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ABSTRACT

Astrophysical disks with localized radial structure, such as protoplanetary disks containing dead zones or gaps due
to disk–planet interaction, may be subject to the non-axisymmetric Rossby wave instability (RWI) that leads to
vortex formation. The linear instability has recently been demonstrated in three-dimensional (3D) barotropic disks.
It is the purpose of this study to generalize the 3D linear problem to include an energy equation, thereby accounting
for baroclinity in three dimensions. Linear stability calculations are presented for radially structured, vertically
stratified, geometrically thin disks with non-uniform entropy distribution in both directions. Polytropic equilibria
are considered but adiabatic perturbations assumed. The unperturbed disk has a localized radial density bump,
making it susceptible to the RWI. The linearized fluid equations are solved numerically as a partial differential
equation eigenvalue problem. Emphasis on the ease of method implementation is given. It is found that when the
polytropic index is fixed and adiabatic index increased, non-uniform entropy has negligible effect on the RWI
growth rate, but pressure and density perturbation magnitudes near a pressure enhancement increase away from the
midplane. The associated meridional flow is also qualitatively changed from homentropic calculations. Meridional
vortical motion is identified in the nonhomentropic linear solution, as well as in a nonlinear global hydrodynamic
simulation of the RWI in an initially isothermal disk evolved adiabatically. Numerical results suggest that buoyancy
forces play an important role in the internal flow of Rossby vortices.
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1. INTRODUCTION

Understanding the stability and evolution of radially struc-
tured disks is important for several astrophysical applications.
Protoplanetary disks are likely to have complex radial structure
(Terquem 2008; Armitage 2011) such as the radial boundary
between magnetically active and inactive regions of the disk
(“dead zones;” Gammie 1996) and edges of gaps induced by a
giant planet (Lin & Papaloizou 1986).

Local variations in the disk profile, which are involved in both
of the above examples, are vulnerable to the so-called Rossby
wave instability (RWI; Lovelace et al. 1999; Li et al. 2000,
2001). The RWI is a linear shear instability associated with
an extremum in the potential vorticity profile of the disk, or a
generalization thereof, and leads to local vortex formation in
the nonlinear regime. This has been verified for both dead zone
boundary and planetary gaps in two-dimensional (2D) disks
(e.g., Varnière & Tagger 2006; Lyra et al. 2008, 2009; Li et al.
2009; Lin & Papaloizou 2011; Crespe et al. 2011).

Previous studies have shown that disk vortices are able to
concentrate dust particles, potentially assisting planetesimal
formation (Barge & Sommeria 1995; Inaba & Barge 2006),
which is of course crucial for planet formation. They can
also interact strongly with planets, leading to non-monotonic
orbital migration (Yu et al. 2010; Lin & Papaloizou 2010).
Although protoplanetary disks are thin, they are nevertheless
three-dimensional (3D), so modeling these processes in 3D is
necessary.

Recently, the RWI has been demonstrated in 3D geometry
in the context of protoplanetary disks (Meheut et al. 2010,
2012a, 2012b, 2012c; Umurhan 2010; Lin 2012a, 2012b,
2013; Lyra & Mac Low 2012). These models have, however,

employed a barotropic or nearly barotropic equation of state.
They can therefore be regarded as the thin-disk version of
the Papaloizou–Pringle instability (PPI; Papaloizou & Pringle
1984, 1985, 1987; Goldreich et al. 1986; Narayan et al. 1987),
originally discovered for 3D pressure-supported thick tori. It
is clearly of interest to extend 3D RWI calculations to non-
barotropic flow, which was one of the features that distinguished
the 2D RWI from the original PPI (Lovelace et al. 1999).

Given that the RWI and PPI involve the same physics,
that is, wave coupling across co-rotation (Goldreich et al.
1986; Umurhan 2010), it is worth pointing out that the PPI
has in fact been generalized to nonhomentropic tori. Frank
& Robertson (1988) found that entropy gradients did not
significantly affect instability growth rates, while Kojima et al.
(1989) concluded that non-uniformity in entropy has similar
effects as compressibility. They also found that perturbations
have weak vertical dependence, in agreement with analytical
arguments for homentropic flow (Papaloizou & Pringle 1985;
Goldreich et al. 1986).

In this work, we study what is essentially the nonhomentropic
PPI in rotationally supported thin 3D disks, a geometry relevant
to protoplanetary disks. This is equivalent to an extension of the
2D RWI studies of Lovelace et al. (1999) to 3D, and we will
adopt such nomenclature.

We consider the problem in the linear regime. Although the
role of the RWI in protoplanetary disks must be determined
through nonlinear hydrodynamic simulations, linear calcula-
tions are nevertheless a useful way to study the instability at low
computational cost. It is also important to have such calculations
at hand for comparison with nonlinear simulations.

Linear disturbances in 3D disks are governed by complicated
partial differential equations (PDEs; Kato 2001). Even with a
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numerical approach, computing unstable modes is no simple
task. One method is to evolve the linear equations as an
initial value problem (Papaloizou & Pringle 1987; Frank &
Robertson 1988) and measure growth rates from data. For
special disk equilibria, one can convert the problem to a set
of ordinary differential equations (Tanaka et al. 2002; Zhang
& Lai 2006; Meheut et al. 2012c; Lin 2012a, hereafter L12),
but the derivation of these can be tedious. Thus, our study is
also motivated by the desire to reduce this complexity when a
numerical method is sought.

We pursue a numerical solution to the 2D eigenvalue problem.
This approach has been taken by Kojima (1986, 1989) using
finite-difference and finite-element methods. Inspired by the
aforementioned studies, we employ finite differences in the
radial direction and a pseudo-spectral method to treat the vertical
direction (Lin 2013). We formulate the linear problem with
numerical implementation in mind, so that much of the algebra
can be taken care of by the numerical scheme, should one choose
to do so.

This paper is organized as follows. In Section 2 we list the
governing equations and describe the polytropic disk equilibria
under consideration. The linear problem is defined in Section 3
and the numerical method is stated in Section 4. Linear simula-
tions are presented in Section 5 for disks with moderate values
of the polytropic index. Disks with an isothermal background
are considered in Section 6, where a nonlinear hydrodynamic
simulation is also described. We summarize in Section 7 with a
discussion of important caveats and possible extensions to this
study.

2. DISK MODEL

We consider a non-self-gravitating, inviscid fluid disk orbiting
a central star of mass M∗ and adopt cylindrical coordinates
(r, φ, z) centered on the star. The system is governed by the
Euler equations:

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂v

∂t
+ v · ∇v = − 1

ρ
∇p − ∇Φ∗, (2)

∂

∂t
ln s + v · ∇ ln s = 0, (3)

where ρ is the mass density, v is the velocity field, p is the
pressure, and we refer to s ≡ p/ργ as the entropy, where the
ratio of specific heats γ is assumed constant. In the momentum
equation, Φ∗ is the gravitational potential of the central star.
Equation (3) describes adiabatic evolution.

A direct consequence of Equations (1) and (2) is an equation
for the vortensity ζ ≡ ∇ × v/ρ,

Dζ

Dt
= ζ · ∇v +

1

ρ3
∇ρ × ∇p, (4)

where D/Dt ≡ ∂t + v · ∇ is the Lagrangian derivative. The
second term on the right-hand side is the baroclinic vorticity
source. It is absent in barotropic flow for which p = p(ρ). In
this work, we consider barotropic equilibria but generally non-
barotropic disturbances, so the baroclinic term is effective in the
perturbed state.

2.1. Polytropic Equilibrium

The unperturbed disk is steady, axisymmetric, and polytropic,
that is,

p = Kρ1+1/n, (5)

where K is a constant and n is the polytropic index. We adopt
the thin-disk approximation (L12), so the density field has the
simple form ρ = ρ0(r)(1−z2/H 2)n, where ρ0(r) is the midplane
density and H (r) is the disk thickness. ρ0 is specified indirectly
by imposing a surface density profile Σ ∝ r−αB(r), where B(r)
is a Gaussian bump at r = r0 with amplitude A > 1 and width
Δr (Li et al. 2000). The aspect ratio at r0 is parameterized as
h ≡ H (r0)/r0.

The unperturbed velocity field is (vr, vφ, vz) = (0, rΩ, 0)
with Ω = Ω(r) for barotropic equilibria and is given via
centrifugal balance with gravity and pressure. Note that for
a thin, non-self-gravitating disk the angular velocity is nearly
Keplerian, Ω � Ωk ≡

√
GM∗/r3, where G is the gravitational

constant.
The above setup is the same as in L12, and equations defining

the equilibrium are listed therein. The limit n → ∞ corresponds
to isothermal equilibria, and is treated as a special case in
Section 6.

Polytropic equilibria are adopted for simplicity and to allow
direct comparison with L12, which considered homentropic
flow where Γ ≡ 1 + 1/n = γ . Then, Equation (5) holds in
the perturbed disk, replacing Equation (3). Setting γ 
= Γ gives
a nonhomentropic disk.

Following Lovelace et al. (1999), it is convenient to define
the following length scales:

Lp =
(

1

γ

∂ ln p

∂r

)−1

, Hp =
(

1

γ

∂ ln p

∂z

)−1

, (6)

Ls =
(

1

γ

∂ ln s

∂r

)−1

, Hs =
(

1

γ

∂ ln s

∂z

)−1

. (7)

These are, respectively, the pressure and entropy length scales
in the radial and vertical directions, which depend on both r and
z. Note that for polytropic equilibria, the entropy and pressure
length scales only differ by a constant multiplicative factor.

2.2. Stability Criteria

We consider disk equilibria satisfying the Solberg–Hoiland
criteria for stability against axisymmetric perturbations:

κ2 + N2
r + N2

z > 0, κ2N2
z > 0, (8)

where κ2 = r−3d(r4Ω2)/dr is the square of the epicycle
frequency and

N2
r = − c2

s

LpLs

, N2
z = − c2

s

HpHs

(9)

are the square of the radial and vertical buoyancy frequencies,
respectively, and cs = (γp/ρ)1/2 is the adiabatic sound speed
(Tassoul 2000). We also define N2 ≡ N2

r + N2
z .

Our disk models satisfy the Rayleigh criterion κ2 > 0,
which limits the surface density bump amplitude.1 Then we

1 This also means that, by rescaling the density field, we can always make the
Toomre stability parameter QT ≡ c̄sκ/πGΣ � 1, where c̄s is a typical sound
speed, to satisfy the assumption of a non-self-gravitating disk.
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require N2
z > 0, or stability against vertical convection, so

the disk should be sub-adiabatically stratified with Γ < γ .
For rotationally supported thin disks, |N2

r | � κ2 so the first
Solberg–Hoiland condition is generally satisfied regardless of
the equation of state (Li et al. 2000). Note that N2

z increases
with z, so we expect the disk to be more stable at larger heights.

2.3. Instability Criterion

In the original 2D RWI calculations, Lovelace et al. (1999)
found that when there is an extremum in the generalized
vortensity profile η(r), where

η = κ2

2ΩΣ
×

(
Π

Σγ2

)−2/γ2

, (10)

the disk may be unstable to non-axisymmetric perturbations
localized about the extremum. Here, Π ≡ ∫ ∞

−∞ pdz is the
vertically integrated pressure and γ2 is the adiabatic index in
the 2D energy equation D(ΠΣ−γ2 )/Dt = 0.

To use Equation (10) in characterizing 3D disks, we use
results from Goldreich et al. (1986) to relate γ2 and γ . Goldreich
et al. studied linear disturbances in homentropic slender tori
with a polytropic equation of state (Equation (5)). Assuming
vertical hydrostatic equilibrium, they showed that the vertically
integrated system has an effective polytropic index of n2 =
n + 1/2. If γ2 = 1 + 1/n2 then γ2 = (3γ − 1)/(γ + 1). This
relation has been used by other authors (e.g., Li et al. 2000;
Klahr 2004). The assumptions made by Goldreich et al. do not
strictly apply to our case (nonhomentropic equilibria and non-
zero vertical motions) but their result will suffice for diagnostic
purposes.

The polytropic disk equilibria have Π ∝ ρΓ
0 H and Σ ∝ ρ0H ,

so the above definition gives

η ∝ κ2

2Ω
Σ(1−2Γ/γ2)H 2(Γ−1)/γ2 .

For the adopted parameter values, a surface density bump
corresponds to a local minimum in the generalized vortensity, so
that dη/dr � 0 at r = r0. This is also close to a local min(κ2).
These minima act to “trap” disturbances, leading to instability
(Li et al. 2000).

3. LINEAR PROBLEM

We consider Eulerian perturbations to the above equilibrium
in the form Re[δρ(r, z) exp i(mφ + σ t)] and similarly for other
fluid variables. Here, m is the azimuthal wavenumber taken to
be a positive integer and σ = −ω − iν is a complex frequency,
where −ω is the real mode frequency and ν is the growth rate.
The co-rotation radius rc of a mode is such that mΩ(rc)−ω = 0,
and the RWI is characterized by rc � r0. For clarity, hereafter we
omit writing out the time and azimuthal dependence explicitly.

The goal is to obtain a PDE for the quantity W ≡ δp/ρ. An
explicit form of this equation is given by Kojima et al. (1989), but
our priority is the ease of solution implementation. By writing
individual equations in standard form—a sum of coefficients
multiplying differential operators—we can formulate the linear
problem with convenient variables, then transform to the desired
ones by redefining said coefficients. These transformations can
be done in the numerical code.

We begin by writing down the linearized equations in terms
of the intermediate variables W̃ = ρW and Q̃ ≡ c2

s δρ.

The momentum equations give

ρδvr = − i

D

(
σ̄

∂W̃

∂r
+

2mΩ
r

W̃

)
+

iσ̄

LpD
Q̃, (11)

ρδvφ = 1

D

(
κ2

2Ω
∂W̃

∂r
+

mσ̄

r
W̃

)
− κ2

2ΩLpD
Q̃, (12)

ρδvz = i

σ̄

(
∂W̃

∂z
− Q̃

Hp

)
, (13)

where σ̄ = σ + mΩ is the shifted frequency and D = κ2 − σ̄ 2.
The linearized continuity equation is

iσ̄
Q̃

c2
s

+
1

r

∂

∂r
(rρδvr ) +

im

r
ρδvφ +

∂

∂z
(ρδvz) = 0, (14)

and the linearized energy equation is

iσ̄ (Q̃ − W̃ ) = c2
s

[
1

Ls

(ρδvr ) +
1

Hs

(ρδvz)

]
. (15)

Inserting the momentum equations into the continuity and
energy equations yields a pair of PDEs:

σ̄

r

∂

∂r

(
r

D

∂W̃

∂r

)
− 1

σ̄

∂2W̃

∂z2
+

[
2m

r

∂

∂r

(
Ω
D

)
− σ̄m2

r2D

]
W̃

− σ̄

r

∂

∂r

(
rQ̃

LpD

)
+

1

σ̄

∂

∂z

(
Q̃

Hp

)
+

[
2mΩ
rLpD

− σ̄

c2
s

]
Q̃ = 0,

(16)

σ̄

LsD

∂W̃

∂r
− 1

σ̄Hs

∂W̃

∂z
+

[
2mΩ
rLsD

− σ̄

c2
s

]
W̃

+

[
σ̄

(
1

c2
s

− 1

LsLpD

)
+

1

σ̄HsHp

]
Q̃ = 0.

(17)

Equations (16) and (17) are the governing equations for linear
disturbances.

Next, we transform to the coordinates (R,Z) = (r, z/H ) so
that the background disk structure is separable. For example, the
density field becomes ρ = ρ0(R)g(Z). Then the unperturbed
disk occupies a rectangular domain since g(±1) = 0. The
governing equations become

a1
∂2W̃

∂R2
+ b1

∂2W̃

∂Z∂R
+ c1

∂2W̃

∂Z2
+ d1

∂W̃

∂R
+ e1

∂W̃

∂Z
+ f1W̃

+ d̄1
∂Q̃

∂R
+ ē1

∂Q̃

∂Z
+ f̄1Q̃ = 0, (18)

d2
∂W̃

∂R
+ e2

∂W̃

∂Z
+ f2W̃ + f̄2Q̃ = 0. (19)

Explicit expressions for the coefficients are listed in
Appendix A. We write the above PDE pair for (W̃ , Q̃) as

V1W̃ + V̄1Q̃ = 0, (20)
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V2W̃ + V̄2Q̃ = 0. (21)

Since V̄2 is a multiplicative factor, we can eliminate Q̃ between
Equations (20) and (21) to obtain an equation for W̃ :[

V1 − V̄1
(
V̄ −1

2 V2
)]

W̃ ≡ V W̃ = 0. (22)

The operator V is obtained by updating the coefficients of V1,
so they have the same form. Finally, we substitute W̃ = ρW to
obtain

UW = 0. (23)

Construction of V, and hence U, requires the evaluation of
V̄1(V̄ −1

2 V2) which involves radial and vertical derivatives of the
coefficients in Equation (19). In Appendix B we outline an
alternative numerical approach which circumvents the algebra.
(This appendix also includes relevant formulae to redefine the
PDE coefficients for the transformation V → U .)

The key dependent variable is W, but we also interpret results
using Q ≡ Q̃/ρ. We refer to W and Q as pressure and density
perturbations, respectively. Then the entropy perturbation is
naturally defined as

S ≡ W − Q. (24)

3.1. Boundary Conditions

We consider disturbances radially confined about the density
bump at r = r0, so the inner and outer disk boundaries play no
significant role (Umurhan 2010). Hence, for simplicity we set
∂RW = 0 at radial boundaries.

Pressure and density perturbations are assumed to be sym-
metric about the disk midplane. Henceforth we consider z � 0
without loss of generality. The default upper disk boundary con-
dition is vanishing Lagrangian pressure perturbation at Z = Zs :

Δp ≡ δp + ξ · ∇p = 0, (25)

where ξ is the Lagrangian displacement (∇ refers to cylindrical
coordinates). We call this the free boundary condition. The
surface function Zs is assumed constant for simplicity. If Zs
is the zero-pressure surface, then Equation (25) can be satisfied
automatically provided the perturbations are regular there. In
practice, though, we take Zs < 1 to avoid the disk surface
(where entropy and its derivatives diverge; Zhuravlev & Shakura
2007). Note that Equation (25), together with Equation (15),
imply ΓQ = γW at the upper boundary.

In some cases we adopt a solid upper boundary:

δvz = Zs

dH

dr
δvr , (26)

meaning no flow perpendicular to the boundary (δv⊥ = 0), and
occasionally we set δvz = 0. Upper disk boundary conditions
are imposed explicitly by replacing the governing equation with
Equation (25) or (26) at Z = Zs .

3.2. Baroclinity

Before proceeding to solve the linear equations, it is useful to
have a qualitative picture of the solution to aid us in checking
results. The main difference from L12 is baroclinity. Here,

we discuss expected effects of the baroclinic source term in
Equation (4).

As we will often examine meridional flow, consider the
azimuthal component of Equation (4), which can source vortical
motion in the (r, z) plane. When linearized, this baroclinic
source term becomes

1

ρ3
(∇ρ × ∇p)φ → 1

ρ2

(
1

Lp

∂

∂z
− 1

Hp

∂

∂r

) (
Q̃ − γ

Γ
W̃

)
= Γ

γρH

[
ρ ′

0

ρ0

∂S̄

∂Z︸ ︷︷ ︸
†

+
2nZ

(1 − Z2)

∂S̄

∂R︸ ︷︷ ︸
‡

]
,

(27)

where S̄ ≡ Q−γW/Γ and ′ denotes differentiation with respect
to the argument. We have utilized the barotropic background in
obtaining Equation (27). In the discussion below, perturbations
are regarded as real quantities.

The RWI is characterized by non-axisymmetric pressure/
density enhancements radially localized about the density bump
(Li et al. 2001). Assuming this is qualitatively unchanged in a
nonhomentropic disk, let us denote the midplane coordinate of
the center of one such enhancement as (r0, φ0). We will precisely
define φ0 later. For now, consider the (r, z) plane at fixed φ = φ0
and about r = r0.

Equation (27) shows that non-uniformity in S̄ can cause
vortical motion in the meridional plane. The distribution of
S̄(R,Z) at the chosen azimuth can be anticipated as follows.
Note that

S̄ =
(

1 − γ

Γ

)
W − S.

We first deduce the sign of S̄(r0, 0). For a pressure enhancement,
W (r0, 0) > 0 and (1 − γ /Γ)W (r0, 0) < 0 because γ > Γ. To
determine the sign of the local entropy perturbation, S(r0, 0), we
recall the background entropy s ∝ ρΓ−γ so a density bump at r0
corresponds to an entropy dip there. Now, the RWI has caused
a pressure/density enhancement at (r0, 0). This can be achieved
by moving fluid in the vicinity of (r0, 0), which has higher
entropy, toward (r0, 0). Then the midplane Eulerian entropy
perturbation at r0 is positive, i.e., S(r0, 0) > 0. Therefore
S̄(r0, 0) < 0.

Next, the free boundary condition implies S̄(R,Zs) = 0.
So S̄(r0, Z) varies from a negative value at the midplane to
zero at the upper disk boundary. Then it is reasonable to
assume S̄(r0, Z) � 0. (A similar argument can be made for the
solid upper boundary.) The perturbation magnitude |S̄| should
also decrease radially away from r0 because the RWI presents
radially localized disturbances.

A simple distribution to satisfy the above properties is for S̄
to have a local minimum at (r0, 0) and is negative or zero in this
region. It is most negative at (r0, 0) and becomes less negative
away from it. Then ∂ZS̄ > 0, and ∂RS̄ � 0 (∂RS̄ � 0) for
R > r0 (R < r0).

Consider regions radially away from (r0, 0). From the argu-
ment above, S̄ should be roughly 2D (∂Z � 1) away from
its minimum at (r0, 0). Then the sign of the baroclinic source
(Equation (27)) is dictated by that of (‡). Even if ∂Z = O(1)
in these regions, we expect ∂R ∼ H−1 for a radially localized
disturbance. Then the magnitude of (†) relative to (‡) is of order
|Hρ ′

0/Zρ0|(1 −Z2), which is small for the adopted disk models
(for Z 
= 0). So away from r0 and the midplane, the radial varia-
tion of S̄ is more important than its vertical variation. Of course,
this argument does not apply where ∂RS̄ = 0, which occurs at
Z = Zs and is expected close to r = r0.
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Under the above assumptions we anticipate that away from
the midplane but not very close to the upper disk boundary, the
sign of the baroclinic source term is determined by the radial
derivative of S̄, which is positive (negative) exterior (interior)
to r0. Close to or at r0, provided S̄ varies more rapidly in the
vertical direction than radial, the sign of the baroclinic source
is the same as that of ρ ′

0, which is typically negative, but not
always, due to a density bump.

4. NUMERICAL PROCEDURE

The operator U can be written in the same form as V1. A
matrix representation of such an operator is described in Lin
(2013) where details are given. We summarize here the main
steps.

The radial coordinate is discretized into NR uniformly spaced
grid points. Let Wi(Z) ≡ W (Ri, Z) denote the solution along
the vertical line R = Ri . We set

Wi(Z) =
NZ∑
k=1

wkiψk(Z/Zs), (28)

where the basis functions ψk = T2(k−1) are even Chebyshev
polynomials of the first kind. NZ is the number of basis functions
and the highest polynomial order is lmax = 2(NZ − 1).

Radial derivatives in UW are replaced by central finite
differences, and we evaluate vertical derivatives exactly at the NZ
non-negative Lobatto grid points of Tlmax (Z/Zs). This procedure
performs the conversion

UW = 0 → Uw = 0, (29)

where U is a (NRNZ)× (NRNZ) block tridiagonal matrix and w
is a vector storing the NRNZ pseudo-spectral coefficients wki .

The numerical problem is a set of linear homogeneous
equations, U(σ )w = 0. Non-trivial solutions exist if det U = 0.
This is achieved by varying σ using Newton–Raphson iteration.
We only accept solutions where the reciprocal of the condition
number of U is zero at machine precision. The same method of
solution was employed in L12.

4.1. Results Visualization

The pressure perturbation W is constructed from the pseudo-
spectral coefficients wki . We then calculate Q from Equa-
tion (19) and velocity perturbations from Equations (11)–(13).

We examine real perturbations about the vortex core (r, φ) =
(r0, φ0), where mφ0 = − arg[W (r0, 0)]. Setting φ = φ0 is
equivalent to redefining a physical perturbation as

X → Re[X(r, z)W ∗(r0, 0)], (30)

where X represents W, Q, S, or δv, and ∗ denotes complex
conjugate. All perturbations are regarded as real hereafter. In
practice (r0, φ0) is close to a local maximum of pressure pertur-
bation. The magnitude of X, as redefined above, is arbitrary but
its sign is not.

As an empirical measure of flow three dimensionality, we
compare vertical and horizontal motions near the bump radius
using 〈θm〉, where

θ2
m = δv2

z

δv2
r + δv2

z

, (31)

and 〈·〉 denotes averaging over R ∈ [0.8, 1.2]r0 and Z ∈ [0, Zs]
at φ = φ0.

Table 1
Summary of Main Linear Simulations

Case Γ γ BCa ω/mΩ0 102ν/Ω0 〈θm〉
h = 0.14

0 1.67 1.67 Δp = 0 0.9941 10.74 0.33
1 1.67 1.8 Δp = 0 0.9937 10.80 0.36
2 1.67 2.0 Δp = 0 0.9931 10.86 0.39
3a 1.67 2.5 Δp = 0 0.9919 10.99 0.44
3b 1.67 2.5 δv⊥ = 0 0.9911 11.34 0.41
4 1.67 3.0 Δp = 0 0.9910 11.07 0.47

h = 0.2

5 1.4 1.4 Δp = 0 0.9923 16.66 0.24
6 1.33 1.4 Δp = 0 0.9917 13.81 0.31
7 1.29 1.4 Δp = 0 0.9912 11.38 0.34
8 1.25 1.4 Δp = 0 0.9909 9.246 0.36

Note. a Boundary condition at Z = Zs .

5. LINEAR SIMULATIONS

We adopt units such that G = M∗ = 1. Our main calculations
are summarized in Table 1. For these runs the computational
domain is R ∈ [0.4, 1.6]r0, Z ∈ [0, Zs] = [0, 0.9], and α = 0.5
for the power-law part of the surface density profile. The bump
radius, amplitude, and width are set to r0 = 1, A = 1.4, and
Δr = 0.05r0, respectively. We consider modes with m = 3
unless otherwise stated. Slightly different setups are employed
in Section 6 to explore the isothermal limit.

The new parameter for nonhomentropic disks, compared to
homentropic flow in L12, is the adiabatic index γ . We therefore
focus on examining the effect of entropy gradients due to γ 
= Γ.
Cases 0–4 have fixed polytropic index n = 1.5, and therefore
identical background density and velocity profiles, but variable
adiabatic index γ � 5/3. Cases 5–8 have fixed adiabatic index
γ = 1.4, but variable polytropic index n � 2.5.

An example of nonhomentropic equilibrium, with n = 1.5
(Γ = 5/3) and γ = 2.5, is shown in Figure 1 (case 3). The
generalized vortensity and κ2 + N2 are plotted. As expected for
a density bump, the generalized vortensity has a local minimum
at r = r0. It corresponds to min(κ2/Ω2

k) = 0.43. The increase
in κ2 + N2 with respect to height is due to N2

z (since Nr ∼ hNz

near the upper boundary). Note that N2
z � Ω2 for |z| � 0.7H

in this case.
The discretized problem is solved with standard matrix

routines provided in the LAPACK package. The default resolution
is (NR,NZ) = (512, 12), corresponding to lmax = 22.

5.1. Homentropic Reference Case

For comparison purposes, we reproduce the fiducial home-
ntropic calculation in L12 by setting γ = 5/3 (case 0). Then
W = Q since L−1

s = H−1
s ≡ 0 (Equation (15)). This also

serves as a test for our numerical method. The eigenfrequency
and perturbations shown in Table 1 and Figure 2 agrees well
with L12. In co-rotation region R ∈ [0.8, 1.2]r0, W is nearly
independent of height and the vortex core has upward motion.

5.2. Nonhomentropic Example

We now examine case 3a with γ = 2.5, Γ = 1.67. The
eigenfrequency σ is close to case 0, but the growth rate is slightly
larger in the nonhomentropic disk.
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Figure 1. Equilibrium profile for a nonhomentropic disk with n = 1.5 and
γ = 2.5 (case 3). The generalized vortensity (top) and κ2 + N2 at three heights
(bottom) are shown.

Figure 2. Real perturbations for the homentropic case 0 (Γ = γ = 1.67).
The pressure perturbation W at three heights (top) and meridional velocity
perturbation (bottom) near the vortex core are shown.

Figure 3 shows the pressure, density, and entropy perturba-
tions at several heights. Near r0, pressure and density perturba-
tions increase with height, unlike the homentropic case where W
has weak z dependence. Nonhomentropic disks generally have
W 
= Q, as shown in Figure 3. The difference between W and
Q at the midplane is due to background radial entropy gradients
L−1

s since H−1
s (r, 0) = 0.

Figure 3. Pressure (top, W), density (middle, Q), and entropy (bottom, S)
perturbations for the nonhomentropic case 3a (Γ = 1.67, γ = 2.5).

At co-rotation, the density perturbation Q increases with
height faster than the pressure perturbation W, which results
in a negative entropy perturbation. This is consistent with the
requirement S = (1 − γ /Γ)W at the upper disk boundary.
It is clear that S has a stronger vertical dependence than
either W or Q.

We might have expected the above result on physical grounds.
The homentropic case indicates upward motion at the vortex
core. If a positive (stable) vertical entropy gradient is introduced,
then a fluid element displaced upward should increase its density
compared to the surrounding background, i.e., Q > 0, and
this should become more positive with height because vertical
velocities increase in magnitude with height. The pressure
perturbation is not expected to change as rapidly because
the fluid element can establish pressure equilibrium with its
surroundings.

5.2.1. Entropy Perturbation

We plot the entropy perturbation S at z = 0 and z = 0.8H
in Figure 4. The figures are overlaid by the perturbed horizontal
flow, which are similar at both heights. The anti-cyclonic flow
pattern is commonly found in previous studies (e.g., Li et al.
2000, 2001). Entropy gradients of this magnitude do not affect
this characteristic feature of the RWI.

Therefore, we could have inferred some of the features in
Figure 4 without solving the fluid equations, by invoking entropy
advection. Consider the linearized energy equation near co-
rotation where σ̄ � −iν (which is close to r0),

δs ∼ −ν−1δv · ∇s, (32)

and ν > 0 for a growing mode. Equation (32) is only valid
within a small distance ε � ν/|mΩ′

0| from r0. In this example,
ν/|mΩ′

0| � 0.02r0.
The midplane entropy has a dip at the bump radius but it

increases globally in the radial direction, so ∂rs > 0 at r0.
This naturally implies that inward (outward) radial flow for
φ < φ0 (φ > φ0), i.e., anti-cyclonic motion, brings about a
local entropy increase (decrease) near r0 at z = 0. We recognize
the qualitative similarity between the midplane flow pattern in
Figure 4 and horseshoe turns induced by an embedded planet.
Entropy advection then leads to large radial entropy gradients
(Paardekooper et al. 2010), which can be seen in Figure 3 on

6
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Figure 4. Entropy perturbation in midplane (left) and near the upper disk
boundary (right) for the nonhomentropic case 3a. Arrows show the perturbed
velocity field projected onto this plane.

(A color version of this figure is available in the online journal.)

Figure 5. Map of the quantity S̄ ≡ Q−γW/Γ for case 3a (the real perturbation
at φ = φ0 is shown). S̄ appears in the baroclinic term in Equation (27), as well
as the expression for vertical velocity in Equation (33). The local minimum near
(r0, 0) can be expected without solving the linear problem (see Section 3.2).

(A color version of this figure is available in the online journal.)

either side of r0 at the midplane. This gradient is, of course,
growing exponentially in time, so it may be important even
within the linear regime.

In the vertical dimension, if we assume the flow at (r0, φ0) is
unchanged from the homentropic case (i.e., upward), then since
the background entropy increases with height, the local Eulerian
entropy perturbation at the vortex core must become negative
away from the midplane, as observed.

Related to the entropy perturbation is the quantity S̄ ≡
Q − γW/Γ. Its distribution shown in Figure 5 agrees with
expectations made in Section 3.2, namely it is mostly negative,
with a local minimum at the vortex core.

5.2.2. Vertical Vorticity Perturbation

Figures 6 and 7 show the perturbation to vertical vorticity,
δωz ≡ ẑ · ∇ × δv, in the horizontal and meridional planes,
respectively. These plots agree with the identification of the
linear RWI with a pair of edge waves propagating in the ±φ
directions along radial potential vorticity gradients on either
side of the bump radius r0 (Umurhan 2010).

Figure 6. Perturbation to the vertical component of vorticity in the nonhomen-
tropic case 3a at two heights in the horizontal plane. The vertical dependence
is weak, but there is a slight increase in the maximum perturbation amplitude
away from the midplane. This figure is qualitatively similar to the top panel of
Figure 3 in Meheut et al. (2012a).

(A color version of this figure is available in the online journal.)

Figure 7. Perturbation to the vertical component of vorticity in the nonhome-
ntropic case 3a, in the meridional plane at φ = φ0. Regions of δωz � 0 are
delineated by white lines.

(A color version of this figure is available in the online journal.)

The background vorticity ωz has a dip at r0. Then the
positive/negative regions of δωz in Figure 6 is broadly consistent
with the advection of ωz by the perturbed horizontal flow, in a
manner similar to the advection of entropy described in the
previous section.

Although the perturbed flow in the nonhomentropic case
consists of vorticity columns (Figure 7), there is actually a slight
increase in max(|δωz|) away from the midplane. This contrasts
to Umurhan’s analytical model of the RWI in polytropic disks,
where horizontal velocities, and hence δωz, have no vertical
dependence.

5.2.3. Meridional Vortical Flow and Tilted Vorticity Columns

Figure 8 shows the perturbed velocity field in the (r, z) plane,
with a map of the baroclinic source term defined in Section 3.2.
The flow pattern is similar to the homentropic case in that it is
still converging toward r0, and vertical motion is predominantly
upward there. However, there is a notable difference from
the homentropic case—vortical motion (of positive azimuthal
vorticity) centered about (r, z) = (1.02r0, 0.5H ). It coincides

7
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Figure 8. Meridional flow in the nonhomentropic case 3a. The azimuth taken
for this slice is φ = φ0. The contours show the baroclinic source term for
azimuthal vortensity (Equation (27) multiplied by ρ). The arrows show the
perturbed velocity field projected onto this plane.

(A color version of this figure is available in the online journal.)

Figure 9. Perturbation to vertical vorticity in the (φ, z) plane at r = 1.02r0.
Regions of δωz � 0 are delineated by white lines. The center of the meridional
vortical motion identified in Figure 8 occurs at (φ, z) = (φ0, 0.5H ). The
azimuthal range φ −φ0 ∈ [−0.5, 0.5]π/m corresponds to anti-cyclonic motion
about the vortex core.

(A color version of this figure is available in the online journal.)

with a region where the azimuthal baroclinic source term is
positive. Note that the sign of the baroclinic source away from
the midplane—being positive (negative) for r > r0 (r < r0)—is
roughly consistent with expectations made in Section 3.2.

Vortical motion in the meridional plane also correlates to
misalignment between a column of negative vertical vorticity
perturbation and the vertical direction. This is demonstrated
in Figure 9 where contours of δωz are shown to be tilted in the
(φ, z) plane. We can quantify this tilt by calculating 1−〈cos θ〉Z ,
where

cos θ ≡ |∂φδωz|/[(∂Zδωz)
2 + (∂φδωz)

2]1/2

and 〈·〉Z denotes averaging over the vertical direction at fixed
φ = φ0 shown in Figure 9.

For the nonhomentropic case 3a, we find 1 − 〈cos θ〉Z =
0.011. This value should be compared with the homentropic
case 0 where 1 − 〈cos θ〉Z = 3.4 × 10−5 and the tilt is hardly
noticeable.

We rationalize the small tilt observed in Figure 9 by interpret-
ing the nonhomentropic solution as a small deviation from the
homentropic case, for which the tilt is negligible and lines of
constant δωz < 0 are parallel to the vertical axis. Now consider
baroclinity as a perturbation to this configuration.

The discussion in Section 3.2, together with Figure 8, suggests
that baroclinity gives rise to positive azimuthal vorticity (as
evident from the meridional flow pattern). We can produce

Figure 10. Pressure (W, top) and density (Q, bottom) perturbation for the m = 5
mode in the nonhomentropic case 3a. The meridional flow is also shown.

(A color version of this figure is available in the online journal.)

azimuthal vorticity by tilting a vertical column negative of
δωz in the azimuthal direction indicated in Figure 9. By such
a tilt, what was purely horizontal local anti-cyclonic motion,
associated with δωz < 0 being a vertical column, now has a
non-zero projection onto the meridional plane. This results in
the meridional vortical motion demanded by the baroclinity in
nonhomentropic flow. In other words, baroclinity has converted
some of the horizontal motion of the homentropic flow into
vertical motion.

5.2.4. m = 5

The meridional flow varies with m. Figure 10 shows the
m = 5 solution for the setup of case 3a. We focus on the
region R ∈ [0.9, 1.1]r0 because higher-m modes are not as well
localized as low-m (Lin & Papaloizou 2011). It displays stronger
vortical motion than the fiducial run with m = 3, even though
the growth rates are similar (ν/mΩ0 = 0.1051 for m = 5).
The pressure and density perturbations have noticeable vertical
structure, with W typically increasing away from the midplane.
This qualitatively differs from homentropic cases.

5.3. Solid Upper Boundary

In the above example, it is perhaps not surprising that entropy
perturbations became more negative away from the midplane,
because the free boundary condition demands |Q| > |W | at
Z = Zs .

We have re-calculated this mode with a solid upper disk
boundary (case 3b). Numerically, this condition forces W � Q
at Z = Zs . Figure 11 shows the ratio of pressure to density
perturbation. The entropy perturbation at intermediate heights is
still typically negative, suggesting this to be an intrinsic feature
of the instability in these disk models. The flow pattern is very
similar to case 3a.
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Figure 11. Ratio of pressure to density perturbations at φ0, for the
nonhomentropic disk with solid upper disk boundaries (case 3b). A ratio above
unity implies positive entropy perturbation.

5.4. Effect of γ on Vertical Flow

When γ 
= Γ, the presence of buoyancy forces is expected to
modify the vertical flow associated with the RWI. In Figure 12
we compare the vertical velocity at the vortex core for a
range of γ .

As we increase γ , the magnitude of vertical flow in-
creases, with an increasingly complicated z-dependence. In the
homentropic case (γ = 1.67 = Γ), δvz is essentially linear in z,
consistent with the analytical models of Umurhan (2010). For
γ = 2.5 > Γ, near the midplane δvz is still linear in z, but away
from z = 0 the increase in δvz starts to level off at z = 0.3H due
to the development of meridional vortical motion. The leveling
off occurs for both types of upper disk boundary conditions.
This results in a “step” in the case of a solid upper boundary
(centered about z = 0.5H ), but for the free upper boundary δvz

increases again at large z. Since the RWI is a global instability
in the vertical direction, vertical boundary conditions can affect
the flow throughout the fluid column, though the extent of which
depends on the equation of state (Lin 2013; see also Section 6).

Let us examine the different contributions to vertical motion
at co-rotation. At (r0, φ0), the vertical velocity is roughly

δvz ∼ − 1

νH

[
∂W

∂Z︸︷︷︸
†

+
2nZΓ

γ (1 − Z2)

(
Q − γ

Γ
W

)
︸ ︷︷ ︸

‡

]
. (33)

This equation is obtained from Equation (13) by evaluating it
at the co-rotation radius (where σ̄ � −iν), and inserting expres-
sions for the pressure length scale for polytropic backgrounds.
The first term (†) represents pressure forces and is present for
all values of γ . For homentropic flow, (†) is the only source of
vertical motion, and in this case W decreases with height. The
second term (‡) is only present if γ 
= Γ. Recall the quantity
Q − γW/Γ = S̄ defined in Section 3.2, where it appeared as
a baroclinic source term and we argued S̄ � 0 at the vortex
core (see also Figure 5). Then at the vortex core, (‡) contributes
positively to δvz along the vertical direction, but vanishes at
endpoints.

In the nonhomentropic example (case 3a, γ = 2.5) the
function W increases with height at the vortex core (Figure 3),
implying (†) contributes negatively to δvz. The contributions
from (‡) and (†) have opposite signs, but the fact that we observe
positive vertical velocity shows that (‡) is typically larger in
magnitude than (†). That is, baroclinity typically outweigh
vertical pressure gradients.

Figure 12. Normalized vertical velocities at the vortex core (r0, φ0) as function
of z, for several values of γ with fixed Γ = 1.67. The dash-dotted line employed
a solid upper disk boundary and other cases use the free boundary condition.

5.4.1. The Role of N2
z 
= 0

Notice even when γ is only slightly larger than Γ, the vortex
core vertical velocity is quite different from the homentropic
case (i.e., case 1 with γ /Γ = 1.08 in Figure 12). To see the
role of entropy gradients, or equivalently the effect of non-
zero buoyancy frequency, we follow Kato (2001) and make the
following approximations. For generality, below we shall not
specialize to a polytropic background.

Consider a height at which H−1
s � L−1

s , which is generally
true away from the midplane of a thin disk. Furthermore,
suppose radial velocities are not much larger than vertical
velocities in the region of interest (co-rotation). Then we can
neglect the δvr term in the linearized energy equation, and
eliminate Q between Equations (13) and (15) to obtain

δvz � −1

ν

[
∂W

∂z
+

(
∂ ln ρ

∂z
− 1

Hp

)
W

]
− N2

z

ν2
δvz, (34)

which is Kato’s Equation (21) evaluated at co-rotation. Because
ν � Ω0 for the modes considered and Nz ∼ Ω away from the
midplane, for nonhomentropic flow we have N2

z /ν2 � 1 and
should expect the balance

δvz ∼ − ν

N2
z

∂W

∂z
− ν

N2
z

(
∂ ln ρ

∂z
− 1

Hp

)
W︸ ︷︷ ︸

−νρ

(
∂p

∂z

)−1

W

, N2
z 
= 0

(35)

near co-rotation radius. The second term on the right-hand
side is just buoyancy (and does not explicitly depend on γ ).
This expression should be compared with that for strictly
homentropic flow:

δvz ∼ −1

ν

∂W

∂z
, N2

z ≡ 0.

We see that for Nz ≡ 0, pressure gradients are entirely
responsible for vertical flow, whereas for Nz 
= 0, δvz is result of
a combination of pressure and buoyancy forces. The importance
of pressure gradients also differ because the coefficients of ∂zW
are different in each case (by a factor ν2/N2

z ). Furthermore, the
ratio of the first to second term in Equation (35) is approximately(

ν/N2
z

)
∂W/∂z

νρ|∂p/∂z|−1W
∼ Ω2

N2
z

∂ ln W

∂ ln z
. (36)
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Since Nz increases with height, far away from the midplane
we expect buoyancy forces to dominate in the nonhomentropic
case.

We conclude that the origin of vertical motion at co-rotation
is qualitatively different between homentropic and nonhomen-
tropic flow (especially away from the midplane), as suggested
by numerical results in the previous section.

5.5. Fixed γ , Variable Γ

We now fix the adiabatic index to γ = 1.4, as is typical
for accretion disk models. Then we require n > 2.5 for
axisymmetric stability. With other parameters fixed, increasing
n would decrease the bump in disk thickness and reduce growth
rates (L12). To avoid potential numerical issues associated with
small |σ̄ | at co-rotation, we adopt h = 0.2 for cases 5–8, so that
growth rates remain O(0.1Ω0).

Table 1 shows that by setting γ 
= Γ = 1.33 (case 6),
thereby introducing entropy gradients, 〈θm〉 has increased from
the homentropic case 5. This is consistent with the trend in
cases 0–4.

L12 found that when n is increased but other parameters fixed,
the flow at the vortex core became less 3D. For cases 5–8, we find
the average value of θm, when taken over R ∈ [0.98, 1.02]r0,
is 0.46, 0.63, 0.61, and 0.56 for n = 2.5, 3.0, 3.5, and 4.0,
respectively. The flow at (r0, φ0) in fact becomes more 3D
when it is nonhomentropic although n has increased (case 5 →
case 6).

The small decrease in the above values of three dimensionality
at (r0, φ0) from n = 3.0 to n = 4.0 is likely related to increased
radial flow across r0 associated with vortical motion in the (r, z)
plane. Cases 6–8 display similar dependence of δvz on z as the
nonhomentropic example (case 3a, see Figure 12).

6. ISOTHERMAL LIMIT

We now examine the limit Γ → 1, where the unperturbed
disk becomes isothermal, but perturbations are evolved with an
adiabatic index γ = 1.4. We consider a nearly isothermal poly-
tropic background and strictly isothermal backgrounds. These
cases are treated separately because the equilibrium structures
have different functional forms. A comparison between them
provides another check on our numerical results.

6.1. Large Polytropic Index

We first consider setting n = 10 to produce an almost radially
isothermal equilibrium with p ∝ ρ1.1. This allows us to use
the numerical code as setup for polytropic equilibria without
modification. We also adopt A = 2.5 and h = 0.25 for reasons
given in Section 5.5. The relatively large aspect ratio does not
violate the thin-disk approximation as large n implies the density
decays rapidly away from the midplane. Also because of this,
we set the upper disk boundary at Zs = 0.6 to avoid very low
densities.

For this setup we obtained ω/mΩ0 = 0.9883, ν/Ω0 =
0.1375, and 〈θm〉 = 0.35. The top panel of Figure 13 shows
the meridional flow at the vortex core. The vortical motion is
distinct and more apparent than case 3a, despite the smaller value
of γ /Γ in the present case. However, apart from this difference,
the solution is qualitatively similar to case 3a.

6.2. Strictly Isothermal Equilibrium

Modifications to our standard setup are required to treat disk
equilibria with p = c2

isoρ (Γ ≡ 1), where the constant sound

Figure 13. Perturbed meridional flow at φ = φ0 for a n = 10 polytropic disk
equilibrium (top) and a strictly isothermal equilibrium (bottom).

speed ciso = HisoΩk , Hiso = hisor0(r/r0)3/2 is the isothermal
scale height, and hiso is the characteristic aspect ratio at r0.
The dimensionless vertical coordinate is now Z = z/Hiso. The
isothermal atmosphere is exponential, g(Z) = exp (−Z2/2), so
there is no surface. In practice we choose a finite vertical domain,
i.e., Z = Zs represents a constant number of isothermal scale
heights above the midplane.

In the linear code we simply replace expressions for the
entropy and pressure length scales by those corresponding to
the isothermal disk: the function H → Hiso and g(Z) becomes
the Gaussian above. We choose Zs = 3 and hiso = 0.05, so the
isothermal disk has roughly the same temperature as that in the
midplane of the large-n polytrope considered above (at r0). In
going from the midplane to the upper boundary, the density is
also reduced by approximately the same factor for both cases.

We obtain ω/mΩ0 = 0.9860, ν/Ω0 = 0.1008, and 〈θm〉 =
0.39. The perturbations plotted in Figure 14 are similar to
case 3a, so we expect that these are features of the RWI in
nonhomentropic flow, rather than associated with the chosen
parameter values. The perturbed meridional flow shown in
Figure 13 (bottom panel) is in qualitative agreement with the
large-n polytrope. The result is, however, quite different from
isothermal linear perturbations, for which Meheut et al. (2012c)
found that the vertical velocity appears to have a node at r0
(see their Figure 3(d) where the vertical velocity changes sign
across co-rotation radius, i.e., the fluid column is hydrostatic
there). Here, there is clearly vertical motion at co-rotation. Note
that both γ /Γ and the growth rate are slightly smaller than the
nonhomentropic case 3a, but here the vortical motion is more
prominent.

Figure 15 shows the vertical velocity at the vortex core
as a function of height. The strictly isothermal background
(thick solid) has a slightly larger δvz than the large-n polytrope
(thick dashed). This is consistent with previous findings that
vertical motions oppose the RWI (Lin 2013), as the former case
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Figure 14. Pressure (top, W), density (middle, Q), and entropy (bottom, S) for
a globally isothermal background.

Figure 15. Vertical velocity as a function of z at the vortex core (r0, φ0),
for the n = 10 polytropic disk equilibrium (dashed) and a strictly isothermal
equilibrium (solid) shown in Figure 13, with free upper boundaries (thick lines).
Corresponding thin lines impose zero vertical velocity at z = Zs (growth
rates increased by less than 0.5% from the free boundary condition). Note that
changing upper disk boundary conditions only affected the solution near z = Zs

(cf. Figure 12). This is consistent with Lin (2013), who found the influence of
upper disk boundary condition to diminish with increasing polytropic index n.

has a smaller growth rate than the latter. The thick lines are
qualitatively similar to case 3a in Figure 12, but these are not
directly comparable because the present case differs in both the
background structure and adiabatic index to those in Figure 12.

We illustrate again a correlation between meridional vortical
flow and a tilted column of negative vertical vorticity perturba-
tion in Figure 16. The figure is qualitatively similar to that for
polytropic backgrounds (case 3a in Figure 9). We find an aver-
age tilt of 1 − 〈cos θ〉Z = 0.0084 � 1, so the vorticity column
is nearly vertical.

6.3. A Nonlinear Simulation

We have also performed global 3D hydrodynamic simulations
using the ZEUS-MPfinite-difference code (Hayes et al. 2006). As
the focus of this work is the linear problem, we defer a full
discussion of these nonlinear simulations to a follow-up paper.
Our priority here is to verify the vortical motion in the meridional
plane, which appears to be a characteristic feature of the linear
RWI solution for nonhomentropic flow.

Figure 16. Vertical vorticity perturbation, δωz, in the (φ, z) plane at r = 1.03r0
for the strictly isothermal background. Regions of δω � 0 are delineated by
white lines. The center of meridional vortical motion identified in Figure 13
occurs at height z ∼ Hiso. The azimuthal range φ − φ0 ∈ [−0.5, 0.5]π/m

corresponds to anti-cyclonic motion about the vortex core. (A plot for r = 1.02r0
also displays tilted lines of constant δωz, but in that case δωz > 0 at (φ0, Hiso).)

(A color version of this figure is available in the online journal.)

6.3.1. Setup

We use spherical polar coordinates (rsph, θ, φ) to describe
the disk, taken to be initially strictly isothermal as described
above. The computational domain is rsph ∈ [0.2, 2.0]r0, θ ∈
[θmin, π/2], φ ∈ [0, 2π ] and is divided into (512, 48, 512)
zones, with tan (π/2 − θmin) = 3hiso and r0 = 10. The grid
is logarithmically spaced in radius and uniformly spaced in
the angular coordinates. Boundary conditions are outflow in
rsph, reflection in θ , and periodic in φ. Additional damping
to meridional velocities near radial boundaries is employed to
reduce reflections (de Val-Borro et al. 2007).

After some experimentation, we found it was most convenient
to start with a smooth disk. In this case, a surface density
Σ ∝ r−3/2, and tapered toward the inner boundary (as used
in Lin 2012b). We introduce the density bump at r = r0
via source terms in the mass, momentum, and thermal energy
equations, over a timescale of 10P0, where P0 ≡ 2π/Ωk(r0).
This reduces numerical transients associated with initialization
with a localized bump which has large radial gradients.

We choose the bump amplitude A = 1.25 and isothermal
aspect ratio hiso = 0.1, as employed by Meheut et al. (2012c)
so that we can check our results against theirs. We measure per-
turbations with respect to azimuthally averaged hydrodynamic
quantities at t = 10P0.

6.3.2. Results and Comparison to Linear Flow

We focus on the earliest stage of the instability, when pertur-
bation amplitudes are small so comparison with linear calcula-
tions can be made. Figure 17 shows the snapshot to be examined,
taken at t = 23P0. A m = 4 mode has developed from numerical
noise. Note the double peak in density perturbation, which is also
present in Figure 14. Using the method described in Appendix C,
we estimated the m = 4 mode growth rate and frequency to be
ν/Ω0 � 0.194 and ω/mΩ0 � 0.990, in agreement with Meheut
et al. (2012c). Although they assumed barotropic perturbations,
whereas we simulate adiabatic evolution, our linear calculations
indicate that growth rates are largely unaffected by entropy gra-
dients (Table 1).

We have also computed this mode using the linear code
as modified for strictly isothermal equilibria, with a solid up-
per boundary. We obtain the growth rate and mode frequency
ν/Ω0 = 0.1937 and ω/mΩ0 = 0.9896, respectively. This is
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Figure 17. Nonlinear hydrodynamic simulation of the RWI in a nonhomentropic
3D disk, initially isothermal but evolved adiabatically. The axes are in units
of r0. The relative density perturbation near the midplane, scaled by 100, is
shown. This quantity is proportional to the Q used in linear calculations. The
smallness of the density perturbation implies that the snapshot corresponds to
the linear phase of the instability. The line drawn defines the vortex azimuth φ0
in Figures 18 and 19.

(A color version of this figure is available in the online journal.)

close to the nonlinear simulation. Figure 18 compares the den-
sity perturbation Q computed from the hydrodynamic simula-
tion and linear code. They are broadly consistent. The linear
code also produces a bias toward the over-density ahead of the
vortex core at the midplane. Away from the midplane, the center
of the anti-cyclonic motion has shifted downstream. This shows
that, even within the linear regime, the vortex has non-negligible
vertical structure in the density perturbation (by comparing the
two heights in Figure 18).

We compare meridional flows in Figure 19. The perturbed
flow is mostly horizontal in both cases. The nonlinear simulation
also produces vortical motion in the same sense as the linear
calculation. For the ZEUS calculation, we find that the maximum
magnitude of the vertical Mach number is ∼1% with a density-
weighted average value of 0.15% in the shell rsph ∈ [0.9, 1.1]r0.
The asymmetry of the pressure perturbation about r0 is captured
by the linear code as well. Disagreement toward the upper
boundary is not unexpected, since the linear code assumes that
the upper boundary is at a constant number of scale heights
above the midplane, whereas the spherical grid imposes constant
opening angle. However, both plots indicate that W increases
away from the midplane in the region exterior to r0.

7. SUMMARY AND DISCUSSION

In this paper, we have examined the linear stability of radially
structured 3D disks with non-uniform entropy distribution.
These calculations may be considered as an extension to the
2D RWI (Li et al. 2000) by adding the vertical dimension, or
to the barotropic RWI calculations of L12 by adding an energy
equation with a simpler numerical method.

We adopted polytropic disk equilibria so that the magnitude
of entropy gradients can be conveniently parameterized by
Δγ ≡ γ /Γ, and we focused on the effect of Δγ � 1. When the
background density and velocity field are fixed through Γ, we
found that increasing Δγ has negligible effect on the instability
growth rate. However, the magnitude of pressure and density
perturbations increases with height, and the meridional flow

Figure 18. Normalized density perturbation, Q, associated with the RWI
computed from a nonlinear hydrodynamic simulation (left) and the linear code
(right), at the midplane (top) and at 2 scale heights away from the midplane
(bottom). The perturbed velocity field is also shown. The azimuthal wavenumber
is m = 4.

(A color version of this figure is available in the online journal.)

associated with the vortex core is qualitatively changed, with
the introduction of meridional vortical motion.

Meridional vortical motion was found to correlate with a
small tilt of a fluid column with negative vertical vorticity per-
turbation. In standard hydrodynamics, vorticity tilting can orig-
inate from a contribution of the ω · ∇v term in the evolution
equation of the vorticity independently of the baroclinic source
term ∇ρ × ∇p. However, given the tilt is absent in our ho-
mentropic calculations, we associate the tilt with the baroclinic
source term, which produces azimuthal vorticity. We also found
that the vertical velocity at the vortex core is no longer linear in
z, as for homentropic flow.

In our second set of experiments, we fixed γ and decreased Γ.
We found that by making the flow nonhomentropic, the co-
rotation region became more 3D, despite the decrease in growth
rate. This result is opposite to L12 where lowering Γ made
the flow less 3D. This implies that entropy gradients play an
important role in the vertical structure of the perturbations.
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Figure 19. Perturbed velocity field projected onto the meridional plane at
the vortex azimuth φ0, associated with the RWI calculated from a nonlinear
hydrodynamic simulation (top) and the linear code (bottom). The average three
dimensionality, as measured by the ratio of vertical to meridional flow speeds,
〈θm〉, is 0.39 and 0.34 in the linear and nonlinear calculations, respectively.
A map of the normalized pressure perturbation is also shown.

(A color version of this figure is available in the online journal.)

We also considered isothermal equilibria. A linear calculation
with Γ = 1.1 and one with a strictly isothermal setup (Γ ≡ 1)
were consistent. Both produced prominent meridional vortical
motion. In order to verify this feature, we ran a nonlinear
simulation of the RWI in an initially isothermal disk, but evolved
adiabatically. We indeed identified said vortical motion. Keeping
in mind that the setup for linear and nonlinear simulations
was not identical (e.g., numerical grid, boundary treatment),
similarities between them, such as mode frequency, growth rate,
and horizontal flow, are satisfactory.

Vortical motion in the meridional plane thus appears char-
acteristic of the linear RWI in nonhomentropic disks. Whether
or not this is significant for the vortex evolution can only be
answered by detailed long-term nonlinear simulations. If this
vortical motion is present in the nonlinear regime then it may
prevent dust particles from reaching the disk surface, which
occurs for homentropic flow (Meheut et al. 2012b).

However, given that this meridional vortical motion is ab-
sent in the homentropic linear solution, it may eventually van-
ish because of entropy mixing, if no mechanism is present to
maintain entropy gradients. For example, the background en-
tropy increases with height but the linear entropy perturbation
becomes more negative with height, and its magnitude grows
exponentially in time. Indeed, recent 3D fully compressible sim-
ulations in nonhomentropic disks show that well into the nonlin-
ear regime, Rossby vortices have columnar structure (Richard &
Barge 2013). On the other hand, Meheut et al. (2012c) observed
strong meridional vortical motion in their homentropic hydro-
dynamic simulations; we conclude that they are of nonlinear
origin.

In the linear solutions, we often observe perturbation mag-
nitudes increase away from the midplane in nonhomentropic
disks2 (e.g., Figure 19). Then the RWI may not be as robust
against vertical boundary conditions as it is to radial boundary
conditions. This could pose difficulty for the RWI to develop
in dead zones of real protoplanetary disks, which are expected
to be confined from above and below by magnetically turbulent
layers (Oishi & Mac Low 2009). The vertical boundary condi-
tion set by these layers may or may not be compatible with the
linear RWI solution.

7.1. Caveats and Outlooks

One tradeoff for the simplicity of our numerical method for
linear simulations is that a trial eigenfrequency must be guessed.
This is not a significant obstacle for the problem at hand because
previous RWI studies provide an important guide (Li et al.
2000). Otherwise, zeros of the complex function D(σ ) = det U
need to be located with more rigorous methods (e.g., Kojima
1986; de Val-Borro et al. 2007). We have also exploited
previous findings that the PPI and RWI are predominantly 2D
(Papaloizou & Pringle 1985; Goldreich et al. 1986; Kojima et al.
1989; Umurhan 2010; Meheut et al. 2012c; Lin 2012a, 2013),
which enabled the use of a small number of basis functions.
However, there could exist parameter regimes where the RWI
has significant vertical structure, rendering our solution method
inefficient.

Our conclusions are limited to polytropic backgrounds. While
this was convenient for numerical experiments, it is an oversim-
plification of protoplanetary disks, which are expected to have
complicated vertical structure (Terquem 2008). In particular, we
found that entropy gradients play a role in the vertical structure
of the linear RWI, and even a small entropy gradient can notice-
ably modify the vertical flow (Section 5.4.1). Thus, a realistic
model for entropy evolution is needed.

It would also be of interest to generalize the calculations to
baroclinic equilibria,3 for which ∂zΩ 
= 0. This may well be the
case when the equilibrium pressure depends on both the density
and temperature. Complications from baroclinic instabilities
may arise, however (Knobloch & Spruit 1986; Umurhan 2012;
Nelson et al. 2012).

We have neglected gas self-gravity in this study. Our mod-
els therefore assume that the Toomre parameter is much larger
than unity in both the unperturbed and perturbed states. How-
ever, self-gravity may affect the RWI even when the Toomre
parameter is not small (Lovelace & Hohlfeld 2013). Previous
studies have found that higher m RWI modes are favored when
disk self-gravity is included (Lyra et al. 2008; Lin & Papaloizou
2011). Recent 3D simulations of the RWI in a locally isothermal
disk show that vertical self-gravity can noticeably enhance the
density perturbation near the midplane, even though the initial
disk was considered low mass (Lin 2012b).

In principle, one can express the Poisson integral as a matrix
operator and incorporate it into our formalism. The linear
problem is further complicated by the need of a numerical
solution to the equilibrium equations describing a radially
structured, self-gravitating 3D disk (Muto 2011). Such a linear
calculation is beyond the scope of this paper, but will be

2 This reminds us of the off-midplane vortices discovered by Barranco &
Marcus (2005) in nonlinear local simulations, but the setup considered in that
study is very different from the present work. Nevertheless, in both cases the
vertical entropy gradient is stabilizing away from the midplane.
3 In fact, baroclinic tori were briefly considered by Frank & Robertson
(1988).

13



The Astrophysical Journal, 765:84 (15pp), 2013 March 10 Lin

inevitable for understanding the RWI in 3D self-gravitating
disks. Perhaps a simpler starting point, to gain first insight,
is direct hydrodynamic simulations including disk gravity. This
is indeed the approach we will take in our follow-up paper.

I thank the referee, P. Barge, for suggesting the idea of a tilted
vorticity column. I also thank S.-J. Paardekooper for comments
on the first version of this paper.

APPENDIX A

PDE COEFFICIENTS

In (R,Z) coordinates, the coefficients for the PDE pair
(Equations (18) and (19)) with dependent variables (W̃ , Q̃) are

a1 = 1, b1 = −2Z
H ′

H
, c1 = Z2

(
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[
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and

d2 = σ̄

LsD
, e2 = −

(
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H
+

1

σ̄HHs

)
,
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s

,
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(
1
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s
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)
+

1
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. (A2)

Note that these coefficients are expressed in terms of pressure,
entropy length scales, and the adiabatic sound speed. Although
H has the physical meaning of the polytropic disk thickness,
as far as the derivation of these coefficients is concerned, it is
simply a function involved in a coordinate transformation. These
expressions are therefore valid for any barotropic equilibria.

APPENDIX B

NUMERICAL ROUTE TO A MATRIX EQUATION FOR W

In Section 3 we arrived at the differential equation UW = 0
by first deriving an equation for W̃ and then changed the depen-
dent variable to W. Instead, we can first make the substitution
W̃ = ρW and Q̃ = ρQ in Equations (16) and (17) to obtain the
governing equations for (W,Q):

A1
∂2W

∂R2
+ B1

∂2W

∂Z∂R
+ C1

∂2W

∂Z2
+ D1

∂W

∂R
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∂Z
+ F1W

+ D̄1
∂Q

∂R
+ Ē1

∂Q

∂Z
+ F̄1Q = 0, (B1)

D2
∂W

∂R
+ E2

∂W

∂Z
+ F2W + F̄2Q = 0, (B2)

with

A1 = a1, B1 = b1, C1 = c1, D1 = 2a1
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F̄2 = f̄2. (B3)

We recall that the unperturbed density is ρ = ρ0(R)g(Z) and
primes denote differentiation with respect to the argument.
These transformation formulae make no reference to a poly-
tropic background, so they are valid for any equilibrium den-
sity field separable in the above form, such as an exponential
atmosphere.

When discretized, these equations have the matrix
representation

U1w + Ū1q = 0, (B4)

U2w + Ū2q = 0, (B5)

where q is the vector of pseudo-spectral coefficients for Q,
i.e., Qi(Z) ≡ Q(Ri, Z) = ∑NZ

k=1 qkiψk(Z/Zs). The matrix
representation of UW = 0 is then[

U1 − Ū1
(
Ū

−1
2 U2

)]
w ≡ Uw = 0. (B6)

Note that we can divide Equation (B2) by F̄2 before converting
the operators to matrices. Then Ū2 is a block diagonal matrix
consisting only of the Chebyshev polynomials evaluated at
vertical grid points. Its inverse can be pre-computed and stored.

In this approach, the user only needs to specify the PDE co-
efficients defined in Appendix A. The transformed coefficients
A1–F1 are used to construct the matrix U1 as described in Lin
(2013), and similarly for Ū1 and U2. The final operator, U ,
results from matrix multiplication and addition, which standard
software can perform.

APPENDIX C

ESTIMATING INSTANTANEOUS MODE
GROWTH RATES

When dealing with hydrodynamic simulations it may be
impractical to frequently output data for explicit computation
of time derivatives. This is particularly the case if high spatial
resolution simulations are performed. However, we can take
advantage of this and exchange time derivatives for spatial
derivatives using the fluid equations.

As usual, we denote the Fourier transform with subscript m,
so that

ρm(r, θ, t) ≡
∫ 2π

0
ρ(r, θ, φ, t) exp (−imφ)dφ, (C1)
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where we have adopted spherical coordinates, so here r is
the spherical radius. Taking a time derivative and using the
continuity equation gives

∂ρm

∂t
= −

∫ 2π

0
∇ · (ρv) exp (−imφ)dφ. (C2)

Writing this out in full, applying the usual rule for Fourier
transforms to the azimuthal contribution to the divergence, we
obtain

−∂ρm

∂t
= 1

r2

∂

∂r
[r2(ρvr )m] +

1

r sin θ

∂

∂θ
[sin θ (ρvθ )m]

+
im

r sin θ
(ρvφ)m. (C3)

We can therefore just use the Fourier transform of momentum
densities to calculate time derivatives of a Fourier mode. The
complex frequency σ is defined through ∂tρm = iσρm, from
which we extract the mode frequency ω and growth rate ν.
These are spatially dependent when obtained from simulation
data using the above procedure. So we average ω and ν over the
θ domain and around co-rotation r ∈ [0.8, 1.2]r0. This gives an
estimate of the instantaneous growth rate and pattern speed of a
mode with azimuthal wavenumber m at time t.
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