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Abstract

Cosmic structure is seeded by highly Gaussian quantum fluctuations that
freeze out as the horizon shrinks (k;.i,,, iNCreases) during inflation.
Primordial non-Gaussianity (PNG) sheds light on the physics of inflation. We
demonstrate new constraints on inflation using an intermittent form of PNG
(PING) generic to any inflation model with an additional field y [1,2]. Using
Large-scale structure simulations, we show that PING can give rise to
measurable effects on the sky, and contrast them with recently observed
anomalous phenomena like JWST high-z galaxies [3].

Peak Patch Dark Matter Halo Catalogues

We use the Peak Patch code to simulate the distribution of dark matter

(DM) halos that will form from the primordial overdensity o(X).
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Figure 3: a number density plot of Peak Patch DM halos. The redshift evolution of structure
is visible with fewer halos at high redshift and more filamentary structure of the Cosmic Web
visible at low redshift.

Theory: Primordial Non-Gaussianity

In multi-field inflation”, instabilities in
the potential V(¢, y) generate PING
related by a functional to the
second inflationary field y.

Instabilities grow a non-Gaussian
perturbation to the inflaton
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WebSky2.0 Mock Maps of the Sky

We use the WebSky code to generate mock maps in a wide suite of
cosmological observables. The PING model can produce structures at
almost any scale. The breadth of observables allow us test vast swathes of
the PING parameter space.
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Figure 6: WebSky CIl Line intensity mock
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C05m0|ogica| SimUIations Figure 5: WebSky tSZ and lensing mock showing the excess Cll emission signal due
to PINGs.

maps, highlighting a prominent PING

We model the effects of PING on cosmic structure across a range of scales signal augmentation.

using simulations of the Cosmic Web.
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Figure 2: slices of cubic realizations of cosmic
fields. Pink circles show the characteristic scale
of the PINGs.

and increases large
halo formation

« We can put constraints on the
parameter space of all multi-field
inflation models.

+ Constraints span many orders of
magnitude in scale, affecting
physics of star formation to
reionization to the Cosmic Web
and could explain anomalous
high-z galaxies.
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I For the lowest-order PNG in single-field inflation models,

£(x) = (%) +fNL[C§(X) — (ng(x))], far is constrained to order 1 by
bispectrum measurements [4]. Such constraints aren’t expected for PING.

2 The transfer function relates the inflaton perturbation when the instability is
extremized at H,, to the { response sufficiently long after the end of the
instability for A(:ng to have stopped fluctuating at Hp.
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Figure 8: Peak Patch halo mass functions
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