large
scales, and the superposed small-scale perturbations, is thus
22
4z + KX = —EVLCI) (4.86)
dw?
This is the equation for an externally driven harmonic oscillator.
The solution can be found using the Green’s function of the har-
monic oscillator to be

- - 2 w - -
X0, w) = fr(w)d - 2 fo dw’ fx(w — w )V, @[ fx(w)o] . (4.87)

e The deflection angle is the deviation of the true separation of the
light rays from the separation expected in homogeneous space-
time, divided by the distance to the sources

fr(w)d — X6, w)
fk(w)
, fx(w —
dw
CZ 0 Sr(w )

al@,w) =

Jw—w)g LO[few)F] . (4.88)
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e As for the thin-lens case, where 2k = Ay = Ww =V. a, the
effective convergence is defined as

w oy ’ 2
Keﬁ‘zéﬁ'd’):f dw/ fK(w w)fl((w)( a(D )[fK(w,)é)]
0

Jr(w) 0x;0x;
(4.89)
Inserting Poisson’s equation (2.17/])
3H?
AD = —Q0 , (4.90)
2a
yields
| S
Keft = f dw’ W(w, w')él fx(w")el (4.91)
0
with
H. 2 Qm o ’
Ww,w') := é(_O) o fxk(w —w)fr(w') ' (4.92)
2\ ¢ a Jfxw)

4.2.5 Limber’s Equation and Weak-Lensing Power
Spectra

e Given a homogeneous and isotropic random field f(¥, w) with
power spectrum Py(k), and a weighted projection

g(¥) := f dw g(w) f(X,w) (4.93)

what is the power spectrum P,(/) of g, where [ is a two-
dimensional wave number?

e Suppose ¢(z) is varying on much larger scales than f, Limber’s
equation holds

7*(w) l
P.(]) = d P . 4.94
oD “Pw' [fK(w)] (399

e Eqg. for the effective convergence is of the type (4.93), with
q represented by W and f represented by 6. The condition for
Limber’s equation is well satisfied because the density contrast &
is varying on much smaller scales than W. Thus

v W (w,w) [ [ ]
P.() = d P, . 4.95
0) fo S P (4.95)

e As in the thin-lens case, magnification and shear are defined via
the Jacobian matrix of the lens mapping

aa/i

ﬂijzéij_%-
J

(4.96)



CHAPTER 4. THE LATE UNIVERSE 113

To first order in the da;/96;, the magnification is
-1
,u:(l————) =1+V-@=1+42g. (497)

e The statistics of ¢ and the shear y are identical to the statistics of
Ker €xcept for constant factors. This is obvious for the statistics
of the magnification fluctuation

op = 2keg = Psy(l) = 4P (1) . (4.98)

Considering the shear components in Fourier space, we have

2 122
(#1) = GoB e, () = LG .

4
2 2N\2
(k) = @% , (4.99)

and thus
C+B? .,
0 = (%) . (4.100)

Thus the power spectra of the cosmic shear and the effective con-
vergence are identical

. 1 .
(9F) = 0+ 205 + B =

P,(l) = Pl) . (4.101)

e Following (2.46), the correlation function of the effective conver-
gence is

P.(De . (4.102)
)2

£4¢) = (ke @ren(@ + §)) = f 2

Note that the wave vector [ is now two-dimensional, thus the in-
- >,
tegral over the angle enclosed by the vectors / and ¢ yields

< Idl
§K(¢)=f 2—PK(1)10(1¢), (4.103)
0 T

where Jo(x) is the zeroth-order Bessel function of the first kind.
This is identical to the shear correlation function &,.

e On angular scales of arc minutes, the typical expected shear- and
convergence correlation functions are of order 107, thus typical
shear values on such scales are of order a few per cent.

e Albeit weak, the shear can be measured quantifying the distor-
tions of the images of distant galaxies. The shear correlation func-
tion can then be compared to the theoretical expectation (4.103))
in order to constrain cosmological parameters and the dark-matter
power spectrum. This has been achieved with spectacularly solid
results, leading to an independent confirmation of the standard,
low-density, spatially flat cosmological model with cosmological
constant.
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e The cosmic-shear measurements are expected to contribute sub-
stantially to answering the question about the equation of state of
the dark energy.
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4.3 Galaxy Clusters

4.3.1 Galaxies in Clusters

e Galaxy clusters are a cosmologically important class of objects.
They trace the most pronounced density peaks of large-scale
structure. They are the largest gravitationally bound objects in the
universe, assemble the latest in cosmic history, and thus reflect
structure growth. They are closed objects in that their interior
does not mix with outside. They are an overdense environment
which impacts on the evolution of their member galaxies.

e Galaxy clusters were originally defined as regions in the sky with
enhanced galaxy number density. An example are Abell’s criteria:
(1) at least 50 galaxies in the magnitude range [m3, m3 +2], where
mj3 is the magnitude of the third-brightest cluster galaxy. (2) the
galaxies are enclosed by the Abell radius Ry = 1.5 'Mpc. And
(3) their redshift falls within [0.01,0.2]. Abell’s famous cluster
catalogue is built on these criteria. Many other definitions and
catalogues exist.

e Abell’s catalogue contains 4076 clusters, of which 2683 have
richness class R > 1. This corresponds to a local number den-
sity of rich clusters of n ~ 107> #* Mpc™. The mean separation
between clusters is thus ~ n~'/3 ~ 50 = Mpc.

e Elliptical galaxies are enriched compared to spiral galaxies in
clusters. The galaxy population at intermediate luminosities is
well-described by a Schechter luminosity function, but there are
deviations both at the bright and the faint ends. CD galaxies are a
special, bright class of objects in cluster centres. At the faint end,
the luminosity function steepens considerably.

e The number density of galaxies in clusters is approximately de-
scribed by a cored distribution

1"2 -3/2
n(r) = n (1 + —2) , (4.104)
r

with the core radius r, ~ 120 A~! kpc and the central number den-
sity ng ~ 2 x 10* 13 Mpc ™.

e Galaxies move within the gravitational potential well of the clus-
ter. They have a velocity distribution centred on the bulk velocity
of the cluster with a velocity dispersion

o= (of) = () . (4.105)

where v is the velocity component parallel to the line-of-sight.
Typical cluster velocity dispersions are of order ~ 1000 kms™.



CHAPTER 4. THE LATE UNIVERSE 116

e Moving with this velocity, galaxies take approximately a few Gyr
to cross galaxy clusters, i.e. an amount of time comparable to the
Hubble time. It is thus unclear whether galaxy clusters can be
considered as relaxed objects in equilibrium (and the definition
of equilibrium in self-gravitating systems is equally unclear).

e For a galaxy of mass m at radius R enclosing the cluster mass M,
the virial theorem demands
GM
2K =-V = 22302 = 222 (4.106)
2 R
where the factor 3 comes in because o, is the dispersion along
one spatial direction only and we neglected the surface pressure
term due to accretion. This yields the mass estimate

3Ro? R o 2
M~ o5 i m ( v ) .
G Q(I.Sh—l Mpc) 1000 km s™!
(4.107)

Although the application of the virial theorem is questionable,
this mass is approximately 10 times the mass visible in galaxies.
This was the first hint at a substantial amount of dark matter in
the universe.

e For self-gravitating gas spheres in hydrostatic equilibrium, the
hydrostatic equation reads

dp  GM()
dr r2

0, (4.108)

where p and p are the gas pressure and density, respectively. For
an ideal gas, p = pkT/m, where m is the mean particle mass.
Thus,
kT'dp pkdT  GM
m dr " mdr P2

(4.109)

e Considering the motion of galaxies within the dark-matter domi-
nated cluster as the motion of a gas with temperature

3 m._ mo?
EkT—EGO'D) = T= e (4.110)

in an external potential well created by the mass M, eq. (.109)
becomes

M=-

ro? dlnp+dlna'§
G \dlnr dlnr )’

where p is now the (number) density of galaxies.

4.111)
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4.3.2 X-Ray Emission

e Soon after X-ray detectors were first used in astronomy, it was
detected that galaxy clusters are the brightest X-ray sources in the
sky. When X-ray spectra could be taken, it was discovered that
the X-ray radiation has an exponential cut-off characteristic of
thermal radiation. When the sources could be spatially resolved,
clusters turned out to be diffuse sources.

e The X-ray radiation thus reveals that clusters are filled with ther-
mal gas which is hot enough for emitting X-rays. In an ionised,
hot gas (a plasma), electrons scatter off the Coulomb field of
ions and radiate because of their acceleration. This thermal
bremsstrahlung (free-free emission) is the only relevant cooling
process for a hot plasma of temperature kT > 2 keV. Below this
temperature, recombination-line emission of heavy elements such
as iron starts to dominate the cooling (and the associated X-ray
emission; assuming typical heavy element abundances, which are
are about one third of those found in the Sun).

e Heuristically, the X-ray emissivity j,(¥) (i.e. the amount of en-
ergy emitted in photons of frequency v per unit frequency inter-
val dv, per unit time and unit plasma volume) must scale with
the squared particle number density because it is a two-body pro-
cess. It further scales with the time available for the scattering
process, which is proportional to the inverse relative velocity of
electron and ion, or the inverse square root of the temperature,
t ~ Ax/Av ~ Axm/ VKT, since Av ~ ¢s; and with the Boltzmann
factor for the distribution of energy at a given temperature. Ac-
cordingly, we expect

d’E —C P2 eI
dvdrdV VKT

where C is a constant. This is confirmed by the theory of radiation
processes. The volume emissivity is the integral of j, over the
frequency,

J(X) = (4.112)

d’E * ~ 5
1 — = 1 = T 411
@ = fo dvj,(®) = Cp* Vk (4.113)

20T \'? erg
2.5><10-23( 7 )( ) (4114
l1cm™3 108K cm3 s ( )

1

for a metallicity of Z = 0.3Z.

o If the gas has density p and temperature 7', eq. (4.109) requires

M(r) = — (4.115)

rkT dlnp_l_dlnT
Gm\dInr dlnr) "’
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e Combining this with the mass estimate (4.1T1)), we have

dlnpgy dlno?\ kT (dlnpgs dInT
2 ga v gas
= — . 4.116
( dinr dlnr) m( dinr " amr) o @O
Introducing the ratio of specific energies
- Oy @.117)
ﬁ L kT ’ .
yields
dInpgs = B(dInpgy +dIno?) —dInT . (4.118)
Using the definition of 8, dIno? = dInT + dIng, and (4.118)
becomes
dInpgs = pdInpg + (B—-1)dInT +dB, (4.119)
and thus

Peas p'gal 75 !, (4.120)

e Assuming isothermal gas, its distribution should thus follow the
galaxy distribution to the power of the 8 parameter. Adopting the
galaxy distribution (4.104) suggests the 3 profile

2 -3p/2
Pgas = P0 (1 + —2) . (4.121)
o

Since the X-ray emissivity is oc p?, this implies

2\ 7P
JAr) = Jo (1 + —2) ; (4.122)
"o
and, after projection, the X-ray flux per unit solid angle is given
by
oo = drjy(r)
Sx = 2f dzj,[r(z)] =2 — (4.123)
0 ry \H"z - }"3_
2j rG38—-1/2 2\ 1/
Joro VAT (3 -1/ )(1+%) (4.124)
'(3B) rg
2\ —36+1/2
= Sxo (1 + 6_3) y (4125)

where z = +/r2—r2. This routinely provides excellent fits
to the X-ray surface brightness of observed clusters with ry ~
200 A 'kpc and B ~ 2/3.
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e Such “p fits” yield the derivative dlnpg,/dInr and thus the
isothermal mass estimate
3BrkT  r?/r?
M) =2 <.
Gm 1+7r/r;

(4.126)

such mass estimates can be highly misleading because of the
many assumptions they rely on. (4.126) implies M(r) o r for
r > ry.

e Assuming an NFW dark-matter density profile and gas in
hydrostatic equilibrium with it, yields density and X-ray surface-
brightness profiles which can excellently be fit with S-profiles out
to radii of order Rsqy, but the resulting mass profiles are wrong.
At larger radii, the steeper NFW profile causes a steepening of
the gas profile. Besides, the kinetic pressure contribution, the
clumping factors (C = {p?)/{p)?), and anisotropies due to the
filamentary nature of mass accretion increase steeply with radius
and cause the simplified spherical approach presented her to fail
at scales approaching the virial radius.

e Explaining the total X-ray luminosities of clusters requires central
particle number densities of

20 102 em™. (4.127)
m
Total gas masses are of order ~ (10 — 20)% of the total cluster
masses, which corresponds to the cosmic baryon fraction

Qu  0.047

=2 6w 4.128
Q. 03 7 (4.128)

e Comparing the thermal energy content to the total (frequency-
integrated) X-ray emissivity defines the cooling time

3nkT

kT \'? n -1
oot = 22 G ( ¢ ) . (4129
Y yr (keV) 102 cm™3 (4.129)

which drops below the Hubble time in the centres of massive clus-
ters where gas should thus efficiently cool. If gas in pressure equi-
librium cools, it becomes denser and cools even faster: this is a
runaway process that should lead to a large amount of cold gas
and star formation. However, the observed traces of cool gas (Ha
emission) and rates of star formation are much lower than the ex-
pectations from unimpeded cooling, and recent X-ray spectra do
not reveal any spectral signatures (e.g., metal lines) of cool gas
(kT < 0.5 keV). This constitutes the famous “cooling flow prob-
lem”. Therefore, there must be a way of re-heating the cooling
gas in cluster cores, which could be provided by Active Galactic
Nuclei (AGN) in clusters.
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4.3.3 Gravitational Lensing by Galaxy Clusters

The cores of galaxy clusters are dense enough to produce strong
gravitational lensing, giving rise to strongly distorted images of
background galaxies, so-called arcs. Assuming axial symmetry
of the projected mass distribution, arcs should trace a circle with
the Einstein radius 6g of the cluster, which is given by the require-
ment that the mean cluster convergence within the Einstein radius
1S unity
M@) 1
(k) = T NRVE
T (D dHE) z"cr

where X, is the critical surface-mass density defined in and
Dy is the angular-diameter distance to the cluster.

(4.130)

If cluster and source redshifts are known, and a cosmological
model is adopted, this can be inverted to yield the cluster mass
enclosed by the Einstein radius

M(0g) = nD3X 6% . (4.131)

Mass estimates obtained this way are of the same order of magni-
tude as those found with other techniques, but there are systematic
discrepancies. In many clusters, the strong-lensing mass estimate
obtained from is substantially higher than, e.g. the X-ray
mass estimate.

The reason for such systematic deviations is that clusters are typ-
ically highly asymmetric and substructured, which gives rise to
strong gravitational tidal fields. This allows strong gravitational
lensing effects at a substantially lower cluster mass than that re-
quired if the clusters were symmetric.

Away from their cores, clusters weakly deform the images of
background galaxies and thus imprint their approximately tan-
gential shear pattern on them. This distortion is observable as
in cosmological weak lensing. Using (4.82)), the observed shear
pattern can be transformed into a mass map. Such weak-lensing
mass measurements typically agree well with X-ray mass deter-
minations.

4.3.4 Sunyaev-Zel’dovich Effects

e The CMB radiation shines through the hot plasma in galaxy clus-

ters and must Compton-scatter off the electrons. Since they are
extremely more energetic than the photons, they typically loose
energy and scatter the photons to higher energy.
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e The photon number is conserved, but the photon energy is in-
creased. The resulting spectrum must thus deviate from the shape
of the Planck curve which the photons have before scattering.
There must be a lack of photons at low and an increase of photons
at high energies compared to the Planck curve. This is the thermal
Sunyaev-Zel’dovich (tSZ) effect.

o The relative intensity change at frequency v is

ol 2(kT)?  x*e* [ (x) ]
g th() -4 . 4.132
7 VT e M2 (4.132)

where x := hv/kT is the dimensionless energy. Note that T is
the CMB temperature as seen by the cluster, and not the electron
temperature in the cluster!

e yis the Compton parameter

kT
Y= f 62 ot ne.dl, (4.133)
MeC
i.e. the typical relative energy change of a photon in Compton
scattering, times the scattering probability. 7. is the electron tem-
perature of the cluster, and o7 is the Thomson cross section.

e The relative intensity change 61/1 is negative for frequencies be-
low, and positive above, x = 3.83 or v = 217 GHz. Although
the zero-crossing frequency depends on the CMB temperature
which is higher at high-redshift clusters, it is later redshifted
such that the observed zero-crossing of the tSZ effect is redshift-
independent. This is a most remarkable feature of the tSZ effect.

e Clusters moving with respect to the CMB rest frame additionally
Compton-scatter the CMB radiation like mirrors and thus give
rise to a frequency shift called the kinetic Sunyaev-Zel’dovich
(kSZ) effect. It may be possible to use this effect for measuring
the bulk velocities of clusters.

4.3.5 Clusters as Cosmological Tracers

e We have seen in (2.100) that the fraction of cosmic volume filled
with haloes of mass M is

F(M,a) = erfc( (4.134)

e )
\/QO'R(Q) ’

where o z(a) is the variance of dark-matter fluctuations filtered on
the scale R corresponding to the cluster mass M.
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e The observed fraction of the cosmic matter contained in clusters
is
ne(a)M.(a)
p(a)
where p is the mean cosmic density, and n. and M, are the num-
ber densities and masses of observed galaxy clusters. Inserting
typical numbers yields

F'(M,a) = , (4.135)

F(M,a=1)~1%Q} (4.136)

'm0 °

for typical cluster masses of ~ 5 x 10 4~ M.

e Equating this with the expected cluster fraction yields an
estimate for o, which can be converted to the conventional nor-
malisation parameter og. Typically, values near 0.6 — 0.7 are
found, which are somewhat lower than those found from weak
gravitational lensing.

e Comparing the Press-Schechter mass function to the observed
mass distribution of clusters at increasing redshifts constrains
structure growth as a function of cosmic time, and thus also cos-
mological parameters, mainly ,,0. The lack of strong evolution
implies low density in good agreement with Q.o = 0.3.

4.3.6 Scaling Relations

e The total potential energy of a cluster is proportional to the
squared mass, divided by the radius

M2
Voc—GR , (4.137)

and the radius scales with the mass like R o« M3 (cf. [2.132).
Thus, the total potential energy is expected to scale with the mass
as

Vo -M". (4.138)

e The total kinetic energy K is proportional to the temperature T
times the number of particles N, i.e. to the product TM. The
virial theorem requires 2K = -V, or

TM <« M’ = T o« M*3 . (4.139)

Two orders of magnitude in cluster mass thus correspond to a
factor of ~ 20 in cluster temperature.

e The bolometric (i.e. frequency-integrated) X-ray luminosity of a
cluster scales like the electron density, times the mass, times the
square root of the temperature. Thus

M
LXoCMETl/ZOCMMIBOCMM’jOCTZ, (4.140)
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because M « R>.

e These simple scaling relations derived from gravitational physics
predict a luminosity-temperature relation Ly o 7T'? and a
mass-temperature relation M o T3. While the observed mass-
temperature relation is close to that expectation, the luminosity-
temperature relation is observed to be flatter than expected.
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A.1 Spherical Collapse

A.1.1 Alternative Derivation of Spherical Collapse

e This section provides an alternative derivation of the spherical
collapse model for which we write the equations of motion in
dimensionless form. Such an approach has the advantange that it
can be generalized to include a cosmological constant term in a
straight forward manner.

e Suppose this spherical overdensity is embedded into the other-
wise homogeneous, expanding background universe. As it is
overdense, it will reach a maximum radius and subsequently con-
tract and collapse. We define parameters

a R
X =—, y:

. Al
Qi Rta ( )

1.e. x is the scale factor a in units of the scale factor a;, when the
halo reaches its turn-around radius, and y is the radius of the halo
R in units of Ry,.

e We restrict ourselves to the case of an Einstein-de Sitter model,
for which

H="2 = Hya"? (A.2)
a

for simplifying the notation, we introduce the scaled time 7 :=
H.t, where H, = Hoa_3 /2 is the Hubble parameter at the turn-

ta
around time. Using these units, Friedmann’s equation is trans-
formed to )
dx 1 a H 12
Xi=—=——=—x=X
dr Huan Ha

/ .

(A.3)

e The Newtonian equation of motion for the radius (i.e. for a test
particle of arbitrary mass at the radius of the halo) is

. GM 4r G

R = —F = _?ptaRfaﬁ . (A4)
Introducing 7 instead of ¢, and expressing the density at turn-
around by the critical density and the overdensity ¢ of the halo

with respect to the background at turn-around,

= 3H‘2a (A.5)
Pra = 811G ¢ )
we find ¢
y'=-=. (A.6)
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e The obvious boundary conditions for solving (A.6) are

Yle1 =0, 4l =0, (A7)

meaning that the halo starts with zero radius at a = 0 and reaches
a maximum at a = d,.

e Equations (A.3) and imply

2 1
r=207 y':i\/z -—1, (A.8)
y

where the first boundary condition (A.7)) was used. The plus sign
applies before, the minus sign after turn-around. Integrating be-
fore turn-around, and using the second boundary condition (A.7)),

we find
LY arcsin@y—1) - =2+ = (A.9)
T=——|=zarcsin(Qy— 1) - - — .
V2|2 y y—y 4
e Turn-around means x = 1 = y and 7 = 2/3, which requires
37\2
= (Zﬂ) . (A.10)

From symmetry, collapse happens at twice the time required for
turn-around, i.e. at T = 4/3, at which time x = x, = 4'/3.

A.1.2 Collapse Parameters

e At early times, we can expand (A.9) to low order in y and find

8 an 3y
~ — 1+—=|. A1l
"% on” [ 10 (a.11)
The overdensity inside the halo relative to the background is
X 3
A= (—) l, (A.12)
y

because the background density scales like x~* while the density
within the halo scales like y~>. Inserting 7 from (A.8) into (A.11])
and raising to the power 2/3 yields
3
A=1+ gy : (A.13)
to lowest order in y. The linear density contrast inside the halo
when it has the radius y is therefore

6:A—1:35—y. (A.14)
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e Linearly extrapolating this to x = 1 gives the linear density con-
trast expected inside the halo at turn-around,

a o 3
PR P (A.15)
a x  S5x
Now, 2/3 2/3
1 N 1
- 37 ~ 3my 1 (A.16)
X 2 4 Y

where we have used (A.11)) to lowest order in y. Inserting this
result into (A.16) yields

3 (37\*°
Su=>(=] ~1.06. A17
-2() a

e When the halo collapses at x, = 4!/3 = 223, the linear density
contrast inside the halo would be

3 (37\*?
5. = 22136, = : (7") ~ 1.69 | (A.18)

this means that a halo can be considered collapsed when its den-
sity contrast expected from linear theory has reached the value of
.. This value depends very little on the cosmological parameters,
so it can be quite generally used although it was derived for the
Einstein-de Sitter model.

e When the halo reaches virial equilibrium, the potential energy of
the halo is twice that at turn-around, so virialisation is expected
when the radius drops to y = 1/2 after turn-around. Assuming
virialisation happens at collapse time x, its overdensity is

22/3 3
A, = (m) (=32 = 187% ~ 178 (A.19)

according to (A.12) and (A.10). A halo in virial equilibrium is
thus expected to have a mean density ~ 178 times higher than the
background.

e These two parameters derived from the spherical collapse model,
0. and A,, are very widely used in cosmology for characterising
dark-matter halos and their formation.
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