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ABSTRACT

The Atacama Large Millimeter Array has returned images of transitional disks in which large asymmetries are seen
in the distribution of millimeter sized dust in the outer disk. The explanation in vogue borrows from the vortex
literature and suggests that these asymmetries are the result of dust trapping in giant vortices, excited via Rossby
wave instabilities at planetary gap edges. Due to the drag force, dust trapped in vortices will accumulate in the
center and diffusion is needed to maintain a steady state over the lifetime of the disk. While previous work derived
semi-analytical models of the process, in this paper we provide analytical steady-steady solutions. Exact solutions
exist for certain vortex models. The solution is determined by the vortex rotation profile, the gas scale height,
the vortex aspect ratio, and the ratio of dust diffusion to gas-dust friction. In principle, all of these quantities can
be derived from observations, which would validate the model and also provide constrains on the strength of the
turbulence inside the vortex core. Based on our solution, we derive quantities such as the gas-dust contrast, the
trapped dust mass, and the dust contrast at the same orbital location. We apply our model to the recently imaged
Oph IRS 48 system, finding values within the range of the observational uncertainties.
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disks
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1. INTRODUCTION

Transitional disks are a class of circumstellar disks that lack a
significant near-infrared (1–5 μm) excess, while showing steep
slopes in mid-infrared (5–20 μm) and far-infrared (>20 μm)
excesses typical of classical T-Tauri disks (Strom et al. 1989;
Skrutskie et al. 1990; Gauvin & Strom 1992; Wolk & Walter
1996; Calvet et al. 2002, 2005; Muzerolle et al. 2006; Sicilia-
Aguilar et al. 2006; Currie et al. 2009; Currie & Sicilia-Aguilar
2011). This “opacity hole” implies the absence of optically
thick warm dust in the inner disk, with a dust wall generating
the mid-IR emission, followed by cold dust in the outer disk.
These observations, together with the age of these systems
(in the 1–10 Myr range; see, e.g., Currie 2010 for a review),
provide strong evidence that these are objects caught in the
evolutionary stage between gas-rich primordial and gas-poor
debris disks, hence their name.

Explanations for the opacity hole generally fall in four distinct
categories. These are, namely, grain growth and dust settling
(Brauer et al. 2007; Dominik & Dullemond 2008; Zsom et al.
2011; Birnstiel et al. 2012), photoevaporation (Alexander et al.
2006; Cieza 2008; Pascucci & Sterzik 2009; Owen et al. 2010),
dynamical interaction with close stellar or substellar compan-
ions (Ireland & Kraus 2008), and planet formation via dust
locking (Safronov 1969; Lyttleton 1972; Goldreich & Ward
1973; Youdin & Shu 2002; Johansen et al. 2007) and gap carv-
ing (Papaloizou & Lin 1984; Lin & Papaloizou 1986a, 1986b;
Bryden et al. 1999; Paardekooper & Mellema 2004; Quillen
et al. 2004; Najita et al. 2007; Andrews et al. 2011). Analyses of
individual disks (Calvet et al. 2004, 2005; Espaillat et al. 2008)
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tend to favor one process over another, and even census studies
of statistically significant samples of disks find one process to
be dominant (Najita et al. 2007; Cieza 2008). These seemingly
conflicting results in fact illustrate the heterogeneity of transi-
tional disks, where a combination of all the suggested processes
are needed to explain the rich diversity observed (Cieza 2010;
Muzerolle et al. 2010; Merı́n et al. 2010; Rosotti et al. 2013;
Clarke & Owen 2013).

Recently, high angular resolution imaging of the outer re-
gions of transitional disks have become available, showing a
myriad of puzzling asymmetries that beg for explanation. These
asymmetries come in the shape of spiral arms (Piétu et al. 2005;
Corder et al. 2005; Muto et al. 2012; Tang et al. 2012), elliptical
dust walls (Isella et al. 2012), and non-axisymmetric dust clouds
(Oppenheimer et al. 2008; Brown et al. 2009; Casassus et al.
2012). In particular, giant horseshoe-shaped dust distributions
are seen in images obtained with the Combined Array for Re-
search in Millimeter-wave Astronomy (Isella et al. 2013) and
with the Atacama Large Millimeter Array (ALMA; Casassus
et al. 2013; van der Marel et al. 2013). The planet interpreta-
tion is particularly attractive for explaining these asymmetries,
since they generally match the range of structures predicted by
hydrodynamical models of planet–disk interactions.

A deep gap is one of the expected structures, as the planet
tides expel material from the vicinity of its orbit (Papaloizou &
Lin 1984; Lin & Papaloizou 1986a, 1986b; Nelson et al. 2000;
Masset & Snellgrove 2001; Paardekooper & Mellema 2004;
Quillen et al. 2004; de Val-Borro et al. 2006; Klahr & Kley
2006; Lyra et al. 2009a; Zhu et al. 2011; Kley et al. 2012; Kley
& Nelson 2012). The gas gap walls constitute steep pressure
gradients that, by modifying the rotational profile locally, are
prone to excite what has been called the Rossby wave instability
(RWI; Lovelace & Hohlfeld 1978; Toomre 1981; Papaloizou &
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Pringle 1984, 1985; Hawley 1987; Lovelace et al. 1999). The
RWI is an “edge mode” instability, akin to the Kelvin–Helmholtz
Instability, that converts the extra shear into vorticity. The large-
scale vortices that result are well known in the planet formation
literature.

Barge & Sommeria (1995), Adams & Watkins (1995), and
Tanga et al. (1996) independently proposed, in the context of
primordial disks, that vortices could speed up planet formation
by trapping solids of centimeter to meter size. The dynamics
of this trapping was developed in a detailed work by Chavanis
(2000), setting much of the analytical foundations of the field.
Godon & Livio (1999, 2000) and Johansen et al. (2004)
simulated vortices numerically, finding fast trapping of particles
but also quick dissipation due to (Laplacian) viscosity. These
studies, however, did not consider the question of how to form
disk vortices in first place, a question tackled by Varnière
& Tagger (2006). These authors show that a sharp viscosity
gradient in the disk leads to a pile-up of matter, that in turn goes
unstable to the RWI. Because the magnetorotational instability
(MRI; Balbus & Hawley 1991) leads to a significant turbulent
viscosity, Varnière & Tagger (2006) suggest that this mechanism
could be at work in the transition between the MRI-active and
dead zones. The accumulation of dust in these self-sustained
RWI vortices was subsequently studied by Inaba & Barge
(2006), albeit in the fluid approach that limited the dust size
they could use. Planetary gap edges were seen to excite vortices
in many simulations in the code-comparison study of de Val-
Borro et al. (2006), an effect later explained in terms of the RWI
as well (de Val-Borro et al. 2007).

These efforts culminated in a coherent picture of vortex-
assisted planet formation in dead zone vortices by Lyra et al.
(2008, 2009a) and in gap edge vortices by Lyra et al. (2009b).
These works solved the nonlinear compressible hydrodynamics
and the aerodynamics of interacting particles, demonstrating the
gravitational collapse of the trapped solids, albeit in two dimen-
sions (2D). The RWI was subsequently studied in barotropic
three-dimensional (3D) models by Méheut et al. (2010, 2012a,
2012b, 2012c), who found interesting meridional circulation
patterns; in self-gravitating disks with applications to planet mi-
gration in 2D (Lin & Papaloizou 2011a, 2011b, 2012) and 3D
(Lin 2012b), who find weakening and eventual suppression of
the RWI with increasing disk mass; in magnetohydrodynamics
by Lyra & Mac Low (2012), bringing realism to the dead-zone
scenario; and by Lin (2012a, 2013), who generalized the linear
RWI to 3D polytropic and non-barotropic disks, respectively.

Part of these results have been applied to the field of transi-
tional disks. The particle size that is preferentially trapped is set
by the friction time, τf , which is a function of the gas density
and the particle radius. A suitable nondimensionalization for
the friction time is the Stokes number, St = Ωτf , where Ω is
the Keplerian frequency. Dust that is too well coupled to the
gas (St → 0) does not suffer friction, and bodies that are too
large (St → ∞) have too much inertia to be moved by the gas;
the preferential size for trapping is St = 1 (see, e.g., Youdin &
Goodman 2005; Youdin 2008). While in the dense, fast rotating,
inner regions of primordial disks, the preferentially trapped par-
ticle size corresponds to meter size. In the thin, slowly rotating,
outer regions of transitional disks, the size corresponding to St =
1 drops by about three orders of magnitude (Brauer et al. 2007;
Pinilla et al. 2012a). The resulting trapping of submillimeter and
millimeter size dust may not lead to the critical densities neces-
sary to form planets, but these trappings may well explain the
puzzling observed lopsided asymmetries. While the motivation

and particle sizes are different, the relevant physics is scale-free,
and thus identical as long as gravity is not involved.

This property was invoked by Regály et al. (2012) to suggest
that the submillimeter observations of Brown et al. (2009) could
be the result of dust trapping in Rossby vortices. If indeed this
process occurs, then, as the drag force drives dust toward the
vortex center, diffusion is needed to maintain a steady state
over the lifetime of the disk (Klahr & Henning 1997; Chavanis
2000; Ataiee 2013). Birnstiel et al. (2013) presented a semi-
analytical model that solves for the azimuthal dust distribution
while using fits from numerical simulations (Pinilla et al. 2012b)
to constrain the radial morphology. In this work, we present a
fully analytical model for the steady-state distribution of dust
trapped in vortices, accurate to first order in Stokes number,
and general in space. In Section 2, we derive the advective-
diffusive equation and in Section 3 we derive the appropriate
coordinate transformation. In Section 4, we solve the equation
for the “axisymmetric” case in that coordinate system and in
Section 5 we generalize it for non-axisymmetry. In Section 6,
we derive observational predictions and apply the model to the
Oph IRS 48 system.

2. DUST STEADY STATE

Considering the dust particles are small sizes, we can treat
dust as a fluid. The dust should then follow the continuity
equation:

∂ρd

∂t
= −(w · ∇)ρd − ρd∇ · w − ∇ · J, (1)

where ρd is the dust density, w is the dust velocity, and J is the
diffusion flux. We take the diffusion flux to be:

J = −D ρg∇(ρd/ρg), (2)

as in the contaminant equation (Morfill & Völk 1984; Clarke
& Pringle 1988; Charnoz et al 2011), where D is the diffusion
coefficient (the diffusion is due to elliptical turbulence in the
vortex core and in general will be different from the turbulent
viscosity in the disk) and ρg is the gas density. We assume that
D is constant. A list of the mathematical symbols used in this
work, together with their definitions, is provided in Table 1.

To derive the velocities, instead of solving the momentum
equations for the dust, we make use of the relative velocity,
following Youdin & Goodman (2005, see also Youdin 2008):

w = u + τf∇h, (3)

where u is the gas velocity. Equation (3) is accurate to first order
in friction time τf , assumed to be constant. For isentropic gas,
the enthalpy h is defined as dh = dp/ρg , where p is the pressure.
As noted by Charnoz et al (2011), Equation (1) can be written
as a typical continuity equation with Laplacian diffusion:

∂tρd = −(v · ∇)ρd − ρd∇ · v + D∇2ρd, (4)

provided that the effective velocity v is

v ≡ w + D∇ ln ρg. (5)

For isothermal gas, the extra term is D/c2
s ∇h, and, comparing

with Equation (3), its effect amounts to redefining the friction
time as

τ ≡ τf +
D

c2
s

. (6)
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Table 1
Symbols Used in This Work

Symbol Definition Description

τf Friction time
D Dust diffusion coefficient
cs Sound speed
τ =τf + D/c2

s Effective friction time
Ω Keplerian angular frequency
St = Ωτf Stokes number
t Time
ρg , ρd Gas and dust density
u, w Gas and dust velocity
v = w + D∇ ln ρ Effective dust velocity
p Gas pressure
h dh = dp/ρg Gas enthalpy
χ Vortex aspect ratio (>1)
a Vortex semi-minor axis
ΩV Vortex angular frequency
ω

V
= ΩV /Ω Dimensionless vortex frequency

C = −∇ · v

A = ΩV /D

B = C/D

ν Azimuth in vortex reference frame
ξ± = 1 ± χ−2

H cs/Ω Sonic scale, gas scale height
δ D = δcsH Dimensionless diffusion parameter
f (χ ) Equation (35) Scale function
S = St/δ Dimensionless number
Hg = H/f (χ ) Gas vortex scale length

HV = Hg

√
1

S+1 Dusty vortex scale length

k = √
2/HV

ζ = ka

χ̃ = χ2−1
2(χ2+1)

β = (B1 − B2)/4B

km = 1 + imA/B

Am Bm Cm Equations (40)–(42) Differential operators
bm Constants
ε(ζ ) Non-axisymmetric correction
ε = ∫

ρddV/
∫

ρgdV Global dust-to-gas ratio
ρ0 Max gas density, reference density

Combining Equations (3), (5), and (6), we can thus write

v = u + τ∇h, (7)

valid for isothermal gas only.
Inside the vortex, the gas flow is divergent-free, and we adopt

the following model for u:

ux = ΩV y/χ uy = −ΩV xχ, (8)

where χ > 1 is the vortex aspect ratio (it has semi-minor axis
a and semimajor axis aχ ). Notice that the flow eventually is
supersonic for large values of x and y. This result will limit the
validity of the solution, as the vortices shock beyond the sonic
perimeter. This process effectively leads to a vortex “boundary,”
beyond which the motion rejoins the background Keplerian flow.

In this work, we consider the Kida solution (Kida 1981):

ΩV = 3Ω
2(χ − 1)

, (9)

which smoothly matches the above velocity field to the Keple-
rian shear. We also consider the Goodman–Narayan–Goldreich
(GNG) solution (Goodman et al. 1987) that exactly solves the

compressible Euler equations:

ΩV = Ω
√

3/(χ2 − 1). (10)

We comment that these solutions make use of the shearing box
equations, and are thus subject to the same limitations as that ap-
proximation (Regev & Umurhan 2008). In particular, the shear-
ing box does not have a radial vorticity gradient, and thus cannot
excite the RWI (Tagger 2001). Nevertheless, independent of the
excitation mechanism, these solutions are good local descrip-
tions of the perturbed flow. The GNG solution was used to model
vortices found in non-linear hydrodynamic global simulations
of the Papaloizou–Pringle instability (Hawley 1987), which is
similar to the RWI. Recently, Lin & Papaloizou (2011a) found
that, in quasi-steady state, the RWI vortices excited at planetary
gap edges resemble vortices formed by perturbing the disk with
the Kida solution. We are thus confident that the above solu-
tions are suitable as a first model for disk vortices. Moreover, it
is straightforward to generalize the solutions below to any flow
in the form ux ∝ y and uy ∝ −x.

We note that the dust velocity (Equation (7)) is comprised of a
divergent-free part, u, and a curl-free part, τ∇h. The vortex flow
attempts to keep the dust particles on closed elliptic streamlines
via u, while friction attempts to concentrate dust toward the
pressure maximum via τ∇h. The only effect that attempts to
spread out the dust is diffusion, via D.

Taking the divergence of Equation (7) gives

∇ · v = τ∇2h, (11)

and we can find the Laplacian of the enthalpy via the Euler
equation. Adopting the shearing sheet approximation, in steady
state the force balance yields

∂h

∂x
= 3Ω2x + 2Ωuy − uy

∂ux

∂y

= (
3Ω2 − 2ΩΩV χ + Ω2

V

)
x = −C1

τ
x, (12)

∂h

∂y
= −2Ωux − ux

∂uy

∂x

= (−2ΩΩV /χ + Ω2
V

)
y = −C2

τ
y. (13)

Substituting the above equations into Equation (11), also with
ω

V
= ΩV /Ω, the divergence becomes

∇ · v = −(C1 + C2) = −C (14)

= −τΩ2

[
2ω

V

(
χ2 + 1

χ

)
− (

2ω2
V

+ 3
)]

, (15)

where we define C as positive, so that the divergence is
negative (physically meaning that the dust gets trapped).
Replacing Equation (14) in the modified continuity equation
(Equation (4)), and setting ∂t = 0 for steady state,

(D∇2 − v · ∇ + C)ρd = 0. (16)

Substituting the gas velocity (Equation (8)), and dividing by
D, we arrive at the modified advection-diffusion equation that
should determine the steady-state distribution of the vortex-
trapped dust,

[∇2 − (Ayχ−1 − B1x)∂x + (Axχ + B2y)∂y + B]ρd = 0, (17)

where we also substituted A = ΩV /D and Bi = Ci/D.
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3. CHANGE OF VARIABLE

We change variables to the coordinate system used in Chang
& Oishi (2010):

x = a cos ν, (18)

y = aχ sin ν. (19)

The system is not orthogonal, but it has the advantage of
matching the aspect ratio of the ellipses. (In contrast, the
elliptical coordinate system, although orthogonal, describes
a system of confocal ellipses of different aspect ratios that
does not coincide with the geometry of the problem.) In these
coordinates, the transformations are[

∂a

∂ν

]
= A

[
∂x

∂y

]
and

[
∂x

∂y

]
= A−1

[
∂a

∂ν

]
, (20)

with

A =
[

∂x
∂a

∂y

∂a
∂x
∂ν

∂y

∂ν

]
=

[
cos ν χ sin ν

−a sin ν aχ cos ν

]
. (21)

The inverse matrix is

A−1 = 1

aχ

[
aχ cos ν −χ sin ν
a sin ν cos ν

]
. (22)

The transformations are therefore

∂

∂x
= cos ν

∂

∂a
− sin ν

a

∂

∂ν
, (23)

∂

∂y
= 1

χ

(
sin ν

∂

∂a
+

cos ν

a

∂

∂ν

)
, (24)

and the Laplacian is thus

∇2 = 1

2
[ξ− cos 2ν + ξ+ ]∂2

a

+
1

2a2
[ξ+ − ξ− cos 2ν]∂2

ν

− sin 2ν

a
ξ−∂2

aν

+
1

2a
[ξ+ − ξ− cos 2ν]∂a

+
sin 2ν

a2
ξ−∂ν, (25)

with ξ± = (1 ± χ−2). As for the advection term, we have

v · ∇ = (u + τ∇h) · ∇

= −
[

ΩV − sin 2ν

2
(C1 − C2)

]
∂ν

− (C1 cos2 ν + C2 sin2 ν)a ∂a. (26)

The dust-trapping equation is therefore{
∇2 +

[
A − sin 2ν

2
(B1 − B2)

]
∂ν

1

1
+ (B1 cos2 ν + B2 sin2 ν)a ∂a + B

}
ρd = 0. (27)

4. “AXISYMMETRIC” SOLUTION

4.1. Dust Distribution

We now make the assumption that the dust distribution fol-
lows, in shape, that of the gas (we will relax this approximation
in the next section). In this case, the dust distribution follows
ellipses of equal aspect ratios. So, ∂ν = 0, “axisymmetric” in
(a, ν) coordinates. Equation (27) then becomes:{

1

2
(ξ− cos 2ν + ξ+ )∂2

a +

[
1

2a
(ξ+ − ξ− cos 2ν)

1

1
+ (B1 cos2 ν + B2 sin2 ν)a

]
∂a + B

}
ρd = 0. (28)

We now integrate the above equation in ν, from 0 to 2π . This
step yields [

∂2
a +

(
1

a
+

k2

2
a

)
∂a + k2

]
ρd = 0, (29)

where we define k2 = 2B/ξ+ . Note that the parameter A is
absent because it represents advection by the vortex, which
only moves dust particles along the same ellipse, not across it.
It is not relevant in the ν-averaged problem. The solution of
Equation (29) is

ρd (a) = exp

(
−k2a2

4

) [
c1 + c2Ei

(
k2a2

4

)]
, (30)

where c1 and c2 are constants and Ei(x) is the exponential
integral function. Since it diverges at the origin, c2 has to be
zero, and

ρd (a) = ρd max exp

(
− a2

2H 2
V

)
, (31)

with HV = √
2/k for symmetry with the gas sonic scale.

We can rewrite this length scale recalling that k2 = 2B/ξ+

and B = C/D. We can substitute the diffusion coefficient
D = δΩH 2, where δ is a dimensionless coefficient, and
St = τfΩ for the Stokes number, thus writing:

k2 = 2(St + δ)

δH 2
f 2(χ ), (32)

so

HV = H

f (χ )

√
δ

St + δ
. (33)

Following Jacquet et al. (2012), we define S = St/δ. The vortex
scale length is therefore:

HV = H

f (χ )

√
1

S + 1
. (34)

In these equations, the scale function f (χ ) is given by

f 2(χ ) = ξ−1
+

[
2ω

V

(
χ2 + 1

χ

)
− (

2ω2
V

+ 3
)]

= 2ω
V
χ − ξ−1

+

(
2ω2

V
+ 3

)
, (35)

and depends on the vortex solution used. We plot f (χ ) for
the Kida and GNG solutions in Figure 1. These solutions are
defined in the real axis only for χ > 2 (f 2 < 0 for 0 < χ < 2).
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Scale function
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f(
χ)

GNG
Kida

Figure 1. Scale function f (χ ), defined by Equation (35), for the Kida
(ΩV = 3/2 ΩK/(χ − 1)) and the GNG (ΩV = ΩK

√
3/(χ2 − 1)) solutions,

respectively. The scale function is related to the square root of the negative of
the divergence (Equation (15)), and defined only for χ > 2. For smaller χ , the
divergence flips positive, meaning that dust is expelled from the vortex instead
of getting trapped. This result happens because of the correlation between ΩV

and χ . The aspect ratio shrinks as the vortex intensifies. At some point, the
vortex rotates too fast, and particles are expelled by centrifugal force.

(A color version of this figure is available in the online journal.)

The Goodman solution tends to an asymptote around 0.7. The
Kida solution has a tail around 0.5 ± 0.25 in the interval of
physical relevance (2 < χ � 10).

We show in Figure 2, in the inertial frame, the dust distribution
for S = 1 in a Kida vortex of χ = 4 embedded in a disk of aspect
ratio H/r = 0.1, where r is the stellocentric distance. We caution
that this image extrapolates the spatial range of applicability of
the shearing box approximation used to construct the solution.

It is worth noting that for certain vortex models and/or aspect
ratios, the Gaussian solution, Equation (31), is in fact an exact
solution to the dust-steady-state equation, Equation (27). We
will explore this finding in more detail in Section 5, but one can
check this fact by inserting Equation (31) into Equation (27)
and finding the condition such that the coefficient of the
trigonometric terms vanishes. In this special case, explicitly
averaging over ν is not required to remove the ν dependence
from the problem.

4.2. Gas Distribution

Equation (31) allows us to calculate the gas distribution. We
recall that for tracer particles (St = 0), the dust distribution
should mimic that of the gas. The distribution should thus be

ρg(a) = ρg max exp

(
− a2

2H 2
g

)
, (36)

with
Hg = HV |St=0 = H/f (χ ) (37)

and ρg max, the maximum gas density.6

Note that for St = 0, the effect of diffusion cancels out. This
result is because the diffusion is proportional to the gradient
of the dust-to-gas ratio (Equation (2)), which is zero for tracer
particles.

6 Note that Equation (36) is the gas density averaged over ν at a fixed a. One
may directly integrate the gas momenta equations to see that the gas
density/pressure depends, in general, on both a and ν.
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Figure 2. Three parameters, plus a vortex solution, control the dust distribution.
The figure shows the appearance of the dust trapped in a Kida vortex of χ = 4,
for S = 1, in a disk of aspect ratio H/r = 0.1.

(A color version of this figure is available in the online journal.)

5. NON-AXISYMMETRIC CORRECTIONS

We now consider the non-axisymmetric problem (∂ν 	= 0).
We explicitly show that such effects are small in the vortex
core provided the effective Stokes number St ≡ St + δ is not
large. These requirements will become apparent as we proceed
through the solution method. In this section, we consistently
refer to “axisymmetric” as ν-symmetry in the coordinate system
defined by Equations (18) and (19).

5.1. Conversion to Ordinary Differential Equations

The dust density ρd is periodic in the ν coordinate. We
therefore seek solutions of the form:

ρd (a, ν) = Re

[ ∞∑
n=0

ρn(a) exp (inν)

]
. (38)

For convenience, we will hereafter drop the real part notation.
Inserting Equation (38) into the partial differential equation
(Equation (27)), multiplying by exp (−imν), and integrating the
resulting expressions over the ν coordinate, we arrive at a set of
coupled ordinary differential equations (ODEs):

Bmρm−2(ζ ) + Amρm(ζ ) + Cmρm+2(ζ ) = 0, (39)

where ζ ≡ ka, and

Bm ≡ χ̃
d2

dζ 2
+

[
βζ − 2χ̃

ζ

(
m − 3

2

)]
d

dζ
+(m − 2)

(
mχ̃

ζ 2
− β

)
,

(40)

Am ≡ d2

dζ 2
+

(
1

ζ
+

ζ

2

)
d

dζ
+

(
k2
m − m2

ζ 2

)
, (41)

Cm ≡ χ̃
d2

dζ 2
+

[
βζ +

2χ̃

ζ

(
m +

3

2

)]
d

dζ
+(m + 2)

(
mχ̃

ζ 2
+ β

)
,

(42)
where χ̃ ≡ (χ2 − 1)/[2(χ2 + 1)], k2

m ≡ 1 + imA/B, and

β ≡ B1 − B2

2k2(1 + χ−2)
= B1 − B2

4B
. (43)
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Note that β is a function of the aspect ratio depending on the
vortex model. Equation (39) holds for all m except for m = 0,
for which the ρm−2 terms are absent. Each ρm couples to ρm±2
through the operators Bm and Cm. The axisymmetric problem is
recovered by setting ρm>0 = 0.

We expect ρd (a, ν) to have even symmetry in ν because
of the elliptical nature of the vortex streamlines. Henceforth,
we only consider even m values. We seek solutions with
ρ ′

m(0) = 0 (where the prime denotes derivative with respect
to the argument) and ρm�2(0) = 0, so that ∂xρd = ∂yρd = 0 at
the origin, consistent with dust reaching maximal density there.

5.2. Operator Properties

Consider
gm(ζ ) ≡ ζm exp (−ζ 2/4). (44)

Then, we find that

Bmgm−2 = 1

4
(χ̃ − 2β) gm, (45)

Amgm =
(
k2
m − m

2
− 1

)
gm, (46)

Cmgm+2 =
[

4χ̃ (m + 1)(m + 2) + 2(β − χ̃ )(m + 2)ζ 2

+
(χ̃ − 2β)

4
ζ 4

]
gm. (47)

The first two expressions will be useful for constructing nearly
axisymmetric solutions.

5.3. Exact Axisymmetric Solutions

It is useful to see how the above formulation connects with
the axisymmetric solutions discussed in the previous section.
Consider the special case where χ̃ = 2β, so that Bmgm−2 = 0.

Then, the complete solution to Equation (39) is ρ0 = b0e
−ζ 2/4

with ρm>0 ≡ 0, and b0 is an arbitrary constant. That is, if
χ̃ = 2β, then the dust distribution is exactly axisymmetric.

5.3.1. Dust in a GNG Vortex is Axisymmetric

For the GNG vortex, one can verify that χ̃ ≡ 2β, implying
that the dust density only depends on the ellipse under con-
sideration, not the position along it. This result is true because
the GNG vortex has no pressure gradient along the elliptical
streamlines (Chang & Oishi 2010).

5.3.2. Condition for Dust in a Kida Vortex to be Axisymmetric

For the Keplerian Kida vortex, we find

χ̃ − 2β = χ (χ − 1)(χ − 7)

2(χ − 2)(2χ + 1)(χ2 + 1)
. (48)

The dust distribution is exactly axisymmetric for aspect ratio
χ = 7, which is also when the Keplerian Kida vortex has no
pressure gradient along its elliptical streamlines (Chang & Oishi
2010).

5.4. Source Term Approximation

In preparation for constructing non-axisymmetric solutions,
we here describe the source term approximation (Zhang &
Lai 2006). We assume that |ρm| decreases with m, so that in
Equation (39) the Cmρm+2 term has the smallest magnitude.
Neglecting this term as a first approximation, we solve

Amρm =
{

0 m = 0
−Bmρm−2 m � 2.

(49)

The solutions are

ρm(ζ ) = bmgm(ζ ), (50)

with

bm = − (χ̃ − 2β)

2
[
2k2

m − (m + 2)
]bm−2 (51)

for m � 2, and b0 is arbitrary as before. Note that bm = 0 for
odd m because b1 = 0 since we require ρ ′

1(0) = 0. Then, by
induction

bm = (−1)m/2 (χ̃/2 − β)m/2∏m/2
l=1

(
2k2

2l − 2l − 2
)b0, (52)

for even m � 2.
The source term approximation assumes R ≡ |Cmρm+2|/

|Amρm| � 1. For given ζ , the solution ρm = bmgm is consistent
with this requirement if |k2

m| � 1, corresponding to a small
effective Stokes number. However, this approximation will
eventually fail for large ζ because the solution above implies
R ∝ ζ 4 for ζ � 1. Thus, the solution is only self-consistent for
sufficiently small ζ and/or St. Nevertheless, we comment that
the closed-formed solutions obtained here may be useful in an
iterative scheme to obtain numerical solutions to the full set of
ODEs.

5.5. Weakly Non-axisymmetric Dust Distributions

We are now ready to construct non-axisymmetric solutions.
Consider a Keplerian Kida vortex with χ 	= 7, meaning that
the effective frictional force on the dust has a non-vanishing
component along the fluid velocity vector (i.e., dust particles are
accelerated along the ellipse). We assume that non-axisymmetry
in the dust distribution is sufficiently weak, so one may truncate
the series solution at m = 2. Thus, we set ρm>2 ≡ 0. Let

ρ0(ζ ) = b0g0(ζ ) + ε(ζ ), (53)

where ε(x) represents the correction to the axisymmetric
solution due to ρ2(ζ ). The ODEs to be solved are

A0ε(ζ ) = −C0ρ2(ζ ), (54)

A2ρ2(ζ ) = −B2 (b0g0 + ε) . (55)

To make further progress, we assume at this stage that the ε term
in Equation (55) can be neglected, so ρ2 = b2g2 with b2 given by
the source term approximation. This methodology means that

ρ2

ρ0
= b2

b0
ζ 2, (56)

implying that non-axisymmetry becomes significant for suffi-
ciently large ζ , and truncating the series at m = 2 is no longer

6
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self-consistent. However, in practice, the ratio |b2/b0| is small.
For example, inserting χ = 4 gives |b2/b0| 
 0.1% for St = 0.1
and |b2/b0| ∼ 1% for St = 1. Since most of the dust is con-
tained within ζ � 1, we conclude that non-axisymmetry is in
general a small effect.

We can use Equation (56) in Equation (54) to calculate the
correction term ε. We find

ε(ζ ) = 1

8
b2g2[−16χ̃ + (χ̃ − 2β) ζ 2]. (57)

Collecting the above results and Taylor expanding the gms,
our weakly non-axisymmetric solution for ζ � 1 gives

ρ0(ζ ) = 1 − ζ 2

4

[
1 − χ̃ (χ̃ − 2β)

iA/B − 1/2

]
+ O(ζ 4), (58)

ρ2(ζ ) = − (χ̃ − 2β)

2 (4iA/B − 2)
ζ 2 + O(ζ 4), (59)

where we have used the definition of km and set b0 = 1
without loss of generality. In the previous section, we obtained
the axisymmetric solution assuming that the non-axisymmetric
components were negligible. Here, we see explicitly that the
axisymmetric solution in fact leads to non-axisymmetry through
the coupling terms, but that these corrections are small for
St � 1, because B ∝ St. We conclude that dust in the vortex
core is effectively axisymmetric.

5.5.1. Consistency Check

Using the above expression for ε(ζ ), we can evaluate B2ε(ζ )
in order to assess our assumption that ε(ζ ) makes a negligible
contribution to ρ2. We find

B2ε(ζ ) = [32χ̃ (5χ̃ − 6β) − 16(χ̃ − 2β)(2χ̃ − β)ζ 2

+ (χ̃ − 2β)2ζ 4]
b2g2

32
. (60)

Provided that |k2
2 | � 1 and ζ is not large, this term is

indeed small compared to the first term on the right-hand side of
Equation (55). For example, considering ζ = 1, for χ = 4 and
St = 0.1, we obtain |B2ε|/|B2ρ0| 
 0.02. Even with St = 1, this
ratio ∼0.2 is not large. We conclude that our solution procedure
above is self-consistent.

6. OBSERVATIONAL PREDICTIONS

Having arrived at the “axisymmetric” solutions (in the a–ν
plane; Section 4), and shown that deviations from ν-symmetry
are small (Section 5), we go back to the solutions of Section 4
to derive observational predictions.

6.1. Dust–Gas Contrast

Equations (31) and (36) also allow us to calculate the
gas–dust-density contrast, and, therefore, ρd max as a function of
ρg max. For that, we calculate the volume integrals of ρd and ρg .
These, in turn, need the dependencies on the vertical coordinates
z. These are straightforward, being exp(−z2/2H 2) for the
gas and exp(−z2/2H 2

d ) for the dust, with Hd = H/
√

(1 + S)
(Dubrulle et al. 1995). Integrated over plus and minus infinity,

Dust distribution

0.0 0.5 1.0 1.5 2.0 2.5
a/Hg

0.1

1.0

10.0

100.0

1000.0

ρ d
(a

)

S=0
S=0.1
S=1
S=10
S=100

Figure 3. Dust distribution for the “axisymmetric” case (in the coordinate system
defined by Equations (18) and (19)). The maximum density is proportional to
(S + 1)3/2. Curves for S = 0, 0.1, 1, 10, and 100 are shown. The S = 0 case
represents tracer particles and, consequently, the gas density. The x-axis is a/Hg ,
where Hg = H/f (χ ) is the vortex scale length in the gas phase; H is the sonic
scale and f (χ ) is the model-dependent scale function (Equation (35)).

(A color version of this figure is available in the online journal.)

these terms yield
√

2πH and
√

2πHd , respectively. We thus
have∫

ρd (a, z)dV = ρd max
(2π )3/2

√
S + 1

H

∫ ∞

0
e−a2/2H 2

g (S+1) aχ da

= ρd max

(
2π

S + 1

)3/2

χHH 2
g , (61)

∫
ρg(a, z)dV = ρg max (2π )3/2H

∫ ∞

0
e−a2/2H 2

g aχ da

= ρg max (2π )3/2χHH 2
g . (62)

Dividing Equation (61) by Equation (62), the ratio of the
integrals on the left-hand side is the global dust-to-gas ratio,
ε. The density enhancement factor is thus

ρd max = ε ρ0 (S + 1)3/2, (63)

where ρ0 = ρg max is an appropriate reference density. The full
expression for the dust density is therefore

ρd (a, z) = ε ρ0 (S + 1)3/2 exp

{
− [a2f 2(χ ) + z2]

2H 2
(S + 1)

}
.

(64)

Equation (63) shows that the dust-to-gas ratio at the origin
(vortex center) is related to the total dust-to-gas mass ratio by a
simple function of S. In this enhancement, only a third (in log)
is caused by sedimentation. The rest is due to in-plane vortex
capturing. Midplane dust distributions for different values of S
are plotted in Figure 3 as a function of a/Hg .

6.2. Trapped Mass

For the total trapped mass, we simply need to integrate
Equation (64), which amounts to replacing Equation (63) in
Equation (61):∫

ρd (a, z)dV = (2π )3/2 ε ρ0 χHH 2
g (65)
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6.3. Dust-density Contrast

The contrast in the same orbit is found by calculating the
minimum dust density and comparing it to Equation (63). By
substituting the gas solution (Equation (36)) into Equation (31),
we can write

ρd max

ρd min
= ρg max

ρg min
exp (S), (66)

which is the same result as found by Birnstiel et al. (2013),
provided a suitable choice is made for δ (we do not assume a
relationship between δ and α because the turbulence in the vortex
core is locally generated and unrelated to the disk turbulence,
cf. elliptic instability; Lesur & Papaloizou 2010; Lyra & Klahr
2011). The minimum densities occur at the boundary of the
vortex, which is the sonic perimeter where shocks occur. Its
limit is found by writing the vortex velocity (Equation (8)) as a
Mach number:

Ma = |uy |
cs

= ωV χ
x

H
(67)

and setting Ma = 1. This calculation yields the boundary at

as = H (χωV )−1, (68)

where the subscript s stands for sonic. The Kida solution
asymptotically reaches as = 2H/3, while the GNG solution
asymptotically reaches as = H/

√
3. In the physical range of

relevance (2 � χ � 10), both solutions yield values around
H/2, which matches the results of numerical simulations.
Substituting Equation (68) in Equation (36), the gas density
contrast is

ρg max

ρg min
= exp

[
f 2(χ )

2χ2ω2
V

]
. (69)

For neither the Kida nor the GNG solutions does this quantity
deviate much from unity. This result is because the argument
in the exponent tends asymptotically in both cases to small
fractions of f 2; 2/9 in the Kida case, 1/6 in the GNG case.

6.4. Measuring δ

Closed elliptic streamlines are subject to elliptic instabil-
ity, which leads to subsonic turbulence in the vortex core
(Lesur & Papaloizou 2010; Lyra & Klahr 2011). To directly
measure δ, the turbulent diffusion parameter, one would need to
measure the turbulent velocity field. As α, the Shakura–Sunyaev
viscosity parameter (Shakura & Sunyaev 1973), δ can be defined
as the ratio of stress over pressure. If the turbulence is isotropic
in the midplane, one can write

δ = v2
rms/c

2
s , (70)

where vrms is the rms of the turbulent velocities. The beam
smearing would render the velocity field unresolved even for
moderately close systems, so one should look for unresolved
signatures. Spectroscopically, this extra rms velocity should
have an effect similar to microturbulence, providing a slight
extra broadening in the Doppler core of suitable spectral lines.

For gas temperatures ranging from 20–200 K, assuming
that the gas is a 5:2 hydrogen to helium mixture (a mean
molecular weight of 2.4), the isothermal sound speeds are in
the range 0.26–0.83 km s−1. Considering that typical velocities
of subsonic turbulence are ≈10% of the sound speed (δ ≈ 10−2),
the typical velocity signal for 200 K would be of the order of
�0.1 km s−1. As van der Marel et al. (2013) quote a sensitivity

limit of 0.2 km s−1 for their ALMA observations of Oph IRS
48, only the �2σ tail of the turbulent velocity field should be
detectable.

If a direct determination of δ does not sound promising,
an indirect way is possible by measuring S and St. The
parameter S can be determined via the dust-density contrast
with Equations (66) and (69), or via the dust-gas contrast at
maximum (Equation (63)). The Stokes number is

St = τfΩ =
√

π

8

a•
H

ρ•
ρg

, (71)

where a• is the particle radius and ρ• is the particle internal
density.

6.5. Application to Oph IRS 48

We now apply our model to the observed Oph IRS 48 system,
with the parameters derived by van der Marel et al. (2013).
The dust contrast in the same orbit is 130, which, according to
Equations (67) and (70) for χ = 3.1, sets S = 4.79 and S = 4.82
for the Kida and the GNG solutions, respectively. The values
are close because the gas contrast is small (Equation (69)).

The dust temperature derived by the authors is 60 K. Assum-
ing this temperature is the same as the gas temperature, and
a mean molecular weight of 2.4, the isothermal sound speed is
cs ≈ 456 cm s−1. At r0 = 63 AU, around a 2 M� star, these num-
bers translate into an aspect ratio of H/r ≈ 0.09 or H ≈ 5.4
AU. As for the particle radius, the ALMA data are sensitive up
to a• ≈ 1.5 mm, and we take this size to be representative.

The gas mass is quoted to range between 19 and 27 Jupiter
masses, measured from a ring centered at 60 AU. The signal-
to-noise is too low to derive a radial extent, but assuming it
ranges between 50–70 AU, the gas surface density should range
between 20–30 g cm−2. We take Σg = 25 g cm−2 as the best
estimate, which, for the scale height derived above, translates
into ρg = Σg/(

√
2πH ) ≈ 1.25 × 10−13 g cm−3.

For particles of material density ρ• = 0.8 g cm−3, the Stokes
number should then be St ≈ 0.008. For S = 4.8, these numbers
translate into δ ≈ 1.5 × 10−3, meaning that typical turbulent
velocities in the vortex core are

√
δ ≈ 4% of the sound speed.

These velocities fall squarely within the range expected for the
elliptic instability (Lesur & Papaloizou 2010; Lyra & Klahr
2011), which shows a maximum speed of 10% of the speed of
sound.

As for the trapped mass, van der Marel et al. (2013) measure
9 M⊕. For the typical interstellar dust-to-gas ratio of ε = 0.01,
Equation (65) yields 6 and 17 M⊕ for the Kida and GNG
solutions, respectively. Given the approximations, assumptions,
and uncertainties, an agreement within a factor of two is
remarkable.

Although these values seem reasonable, it should be noted
that for Oph IRS 48 the candidate planet is at ≈20 AU, whereas
the dust trap is at 63 AU. Even though the planet is supposed
to be massive (planet-to-star mass ratio 5 × 10−3), gaps are not
expected to be that wide. The supposed vortex also seems to be
very big, with a semiminor axis of 17 AU. For a temperature of
60 K, this value corresponds to over 3H, which is far from the
≈H/2 expected from numerical simulations and Equation (68).
Relaxing the approximation that the gas and dust have the
same temperature does little to solve the discrepancy. Because
H ∝ cs ∝ √

T , a vortex six times bigger means a temperature
thirty-six times hotter. These numbers would bring the gas
temperature above 2000 K, which is unrealistic.
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7. CONCLUSIONS

We solve for the distribution of dust trapped in disk vortices,
in the steady state between the gas drag, which tends to drive dust
into the vortex, and diffusion, which expels it. Equations (31)
and (34), with a coefficient given by Equation (63), are our result
for a distribution with “axis-symmetry” in the coordinate system
defined by Equations (18) and (19). That is, the coordinate
system consists of ellipses of equal aspect ratios as those of
the gas vortex. The solution has some remarkable properties.
It is a Gaussian with a standard deviation HV , where, given
the angular velocity ΩV of the vortex, HV is determined by
three quantities: the sonic length and gas scale height, H; the
vortex aspect ratio χ ; and S = St/δ, the relative strength of
drag to diffusion. The importance of this last parameter had
already been hinted by Cuzzi et al. (1993) and Dubrulle et al.
(1995) in the context of steady states of dust sedimentation,
and by Klahr & Henning (1997) for vortices in the meridional
plane. An insightful study by Jacquet et al. (2012) emphasized
the relevance of this parameter for the global redistribution of
solids. Birnstiel et al. (2013) also find S to be the parameter of
relevance in their semi-analytical model.

Transitional disks provide an interesting venue in which to test
the model in an astrophysical context, since all three parameters
are derivable from the data. The vortex aspect ratio is readily
observable and H follows from the temperature (H = cs/Ω).
The parameter S follows from the density contrast (either
the dust-gas contrast at maximum or the dust contrast in the
same orbit). Disentangling St from δ in this parameter requires
the direct measurement of at least one of these quantities.
The diffusion parameter δ is in principle not equal to α (the
dimensionless gas viscosity of Shakura & Sunyaev 1973)
because the processes generating turbulence in the vortex and
in the disk are different. The latter is supposedly the MRI,
whereas the former is the elliptic or magneto-elliptic instability
(see Lyra 2013 and references therein). A direct measure of δ
would require measuring the velocity field inside the vortex that
would appear spectroscopically as a slight extra line broadening.
However, this technique would be difficult because the signal
is too small. Measuring St requires knowing the gas density
and temperature, the particle radius, and the internal density. Of
these, the internal density is difficult to measure directly and
should be inferred from laboratory experiments. We apply the
model to the Oph IRS 48 system, finding consistent values. The
Stokes number for the 1.5 mm particles is estimated to be St ≈
0.008, implying δ ≈ 1.5 × 10−3, and turbulent velocities are
in agreement with numerical simulations. The total dust masses
we estimate are within a factor two of the measured value.

We also solve for the non-axisymmetric problem, showing
that, for the vortex core, it is in general only a small correction.
The solution is Equation (38), with “radial” basis functions given
by Equation (50) and coefficients given by Equation (52). In
practice, the magnitude of the higher non-axisymmetric modes
decreases quickly as m increases, and only the m = 2 term
would provide an appreciable deviation from ν-symmetry. We
find that non-axisymmetry in dust is associated with non-zero
pressure gradients along elliptical streamlines of the vortex.

We recall that aside from planetary gap edges, self-sustained
disk vortices may also result from either the RWI at the boundary
between the MRI-active and dead zones, or convective-like
nonlinear baroclinic instabilities (Klahr & Bodenheimer 2003;
Klahr 2004; Petersen et al. 2007a, 2007b; Lesur & Papaloizou
2010; Lyra & Klahr 2011; Raettig et al. 2013). These processes,
however, are not reasonable in the context of the outer regions

of transition disks: the outer edge of the dead zone is quite
smooth (Dzyurkevich et al. 2013; Landry et al. 2013), whereas
the RWI requires a sharp enough transition; as for the baroclinic
instability, it requires finite thermal diffusion, whereas the thin
outer disk is supposed to radiate efficiently. These arguments
leave the gap-edge RWI as the only currently known plausible
mechanism to excite such vortices. However, this interpretation
is not without difficulties, because, as noted in Section 6.5, the
dust trap is too far out (63 AU) to be the result of a gas gap carved
by a planet at 20 AU, and because its radial size (≈35 AU) would
imply an unrealistically high gas temperature. Future modeling
should be directed at solving these discrepancies.
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