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Introduction

We are interested in a magnetized fluid,

ρmatter
D~v

Dt
= −∇P + ρ ~E + ~× ~B,

when the magnetic energy density dominates B2

8π � ρmatter, P

⇒ force-free condition ρ ~E + ~× ~B = 0

Using Maxwell’s equations,
∂t

~E = ∇× ~B − ~, ∇ · ~E = ρ,

∂t
~B = −∇× ~E, ∇ · ~B = 0,

one can solve for ~:

~ =
~B

B2

[
~B ·(∇× ~B)− ~E ·(∇× ~E)

]
+

~E× ~B

B2
∇· ~E

substitute into Maxwell’s equations ⇒ matter degrees of freedom eliminated;

closed set of evolutionary equations for ~B and ~E only.
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FFDE in the E-B-formulation (current formulation)

∂t
~B = −∇× ~E

∂t
~E = ∇× ~B −

~B

B2

[
~B ·(∇× ~B)− ~E ·(∇× ~E)

]
+

~E× ~B

B2
∇· ~E

∇· ~B = 0

~E · ~B = 0

This talk examines the equations above:

1. Show that they are not hyperbolic as written above

2. Augment eqns. to restore hyperbolicity

3. Present a pseudo-spectral evolution code
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Hyperbolicity

Hyperbolicity ⇒ well-posedness – existence and uniqueness of solution

– solution depends continuously on initial data

– growth bounded independent of initial data

⇒ Characteristic speeds – causal properties

– boundary conditions

⇒ Characteristic fields – boundary conditions

First order system ∂tu + Ai∂iu = F (Ai and F may depend on u)

• strictly hyperbolic: Aini has all real and distinct eigenvalues

• stronlgy hyperbolic: Aini has all real eigenvalues,

and a complete set of eigenvectors

• symmetric hyperbolic: ∃ symmetric positive definite S

s.t. SAi is symmetric for i = 1, 2, 3

... at all points x

... for all directions n̂

... for all allowed field-values u
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FFDE in E-B formulation

u =

(
~B
~E

)
A

i
ni =

(
0 −εij

kni

εij
kni −

(n̂× ~B)kBj

B2
(n̂×~E)kBj

B2 +
(~E× ~B)jnk

B2

)

• Consider ~E = 0 and n̂ such that n̂ · ~B = 0

• Eigenvalues +1,−1, 0, 0, 0, 0

• Zero-speed eigenvector equation:

A
i
ni

(
~B′

~E′

)
=

(
n̂× ~E′

n̂× ~B′ − ~B
B · (n̂× ~B′)

~B
B

)
=

(
0

0

)
← ~E′ = C1n̂

← ~B′ = C2n̂ + C3n̂× ~B

— Only three-dimensional eigenspace for four eigenvalues —

• ⇒ Not hyperbolic

N.B. No complete set of eigenvectors whenever (n̂· ~B)2 = (n̂× ~E)2, otherwise ok.
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Augmented E-B formulation: constraint addition

Add terms proportional to ∇· ~B and ~E · ~B to the evolution equations:

∂t
~B = −∇× ~E −γ1

~E× ~B

B2
∇· ~B − γ2

~B

B2
×∇(~E · ~B),

∂t
~E = ∇× ~B − ~ −γ3

~E

B2
×∇(~E · ~B),

~ =
~B

B2

[
~B ·(∇× ~B)− ~E ·(∇× ~E)

]
− ~E×~B

B2 ∇· ~E

• Physical solutions unchanged

• Different behavior of constraint-violating solutions

• Derivatives in new terms change Ai-matrices and thus influence hyperbolicity

N.B. Form of new terms restricted by parity
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Fixing parameters

• Revisit counter-example: ~E = 0, n̂· ~B = 0:

• Still four zero eigenvalues. Eigenvector equation:

A
i
ni

(
~B′

~E′

)
=

n̂×
[

~E′−γ1

(
~B
B · ~E

′
)

~B
B

]
n̂× ~B′ − ~B

B ·(n̂× ~B′)
~B
B

 =

(
0

0

)

• If and only if γ1 = 1 ⇒ square bracket is projection ⊥ ~B

⇒ ~E′ = C1n̂+C2
~B

⇒ fourth eigenvector exists

⇒ complete set

• More general case (n̂· ~B)2 = (n̂× ~E)2 requires γ1 = γ2 = 1.
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Symmetric hyperbolicity of augmented system

For γ1 = γ2 = 1, γ3 = 0, the augmented system is symmetric hyperbolic:

S =
1

B2

 ∆B2δij + zEiEj −∆BiEj + zEiBj

−∆EiBj + zBiEj ∆B2δij − (z − 2∆)BiBj


∆ = 1− E2/B2; z > 1 arbitrary

Symmetrizer only valid for ~E · ~B = 0

(generalization in progress...)

Eigenvalues Eigenvectors
(Characteristic speeds) (Characteristic fields)

v1,2 = ±1 ~B′ = P ~B ∓ n̂× ~E
~E′ = −P ~E ∓ n̂× ~B

~B ⊥ ~E ⊥ ~n
don’t carry current

v3,4 =
n̂·(~E×~B)

B2 ± |n̂·
~B|

B2

√
B2−E2 ~B′ = −P ~E − v(3,4)n̂× ~B

~E′ = −P ~B + v(3,4)n̂× ~E

Alfven-like modes
carry current

v5,6 =
n̂·(~E×~B)

B2 nasty unphysical,
~E · ~B 6= 0

• Always |vα| ≤ 1 (inside light-cone⇒ inside event horizon all modes ingoing)

• Modes 1-4 are identical to those found by Komissarov, MNRAS (2002)
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Numerical simulations of augmented system

Pseudospectral method (from BH evolution code)

• Expand solution in basis functions

u(x, t) =

N−1∑
k=0

ũk(t)Φk(x)

(Φk Fourier-series, Chebyshev polynomials, spherical harmonics)

• Rewrite PDEs as set of ODEs for the spectral coefficients,

∂tũk(t) = R [{ũk}]

• Solve with ODE solver (Runge-Kutta 4)

So far only tests, no physics
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Travelling eigenmode in 2-D

• Background field: ~B0 = 6/5x̂− 1/5ŷ, ~E0 = 1/10x̂− 3/5ŷ

• Gaussian pulse profile, Alfven mode

• Oblique wavefront, non-linear terms are important

• Excellent accuracy, essentially no dispersion
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Open Boundaries

At boundary: – decompose into characteristic fields

– Apply BCs only to incoming fields
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Black hole excision:

At excision boundary inside BH, all causal modes are outgoing⇒ no BC required at all
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Oblique incidence on boundaries: 2-D, all boundaries open

Background field: ~B0 =

(
cos 60◦
sin 60◦

0

)
, ~E0 = 0

δ ~B = f(~x)
(

0
0
1

)
, δ ~E = f(~x)

(
sin 60◦
− cos 60◦

0

)
Alfven-pulse

reflections < 10−6

δ ~B = 0, δ ~E = f(~x)
(

0
0
1

)
fast pulse

reflections of a few per cent
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Summary

• Hyperbolicity depends on how the equations are written

→ Analyze the same set of equations one implements numerically

• This form of FFDE is symmetric hyperbolic:

∂t
~B = −∇× ~E −

~E× ~B

B2
∇· ~B −

~B

B2
×∇(~E · ~B),

∂t
~E = ∇× ~B −

~B

B2

[
~B ·(∇× ~B)− ~E ·(∇× ~E)

]
+

~E× ~B

B2
∇· ~E

• Pseudo-spectral evolution code performs very well so far:

– high accuracy (10−4 . . . 10−10)

– low dispersion

– low reflectivity at boundaries
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