Hyperbolicity of force-free electrodynamics

Harald P. Pfeiffer

Caltech

SLAC, Aug 16, 2004

Collaborators: Andrew MacFadyen, Mark Scheel (Caltech), Larry Kidder (Cornell)

Harald P. Pfeiffer, SLAC, Aug 16, 2004

Introduction

We are interested in a magnetized fluid,

$$\rho_{matter} \frac{D\vec{v}}{Dt} = -\nabla P + \rho \vec{E} + \vec{j} \times \vec{B},$$

when the magnetic energy density dominates $\frac{B^2}{8\pi} \gg \rho_{matter}, P$

 \Rightarrow force-free condition $ho \vec{E} + \vec{j} \times \vec{B} = 0$

Using Maxwell's equations,

$$\partial_t \vec{E} = \nabla \times \vec{B} - \vec{j}, \qquad \nabla \cdot \vec{E} = \rho,$$

$$\partial_t \vec{B} = -\nabla \times \vec{E}, \qquad \nabla \cdot \vec{B} = 0,$$

one can solve for \vec{j} :

$$\left| \vec{j} = \frac{\vec{B}}{B^2} \left[\vec{B} \cdot (\nabla \times \vec{B}) - \vec{E} \cdot (\nabla \times \vec{E}) \right] + \frac{\vec{E} \times \vec{B}}{B^2} \nabla \cdot \vec{E} \right|$$

substitute into Maxwell's equations \Rightarrow matter degrees of freedom eliminated; closed set of evolutionary equations for \vec{B} and \vec{E} only.

FFDE in the E-B-formulation (current formulation)

$$\begin{split} \partial_t \vec{B} &= -\nabla \times \vec{E} \\ \partial_t \vec{E} &= \nabla \times \vec{B} - \frac{\vec{B}}{B^2} \left[\vec{B} \cdot (\nabla \times \vec{B}) - \vec{E} \cdot (\nabla \times \vec{E}) \right] + \frac{\vec{E} \times \vec{B}}{B^2} \nabla \cdot \vec{E} \\ \nabla \cdot \vec{B} &= 0 \\ \vec{E} \cdot \vec{B} &= 0 \end{split}$$

This talk examines the equations above:

- 1. Show that they are **not** hyperbolic as written above
- 2. Augment eqns. to restore hyperbolicity
- 3. Present a pseudo-spectral evolution code

Hyperbolicity

Hyperbolicity \Rightarrow well-posedness	 – existence and uniqueness of solution – solution depends continuously on initial data – growth bounded independent of initial data
\Rightarrow Characteristic speeds	– causal properties
	 boundary conditions
\Rightarrow Characteristic fields	 boundary conditions

First order system $\partial_t u + A^i \partial_i u = F$ (Aⁱ and F may depend on u)

- strictly hyperbolic: $A^i n_i$ has all real and distinct eigenvalues
- stronlgy hyperbolic:
- $A^i n_i$ has all real eigenvalues, and a complete set of eigenvectors
- symmetric hyperbolic: \exists symmetric positive definite S

s.t. SA^i is symmetric for i = 1, 2, 3

- ... at *all* points x... for *all* directions \hat{n} ... for *all* allowed field-values u

FFDE in E-B formulation

$$u = \begin{pmatrix} \vec{B} \\ \vec{E} \end{pmatrix} \qquad \qquad A^{i}n_{i} = \begin{pmatrix} 0 & -\epsilon^{ij}{}_{k}n_{i} \\ \epsilon^{ij}{}_{k}n_{i} - \frac{(\hat{n} \times \vec{B})_{k}B^{j}}{B^{2}} & \frac{(\hat{n} \times \vec{E})_{k}B^{j}}{B^{2}} + \frac{(\vec{E} \times \vec{B})^{j}n_{k}}{B^{2}} \end{pmatrix}$$

• Consider
$$\vec{E} = 0$$
 and \hat{n} such that $\hat{n} \cdot \vec{B} = 0$

• Eigenvalues +1, -1, 0, 0, 0, 0

• Zero-speed eigenvector equation:

$$A^{i}n_{i}\begin{pmatrix}\vec{B}'\\\vec{E}'\end{pmatrix} = \begin{pmatrix}\hat{n}\times\vec{E}'\\\hat{n}\times\vec{B}'-\frac{\vec{B}}{B}\cdot(\hat{n}\times\vec{B}')\frac{\vec{B}}{B}\end{pmatrix} = \begin{pmatrix}0\\0\end{pmatrix} \qquad \leftarrow \vec{E}' = C_{1}\hat{n}\\\leftarrow \vec{B}' = C_{2}\hat{n} + C_{3}\hat{n}\times\vec{B}$$

- Only three-dimensional eigenspace for four eigenvalues -

• \Rightarrow Not hyperbolic

N.B. No complete set of eigenvectors whenever $(\hat{n} \cdot \vec{B})^2 = (\hat{n} \times \vec{E})^2$, otherwise ok.

Augmented E-B formulation: constraint addition

Add terms proportional to $\nabla\cdot\vec{B}$ and $\vec{E}\cdot\vec{B}$ to the evolution equations:

$$\partial_t \vec{B} = -\nabla \times \vec{E} - \gamma_1 \frac{\vec{E} \times \vec{B}}{B^2} \nabla \cdot \vec{B} - \gamma_2 \frac{\vec{B}}{B^2} \times \nabla (\vec{E} \cdot \vec{B}),$$
$$\partial_t \vec{E} = \nabla \times \vec{B} - \vec{j} - \gamma_3 \frac{\vec{E}}{B^2} \times \nabla (\vec{E} \cdot \vec{B}),$$

$$\vec{j} = \frac{\vec{B}}{B^2} \left[\vec{B} \cdot (\nabla \times \vec{B}) - \vec{E} \cdot (\nabla \times \vec{E}) \right] - \frac{\vec{E} \times \vec{B}}{B^2} \nabla \cdot \vec{E}$$

- *Physical* solutions unchanged
- Different behavior of constraint-violating solutions
- Derivatives in new terms change A^i -matrices and thus influence hyperbolicity

N.B. Form of new terms restricted by parity

Fixing parameters

- Revisit counter-example: $\vec{E} = 0$, $\hat{n} \cdot \vec{B} = 0$:
- Still four zero eigenvalues. Eigenvector equation:

$$A^{i}n_{i}\begin{pmatrix}\vec{B'}\\\vec{E'}\end{pmatrix} = \begin{pmatrix}\hat{n} \times \left[\vec{E'} - \gamma_{1}\left(\frac{\vec{B}}{B} \cdot \vec{E'}\right)\frac{\vec{B}}{B}\right]\\\hat{n} \times \vec{B'} - \frac{\vec{B}}{B} \cdot (\hat{n} \times \vec{B'})\frac{\vec{B}}{B}\end{pmatrix} = \begin{pmatrix}0\\0\end{pmatrix}$$

• If and only if $\gamma_1 = 1 \Rightarrow$ square bracket is projection $\perp \vec{B}$ $\Rightarrow \vec{E}' = C_1 \hat{n} + C_2 \vec{B}$ \Rightarrow fourth eigenvector exists \Rightarrow complete set

• More general case $(\hat{n} \cdot \vec{B})^2 = (\hat{n} \times \vec{E})^2$ requires $\gamma_1 = \gamma_2 = 1$.

Symmetric hyperbolicity of augmented system

For $\gamma_1 = \gamma_2 = 1, \gamma_3 = 0$, the augmented system is symmetric hyperbolic:

$$S = \frac{1}{B^2} \begin{pmatrix} \Delta B^2 \delta_{ij} + z E_i E_j & -\Delta B_i E_j + z E_i B_j \\ -\Delta E_i B_j + z B_i E_j & \Delta B^2 \delta_{ij} - (z - 2\Delta) B_i B_j \end{pmatrix}$$

$$\Delta = 1 - E^2/B^2$$
; $z > 1$ arbitrary

Symmetrizer only valid for $\vec{E} \cdot \vec{B} = 0$ (generalization in progress...)

Eigenvalues	Eigenvectors	
(Characteristic speeds)	(Characteristic fields)	
$v_{1,2} = \pm 1$	$\vec{B}' = P\vec{B} \mp \hat{n} imes \vec{E}$	$ec{B} \perp ec{E} \perp ec{n}$
	$ec{E}' = -Pec{E} \mp \hat{n} imes ec{B}$	don't carry current
$v_{3,4} = \frac{\hat{n} \cdot (\vec{E} \times \vec{B})}{R^2} \pm \frac{ \hat{n}\vec{B} }{R^2} \sqrt{B^2 - E^2}$	$\vec{B}' = -P\vec{E} - v_{(3,4)}\hat{n} \times \vec{B}$	Alfven-like modes
B- B-	$\vec{E}' = -P\vec{B} + v_{(3,4)}\hat{n} \times \vec{E}$	carry current
$v_{5,6} = \frac{\hat{n} \cdot (\vec{E} \times \vec{B})}{R^2}$	nasty	unphysical,
D-		$\vec{E} \cdot \vec{B} \neq 0$

• Always $|v_{\alpha}| \leq 1$ (inside light-cone \Rightarrow inside event horizon all modes *ingoing*)

• Modes 1-4 are identical to those found by Komissarov, MNRAS (2002)

Numerical simulations of augmented system

Pseudospectral method (from BH evolution code)

• Expand solution in basis functions

$$u(x,t)=\sum_{k=0}^{N-1} ilde{u}_k(t)\Phi_k(x)$$

(Φ_k Fourier-series, Chebyshev polynomials, spherical harmonics)

• Rewrite PDEs as set of ODEs for the spectral coefficients,

 $\partial_t \tilde{u}_k(t) = \mathcal{R}\left[\{\tilde{u}_k\}\right]$

• Solve with ODE solver (Runge-Kutta 4)

So far only tests, no physics

Travelling eigenmode in 2-D

- Background field: $\vec{B}_0 = 6/5\hat{x} 1/5\hat{y}$, $\vec{E}_0 = 1/10\hat{x} 3/5\hat{y}$
- Gaussian pulse profile, Alfven mode

- Oblique wavefront, non-linear terms are important
- Excellent accuracy, essentially no dispersion

Open Boundaries

At boundary: – decompose into characteristic fields – Apply BCs only to *incoming* fields

Black hole excision:

At excision boundary inside BH, all causal modes are outgoing \Rightarrow no BC required at all

Oblique incidence on boundaries: 2-D, all boundaries open

Background field:
$$\vec{B}_0 = \begin{pmatrix} \cos 60^\circ \\ \sin 60^\circ \\ 0 \end{pmatrix}$$
, $\vec{E}_0 = 0$

$$\begin{split} \delta \vec{B} &= f(\vec{x}) \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}, \, \delta \vec{E} = f(\vec{x}) \begin{pmatrix} \sin 60^\circ\\ -\cos 60^\circ\\ 0 \end{pmatrix} \\ \text{Alfven-pulse} \end{split}$$

reflections $< 10^{-6}$

$$\delta \vec{B} = 0, \ \delta \vec{E} = f(\vec{x}) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 fast pulse

reflections of a few per cent

Summary

- Hyperbolicity depends on how the equations are written
 → Analyze the same set of equations one implements numerically
- This form of FFDE is symmetric hyperbolic:

$$\begin{aligned} \partial_t \vec{B} &= -\nabla \times \vec{E} - \frac{\vec{E} \times \vec{B}}{B^2} \nabla \cdot \vec{B} - \frac{\vec{B}}{B^2} \times \nabla (\vec{E} \cdot \vec{B}), \\ \partial_t \vec{E} &= \nabla \times \vec{B} - \frac{\vec{B}}{B^2} \left[\vec{B} \cdot (\nabla \times \vec{B}) - \vec{E} \cdot (\nabla \times \vec{E}) \right] + \frac{\vec{E} \times \vec{B}}{B^2} \nabla \cdot \vec{E} \end{aligned}$$

- Pseudo-spectral evolution code performs very well so far:
 - high accuracy $(10^{-4} \dots 10^{-10})$
 - low dispersion
 - low reflectivity at boundaries