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Estimating the diagonal entries of a matrix, that is not directly accessible but only available as
a linear operator in the form of a computer routine, is a common necessity in many computational
applications, especially in image reconstruction and statistical inference. Here, methods of statistical
inference are used to improve the accuracy or the computational costs of matrix probing methods to
estimate matrix diagonals. In particular, the generalized Wiener filter methodology, as developed
within information field theory, is shown to significantly improve estimates based on only a few
sampling probes, in cases in which some form of continuity of the solution can be assumed. The
strength, length scale, and precise functional form of the exploited autocorrelation function of the
matrix diagonal is determined from the probes themselves. The developed algorithm is successfully
applied to mock and real world problems. These performance tests show that, in situations where a
matrix diagonal has to be calculated from only a small number of computationally expensive probes,
a speedup by a factor of 2 to 10 is possible with the proposed method.
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I. INTRODUCTION

Imagine the inside of a black box, which computes an
output in a concealed way from a given input, needs to
be investigated. This is a frequent computational task in
image reconstruction problems and it might also be nec-
essary in reverse engineering the functionality of a given,
already compiled computer code. In this work, the black
box acts as a linear operation on its high-dimensional
input, which can be freely chosen in order to probe the
box.

However, an internal property of the box that is of
interest might be obfuscated and therefore needs to be
inferred indirectly by analyzing suitable probes. In prac-
tice, the obfuscation could be just due to the complexity
of the box-internal operations, as it happens in image
reconstruction problems. These operations could be any
combination of many possible linear operators, like scalar
or componentwise multiplications, vector space rotations,
Fourier transformations, linear equation solvers, etc. The
output, however, is assumed to be fully available.

Mathematically, the linear operation performed by the
black box can be represented by a matrix in case the in-
put and output spaces are of finite dimension. In case
these spaces have the same dimension, the matrix is a
square matrix. In this paper, we are interested in the
diagonal of a matrix for which input and output space
can be identified with each other, e.g., in image recon-
struction problems by component- or pixelwise corre-
spondence. There, the matrix diagonal expresses how
much a component of the input vector imprints onto the
corresponding component of the output vector. This ma-
trix diagonal, or any other component of the matrix rep-
resenting the black box operator, can be probed by feed-
ing a number of test vectors into the box and analyzing

the results.

The simplest, but most accurate, scheme is to probe
any of the diagonal components sequentially, one by one.
This can be done by choosing an input vector that con-
tains only one nonzero component at the location of a
certain pixel, and repeating this for all pixels. The ma-
trix entries can then be read off from the output vectors.
This scheme, however, is computationally very expensive
if the dimension of the involved vector spaces is very high.
In image reconstruction, one deals with the space of all
possible images, which has the dimension of the num-
ber of image pixels. Probing these sequentially is nearly
always computationally prohibitive.

A cheaper, but less accurate, scheme is to feed white
noise vectors into the black box and to correlate the out-
puts to the inputs component- or pixelwise. Averaging
these correlations over a sufficiently large set of input vec-
tors yields an estimator for the desired matrix diagonal.

A first proposal for such a probing scheme can be
found in the work by Hutchinson [1, and references
therein]. There, the functionality and efficiency of
probing for obtaining trace estimates has been proven.
Bekas, Kokiopoulou and Saad [2] extended the probing
to Hadamard vectors (rows of the Hadamard matrix) to
improve the estimation of diagonals of banded matrices.
Those methods have been oriented to applications in den-
sity functional theory. Similar problems were approached
by Tang and Saad [3, and references therein] with a fo-
cus on nonstochastic estimators. The recent paper by
Aune and Simpson [4] transfers the probing technique to
the field of information theory, in particular to the cal-
culation of log-likelihoods. Finally, in the extensive work
of Rohde and Tsybakov [5], the noise corrupted obser-
vation of unknown matrix entries is investigated from a
more mathematical point of view.



2

In these schemes, the number of required probes is
much smaller than in the simple sequential probing
scheme. However, this comes at the price of a lower ac-
curacy of the result due to the stochastic nature of these
schemes, which leads to sample variance or uncertainty
in the result. The situation is completely analogous to
a noise contaminated signal measurement. Higher accu-
racy can be achieved by calculating or measuring more
samples, since the noise will average out in the long run.
This, however, might become computationally too expen-
sive at some point.

Noise suppression is a common theme also in the dis-
cipline of image and signal reconstruction. Some a priori
knowledge on signal properties may exist, like the pres-
ence of spatial smoothness, or the knowledge of limited
variance of certain image features (pixels, regions, Fourier
modes, etc.). This knowledge can be exploited in order
to reduce the impact of the noise on the reconstructed
image beyond the simple noise averaging.

Here, we propose to use well-suited image reconstruc-
tion techniques, like generalizations of the Wiener filter,
for an improved reconstruction of the matrix diagonals.
We show that when determining the diagonals of covari-
ance matrices, as needed in problems of image reconstruc-
tion, the usage of suitable filters can improve the accu-
racy of the inferred matrix diagonal significantly. The
method proposed here yields more accurate results for a
given amount of CPU time or, respectively, can reach a
given level of accuracy earlier. In the examined applica-
tions, we found a performance increase by a factor of 2
to 10. This definitely enlarges the number of signal re-
construction problems which can be tackled, and might
enable computations which were marginally prohibitive
before.

The remainder of this paper is structured as follows.
In Sec. II, we highlight the importance of obtaining esti-
mates for matrix diagonals, in particular of uncertainty
covariance matrices in the context of information field
theory (IFT) for signal reconstruction. The stochastic
probing approach is reviewed in Sec. III. In Sec. IV,
we propose using filters derived within the framework of
IFT to solve the problem of estimating matrix diagonals.
Both methods are verified by simple mock examples as
well as by a real-world problem in Sec. V. We conclude
in Sec. VI.

II. PROBLEM OF MATRIX DIAGONALS

Linear operators are fundamental in any area of com-
putation and thereby often expressed in their matrix rep-
resentation.

In the field of information theory, the covariance ma-
trix of a quantity (which equals the inverse of the pre-
cision matrix) holds a key role. To stress this, let us

consider a multidimensional zero-mean Gaussian,

G(ϕ,X) =
1√

det [2πX]
exp

(
−1

2
ϕᵀX−1ϕ

)
, (1)

with the covariance matrix X = 〈ϕϕᵀ〉G , where ϕ is a
random field defined over some pixelized vector space,
ᵀ denotes a transpose, and 〈 · 〉G is the expectation value
weighted by this Gaussian. (In this context “pixel”
is to be understood as a discretized coordinate which
elsewhere may be referred to as “grid point”, “bin” or
“voxel”.)

A diagonal entry of the covariance matrix is the
squared standard deviation σi assigned to pixel i and
expresses the pixelwise uncertainty in ϕ,

σ2
i =

〈
ϕ2
i

〉
G = Xii. (2)

A sophisticated and effective reconstruction tool is the
generic filter [6] that we will review in the following.
We provide this review in order to further emphasize
the importance and problem of obtaining matrix diag-
onals for stochastic inference. Furthermore, this filter
forms also the basis of our proposed algorithm discussed
in Sec. IV B.

A. Generic filter

Signal inference focuses on the reconstruction of some
signal s in order to explain a set of measurements d, both
of which are connected by a forward data model,

d = R[s] + n, (3)

where n is the noise and R a (not necessarily linear) re-
sponse operator that maps from signal to data space.

The generalized Wiener filter, as derived, e.g., in
Ref. [7] in a Bayesian framework, is for one thing based
on a linear forward data model,

d = R s+ n, (4)

where the data d is a sum of the signal response R s and
the noise n. In this scenario, the response is a linear oper-
ator that inherits all aspects of the signal measurement.
The generalized Wiener filter arises in case one can as-
sume a Gaussian distribution for the signal’s prior and
the signal-independent noise in addition to the described
forward data model,

P (s|S) = G(s, S), (5)

P (n|N) = G(n,N), (6)

where S and N stand for the signal and noise covariance
matrix, respectively. The choice of zero-mean Gaussians
shall solely simplify the notation at this point and does
not present a restriction for the theory. In fact, choosing
an appropriate nonzero mean is often reasonable, as we
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demonstrate in Sec. IV B. In consequence of the forward
model, the likelihood of the data given the signal and
its response is modeled by the signal-independent noise
distribution,1

P (d|s,R,N) = P (n = d−R s|s,R,N)

= G(d−R s,N). (7)

The actual inverse problem of estimating the signal given
the data leads to a posterior that, logically, is also a Gaus-
sian,

P (s|d) = G(s−m,D), (8)

with the mean m and the covariance D that encodes
the a posteriori signal uncertainty. The resulting filter
formula, whose straightforward derivation is detailed in
Refs. [6–8], reads

m =
(
S−1 +RᵀN−1R

)−1︸ ︷︷ ︸
D

(
RᵀN−1d

)︸ ︷︷ ︸
j

, (9)

where the map m is the Bayesian estimator for the sig-
nal, i.e. its posterior mean, D is referred to as information
propagator and j as information source in IFT [7] in close
analogy to quantum field theory. Both the signal covari-
ance S and the noise covariance N needed for this filter
are here assumed to be known. A convenient description
of these covariances is in terms of the power spectra, the
spectra of the eigenvalues of these matrices, as well as the
eigenbases in which the covariance matrices are diagonal.

In the following, we decompose the signal covariance
as S =

∑
l ClSl, where the Sl are projection operators

that project onto eigenspaces, the spectral bands (which
correspond to the spherical harmonics of equal degree l
in our examples in Sec. V). An analogous decomposition
exists for the inverse S−1 =

∑
l C
−1
l S−1l , where S−1l is

the pseudoinverse of Sl.
The signal’s power spectrum might be unknown a pri-

ori, whereas the eigenbasis can often be guessed from
statistical symmetries (e.g., the spherical harmonics ba-
sis in case of a statistically isotropic distribution on the
sphere). Thus the spectral coefficients Cl allow for a
parametrization of the covariance matrix. In such ap-
plications without spectral knowledge, the generalized
Wiener filter can be extended to a generic filter derived
in Ref. [6]. For this purpose, first, a logarithmically flat
prior is assumed for the unknown spectral coefficients.
Second, the Cl-marginalized posterior for the signal is
calculated. This posterior then allows for the reidentifica-
tion of appropriate terms with the spectral coefficients.2

1 All noise contributions are marginalized over in an interme-
diate step, P (d|s,R,N) =

∫
Dn P (d|s, n,R)P (n|N), where

P (d|s, n,R) = δ(d−R s− n) according to Eq. (4).
2 Equation (10) (with δl = 1) can alternatively be derived as the

maximization of a signal-marginalized posterior with respect to
(the logarithm of) the spectral coefficients.

The resulting generic filter formulas are Eq. (9) comple-
mented by a reconstruction rule for the power spectrum,
i.e., for each spectral coefficient one calculates

Cl =
1

%l + 2εl
tr
[
(mmᵀ + δlD)S−1l

]
, (10)

where %l = tr
[
S−1l Sl

]
are the numbers of degrees of free-

dom for each spectral band. The parameters (δl, εl) char-
acterize the different filter options: two specific forms are
the classical filter, for which one chooses (δl, εl) = (0, 0),
and the critical filter, for which (δl, εl) = (1, 0). The for-
mer can be derived from a “classical” maximum a poste-
riori approximation of the spectral uncertainty marginal-
ized problem. The latter is called “critical” because it ex-
hibits (in contrast to the classical filter) only a marginal
perception threshold. For a filter with a perception
threshold, the signal-to-noise ratio of a spectral mode
has to exceed a certain threshold in the data before the
filter recognizes it at all. There exists a critical line in the
δ-ε-plane separating filters that fully suppress bands with
insufficient spectral power from filters that do not. The
critical filter resides exactly on this line, while the classi-
cal filter is in the region with such a perception threshold.

All in all, Eqs. (9) and (10) provide an iterative
scheme for the full inverse problem of signal reconstruc-
tion with unknown power spectrum, i.e., unknown corre-
lation structure. The signal reconstruction benefits from
the additional spectral information recovered from the
data since it encodes internal structure of the signal. If,
in addition, one lacks the a priori knowledge about the
correlation structure of the noise, an analogous approach
is conceivable; cf. [9].

The result of the inference is, first, a map m describ-
ing the posterior mean field of the signal in order to ex-
plain the given data d and, second, a covariance matrix
D that encodes the underlying uncertainty correlation
structure. The matrix diagonal of D is thereby of spe-
cial importance, since it expresses the pixelwise variance,
cf. Eq. (2), allowing one to make a statement about the
uncertainty of the result in each pixel.

In order to apply the critical or other generic filters
we may need to calculate the trace of DS−1l in Eq. (10)
in each iteration, and we have to evaluate the diagonal
of D in order to interpret the reliability of our results.
This motivates our ambition to develop faster and more
accurate matrix probing schemes.

Generic filters are applied, e.g., in Refs. [6, 8–11].

B. Exact matrix diagonal

The diagonal of the uncertainty covarianceD is a quan-
tity of interest, but unfortunately not directly accessible
in most cases. Its calculation involves complex matrix
operations, such as matrix inversion; see Eq. (9). Of-
ten, the complete matrix is not known explicitly, only
the matrix-vector multiplication is available as a black
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box in the form of a computer routine which reads in
and returns a vector.

Calculating the diagonal of a matrix X of dimension r
seems still possible using the canonical basis vectors e(k)

(with e
(k)
i = δik ∀ i, k ∈ {1, . . . , r}), since

diag [X] =
∑
k

e(k) ∗X e(k), (11)

where ∗ denotes a componentwise product in the way
that (a ∗ b)i = aibi ∀ i ∈ {1, . . . , r}.

It is obvious that this “true” diagonal is too ex-
pensive computationally because one needs to evaluate
the matrix-vector multiplication exactly r times looping
through all canonical basis vectors where the dimension
r of the problem can be very high (r � 1). In addition,
each of those products alone can be expensive because it
may invoke numerical inversion techniques, e.g., a con-
jugate gradient scheme [12], which is the case in most of
the examples in Sec. V.

III. PROBING ESTIMATE

The question arises if one can choose another set of
vectors instead of the full set of canonical basis vectors to
speed up the computation. Independent and identically
distributed random variables stored in a set of vectors
{ξ} (with sample size |{ξ}| = A) work out if they fulfill
the property

〈ξiξj〉{ξ}
A→∞−−−−→ δij . (12)

The average 〈 · 〉{ξ} stands for the arithmetic mean over

a set {ξ} and δij for the Kronecker delta.
Two of many possible options are (i) equally probable

values of ±1 for the components of ξ [1]3 or (ii) zero-mean
Gaussian random numbers with unit variance. Both were
originally developed for trace estimation. We use (ii) in
the following applications.

Regardless of the choice of the random vectors, the
sample average

〈ξ ∗X ξ〉{ξ}
A→∞−−−−→ diag [X] (13)

over an infinite set results in the “true” diagonal; see the
Appendix A.

The average over a finite but sufficiently large set
(A < r < ∞) gives the probing estimate f of the ma-
trix diagonal,

diag [X] ≈ 〈ξ ∗X ξ〉{ξ} = f . (14)

3 In Ref. [2], a much more sophisticated choice, based on Ref. [1],
is presented.

Given this estimator, a trace estimate is obtained by sum-
ming up all elements of f , as

tr [X] ≈ 〈ξᵀX ξ〉{ξ} =
∑
i

fi. (15)

Since one wants to obtain an estimator in a finite period
of time, one has to find an acceptable trade-off between
the sample size A and the residual error, where the latter
scales with 1/

√
A according to the law of large numbers.

Aiming for a certain precision, therefore, requires a par-
ticular amount of computation time.

The estimator given by Eq. (14) is absolutely generic
and applicable to a variety of matrices. Recent applica-
tions of it can be found in Refs. [2, 4, 10].

IV. BAYESIAN ESTIMATE

A. Forward model

Instead of doing a simple averaging of the probes, we
now want to develop a Bayesian estimate which exploits
additional knowledge of the problem to infer the matrix
diagonal from a smaller set of samples. For this pur-
pose, we consider the sampling described by Eq. (14) as
a linear forward model of a measurement process for the
signal s̃ = diag [X] we are interested in. (In order to
avoid confusion, already introduced synonymous quanti-
ties that appear now in another context are marked with
a tilde.)

For one sample, a ∈ {1, . . . , A}, the measurement
equation takes the form

d̃(a) = ξ(a) ∗X ξ(a)

= diag
[(
ξ
(a)
1

)2
, . . . ,

(
ξ(a)r

)2]︸ ︷︷ ︸
R̃(a)

s̃+ ñ(a). (16)

For all samples, it is

d̃ =
(
d̃(1), . . . , d̃(A)

)ᵀ
=
(
R̃(1), · · · , R̃(A)

)ᵀ
︸ ︷︷ ︸

R̃

s̃+
(
ñ(1), . . . , ñ(A)

)ᵀ
︸ ︷︷ ︸

ñ

= R̃ s̃+ ñ, (17)

where d̃ represents the “measured” data, R̃ the signal
response, and ñ the noise. The contributions from all
off-diagonal matrix elements are considered to be noise,
i.e.,

ñ(a) = ξ(a) ∗ (X − diag [X11, . . . , Xrr]) ξ
(a), (18)

and they can be estimated using Eq. (17), once we have
an estimator for the signal.

Note that, if one chooses the random variables ξ to be
±1, first, one does not have to draw normal variables as
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originally pointed out by Ref. [1] and, second, all the re-

sponse martices R̃(a) equal 1 and hence do not need to be
treated separately for the different samples. This speeds
up the algorithm and reduces the memory requirements.

B. Proposed algorithm

Our goal is to find an estimator for the matrix diag-
onal which is close to the minimum mean square error
estimate, but still computationally affordable. This esti-
mator has to account for our missing knowledge about
the underlying correlation structure. Given these re-
quirements, the generic filter formulas are potentially an
appropriate choice. Therefore, our proposed algorithm is
based on this filter.

We start by probing the matrix as described in Sec. III
and as a result obtain a first estimator f for our signal,
i.e., the matrix diagonal. This additional information
changes our state of knowledge about the matrix diago-
nal in the way that the assumed prior in Eq. (5) is not
adequate. Although f is a sufficient starting value for
the iterative part of the scheme, it is not suitable for the
construction of a prior, since, after only a few samples,
several diagonal entries of the matrix may still be consid-
erably over- or underestimated. By contrast, f provides
already a sufficiently accurate estimator for the trace;
see Eq. (15). For that reason, we can a priori expect
the matrix diagonal s̃ to be distributed around some t̃
rather than around zero, where for all i ∈ {1, . . . , r} we
set t̃i =

∑
j fj/r ≈ 〈tr [X]〉{ξ} /dim [X]. Therefore, the

prior of the matrix diagonal is chosen to have a nonzero
mean t̃,

P (s̃, S̃) = G(s̃− t̃, S̃). (19)

As a consequence, the filter formulas Eqs. (9) and (10)
undergo a shift,

m̃ = D̃
(
R̃ᵀÑ−1d̃+ S̃−1t̃

)
, (20)

D̃ =
(
S̃−1 + R̃ᵀÑ−1R̃

)−1
, (21)

C̃l =
1

%̃l + 2ε̃l
tr
[((

m̃− t̃
) (
m̃− t̃

)ᵀ
+ δ̃lD̃

)
S̃−1l

]
. (22)

Furthermore, the noise covariance, i.e., its required in-
verse, is unknown a priori and needs to be estimated for
our algorithm. If we use the data model described in
Sec. IV A, Ñ−1 can be approximated by the noise given
the data and an estimator for the signal,

ñ = d̃− R̃ m̃. (23)

We simplify our calculation by using

Ñ−1 = (ññᵀ)
−1 ≈ (diag [ñ ∗ ñ])

−1
. (24)

This is done in order to limit the computational effort,
and it can be shown that this corresponds to the treat-
ment of an unknown noise covariance presented in Ref.[9]
by means of a classical filter.

Equations (20) to (22) are solved iteratively in the fol-
lowing scheme:

(1) Start with m̃(ν=0) = f according to Eq. (14).

(2) Compute ñ(ν+1) according to Eq. (23).

(3) Compute C̃
(ν+1)
l according to Eq. (22),

while ignoring t̃ and D̃ for ν = 0.

(4) Compute m̃(ν+1) according to Eq. (20)
using Eqs. (21) and (24).

(5) Repeat steps (2) to (4) until convergence.

As an initial guess for the power spectrum in step (3), we
use an overestimation. This accelerates the convergence
process as can be seen in the extreme limits: C̃l → ∞ :
m̃ ∼ R̃−1d̃, whereas C̃l → 0+ : m̃ ∼ t̃, i.e., a strong
overestimate still gives a nontrivial result for m̃, whereas
a strong underestimate gives a nearly trivial one.

Following Sec. II A, we generally recommend the criti-
cal filter, since it does not exhibit a significant perception
threshold. Nevertheless, in the presented examples, the
correction term tr[D̃S̃−1l ] contributes only marginally to
the accuracy and therefore the classical filter, which does
not require the calculation of this term, is applied in the
following.

V. VERIFICATION & APPLICATION

A. Numerical experiments

To verify the proposed algorithm, we perform some nu-
merical experiments that are posed on signals living on
the sphere. The examples in this section are represented
by all-sky HEALPix [13, 14] maps with Nside = 8, re-
sulting in r = 768 pixels and in a maximal spectral index
lmax = 23 of the spherical harmonics basis in which we
a priori assume our signal covariance to be diagonal due
to a statistical isotropy of the signal.

The computations were performed using the free open-
source mathematics software system Sage [15] and the
HEALPix package.

1. Trivial case

At first, we consider a trivial case where the matrix
in question is given explicitly. To ensure that this ma-
trix is a valid covariance matrix, i.e., it is positive and
symmetric, we constructed it to be

X =


X11 −1 0

−1
. . .

. . .

. . .
. . . −1

0 −1 Xrr

 , (25)
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Figure 1: Trivial case: (a) the exact matrix diagonal, (b) the probing estimate, and (c) the Bayesian estimate started with four
probes, both after around 0.3 s.
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Figure 2: (Color online) L2-norm of the error (divided by
the number of pixels r) as a function of CPU time for the
trivial case: the evolution of the probing estimator (solid), its

theoretical prediction ∝ 1/
√
A (dotted) and the Bayesian esti-

mators starting with four (dashed) and nine samples (dashed
dotted) are shown.

where the diagonal entries need to fulfill Xii ≥ 2 ∀ i ∈
{1, . . . , r} for positive definiteness and are drawn with a
simple structure on the sphere; see Fig. 1.

The normalized L2-norms of the residual error4 serve
as an accuracy measure and are shown as a function of
CPU time in Fig. 2.

Although X as an operator could be implemented very
efficiently, we use the much more expensive full matrix
multiplication to have realistic computational costs like
those of applying a more complex matrix. But this trivial
case should only hold as a proof of concept; more sensible
examples are discussed in the following.

As one can clearly see in Fig. 2, the probing estima-
tor improves continuously with an increasing number of
probes and shows an overall proportionality to 1/

√
A as

argued in Sec. III. However, the Bayesian estimator given
a set of samples converges in only a couple of iterations
to a result with an accuracy the pure probing will first

4 Meaning mathematically ||diag [X]−f ||2/r or ||diag [X]−m̃||2/r,
respectively, to be exact.

reach after investing a factor of a few more CPU time.
For a fixed amount of computation time, the Bayesian
estimator excels the probing estimator, as can be seen
in Fig. 1. It is also evident that the Bayesian estimator
must reach a lower limit in its progress because only a
limited data set is provided containing finitely accurate
information.

2. Realistic case

For a more realistic mock example, we consider a co-
variance matrix D = (S−1 + N−1)−1 similar to the one
described by Eq. (9) where the signal covariance S is
completely defined by a power spectrum,

Cl ∝ (max {1, l})−2 . (26)

The noise covariance N is characterized by two effects,
first, high noise in one of the twelve HEALPix basis
pixels representing a defect in the detector and, second,
smoothly increased noise toward the poles imitating an
observational effect.5 The described noise covariance and
the resulting propagator D are illustrated in Fig. 3, where
one can see the conservation of the noise structure and
the smoothing effect of the power spectrum.

The performance of both algorithms is shown in Fig. 4.
Our algorithm performs qualitatively in the same way as
in the trivial case, but the overall gain in accuracy or
time is quantitatively lower. It is also noticeable that
the relative advantage of the proposed method decreases
with the number of used random vectors. Consequently,
the matrix diagonal inference method pays off best in
cases where a rough estimate using only a few probes is
sufficient.

5 The noise variance is assigned to each pixel i according to N−1
ii =

(0.005 + 8 (hi(hi − hmax))2 /h4max), where hi is the HEALPix
ring number associated to the pixel i.
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Figure 3: Realistic case: (a) the matrix diagonal of the mock noise covariance N and (b) the “true” diagonal of the propagator
D = (S−1 + N−1)−1.
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Figure 4: (Color online) Same as Fig. 2, only for the propa-
gator for the realistic case.

B. Faraday sky uncertainty

Next, we attempt to use our algorithm in a real phys-
ical application. We consider the inference problem dis-
cussed in Ref. [10]. In that work, an all-sky signal – the
galactic Faraday depth – was reconstructed from mea-
surements in 37 543 individual directions [16]. The data
were modeled according to a linear measurement proce-
dure, Eq. (4), with a response R that is nonzero only for
directions in which measurements had been made and is
larger within the galactic plane.

To reconstruct the field, the critical filter algorithm
that was discussed in Sec. II A was used, yielding an es-
timate for the posterior mean m of the signal field s,
as well as an estimate for the components of the angu-
lar power spectrum of this field, Cl. In addition, a map
showing the uncertainty of the signal estimate m, given
by diag [D], is provided in Ref. [10]. This was calculated
from the information propagator D, which takes on the
form (21), by applying the probing estimator discussed
in Sec. III.

Here, we show how the application of our Bayesian al-
gorithm to this problem can improve the accuracy and
speed up the calculation of this matrix diagonal. In or-
der to be able to compare the results of the probing and
Bayesian estimators to the correct matrix diagonal, we
reduce the dimensionality of the problem to facilitate the

exact calculation of the diagonal via Eq. (11). We do this
by reducing the resolution of the all-sky map with respect
to the one presented in Ref. [10] to HEALPix parameter
Nside = 16, leading to 3 072 pixels, and truncating the re-
constructed power spectrum at lmax = 47. Furthermore,
we use a coarser version of the response matrix. In this
way, a coarse-grained version of the propagator D is de-
fined and we can calculate its diagonal exactly, as well as
by using the probing estimate and our Bayesian exten-
sion.

Figure 5 shows the results of these calculations, where
the matrix-vector multiplication was conducted for ten
different random vectors in the case of the probing and
Bayesian estimators. The sphere in this case corresponds
to a map of the whole sky, where the disk of the Milky
Way extends horizontally in the middle of the image.
While still exhibiting a large amount of noise, both the
probing and Bayesian results show roughly the right
structure after only a few iterations. This structure is de-
termined mainly by an oval region of high uncertainty, i.e.
large diagonal entries, where no observations had been
made and a dependence on galactic latitude due to the
larger signal response within the galactic plane.

From Fig. 5 alone, it is hard to judge whether the
Bayesian estimator leads to an improvement over the
probing one. We therefore plot again the L2-norm of the
difference between the estimated matrix diagonal and the
“true” one as a function of CPU time in Fig. 6. Shown
is the curve for the pure probing estimator as well as
two examples for Bayesian improvements, using two and
ten random vectors, respectively. It is evident that for
both cases the Bayesian method gives a boost in accuracy
with only marginal time consumption. The absolute and
relative improvement is larger if one uses fewer random
vectors. This shows again that the main strength of the
Bayesian method does not lie in the absolute accuracy
that can be reached, but rather in the speedup it pro-
vides for obtaining an estimate for the matrix diagonal
with intermediate accuracy.
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Figure 5: Diagonal of the propagator for the reconstruction of the galactic Faraday depth. Panel (a) shows the result of the
exact calculation according to Eq. (11), panel (b) the probing result after ten iterations, and panel (c) the result of the Bayesian
estimator, using ten random vectors as well.
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Figure 6: (Color online) Same as Fig. 2, only for the propa-
gator for the reconstruction of the galactic Faraday depth.

VI. CONCLUSIONS

This work aims at transferring successful signal infer-
ence methods to the realm of numerical computation. In
particular, the problem of inferring internal properties
of a computational black box is analyzed. To this end,
the well known method of stochastic probing of matrix
diagonals is augmented by a sophisticated signal recon-
struction scheme. This inference algorithm interprets the
probing of the matrix diagonal as a numerical measure-
ment including unwanted uncertainties, or plainly noise.

As in signal reconstruction, additional knowledge on
the matrix diagonal, i.e., our signal, can be exploited
to improve the accuracy of the obtained result. We use
known symmetries of the underlying continuous structure
of the matrix diagonal, namely approximate statistical
isotropy.

This improves the estimates acquired from probing,
without increasing computational costs significantly. In
order to achieve the same level of accuracy, the tra-
ditional probing method requires computational costs,
which are a factor of 2 to 10 times larger than the pro-
posed scheme, in the cases investigated here. This algo-

rithm is especially effective when matrix diagonals need
to be calculated only roughly, since the relative gain in
accuracy is larger if only a few probes are available.

This has been shown in numerical examples as well as
for the uncertainty map appearing in the reconstruction
of the galactic Faraday depth.
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Appendix A: Proof of the probing estimator

Here we prove that Eq. (13) is indeed implied by
Eq. (12). Given a sufficiently large but not necessarily
finite set {ξ} (with |{ξ}| = A), the condition given by
Eq. (12) becomes

lim
A→∞

〈ξiξj〉{ξ} = lim
A→∞

1

A

A∑
a=1

ξ
(a)
i ξ

(a)
j = δij . (A1)

Inserting this equality in Eq. (13), without loss of gener-
ality restricted to the average’s component i ∈ {1, . . . , r},

(
〈ξ ∗X ξ〉{ξ}

)
i

=
1

A

A∑
a=1

r∑
j=1

ξ
(a)
i Xijξ

(a)
j

=

r∑
j=1

Xij
1

A

A∑
a=1

ξ
(a)
i ξ

(a)
j︸ ︷︷ ︸

→δij

→ Xii, (A2)

proves the statement.
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