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ABSTRACT

We describe a numerical method to solve the magnetohydrodynamic (MHD) equations. The fluid
variables are updated along each direction using the flux-conservative, second-order, total variation
diminishing (TVD), upwind scheme of Jin & Xin. The magnetic field is updated separately in two-
dimensional advection-constraint steps. The electromotive force (EMF) is computed in the advection step
using the TVD scheme, and this same EMF is used immediately in the constraint step in order to preserveD

xB ¼ 0 without the need to store intermediate fluxes. Operator splitting is used to extend the code to three
dimensions, and Runge-Kutta is used to get second-order accuracy in time. The advantages of this code are
high-resolution per grid cell, second-order accuracy in space and time, enforcement of the

D

xB ¼ 0
constraint to machine precision, no memory overhead, speed, and simplicity. A three-dimensional
FORTRAN implementation less than 400 lines long is made freely available. We also implemented a fully
scalable message-passing parallel MPI version.We present tests of the code onMHDwaves and shocks.

Subject headings:methods: numerical — MHD

On-line material: source code

1. INTRODUCTION

Astrophysical fluids in which the magnetic field plays an
important role are common in nature. As a few examples,
consider magnetized interstellar gas, accretion disks, molec-
ular clouds, and jets. With the advent of high-speed com-
puters and ever-improving MHD codes, considerable
theoretical progress has been made through numerical
simulation of otherwise intractable problems.

A major challenge to solving flux-conservative systems of
equations, such as ideal fluids andMHD, is the spontaneous
development of shock discontinuities. Finite differencing
across discontinuities leads to divergences and instabilities.
Modern codes implement various aspects of ‘‘ flux limiters ’’
(Harten 1983) to achieve stability near shocks and second-
order accuracy away from shocks. Recently, several shock
capturing methods that solve the MHD equations in flux-
conservative form with upwind finite differencing have been
developed. Enforcing the

D

xB ¼ 0 constraint is key to the
accuracy of these codes. Near shock fronts, derivatives are
ill defined, and the divergence constraint can be maximally
violated. Evans & Hawley (1988) first noted that this ‘‘ con-
strained transport ’’ (CT) can easily be enforced to machine
precision by (1) defining the magnetic field at cell faces
instead of centers and (2) using the same EMF, computed
on cell corners, to update the magnetic flux through each
neighboring face. Using CT and various shock capturing
schemes, several groups (Dai &Woodward 1998; Balsara &
Spicer 1999; and see, e.g., Tóth (2000) for a review of differ-
ent methods) have now produced robust, efficient MHD
codes.

The detailed algorithm used for the finite differencing
varies between the different groups. We do not give an
exhaustive review of the literature but rather compare only
with widely used codes or those similar to ours. The Zeus
code (Stone & Norman 1992) partially updates certain fluid
and magnetic field quantities along Alfvén, but not magne-
tosonic, characteristics to avoid short length scale instabil-
ities in shear Alfvén waves. Ryu et al. (1998) use Harten’s
TVD method, which evolves the fluid along all the charac-
teristics by constructing the linearized eigenvectors. Dai &
Woodward (1998) used approximate Riemann solvers (Dai
& Woodward 1994) to compute the fluxes. Common to
these two methods is the need to first compute the EMF
over the whole grid, then perform a spatial averaging of
the EMF, and then update the magnetic field in a
divergence-free form.

In this paper we implement the divergence constraint in a
slightly different way than previous investigators. We show
that individual pieces of the EMF can be used in advection-
constraint steps, without the need to store the computed
EMFs over the whole grid. This gives us a sizeable savings in
memory than if the EMFs were stored. Furthermore, by
using Jin & Xin’s (1995) ‘‘ symmetric ’’4 method of
computing TVD fluxes, we can reduce the operations count
relative to codes that manifestly evolve the fluid along
characteristics.

In x 2 we review the MHD equations. In x 3 we describe
our numerical method. Tests of the code are presented in x 4.
Section 5 contains a discussion of the merits and drawbacks
of the code. Section 6 contains the conclusions. We briefly
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review the Jin & Xin (1995) method for solving one-
dimensional advection equations in an Appendix.

2. EQUATIONS

The MHD equations expressing conservation of mass,
momentum, and energy, as well as magnetic flux freezing,
are (Landau & Lifshitz 1984)

@t�þ

D

�vð Þ ¼ 0 ; ð1Þ

@t �vð Þ þ

D

�vvþ P�d� bbð Þ ¼ �a ; ð2Þ

@teþ

D

ðeþ P�Þv� bb x v½ � ¼ �v x a; ð3Þ

@tb ¼

D

� v � bð Þ ; ð4Þ

D

x b ¼ 0 ; ð5Þ

P� ¼ pþ b2

2
; ð6Þ

e ¼ �v2

2
þ p

� � 1
þ b2

2
: ð7Þ

Here � and e are the mass and (total) energy densities, v is
the velocity, P� is the total pressure, p is the gas pressure,
b ¼ B=

ffiffiffiffiffiffi
4�

p
is the magnetic field in terms of

ffiffiffiffiffiffi
4�

p
, a is an

externally imposed acceleration, and d is the Kronecker
delta symbol. In equation (7) we have used an ideal gas
equation of state with internal energy " ¼ p=ð� � 1Þ, where
� is the ratio of specific heats. The infinite conductivity limit
has been used so that the electric field is E ¼ �v � B=c. The
electric force has been ignored since it is assumed that
charge separation is negligible on the scales of interest.

3. NUMERICAL METHOD

First we describe the update of the magnetic field in two-
dimensional advection-constraint steps. We then briefly
review the update of the fluid variables along one dimen-
sion. Next we discuss how operator splitting and Runge-
Kutta can be used to make the code second-order–accurate
in space and time. Finally, we discuss boundary conditions,
fine tunings of the code, and the parallel implementation.

3.1. Solution of the Induction Equation in Two Dimensions

We use operator splitting to reduce the problem into a
series of smaller decoupled equations. Alternating the order
of operators in the correct fashion allows one to achieve net
second-order accuracy. In this prescription, we hold the
fluid variables fixed to update the magnetic field. The
magnetic field is defined on cell faces (see Fig. 1) in order to
satisfy the

D

x b ¼ 0 to machine precision. Let the cell
centers be denoted by ði; j; kÞ � ðxi; yj; zkÞ, and faces by
ði � 1=2; j; kÞ, ði; j � 1=2; kÞ, and ði; j; k � 1=2Þ, etc. For con-
venience, let the cells have unit width. The magnetic field is
then stored in arrays:

bxði; j; kÞ ¼ bxi�1=2;j;k ;

byði; j; kÞ ¼ byi;j�1=2;k ;

bzði; j; kÞ ¼ bzi;j;k�1=2 : ð8Þ

The flux out of cell ði; j; kÞ is then
Z

d3x
D

x b

� �
ijk

¼ bxiþ1=2;j;k � bxi�1=2;j;k

þ byi;jþ1=2;k � byi;j�1=2;k

þ bzi;j;kþ1=2 � bzi;j;k�1=2 : ð9Þ

Since the magnetic field is defined on cell faces, where the
magnetic flux in a cell is evaluated, it is possible to enforceD

x b ¼ 0 to machine precision (Evans & Hawley 1988). If
we defined the magnetic field at some other location, the
divergence could only be kept to zero to truncation error
arising from interpolation to the faces. The truncation
errors are necessarily large near shock discontinuities. Next
we describe a method to evolve the field that preservesD

x b ¼ 0, if it is so initially.
When the induction equation is written out in spatial

components, it is apparent that the terms involving
E � v � b come in six pairs. For instance, the terms
involving vybx are

@tbx þ @yðvybxÞ ¼ 0; @tby ¼ @xðvybxÞ : ð10Þ

The first equation is just the advection of bx along the y
direction, the second equation is a constraint that enforcesD

x b ¼ 0. The key point to note here is that to enforceD

x b ¼ 0 wemust use the same EMF computed in the advec-
tion step during the constraint step; otherwise

D

x b ¼ 0 will
only be zero up to truncation error. We accomplish this by
finding a second-order–accurate, upwind EMF vybx for the
advection step to update bx and then immediately use this
same EMF for the constraint step to update by. Ryu et al.
(1998) first store the EMFs over the entire three-
dimensional grid, then average the EMFs, and then update

Fig. 1.—Position of variables on the grid. The vertical (horizontal)
arrows represent by(bx), respectively. The circles denote the position of the
electromotive force.
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the field. We construct the EMF using Jin & Xin’s (1995)
TVDmethod, which is described in the Appendix. Note that
the velocity vyijk must be interpolated to the same position as
the magnetic field bxi�1=2;j;k with second-order accuracy.

Jin & Xin’s (1995) symmetric method introduces a ‘‘ flux
freezing speed,’’ c, which must be greater than or equal to
the maximum speed at which information can travel. Since
we are holding the fluid variables fixed, the flux freezing
speed for the advection-constraint equation is just c ¼ jvyj.

3.2. Solution of the Fluid Equations in One Dimension

Now we briefly describe the fluid update. A more
complete discussion is given in Trac & Pen (2003a). The
magnetic field is held fixed and interpolated to grid centers
with second-order accuracy. Let u ¼ ðu1; u2; u3; u4; u5Þ ¼
ð�; �vx; �vy; �vz; eÞ represent the volume-averaged quantities
positioned at the center of each cell. For advection along the
x direction, the Euler, continuity, and energy equations can
be written in flux-conservative form as

@tuþ

D

xF ¼ 0 ; ð11Þ

where the flux vector is given by

F ¼

�vx

�v2x þ P� � b2x

�vxvy � bxby

�vxvz � bxbz

ðeþ P�Þvx � bxb x v

0
BBBBBB@

1
CCCCCCA

;

and the pressure is determined by p ¼ ð� � 1Þ�
ðe� �v2=2� b2=2Þ and P� ¼ pþ b2=2. We hold the mag-
netic field fixed during the fluid update and interpolate b to
cell centers for second-order accuracy.

Equation (11) can be solved by symmetric TVD,
described in the Appendix. The flux freezing speed is taken
to be c ¼ jvxj þ ð�p=�þ b2=�Þ1=2, which is the maximum
speed information can travel.5

3.3. Extension to Three Dimensions

Let the fluid update step for a time Dt along x be denoted
by ‘‘ fluidx,’’ and update of bx along y by ‘‘ bxalongy.’’ Oper-
ator splitting requires us to apply each operator first in for-
ward, and then in reverse order to advance by two time
steps. We implemented two versions. In one, we advance
forward using the sequence of operations: fluidx, byalongx,
bzalongx, fluidy, bxalongy, bzalongy, fluidz, bxalongz,
byalongz, and then the reverse byalongz, bxalongz, fluidz,
bzalongy, bxalongy, fluidy, bzalongx, byalongx, fluidx. A
second implementation, used in the public version of this
code, is to transpose the fluid variables and spatial dimen-
sions (see, e.g., Press et al. 1996, p. 984). This is only easily
done if two of the dimensions are equal. Transposing has
the benefit of high efficiency on cache-based computers,
where we only need to read data in column order. It is con-
venient to implement the three-dimensional code by using a
single routine for the fluid update along the x direction and
a single routine for advection of by along x, and constraint
of bx along y. The order of the spatial indices is transposed

to take account of the other directions. The advantage of
having one subroutine is that it can be heavily optimized.

Other operators, such a gravity, heating or cooling, can
be added into the sweep sequence, as described in Trac &
Pen (2003a). One just has to keep in mind that the reverse
sweep has the reverse ordering of operators. If a routine is
particularly computationally expensive (for example some
gravity solvers), one can put it in between the forward and
reverse sweeps and apply it once with twice the time step
2Dt.

The time step is set by the fastest speed at which informa-
tion travels over the grid. Since the fluid update is more
restrictive, the time step is set to be

Dt ¼ cfl
�
maxðjvxj; jvyj; jvzjÞ þ ð�p=�þ b2=�Þ1=2

��1 ð12Þ

where cfld1 is generally set to cfl ’ 0:7 for stability.

3.4. Boundary Conditions

The standard boundary conditions such as periodic, con-
tinuous, or reflecting can be easily enforced by specifying
values of the variables in ‘‘ ghost zones ’’ adjacent to the
physical grid. These ghost zones are needed when
interpolating v to cell faces, b to cell centers, and in the
one-dimensional advection routines.

We have implemented the boundary conditions in two
different ways. The first method is to pad the grid with a
large number (�6–10) of extra cells at each boundary. Both
the on-grid and off-grid variables are evolved in time, but so
many extra cells are used that the boundary cells only need
be updated once per double time step. This method is useful
for parallel implementations in which buffer zones are used
to represent a small number of cells in adjacent regions. The
second method to implement the boundary conditions
requires that one write specific routines for interpolation or
derivatives that specify the off-grid values. This method
requires less computation and is preferable for serial appli-
cations. We find it convenient to evolve ‘‘ extra ’’ values of
the magnetic field variables. That is, we evolve bxi�1=2; j;k
for j ¼ 1; . . . ; ny and k ¼ 1; . . . ; nz but i ¼ 1; . . . ; nx
þ1. This is useful for three reasons. First, this allowsD

x b to be computed over all cells. Second, to update
b
y
nx;jþ1=2;k the fluxes vybx are needed at in the boun-

dary cells (see Fig. 1) with i ¼ nx þ 1=2. Third, b can
be interpolated to cell centers without the need to specify
off-grid values.

3.5. Fine Tunings of the Code

Since the TVD limiters are nonlinear, sinusoidal wave-
forms are not guaranteed to remain that way. With aggres-
sive limiters, such as superbee or the van Leer limiter used in
our tests, initial sine waves can tend to become ‘‘ clipped,’’
or boxy-looking (Trac & Pen 2003a). We find that these
nonlinear distortions can be minimized by using constant
flux freezing speed, set to be the maximum along that advec-
tion line. Additional stability can be gained by multiplying
the flux freezing speed by a constant multiplicative factor,
although this increases the number of time steps needed and
makes the code more diffusive. Empirically, we find that
smoothing the velocity field that advects the magnetic field
can lead to less damping of the slowmode.

In production runs, we have found an occasional failure
of the code when the Courant condition is pushed too close

5 We have taken the maximum speed of the fast MHD wave over all
directions.
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to the limit. In the operator split approach, the time step is
fixed at the beginning of a double time step and determined
from the Courant condition at the beginning. During the
time step, this condition may change, leading to an instabil-
ity if it exceeds the initial constraint. Our solution has been
to be sufficiently conservative using a choice of cfld0:7. A
more efficient procedure would be to measure the change in
the Courant condition during the sweeps and use this as an
indicator in subsequent time steps. And should a given
sweep step be instable, one can always break it into two sub-
steps. An additional tuning that helps maintain high
courant condition is to increase the freezing speed slightly
(20%) or to use a larger Alfvén speed for cfl purposes.

3.6. Parallel Implementation

We have implemented a fully distributed version in MPI.
After a full set of operators in one dimension, we update the
buffer zones. For hydrodynamics, only three buffer cells are
required. The magnetic field requires interpolation, and we
use 16 buffer cells for magnetized simulations. A full three-
dimensional domain decomposition is implemented, where
we update the buffers in the appropriate direction after each
dimensional operator. Since only large faces are communi-
cated, latency of communication is negligible, but signifi-
cant bandwidth is required to move the buffer zones. The
communication is performed asynchronously, and compu-
tations proceed during the communication stage. Within
each node, OpenMP is used to utilize multiple processors
in a node without the overhead of buffer cells and
communications.

We tested the parallel implementation on the CITA
McKenzie beowulf cluster. The main cluster has 256 nodes
of dual Intel Pentium-4 Xeon processors running at 2.4
Ghz, 1 GB of RAM, dual gigabit ethernet, and 160 GB of
disk. The networking consists of bristles of 16 machines
with one gigabit port connected to a switch. The second
gigabit port is used to interconnect the bristles in a cubical
layout. The nominal bisection bandwidth is 128 Gbit s�1.
For cubical problems, the usable bandwidth is higher when
the domain decomposition is matched to the cube as it is
for our runs. To minimize communications overhead, we
mapped the computational grid layout to coincide with the
physical network interconnect. The largest problem that we
have been able to run in memory is 14003 grid zones, which
takes about 40 s per double time step. The fine grained
OpenMP parallelism within each nodes allows the code to
benefit from the intranode hyperthread speedup. The code
also fully vectorizes for the SSE2 parallel execution units.
Due to the large number of buffer cells required, about 1/3
of the computation and memory are used by these buffers.
The operation count of the van Leer limiter relaxing TVD
algorithm is 33 floating point operations per variable per
time step. The flux computation takes an additional seven
operations averaged per variable, for a total count of 40.
Each double time step consists of six sweeps of eight
variables, or about 2000 floating point operations. Our
execution speed corresponds to a sustained rate of over 200
Gflop on the cluster, which is about 5% of theoretical peak
speed of 4.8 Tflop in single precision.

4. TESTS

In this section we present tests of the code onMHDwaves
and shocks.

For all the tests we use � ¼ 5=3 and set the box size L to
be equal in all directions. Periodic boundary conditions
were used for the wave tests, and continuous boundary con-
ditions (all variables continuous across the boundary) in the
shock tests. The wave tests are two dimensional, while the
shock tests are along one dimension. The van Leer limiter
(see, e.g., Trac & Pen 2003a) and a constant freezing speed
and cfl ¼ 0:9 (see x 3.5) were used throughout.

4.1. Torsional AlfvénWaves

Torsional Alfvén waves are exact nonlinear solutions of
the compressibleMHD equations. Unlike linearly polarized
waves, these circularly polarized torsional waves involve no
density change, and thus no compression, but can test the
magnetic parts of the code. In the absence of any perturba-
tions or noise, they should propagate without steepening,
making them a good test for numerical codes.6

We perform tests for four different resolutions nx ¼
nz ¼ 8, 16, 32, 64, and 128, where ny;z are the number of grid
points in the y and z directions. Different fluid pressures are
used corresponding to low and high � ¼ c2s=c

2
A ¼ 0:1 and

10. The exact solution we input to the code is � ¼ 1,
e ¼ p=ð� � 1Þ þ 0:5þ A2,

bx ¼ A cos kðyþ zÞ � !t½ � ; ð13Þ

by ¼
1ffiffiffi
2

p 1þ A sin kðyþ zÞ � !t½ �f g ; ð14Þ

bz ¼
1ffiffiffi
2

p 1� A sin kðyþ zÞ � !t½ �f g ; ð15Þ

vx ¼ �A cos kðyþ zÞ � !t½ � ; ð16Þ

vy ¼ � Affiffiffi
2

p sin kðyþ zÞ � !t½ � ; ð17Þ

vz ¼
Affiffiffi
2

p sin kðyþ zÞ � !t½ � : ð18Þ

The wavenumber and frequency are k ¼ 2�=L and ! ¼
ffiffiffi
2

p
k

for the lowest-order mode. We set the ratio of wave to back-
ground field to be A ¼ 0:1 for the low gas pressure test, and
A ¼ 1 for the high gas pressure test. As long as the thermal
energy is larger than the kinetic energy of the wave, we can
also test very nonlinear waves.7

The waves were propagated for one wave period. The
result is read along the z-axis and plotted against the exact
solution in Figure 2.

The second-order convergence is apparent from the
figures: as one doubles the number of grid cells, the errors
goes down by a factor of 4.

Even the significantly nonlinear solutions are well
behaved and also converge close to quadratically. To
quantify the rate of convergence, we measured the rms error

6 In the presence of any infinitesimal noise, Alfvén waves are unstable to
decay into three other waves (Goldstein 1978; Derby 1978). For large-
amplitude waves the growth time becomes comparable to the Alfvén wave
period. Hence, care must be used in applying this test to very nonlinear
waves as noise arising from truncation error or the nonlinear flux limiters
may grow exponentially.

7 For sufficiently small �5 1 and large-amplitude A � 1, we found the
code is susceptible to a short length scale instability. The timescale over
which this instability develops depends strongly on � and A, and also the
number of grid points. It is unclear to us whether or not this is the physical
decay instability of Alfvén waves due to perturbations seeded by the
truncation error.
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in the y component of the velocity field compared with the
exact solution, normalized to a wave of unit amplitude. The
results are shown in Figure 3. As expected, the fast wave has
the smallest error, with the slow wave containing the largest
error. The slow wave propagates slowly compared with the
other characteristics and is thus subject to more time steps
of diffusion. The convergence rate, however, is the same. We

note that all waves are at a 45� angle to the grid axes, and all
waves nontrivially involve several magnetic field compo-
nents. All operator split codes are at most second-order
accurate. The TVD limiter reduces the order of the code to
first order near extrema, so we expect the total order of con-
vergence to be slightly worse than second. We have plotted
a line with slope �1.75 for reference, which appears to
describe the convergence well.

4.2. Fast and SlowWaves

We have tested the fast and slowMHDwaves in the linear
regime �p5 p for � ¼ 0:1 and 10. The background magnetic
field is b ¼ ez, background pressure is p ¼ �=�, and the
wavevector is k ¼ kðex þ ezÞ, where k ¼ 2�=L and
L ¼ Ly ¼ Lz. The exact solution we plug into the code is

�p ¼ pA cos kðxþ zÞ � !t½ � ;

� ¼ 1þ �p

c2s
;

�v ¼ !

!2 � !2
b

k�
!2
b

!2
b̂bb̂b xk

� �
�p

�
;

�b ¼ k2

!2 � !2
b

b� k̂kk̂k x b
� � �p

�
; ð19Þ

where c2s ¼ �p=�, !2
b ¼ k2b2=�, and A5 1 is the wave ampli-

tude. The fast and slow mode frequencies are given by
!2
f ;s ¼ :5ð!2

b þ !2
s Þ � 0:5½ð!2

b þ !2
s Þ2 � 4!2

s!2
a�1=2, where !2

s ¼
c2s k2 and !2

a ¼ ðk x bÞ2=�. We evolved the waves for one
period. The results for the fast and slow waves are shown in
Figures 4 and 5, respectively. The slow wave is subject to
substantial diffusion as compared with the fast wave since
its frequency is so much lower for these extreme values of �.
We also see phase errors that arise when the amplitude
errors are large.

Fig. 2.—Torsional Alfvén wave with amplitude vwave ¼ 0:1vAlfven and � ¼ 0:1 (left) and vwave ¼ 1vAlfven and � ¼ 10 (right) propagated for one wave period.
The different lines correspond to the analytic solution in eq. (18) and the code output for different numbers of grid points.

Fig. 3.—Convergence rate of various wave families. The solid line with
boxes is for the fast wave at low �, the dotted line with crosses is the large-
amplitude Alfvén wave, and the dashed line is the slow wave at large �,
which has the largest prefactor on the convergence. The dotted straight line
is drawn at a slope of�1.75 for reference.

No. 2, 2003 TVD MHD CODE 451



We pause to summarize that we have tested all MHD
wave families and that second-order convergence is
observed in all instances, even when the wave and magnetic
field vectors are not aligned with the numerical grid
directions. Our algorithm has not explicitly decomposed
the problem into individual waves, but the algebraic
convergence still holds.

4.3. TheMHDRiemann Problem

These one-dimensional tests of the code involve a shock
tube along the x-axis, as in Figures 2a and 2b of Ryu et al.

(1998). We used continuous boundary conditions and 1024
grid points for both tests.

The initial conditions for Figure 6 are

ð�; vx; vy; vz; p; bx; by; bzÞ

¼ ð1; 10; 0; 0; 20; 5=
ffiffiffiffiffiffi
4�

p
; 5=

ffiffiffiffiffiffi
4�

p
; 0Þ

for the left side and

ð1; �10; 0; 0; 1; 5=
ffiffiffiffiffiffi
4�

p
; 5=

ffiffiffiffiffiffi
4�

p
; 0Þ

for the right side. The code is run for a time 0:08L. The

Fig. 4.—FastMHDwave with kxL ¼ kzL ¼ 2� and � ¼ 10 and 0.1 in the left and right panels, respectively, evolved for one wave period

Fig. 5.—SlowMHDwave with kxL ¼ kzL ¼ 2� and � ¼ 10:0 and 0.1 in the left and right panels, respectively, evolved for one wave period
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result agrees well with Figure 2a of Ryu et al. (1998). The
following features can be seen. The steep discontinuities at
x � 0:1 and x � 0:85 are fast shock fronts in which the
incoming flow converts its kinetic energy into thermal
energy and compresses the transverse field by. As new
matter falls on, this shock is regenerated and maintains its
steep profile as it moves outward. At x ’ 0:6 and x ’ 0:5
are a slow shock and slow rarefaction, respectively. The
slow shock again compresses the fluid but decreases the
transverse field. At x ’ 0:55 the two phases of the initial gas
configuration with different entropies form a contact dis-
continuity. Pressure, magnetic field, and velocity are contin-
uous, while density and thermal energy experience a
discontinuity. This discontinuity moves rightward across
the grid, and the TVD advection of such discontinuities
results in some smearing or diffusion of the structure. No
physical mechanism steepens this contact discontinuity once
it smears, and a slow numerical diffusion is visible in this,
and all generic TVD codes that do not introduce explicit
contact steepeners. There are no significant oscillations.
Both our solution and that of and Ryu et al. (1998) have a
slight overshoot in some variables in the first postshock cell,
but this effect does not persist onto subsequent cells.

The initial condition for Figure 7 has velocity and mag-
netic field components in all directions, and hence exhibits
additional structures such as rotational discontinuities. The
values are

ð�; vx; vy; vz; p; bx; by; bzÞ

¼ ð1:08; 1:2; 0:01; 0:5; 0:95; 2=
ffiffiffiffiffiffi
4�

p
; 3:6=

ffiffiffiffiffiffi
4�

p
; 2=

ffiffiffiffiffiffi
4�

p
Þ

on the left-hand side and

ð1; 0; 0; 0; 1; 2=
ffiffiffiffiffiffi
4�

p
; 4=

ffiffiffiffiffiffi
4�

p
; 2=

ffiffiffiffiffiffi
4�

p
Þ

on the right-hand side. The code is run for a time 0:2L. The
results again agree with Ryu et al. (1998). The following fea-
tures may be seen: fast shocks at x ’ 0:3 and 0.9, rotational
discontinuity at x ’ 0:53 right next to a slow shock at
x ’ 0:55, contact discontinuity at x ’ 0:6, slow shock and
rotational discontinuity at 0.68 and 0.70, respectively.

The shock tests have two basic types of structures: self-
steepening shock fronts and contact and rotational disconti-
nuities. For the active shock fronts, Figures 6 and 7 show
the shocks with a nominal shock resolution of around two
grid cells. The internal contact discontinuities arise from the
discontinuities in the initial conditions, and diffuse numeri-
cally as they advect over the grid. At discontinuities, the
solution is nondifferentiable, which is in general a challenge
to numerical schemes. In the TVD approach, the scheme
drops to first-order accuracy, with some associated diffusiv-
ity. This is discussed in more detail in Trac & Pen (2003a).
The shock fronts are self-steepening, so the first-order
diffusivity is less noticeable.

5. DISCUSSION OF THE MERITS AND DRAWBACKS
OF OUR NUMERICAL SCHEME

The code described in this paper differs from its predeces-
sors (TVD method for shock capturing, enforcement ofD

x b ¼ 0 to machine precision) in two main respects. First,
we solve the induction equation in two-dimensional

Fig. 6.—Shock tube test along the x-axis with velocities andmagnetic field along the x- and y-directions
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advection-constraint steps without storing intermediate
fluxes over the entire grid. Storage of the fluxes would
require a 3n3 array, nearly half the memory used for the
basic variables. Second, we use Jin & Xin’s (1995) method
to implement TVD, which requires only �30 floating point
operations per grid cell per time step per variable. The bene-
fits of these two methods are high-resolution per grid cell,
low operations count, and simplicity of coding (the public
version of the three-dimensional code is only 400 lines long).

The price of separating the fluid and magnetic field
updates into two steps, rather than updating all variables at
once, is that the coupling between the velocity and magnetic
field may be relatively weak compared with other methods.
It was this point which led Stone &Norman (1992) to use an
update along Alfvén characteristics. However, our tests on
both linear and nonlinear waves, as well as shocks, seem to
indicate that in most circumstances the code performs
rather well and no instabilities arise.

There are regimes in which we know the current code to
be inaccurate or unstable. The generic setting is one in which
the characteristic families have very different velocities.
These can occur at low � for large-amplitude Alfvén waves,
or highly supersonic flow with weak embedded shocks. For
such regimes, customized modifications to the algorithm
may be necessary (for the high Mach number regime see,
e.g., Trac & Pen 2003; for the low-� case see Turner et al.
2003). Also, since Jin & Xin’s (1995) method does not
explicitly evolve the fluid variables along characteristics,
our code may be more diffusive for low-frequency waves
when the ratio of fast and slow wave speeds is large (either

large or small �). As can be seen in Figure 3, the slow waves
have the largest errors. They still converge at second-order
accuracy.

6. CONCLUSIONS

We have presented the algorithm and tests for a simple
and robust MHD code that incorporates all features of
modern high-resolution shock capturing. It is second-
order–accurate away from extrema, requires no memory
overhead beyond storing the fluid variables, optimizes easily
to many computer architectures, and offers simplicity in the
coding. We have tested this code on linear and nonlinear
MHD waves as well as shocks. The single-processor source
code can be freely downloaded from the electronic edition
of the Astrophysical Journal Supplement or at our Web site.8

We have also implemented a parallel version, which scales
well on very large commodity beowulf clusters.

We thank Neal Turner for several useful discussions. Phil
Arras is an NSF Astronomy and Astrophysics Postdoctoral
Fellow. This material is based upon work supported by the
National Science Foundation under grant 0201636.
Computing resources were provided by the Canada
Foundation for Innovation. S. W. is supported by the
Taiwan NSC.

Fig. 7.—Shock tube test along the x-axis with velocities andmagnetic field in all three directions

8 See http://www.cita.utoronto.ca/�pen/MHD.
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APPENDIX

ADVECTION IN ONE DIMENSION

Here we review Jin & Xin’s (1995) solution of the advection equation. We will focus on a scalar equation, but extension to a
vector equation is straightforward. A more detailed discussion as well as code has recently been published by Trac & Pen
(2003a).

The advection equation for a quantity uwith flux f is

@tuþ @xf ¼ 0 : ðA1Þ

Jin &Xin’s (1995) symmetric method is to define the new variable w ¼ f =c and equations for u and w

@tuþ @xðcwÞ ¼ 0 ;

@twþ @xðcuÞ ¼ 0 : ðA2Þ

These equations can be written in terms of left and right moving variables by defining ur ¼ ðuþ wÞ=2 and ul ¼ ðu� wÞ=2.
These variables satisfy the equations

@tur þ @xðcurÞ ¼ 0 ;

@tul � @xðculÞ ¼ 0 ; ðA3Þ

which describe information propagating to the right and left, respectively.
To solve equation (A3) over a full time step with second-order accuracy, we first advance ur and ul over a half time step using

the first-order upwind donor cell formula. These values are then used to construct a second-order–accurate upwind flux using
any of the known nonlinear TVD limiters such as minmod, van Leer, or superbee. Finally, given the updated values for ur and
ul , we reconstruct u ¼ ur þ ul .

For stability, the value of the flux freezing speed c must be chosen larger than the speed at which information propagates.
As discussed in the text, we set c ¼ jvjwhen advecting the magnetic field, and c ¼ cfl½jvj þ ð�p=�þ b2=�Þ1=2��1.

How can one relate TVD to the ‘‘ artificial viscosity ’’ schemes? These schemes add in a nonlinear viscosity term in order to
prevent instabilities, as well as damp away oscillations that may occur near discontinuities. However, this viscosity tends to
prevent the formation of discontinuities on scales of order one cell, severely degrading the resolution of the simulation. TVD
may be viewed as a strongly nonlinear flux limiter that adds just enough diffusion to prevent numerical instabilities. TVD can
often capture shocks in only one or two cells. Away from discontinuities, maxima, or minima, TVD is second order in space,
but at a maxima it is only first order.
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