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1 INTRODUCTION

ABSTRACT

We study the stability of gaps opened by a giant planet in a self-gravitating protoplanetary
disc. We find a linear instability associated with both the self-gravity of the disc and local
vortensity maxima which coincide with gap edges. For our models, these edge modes develop
and extend to twice the orbital radius of a Saturn mass planet in discs with total masses My =
0.06M,, where M, is the central stellar mass, corresponding to a Toomre Q < 1.5 at twice
the planet’s orbital radius. The disc models, although massive, are such that they are stable
in the absence of the planet. Unlike the previously studied local vortex forming instabilities
associated with gap edges in weakly or non-self-gravitating discs with low viscosity, the edge
modes we consider are global and exist only in sufficiently massive discs, but for the typical
viscosity values adopted for protoplanetary discs.

It is shown through analytic modelling and linear calculations that edge modes may be
interpreted as a localized disturbance associated with a gap edge inducing activity in the
extended disc, through the launching of density waves excited through gravitational potential
perturbation at Lindblad resonances. We also perform hydrodynamic simulations in order to
investigate the evolution of edge modes in the linear and non-linear regimes in disc—planet
systems. The form and growth rates of developing unstable modes are found to be consistent
with linear theory. Their dependence on viscosity and gravitational softening is also explored.

We also performed a first study of the effect of edge modes on disc—planet torques and
the orbital migration of the planet. We found that if edge modes develop, then the average
torque on the planet becomes more positive with increasing disc mass. In simulations where
the planet was allowed to migrate, although a fast type III migration could be seen that was
similar to that seen in non-self-gravitating discs, we found that it was possible for the planet to
interact gravitationally with the spiral arms associated with an edge mode and that this could
result in the planet being scattered outwards. Thus orbital migration is likely to be complex
and non-monotonic in massive discs of the type we consider.

Key words: planets and satellites: formation — planet—disc interactions — protoplanetary discs.

that of Saturn can open gaps in standard model discs (Papaloizou
& Lin 1984) subsequent to which they may migrate inwards.

Understanding the interaction between gaseous protoplanetary discs
and embedded planets is important for planet formation theory. Such
interaction may lead to inward orbital migration and account for at
least some of the observed class of exoplanets called ‘hot Jupiters’
(Mayor & Queloz 1995) which orbit close to their central stars.
Analytical studies of disc—planet interaction began well before the
discovery of extrasolar planets (Goldreich & Tremaine 1979). It is
known that giant planets with masses comparable to or exceeding
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The stability of protoplanetary discs with gaps opened by inter-
action with a planet has also been the subject of study (Koller, Li &
Lin 2003; Li et al. 2005; de Val-Borro et al. 2007), as well as the
consequences of instability on planetary migration (Ou et al. 2007;
Li et al. 2009; Lin & Papaloizou 2010; Yu et al. 2010). These works
focused on low-viscosity discs where gap edges become unstable
with the result that vortices form. Such instabilities are known to
be associated with steep surface density gradients or narrow rings
(Papaloizou & Pringle 1985; Lovelace et al. 1999; Li et al. 2000,
2001). These works, like most disc—planet studies, either ignore
self-gravity completely or at best consider weak self-gravity. We
remark that partial disc gaps induced by a Saturn mass planet may
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be associated with rapid type III migration (Masset & Papaloizou
2003; Peplifiski, Artymowicz & Mellema 2008) in a massive enough
disc which is viscous enough to be stable against vortex formation.
Lin & Papaloizou (2010) found that type III migration, although un-
steady, could on average persist when the disc viscosity was small
enough for vortex instability to occur.

However, as type III migration occurs in massive discs the effects
of self-gravity need to be properly considered for consistency. The
stability of a disc gap induced by interaction with a giant planet in
massive, self-gravitating (SG) discs has not yet been studied. The
stability of structured SG discs without planets was explored for
particle discs by Sellwood & Kahn (1991) and for gaseous discs
by Papaloizou & Lin (1989) and Papaloizou & Savonije (1991).
Similarly, more recently Meschiari & Laughlin (2008) also demon-
strated gravitational instabilities associated with prescribed surface
density profiles that model gap structure.

In this paper, we extend the above works by studying the gravita-
tional stability of gaps self-consistently opened by a planet. In this
respect the disc models are stable if the planet is not introduced and
there is thus no gap. We extend the analytic discussion of neutral
modes associated with surface density gap edges given by Sellwood
& Kahn (1991) to gaseous discs. In addition we develop the physi-
cal interpretation of the associated gap edge instabilities in massive
discs as disturbances localized around a vortensity maximum that
further perturb gravitationally the smooth parts of the disc by excit-
ing waves at Lindblad resonances. The angular momentum carried
away reacts back on the edge disturbance so as to destabilize it.

We perform both linear calculations and non-linear simulations
for discs with a range of masses that consistently identify the growth
of low azimuthal mode number, m, edge modes as being the domi-
nant form of instability. In addition we evaluate the effect of these
on the disc torques acting on the planet. We find that these torques
become unsteady and oscillate in time. First estimates of the effect
on the planetary migration show that although fast type III like in-
ward migration may occur in the unstable massive discs we study,
scattering by spiral arms may also occur leading to short periods of
significant outward migration.

This paper is organized as follows. We present the governing
equations and basic model in Section 2. In Section 3 we then present
the results of an illustrative simulation of an SG disc with an em-
bedded Saturn mass planet that produces a dip/gap in the surface
density profile, and subsequently undergoes an instability in which
the gap edges play an important role. In the absence of the planet
and gap, the Toomre Q value is high enough for the disc model to
remain stable.

In Section 4 we present an analytic discussion of the linearly
unstable modes. We derive the general wave action conservation
law for these modes and apply it to study their angular momen-
tum balance. In particular we show that, when the equation of
state is barotropic, at marginal stability the angular momentum loss
through waves propagating out of the system is balanced by corota-
tion torques exerted on the disc. These are expected to be strongest
near an edge. In Section 5 we consider modes localized around
a vortensity maximum near an edge for which the self-gravity
response balances the potentially singular response at corotation,
showing that such disturbances may be driven by wave excitation
at Lindblad resonances. In Section 6 we go on to present linear
calculations for various disc models which confirm the existence
of edge-dominated modes for low values of the azimuthal mode
number. In addition we find instabilities for larger values of m for
which edge effects are less dominant, but these modes have weaker
growth and do not appear in non-linear numerical simulations.

In Section 7 we present results from hydrodynamic simulations
for a range of disc masses. These are all stable in the absence of
the planet. However, they exhibit low m edge-dominated modes
once a planetary induced gap is present. The form and behaviour of
these are found to be in accord with linear theory. However, in the
simulations with the lower Q values, the gap is found to widen and
deepen as the simulation progresses. In addition, the global angular
momentum transport through the disc measured through an effective
o parameter is increased above the level that would be induced by
the planet alone. In addition the spiral arms associated with the
edge instabilities are shown to produce fluctuating torques acting
on the planet. Fast inwards type III migration may occur, but we
also observed outward migration due to interaction with spiral arms.
This indicates that migration is unlikely to be a simple monotonic
process in a gravitationally active disc. Finally in Section 9 we
summarize our results and conclude.

2 BASIC EQUATIONS AND MODEL

We describe here the governing equations and models for the disc—
planet system as used in analytic discussions, linear calculations
and solved in hydrodynamic simulations. The system we consider
is a gaseous disc of mass My orbiting a central star of mass M,.
We adopt a cylindrical, non-rotating, coordinate system (r, ¢, z)
centred on the star, where z is the vertical coordinate increasing in
the direction normal to the disc mid-plane. It is convenient to adopt
a system of equations in three dimensions to begin the discussion
of angular momentum conservation in Section 4.1 below. We begin
by listing these and then go on to explain how we adapt them to
obtain the system governing a two-dimensional razor thin disc that
we solve in hydrodynamic simulations. They are the continuity
equation :

0
L4V (o) =0, (1)
ot
and the equation of motion
ou
p §+u~W =-—Vp—pVDP — pVDe + f. 2

Here p is the density, u is the velocity field, ® is the gravitational
potential due to the disc, ®.,, is the potential due to external bodies, p
is the pressure and f is the viscous force. The gravitational potential
due to the disc satisfies Poisson’s equation:

V20 = 4nGp, 3
which yields the integral expression

®=-G / p(r', @', 2)r'dr'dg'dz’

D 12+ 1% = 2rr' cos(¢p — @) + (z — 7')?

)

where D is the domain where p is non-zero. This coincides with
the disc domain when this is not separated from external material.

For analytic discussion we consider fluids with a general
barotropic equation of state for which p = p(p) and dp/dp = c2,
with ¢, being the local sound speed; for numerical calculations a
locally isothermal equation of state is adopted, p = cf,o, where
¢(r, z) is a specified function of r and z.

2.1 Razor thin limit

To obtain the limiting case of a razor thin disc, we assume no
interior vertical motions and that the radial and azimuthal velocity
components are independent of z. We then integrate over z so that p
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is replaced by the surface density X in equations (1) and (2) while
p becomes a vertically integrated pressure, which in the barotropic
case is assumed to be a function only of ¥ with dp/d¥ = 2. The
z dependence of the potentials is neglected so that we now have the
governing equations

aj—FV-(uZ):O 5)
ot ’
and
ou
E(E—{-M-Vu):—Vp—EVCD—ZVdDeXH—f, (6)

where u = (u,, u,) is now a two-dimensional velocity field and f is
now the two-dimensional viscous force, characterized by a uniform
kinematic viscosity v in our models (see Masset 2002, for details).
The mid-plane disc potential is given by

= / GX(r', ¢)
D \/r2 +r? —2rr'cos(p — ¢') + eg

r'dr'de’, @)

where we have introduced a softening length €, = ey H ('), with
€40 being a dimensionless constant and a putative semithickness
for razor thin discs defined through H(r) = hr = ¢/S2, where
Qy = /GM,/r3 is the Keplerian rotation rate. The dimensionless
constant disc aspect ratio is h.

The gravitational potential due to external bodies comprising the
central star and an embedded planet is

GM, GM,
Pere = — ro 24 2
\/r + 717 = 2rrycos(p — ¢p) + €]

G /’ /
+r / 7(’:2 ¢) cos (¢ — @' )r'dr'de’
D r

GM,
+ —Lrcos(p —¢p). ®
r

p

Here M, is the fixed mass of the embedded planet with cylindrical
coordinates [r,(t), ¢,(#)]. The associated gravitational potential is
softened with softening length €, = €,0H(r},), where € is a di-
mensionless constant. The last two terms in the expression for @y,
which give the indirect potential account for the forces due to the
disc and embedded planet acting on the central star. They occur
because we adopt a non-inertial frame of reference.

2.2 Model setup

We describe specific disc and planet models used in numerical
calculations, which also motivate the analytical discussion below.
We adopt units such that G = M, = 1 and the inner boundary
radius of the disc, r;, is unity. The Keplerian orbital period at this
radius r = r; = 1 is then P(1) = 27. The disc occupies r =
[ri, o] = [1, 10]. The disc is taken to have a locally isothermal
equation of state, p = ¢?%, where ¢; = rhQ. We remark that
softening is introduced to take account of the vertical thickness of
the disc. Typically, softening length to semithickness ratios of 0.3—
0.6 are used (e.g. Masset 2002; Baruteau & Masset 2008). Thus
fiducial values for the constants €y, €49 and & of 0.6, 0.3 and 0.05
are respectively adopted. The initial surface density profile is taken
to be given by

Y(r) = Sor > (1 -/ J:iHi) , )

(see Armitage & Hansen 1999) where H; = H(r;). This form for
3, which vanishes smoothly a distance H; inside the disc inner
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boundary, has been introduced to ensure that both the gravitational
force and the pressure gradient in hydrostatic equilibrium at the disc
inner boundary give minor contributions and vary smoothly there.
The constant surface density scale X, is adjusted so that Q(r,),
where

Ccsk hM,
= —_ -
7GX r2%(r)

10)

is the Toomre Q parameter, evaluated in the limit of a thin Keplerian
disc for which the epicycle frequency « = €, takes on a specified
value Q,. Thus Q, parametrizes the models.

The initial azimuthal velocity is found by assuming hydrostatic
equilibrium in which the centrifugal force balances forces due to
stellar gravity and the disc’s self-gravity and pressure gradient. Thus
the initial azimuthal velocity is given by

ul = Ld—p + oM, rdj

Y X dr r dr’
For the local isothermal equation of state we have adopted, the
contribution due to the pressure is given by

) )—3/2
rdp _2{_5+ r/ri(r + Hy) } (12)

an

a2 21— R/ T )

At r = r, for h = 0.05, this is ~20c? which is approximately
5 per cent of the square of the local Keplerian speed so that the
contribution of the pressure force is indeed minor when compared
to that arising from the gravity of the central star.

The initial radial velocity is set to u, = 3v/r, corresponding to
the initial radial velocity of a one-dimensional Keplerian accretion
disc with % oc #73/2 and uniform kinematic viscosity. The disc is
evolved for a time ~280P(r;) before introducing the planet.

When a planet of mass M, is introduced, it is inserted in a circular
orbit, under the gravity of both the central star and disc, at a distance
rp = 1p(t = 0) from the central star. We quote time in units of the
Keplerian orbital period at the planet’s initial radius, which is given
by Py = 27t/ Qi[rp(t = 0)]. If the planet is held on fixed circular
orbit, then r,(f) = r;,(r = 0).

3 NUMERICAL SIMULATIONS

In order to motivate and facilitate our analytic discussion, linear
analysis and interpretation of the instabilities we find in an SG disc
with a surface density gap or dip induced by a massive planet, we
here provide a brief demonstration of their existence. We show
global instabilities associated with a surface density depression
made self-consistently by a giant planet in a fixed circular orbit by
means of numerical simulations. Details of the numerical approach
are given in Section 7 where additional hydrodynamic simulations
of this type as well as others, where the planet is allowed to migrate,
will be investigated more fully.

3.1 The nature of edge modes at the edges of disc surface
density depressions induced by interaction with giant planets

Here, we describe results obtained for a disc with the initial density
profile specified above in which there is an embedded planet with
mass M, =3 x 107*M,. This corresponds to a Saturn mass planet
when M, = 1 M. The disc model is Q, = 1.5, corresponding to
total disc mass of My = 0.063M... The uniform kinematic viscosity
was taken to be v = 107 in code units. The planet was introduced at
radius r, = 5 and at t = 25P(r,) = 25P,. Its gravitational potential
was then ramped up over a time interval 10P. For this simulation it
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Figure 1. Gap profile produced by a Saturn mass planet embedded in a
disc with Q, = 1.5. The azimuthally averaged surface density (dotted line),
vortensity (dashed line) and Toomre Q parameter (solid line) are plotted.
Note that the Q profile shows a maximum and minimum associated with
each gap edge. The planet is in a fixed circular orbit located at r = 5.

was held on a fixed circular orbit. Without a perturber we expect, and
find, the disc to be gravitationally stable because we have Q(r,) =
2.62 and near the outer boundary Q ~ 1.5.

The profile of the gap opened by the planet is shown in Fig. 1. The
azimuthally averaged surface density (X),, vortensity (1), where
n = «%/2Q%, and Toomre Q value are plotted. The latter is calcu-
lated using the azimuthally averaged epicycle frequency. We remark
that for an axisymmetric disc, the Toomre parameter is proportional
to the product of the ratio of the rotation frequency €2 to the epicycle
frequency k and the vortensity 7. It is seen that there is a surface
density depression, referred to a gap, associated with a decrease
of surface density by ~ 20 per cent relative to the unperturbed
disc.

It has been found that extrema in the vortensity are associated
with instability (Papaloizou & Lin 1989). For typical disc models
structured by disc—planet interactions, such as those illustrated in
Fig. 1, local maxima/minima in Q and n have been found to ap-
proximately coincide. The neighbourhoods of the inner and outer
gap edges both contain maxima and minima of Q and 7.

In the absence of a planet, Q smoothly decreases outwards. In the
case when a planet is present, disc—planet interaction results in sig-
nificant vortensity generation as material flows through shocks (Lin
& Papaloizou 2010), leading to vortensity maxima. The resulting Q
and (n), profiles are very similar [since Q = (c¢;/7tG)(222n/ 72
Fig. 1 shows that the planet-modified Q profile may exhibit a range
of behaviours close to r,,. Vortensity diffusion, e.g. due to signif-
icantly larger viscosities than those considered here, could render
the Q profile to be uniform. In such cases, unstable modes asso-
ciated with vortensity maxima cannot be set up. The unperturbed
Toomre Q profile (prior to the planet introduction) may also play a
role. The Toomre Q profile perturbed by the planet is reminiscent
of its unperturbed value, without planet. If the latter happens to be
approximately uniform, the net impact of edge modes on the planet
torque could be negligible. In our models, the background Toomre
Q decreases with radius, so we expect that the outer gap edge is
more gravitationally unstable than the inner gap edge.

Returning to the present case, Fig. 1 shows that in the neighbour-
hood of the outer gap edge, the maximum and minimum values of
Q occur at r = 5.45 and 5.75 are Q = 4.2 and 1.75, respectively.
In the region of the inner gap edge, the maximum and minimum
values of Q occur at r = 4.55 and 4.25 are Q = 4.75 and 2.55,
respectively. The extrema are separated by >~ 1.4H and 1.1H in the
inner and outer gap edge regions, respectively. Thus the character-
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Figure 2. Relative surface density perturbation for O, = 1.5 at t = 50P
(top) and the radial form of the pattern speed found from the m = 2 com-
ponent of the Fourier transform of the surface density (bottom, solid line).
Note that this mode is associated with the outer disc and, apart from within
the gap, this mode appears to have a stable pattern speed of Qp,; ~ 0.078
corresponding to a corotation point at r = 5.5. Plots of €2 and 2 & «/2 are
also given (bottom, dashed line).

istic width of the gap edge is the local scaleheight. On average Q ~
2 for r > 6. Since Q > 1 everywhere, the disc is stable against local
axisymmetric perturbations.

The simulation shows that both gap edges become unstable. The
surface density contours at # = S0P, are shown in Fig. 2. We identify
a mode with m = 3 and relative density perturbation AX/¥ ~ 0.4
associated with the inner edge and a mode with m = 2 and AX/Z
=~ 0.9 associated with the outer edge. The modes have become
non-linear, with the development of shocks, on dynamical time-
scales. Spirals do not extend across the gap, indicating effective gap
opening by the planet and disc self-gravity is not strong enough to
connect the spiral modes on either side of 7.

Plots of the radial dependence of the pattern rotation speed, 254,
obtained from the m = 2 component of the Fourier transform of
the surface density, together with the azimuthally averaged values
of © and Q =+ «/2 are presented in Fig. 2. We focus on the mode
associated with the outer gap edge because the m = 2 spiral mode
has more than twice the relative surface density amplitude compared
to the inner spiral mode.

By necessity, the Fourier transform includes features due to the
planetary wakes and inner disc spiral modes as well as the dominant
outer disc mode. On average, Q2pa ~ 0.08." There is a corotation

! We have explicitly checked that this is the pattern speed by measuring the
angle through which the spiral pattern rotates in a given time interval.
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point in the outer disc at r = 5.5 where Q = Q, ~ 0.078, ie.
at the local vortensity (surface density) maximum (minimum) of
the basic state, which is just within the gap (see Fig. 1). This is
consistent with pattern speeds obtained from linear calculations
presented later. Fig. 2 indicates another corotation point at » >~ 4.7,
but this is due to inclusion of features associated with the planetary
wakes.

We refer to unstable spiral modes identified here as edge modes.
Their properties can be compared to those of groove modes in par-
ticle discs (Sellwood & Kahn 1991) or fluid discs (Meschiari &
Laughlin 2008). Sellwood & Kahn describe groove modes as grav-
itational instabilities associated with the coupling of disturbances
associated with two edges across the gap between them. However,
our analytic description of the edge mode instability is a coupling
between a disturbance at a single gap edge and the disturbance
it excites in the adjoining smooth disc away from corotation. The
other gap edge plays no role. Although both types of mode are asso-
ciated with vortensity maxima, the groove modes described above
would have corotation at the gap centre midway between the edges,
whereas in our case corotation is at the gap edge.

This is significant because in our model there will be differen-
tial rotation between the spiral pattern and the planet. In addition,
unstable modes on the inner and outer gap edges need not have the
same m (Fig. 2 shows m = 3 on the inner edge and m = 2 on the
outer edge). If there were a groove mode with corotation at the gap
centre, then the spiral pattern would corotate with the planet and
the coupled edges must have disturbances dominated by the same
value of m.

3.2 Comparison to vortex instabilities

‘We have demonstrated a global instability in SG disc—planet systems
with a gap. It is interesting to compare these spiral modes to the
well-known localized vortex-forming instabilities that occur in non-
self-gravitating (NSG) or weakly self-gravitating (SG) discs near
gap edges (Li et al. 2009; Lin & Papaloizou 2010). However, the
vortex instability requires low viscosity. For comparison purposes,
here we use a kinematic viscosity of v = 107 [or an « viscosity
parameter O(10~*)]. This value of v is an order of magnitude smaller
than what has been typically adopted for protoplanetary disc models.
‘We compare the behaviour of disc models with Q, = 1.5 and 4.0, the
former having strong self-gravity and the latter weak self-gravity.

Fig. 3 shows two types of instabilities depending on disc mass.
The lower mass disc with Q, = 4 develops six vortices localized
in the vicinity of the outer gap edge. The more massive disc with
0, = 1.5 develops edge modes of the type identified in the earlier
run with v = 10~%. Here, the m = 3 spiral mode is favoured because
of the smaller viscosity coefficient used.

10
2402400

1866400

-B.27e-01 -8.060-01

-5 o s 10 -10 -5 o

Figure 3. Relative surface density perturbation for the Q, = 1.5 disc (left)
and the Q, = 4.0 disc (right) with v = 107°. These plots show that the gap
opened by a Saturn mass planet supports vortex instabilities in low-mass
discs and spiral instabilities in sufficiently massive discs.
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Vortex modes are said to be local because instability is associated
with flow in the vicinity of corotation (Lovelace et al. 1999) and does
not require the excitation of waves. Edge modes are said to be global
because instability requires interaction between an edge disturbance
and waves launched at Lindblad resonances, away from corotation,
in the smooth part of the disc. Vortices perturb the disc even without
self-gravity (Paardekooper, Lesur & Papaloizou 2010). Although
the vortex mode in Fig. 3 shows significant wave perturbations in
the outer parts of the disc, these should be seen as a consequence of
unstable vortices forming around corotation, rather than the cause
of a linear instability.

We found the vortex modes have corotation close to local vorten-
sity minima in the undisturbed gap profile. The vortex modes are
localized with high m being dominant (m > 5). On the other hand,
the spiral modes found here are global with low m < 5. Edge modes
make the gap less identifiable than vortex modes do because the
former, with corotation closer to r,, protrudes the gap edge more.
While the edge mode only takes a few Py to become non-linear
with spiral shocks attaining comparable amplitudes to the planetary
wakes, the vortex mode takes a significantly longer time (the plot
for Q, = 4 is 30P, after gap formation).

4 ANALYTICAL DISCUSSION OF EDGE
MODES

The fiducial disc simulated above is massive with M4 ~ 0.06M, but
itis still stable against gravitational instabilities in the sense that Q >
1.5 everywhere, and the disc without an embedded planet, which
has a smoothly varying surface density profile, does not exhibit the
spontaneous growth of spiral instabilities. When a planet of Saturn’s
mass is inserted (M, = 3 x 107*M.,), it is expected to only open a
partial gap (~30 per cent deficit in surface density), but even this is
sufficient to trigger a m = 2 spiral instability.

The fiducial case above thus suggests spiral modes may develop
under conditions that are not as extreme as those considered by
Meschiari & Laughlin (2008). They used a prescribed gap profile
with a gap depth of 90 per cent relative to the background, which
is three times deeper than in our models. Their gap corresponds
to M, = 0.002M,, although a planet potential was not explicitly
included. In both their model and ours, the gap width is >~ 2r,, where
o= (M,/3M.)"r, is the Hill radius, but since they effectively used
a two Jupiter mass planet, at the same r,, their gap is about 1.9 times
wider than ours.

We devote this section and the next to a theoretical discussion
of spiral modes associated with planetary gap edges. This work is
based on an analysis of the governing equations for linear pertur-
bations. As angular momentum balance is important for enabling
small perturbations to grow unstably, we begin by formulating the
conservation of angular momentum for linear perturbations.

4.1 The conservation of angular momentum for a perturbed
disc

We derive a conservation law for the angular momentum associated
with the perturbations of a disc that enables the angular momentum
density and flux to be identified within the framework of linear
perturbation theory. The behaviour of these quantities is found to
be important for indicating the nature of the angular momentum
balance in a system with a neutral or weakly growing normal mode
and how positive (negative) angular momentum fluxes associated
with wave losses may drive the instability of a disturbance that
decreases (increases) the local angular momentum density.



1450 M.-K. Lin and J. C. B. Papaloizou

4.2 Barotropic discs

We begin by writing down the linearized equation of motion in three
dimensions for the Lagrangian displacement § = (&, &,, &) for a
differentially rotating fluid with a barotropic equation of state and
with self-gravity included (see e.g. Lynden-Bell & Ostriker 1967;
Lin, Papaloizou & Kley 1993) in the form:

ng ~ D‘S- ~ 2 / /

on t 2Qk A o T rRE-VQ) = -V -V, (13)

where

s=c2 1o (14)
P

Here we adopt a cylindrical polar coordinate system (r, ¢, z), per-
turbations to quantities are denoted with a prime while unprimed
quantities refer to the background state, the operator D/Dt =
0/0t + Q0/0¢ is the convective derivative following the unper-
turbed motion and k is the unit vector in the z direction which is
normal to the disc mid-plane. For perturbations that depend on ¢
through a factor exp (img), m being the azimuthal mode number, as-
sumed positive, that we consider, the operator D/Drt reduces to the
operator (0/0¢ + im<2). In addition we recall that for a barotropic
equation of state, 2 = Q(r) depends only on the radial coordinate.
Then (13) becomes

0’ 0§ 0§

T 2Qk A TR 2imsz$ +2im%k A E

+ ri(E - V) —m?QM = —VS - VP

ext®

15)

The perturbation to the density is given by
p ==V (p§). (16)

The perturbation to the disc’s gravitational potential is given by
linearizing Poisson’s equation to give

Vi =4nGp'. (17)

’

We have also added an external potential perturbation ®_
with the identification of angular momentum flux later on.

By taking the scalar product of (15) with &*, multiplying by
the background density, p, and taking the imaginary part, after
making use of equations (16) and (17) we obtain a conservation
law that expresses the conservation of angular momentum for the
perturbations in the form:

to assist

0p;
W‘*’v'(FA‘FFG"'Fexl):Tv (18)
where
mp * aE 7 * . 2
pJE—TIm & -E—I—Qk-g/\& + im Q|| 19)
Fa=—"CIm(E"s) (20)
F " ! pvor Q1)
= ——1Mn —_—
¢ 2 4nG
m /
Fou = =" Im(E" @) 22)
and
m ’ %
T = ZIm(®p"). (23)

Here p, is the angular momentum density, and the angular momen-
tum flux is split into three contributions: F 5, being proportional

to the Lagrangian displacement, is the advective angular momen-
tum flux; F is the flux associated with the perturbed gravitational
stresses and Fy, is the flux associated with the external potential
which is inactive for free perturbations.

The quantity 7 is a torque density associated with the external
potential as can be seen from that fact that the real torque integrated
over azimuth and divided by 27 is

1 [ 0! m
- Re(p™)Re | — ) dp =T = —Im(d. 0™). 24
27[/0 e(p)e(aq)>¢> F Im(@ep™). (24)
This justifies the scalings used for the angular momentum density
and fluxes.

4.3 The conservation of angular momentum in the
two-dimensional razor thin disc limit

The form of the conservation law for a razor thin disc is obtained
by integrating equation (18) over the vertical coordinate. For terms
op, the integrand is non-zero only within the disc. & and the grav-
itational potentials may be assumed to depend only on r and ¢.
The effect of the integration is simply to replace p and p’ by the
surface density ¥ and its perturbation X', respectively. The fluxes
become vertically integrated fluxes. For the term associated with the
gravitational stresses, assuming the potential perturbation vanishes
at large distances, we have

o0 m , . 10 (rFg)
V.Fgdz = —=Im[®'(r, ¢, 0)Z"] = — (25)
oo 2 r or
where
m R Lol
For=——-—1I P’ dz. 26
o= T8nG m[m or & (26)

Thus for a two-dimensional razor thin disc the conservation law is
of the same form as (18) but with p,;, F 5 and F given by (19),
(20) and (22) with p replaced by X, respectively. As the vertical
direction has been integrated over only the radial components of the
fluxes contribute. From the above analysis, the vertically integrated
angular momentum flux due to gravitational stresses becomes

FG — F(_‘,ri', (27)

with Fg, given by (26). Accordingly, this term, unlike the others,
involves an integration over the vertical direction. We shall obtain
explicit expressions for the fluxes in terms of the perturbation S’ =
¥'c2/ % + @' appropriate to the razor thin disc below.

4.4 The conservation of angular momentum for a disc with a
locally isothermal equation of state

It is possible to repeat the analysis of Section 4.1 when the disc has
a locally isothermal equation of state. In this case, P = pcsz, where
¢ 1s a prescribed function of position, and the linearized equation
of motion (13) is modified to read

D% Dg

=2 4 2Qk A —
Dz? + Dt

ext*

+rRE VR = VS + 2V () - v,
p (28)

An expression of the form (18) may be derived but now the torque
density T takes the form

T= % [Im(@p™) = Im (0’8" - V (c]))] - 29

When c; is constant corresponding to a strictly isothermal equa-
tion of state, the fluid is again barotropic and previous expressions
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recovered. Equation (29) contains terms in addition to external con-
tributions. In general, these imply the possibility of an exchange of
angular momentum between perturbations and the background. A
very similar discussion applies to the razor thin limit. We now go on
to apply the above analysis in determining the angular momentum
balance for the linear perturbations of razor thin discs in more detail
and thus determine properties of and conditions for unstable normal
modes.

4.5 Properties of the linear modes of a razor thin disc

We assume linear perturbations for which the ¢ and 7 dependence
is through a factor of the form '@+, where o is the complex
eigenfrequency and m is the azimuthal mode number. From now on
this factor is taken as read. Linearizing the hydrodynamic equations
(5) and (6) for the inviscid case and ignoring external potentials, we
obtain

1d(Zru) imZu,

7Y = — 30

r dr r (30)

G — 20’ ds’ N ¥ de? a1
ou,. — = —— _——
r o dr ¥ dr

K2 imS’
icu, + —u. = — 32
TR P (32)

where & = o +mQ is the shifted mode frequency. Using equations
(31) and (32), to eliminate u; and u;, in equation (30) we obtain (see
e.g. Papaloizou & Savonije 1991)

. d [rD /dS’ 2mQGS
rY=—|—|—+—5—
dr | D \ dr ric?

2mQsY (dS  2mQae S mS d (/1
- == +— ]+

dr ri?

k*D 6 dr \n
Am*Q2TS  d [r¥'dc? 2mQY’ dc? 33)
rit dr | D dr Dré dr’
where D = «? — 52, and recall n = «?/2QX is the vorten-

sity. This form shows that a corotation singularity where & =
0 can be avoided if corotation corresponds to a vortensity
extremum.

The above expressions may be applied to a disc, either with a
locally isothermal equation of state, or with a barotropic equation
of state, where the integrated pressure P = P(X) and the sound
speed ¢ = dP/dX. To obtain the latter case, the quantity dc2/dr
is simply replaced by zero. We remark that inclusion of additional
terms dependent on this has been found numerically to produce only
a slight modification of the discussion that applies when they are
neglected. This is because ¢? varies slowly compared to either the
linear perturbations or the surface density in the vicinity of the edge,
thus we shall neglect (r /c2)dc? /dr from now on. We also recall that
S = ¥'c?/¥ + @ and the gravitational potential is given by the
vertically integrated Poisson integral as

Z’cg
X

=Y

= —G/ K, (r,rYX' (rHr'dr’, (34)
D

where

cos(me)de

27
K,@r,r)= / . (35)
0 r2 412 —2rr' cos (¢) + eé

Here the domain of integration D is that of the disc, provided there
is no external material. However, in a situation where density waves
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propagate beyond the disc boundaries, either D should be formally
extended or the form of K, changed to properly reflect the boundary
conditions. We remark that (34) enables X’ to be determined in terms
of §" and if this is used in (33) a single eigenvalue equation for §’
results (e.g. Papaloizou & Savonije 1991).

We shall now consider the angular momentum flux balance for
normal modes. For simplicity we shall consider the barotropic case.
The analytic discussion concerns a disc model with one boundary
being a sharp edge with arbitrary propagation of density waves
directed away from this boundary being allowed. When applied
to a gap opened by a planet in a global disc, the analytic model
corresponds the section of the disc from the inner disc boundary to
the inner gap edge or the section from the outer gap edge to the outer
disc boundary. These two sections are assumed to be decoupled in
the analytic discussion of stability but not in the numerical one. In
addition, although it produces the background profile, the planet is
assumed to have no effect on the linear stability analysis discussed
here, but it is fully incorporated in non-linear simulations. The
correspondence between the various approaches adopted indicates
the above approximations are reasonable. The discussion of the
outer and inner disc sections is very similar, accordingly these are
considered below together.

4.6 Angular momentum flux balance for normal modes

The vertically integrated angular momentum flux associated with
perturbations can be related to the background vortensity profile.
For this discussion, we use the governing equation in the form
given by equation (33) (Papaloizou & Savonije 1991). We assume
a barotropic disc model and neglect terms involving dcg/dr. Multi-
plying this equation by S"* and integrating, we get

, o rx (dS  2mQe )\ .
.F(S,a):—/ rYSHdr £ | —= (= + s)s
. D \ dr ri?

/"‘ rx (ds’ n 2mQe g ds™ n 2mQe ) d
— —(— — r
» D\ dr ri? dr ri?

To 4 2922 S/ 2 To S/ 2 d 1
_/ ’”74'%1”/ mSEd (f)drzo, (36)
i rK " o dr \n

where, here and below, the positive sign alternative applies to the
case where the disc domain has an inner sharp edge where r =
r; and then r, = r,, the outer boundary radius. The negative sign
alternative applies to the case where the disc domain has an outer
sharp edge where r = r, and then r, = r;, the inner boundary radius.
In both cases waves may propagate through r = r,,. Note also that
there is no contribution from edge boundary terms as the surface
density is assumed to be negligible there.

We may now express the terms in the above integral relation,
which for convenience we have taken to define a functional of §’
that depends on o, in terms of quantities related to the transport of
angular momentum by taking its imaginary part. We shall begin by
assuming that o is real or, more precisely, that we are in the limit
that marginal stability is approached.

By making use of equation (25) we find that

o 1 Qr o ’ Zl*c? /
Im rx'S™dr| =Im rx Ts—f—(b* dr

ro 2
= Im U rE’d)’*dr} =+= [rFall, - (37
it m

b

We recall that Fg, is the vertically integrated angular momentum
flux transported by gravitational stresses. Note that Fg, at the sharp



1452  M.-K. Lin and J. C. B. Papaloizou

edge is ignored. Equation (25), together with the requirement that
Fg;, is regular for r — 0 and vanishes more rapidly than 1/r for
r — oo, implies that Fg, is zero at the sharp edge separating the
disc domain and the exterior (assumed) vacuum or very low density
region.

In addition we remark that from equations (31) and (32), the
radial Lagrangian displacement is given by

W1 (dS' 2mS'Q
Sr =T = 7= ( + ) .

— 38
iG D \ dr ré (38)

From this it follows that the imaginary part of the second term on
the right-hand side (RHS) of equation (36) is — & Im[r £&,.5*]|,, =
— £ (2/m)[r Fall,,- Using the above, taking the imaginary part of
(36) yields the remarkably simple expression

_m m|SPd /1
L [r(For + Fadlln, = zlm T ar \y dr|. (39)

Note that we have been assuming that o is real and that the mode
is at marginal stability. Then the RHS of (39) is apparently real.
However, the integrand is potentially singular at corotation where
& = 0. Thus the approach to marginal stability has to be taken with
care.

Setting 0 = o — iy, where oy, being the real part of o, defines
the corotation radius, r., through Q(r.) = —or/m and the growth
rate as y, with —y being the imaginary part of . Marginal stability
can be approached by assuming that y has a vanishingly small
magnitude but is positive. Then we can use the Landau prescription,
and substitute 1/& by P(1/5) + i78(5 ), where P indicates that the
principal value of the integral is to be taken and é denotes Dirac’s
delta function. Adopting this, equation (39) becomes

712
i o, =27 [ ST (1
2 |[d2/dr| dr \ n

The above relation can be viewed as stating that at marginal stability,
either corotation is at a vortensity extremum and both terms in
equation (40) vanish or angular momentum losses as a result of
waves passing through r = r, are balanced by torques exerted at
corotation. The latter torque is proportional to the gradient of the
vortensity n (Goldreich & Tremaine 1979) and recall that ! scales
with X.

The propagating waves quite generally carry negative angular
momentum when located in an inner disc and positive angular mo-
mentum when located in an outer disc (Goldreich & Tremaine
1979). Thus a balance may be possible between angular momen-
tum losses resulting from the propagation of these waves out of the
system and angular momentum gained or lost by an edge distur-
bance as expressed by equation (40). For an edge disturbance in a
region of increasing (decreasing) surface density, such as an inner
(outer) edge to an outer (inner) disc, the edge disturbance loses
(gains) angular momentum.

In practice, an inner (outer) edge disturbance may be associated
with a positive (negative) surface density slope near a vortensity
maximum or near a vortensity minimum occurring as a result of the
variation of both «2 and 3. The former case is associated with discs
for which self-gravity is important, and spiral density waves are
readily excited. The latter is associated with weakly or NSG discs
and is associated with vortex formation at gap edges as has already
been discussed by several authors [see e.g. Lin & Papaloizou (2010),
and references therein].

So far we have not discussed the boundary condition at r = r
(the non-sharp boundary). One possibility is that this corresponds
to stipulating outgoing waves or a radiation condition, so that the

(40)

re

fluxes in (40) are non-zero. Another possibility is to have a sur-
face density taper to zero which would mean wave reflection and
removal of the boundary flux terms. In fact, we expect that the is-
sue of stability is not sensitive to this. We remark that in the case
of NSG discs and the low m modes of interest, the regions away
from the edge are evanescent and amplitudes are small there, the
disturbance being localized in the vicinity of the edge. For SG discs,
as we indicate below, instability can appear because of an unsta-
ble interaction between outwardly propagating positive (inwardly
propagating negative) angular momentum density waves and a neg-
ative (positive) angular momentum edge disturbance localized near
an inner (outer) disc gap edge. As long as these waves are excited it
should not matter whether they are reflected or transmitted at large
distance, as long as their angular momentum density remains in the
wider disc and is not fed back to the exciting edge disturbance.

For these reasons and also for simplicity, we shall assume that at
the boundary where r = ry, either the surface density has tapered to
zero or there is reflection such that the boundary terms in expres-
sions like (36) may be dropped. equation (40) then simply states
that marginal stability occurs when corotation is at a vortensity ex-
tremum. We find that the vortensity maximum case is associated
with an instability in SG discs that is associated with strong spiral
waves. On the other hand, the vortensity minimum case is associ-
ated with the vortex-forming instability in NSG discs that has been
previously studied [see Lin & Papaloizou (2010), and references
therein] and will not be discussed further in this paper [but see
Lin & Papaloizou (2011), for a discussion of the effect of weak
self-gravity on vortex modes].

5 DESCRIPTION OF THE EDGE
DISTURBANCE ASSOCIATED WITH A
VORTENSITY MAXIMUM IN A
SELF-GRAVITATING DISC

We now focus on the description of the instability in an SG disc
as being due to a disturbance associated with the edge causing the
excitation of spiral waves that propagate away from it resulting in
destabilization. This occurs because the emitted waves carry away
angular momentum which has the opposite sign to that associated
with the edge disturbance [see Section 4.6 and equation (40)]. Ac-
cordingly the excitation process is expected to lead to the growth of
this disturbance.

We thus consider the disturbance to be localized in the vicinity of
the edge and the potential perturbation it produces to excite spiral
density waves in the bulk of the disc. Our numerical calculations
show that edge-dominated modes of this type occur for low m and
are dominant in the non-linear regime. We assume the mode is
weakly growing corresponding to the back reaction of the waves
on the edge disturbance being weak. Thus in the first instance we
calculate a neutral edge disturbance and then calculate the wave
emission as a perturbation. We emphasize again that an important
feature is that corotation is at a vortensity maximum (in contrast
to the NSG case for which corotation is located at a vortensity
minimum). We show that such modes require self-gravity. In an
average sense they require a sufficiently small Q value and so cannot
occur in the NSG limit (Q — 00).

5.1 Neutral edge disturbances with corotation at a vortensity
maximum

We start from equation (33) for X’. We assume that only the third
term on the RHS need be retained. This is because this term should
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dominate near corotation in the presence of large vortensity gradi-
ents that are presumed to occur near the edge and the disturbance is
assumed localized there [see also the discussion of groove modes
in collisionless particle discs of Sellwood & Kahn (1991), where
similar assumptions are made]. Thus we have

S d /1
== (7) : (@D
raodr \ n
where @ = & /m. The associated gravitational potential is given by
ro S/ ’ d 1
P =— / Kn(r, r) o) dr'. (42)
" (') dr' [ n(r’)

From the relation S = ¥'c?/¥ + @', we thus obtain the integral
equation:

soy1- -S4 (1
' { C rEadr (n)}

ro 1
=_ / GK,(r, r/)wi [ : } dr'. 43)
" @) dr' | n(r’)

For a disturbance dominated by self-gravity, pressure should be
negligible. Under such an approximation, we have S’ ~ ®’. Equa-
tion (41) then implies that to obtain a negative (positive) poten-
tial perturbation for a positive (negative) surface density perturba-
tion, we need sgn(®) = sgn(dn/dr). At corotation where @ = 0
and there is a vortensity extremum, this requirement becomes
sgn(d@/dr) = sgn(dQ/dr) = sgn(d’n/dr?). Since typical rota-
tion profiles have dQ2/dr = Q' < 0, the physical requirement that
potential and surface density perturbations have opposite signs im-
plies that d>5/dr? < 0 at corotation, i.e. the vortensity is a maximum.
Thus our discussion applies to vortensity maxima only. For the class
of vortensity profiles for which sgn(dn/dr) = sgn(®), we demon-
strate below that the integral equation (43) may be transformed into
a Fredholm integral equation with symmetric kernel.

Noting that corotation is located at a vortensity maximum, the
requirement above implies the vortensity increases (decreases) in-
terior (exterior) to corotation (we comment that the discussion may
also be extended to the case when that is true with d’,/dr* vanishing
at corotation). As we expect the disturbance to be localized around
corotation, it is reasonable to assume that this holds and that we may
contract the integration domain (r;, r,) to exclude regions which do
not conform without significantly affecting the problem.

Proceeding in this way we introduce the function H such that

§'(r) = 2(rH(r), (44)

where

d /1y 177" 2 d 1N\]"?
- [ ()3 -5 ()]
Defining the new symmetric kernel R(r, r’) as
R(r,r') = GKy(r, r)Y )Y, (46)
where

d /1\ 17" 2 d 1\
o=l (e e G - @

we obtain the integral equation

H= / R, ¥ YHE)dr'. (48)
In other words, H is required to be the solution to
AH = / R, r'YH@F)dr, (49)
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with A = 1. However, equation (49) is just a standard homogeneous
Fredholm integral equation of the second kind. Thus the existence
of a non-trivial solution (K # 0) implies H is an eigenfunction of
the kernel R with unit eigenvalue.

The kernel R is positive and symmetric. Accordingly the Fred-
holm equation above has the property that the maximum eigenvalue
A > 0 and is the maximum of the quantity A given by

/ / R(r, ¥ YHG YH*(r)drdr’

/ M) Pdr

Jri

A= (50)

over all H. Thus, if it is possible to show that we must always have
max(A) < 1, then it is not possible to have a non-trivial solution
corresponding to a neutral mode. Upon application of the Cauchy—
Schwarz inequality (twice), one can deduce

A 5/ / [R(r, r)*drdr’ = A%, > max(A?). 5D

Thus the existence of a neutral mode of this type is not possible if
AZ, is less than unity.

To relate the necessary condition for mode existence to phys-
ical quantities, we can estimate Agsl. The Poisson kernel K,,(r,
r’) is largest at r = r’. Other factors in the numerator of R in-
volve the factor 1/@. We assume these factors have their largest
contribution at corotation where r = r. and @ = 0. Hence,
Ay ~ [ _:" / _:" |R(re, ro)|*drdr’. Assuming the edge region has
width of order L., taken to be much less than the local radius but

not less than the local scaleheight, we estimate

Aest ~ [R(re, re)| Le

(- 2

Q' \n reXQ \\n

All quantities are evaluated at corotation and the double prime

denotes d?/dr?. Because the edge is thin by assumption, we can
further approximate the Poisson kernel by

= GKm(rm rc) Lc (52)

Kn(r,r') ~ r—r'?+ eé) , (53)

2 e (M
= (G
where K, is the modified Bessel function of the second kind of order
zero and recall that €, is the softening length. If pressure effects are
negligible (c? being small), we obtain

2GKo(meg/re) | 1 (1Y
Q' \n .

7
c re

Aest L. (54)

Since n = x*/2QX, the requirement that A2 exceeds unity leads

us to expect that modes of the type we have been discussing can
exist only for sufficiently large surface density scales. We have
approximately
4G X Ky(meg/r.)
QL. '
Thus taking L. ~ H and €, being a fraction €4 of the local scale-
height, we obtain A.q ~ 41n[1/(megh)]/(7tQ). On account of the
logarithmic factor, the condition Ay > 1 suggests that edge distur-
bances which lead to instabilities can be present for Q significantly
larger than unity, as is confirmed numerically. However, a surface
density threshold must be exceeded. Thus such modes associated
with vortensity maxima do not occur in an NSG disc. Finally we
remark that although we applied a model assumption to obtain an in-
tegral equation with symmetric kernel in the above analysis, which
enables the existence of solutions to be shown, the demonstration

Acst ~ (55)
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of a surface density threshold does not depend on this. The applica-
tion of the Cauchy—Schwartz inequality to (50) may be carried out
in a similar manner for the integral equation (43) leading to simi-
lar conclusions. The fundamental quantity is the vortensity profile;
equation (54) indicates that if it is not sufficiently peaked, there can
be no mode. Similarly, mode existence becomes less favoured for
increasing softening and/or increasing m.

At this point we remark that an analysis of the type discussed
above does not work for vortensity minima. An equation similar
to (49) could be derived, but in this case the corresponding kernel
R would be negative, implying inconsistent negative eigenvalues
X. This situation results from the surface density perturbation lead-
ing to a gravitational potential perturbation with the wrong sign to
satisty the condition (41). Thus we do not expect the type of edge
disturbance considered in this section to be associated with vorten-
sity minima. The fact that edge modes associated with vortensity
maxima require a threshold value of Q~! to be exceeded separates
them from vortex-forming modes which are modes associated with
vortensity minima and require Q! not to be above a threshold in
order to be effective. For most disc models considered in this pa-
per, with minimum Q < 2, vortex modes do not occur. Discs with
minimum Q 2, 2 are considered in Lin & Papaloizou (2011).

5.1.1 Implications for disc—planet systems

For the locally isothermal disc models adopted in this paper, with a
small aspect ratio 4 = 0.05, edge modes could appear more easily
as the disc is cold. This is because if the disc thickness sets the
length-scale of the edge, equations (52), (54) and (55) indicate that,
for fixed Q, lowering sound speed and hence the disc aspect ratio
increases Acg.

We can apply these equations to gaps opened by a Saturn mass
planet, which is considered in linear and non-linear numerical calcu-
lations later on. Without instabilities, these gaps deepen with time.
There is also vortensity mixing in the co-orbital region as fluid ele-
ments pass through shocks and repeatedly execute horseshoe turns
close to the planet. In a fixed orbit this reduces the gap surface
density and the magnitude of the edge vortensity peaks. In this way
the conditions for edge modes become less favourable with time. In
this case, edge modes are expected to develop early on during gap
formation, if at all. However, this effect may be less pronounced if
the orbit evolves because the planet migrates.

For larger planetary masses such as Jupiter, a deeper gap will be
opened but stronger shocks are also induced, which may lead to
stronger vortensity peaks. Thus, in view of potentially competing
effects, the conditions for edge modes as a function of planet mi-
gration and planetary mass must be investigated numerically and
this will be undertaken in future studies.

5.2 Launching of spiral density waves

Although localized at the gap edge, the edge disturbance perturbs
the bulk of the disc through its gravitational potential exciting den-
sity waves. This is expected to be through torques exerted at Lind-
blad resonances (Goldreich & Tremaine 1979). When the disc is
exterior (interior) to the edge, the wave excitation can be viewed
as occurring at the outer (inner) Lindblad resonance, respectively.
These resonances occur where o/m = —Q+«/m. Here the negative
(positive) sign alternative applies to the outer (inner) Lindblad res-
onance, respectively. The perturbing potential is given by (42), and
from now on this potential is given the symbol ®.g,e.

The total conserved angular momentum flux associated with the
launched waves, when they are assumed to propagate out of the

system, is given by Goldreich & Tremaine (1979) as

Fr = wmry dDegee n 2m Q06 Pegge 2 7 (56)
B dr ric?
where 8 = 2k(F«’ — mQ'). These waves carry positive angular
momentum outwards when excited by an inner edge, or equivalently
negative angular momentum inwards when excited by an outer edge.
Thus they will destabilize negative angular momentum disturbances
at an inner disc edge or positive angular momentum disturbances
at an outer disc edge that cause their emission. They will lead to
an angular momentum flux at the boundary where r = ry, given by

(27T) [r(FGr + FAr)] |rb = Fr

5.3 Spiral density waves and the growth of edge modes

We now investigate the effects of wave losses at the non-sharp
boundary as a perturbation. To do this we relax the assumption
that the surface density tapers to zero at the boundary where r =
7. Instead, we adopt a small value there such that self-gravity is
not important for the density waves. Thus, we retain the domain
D for evaluating the gravitational potential to be (r;, r,). Then,
for real frequencies, all the terms in equation (36) apart from the
term inversely proportional to & and the boundary term associ-
ated with the advective angular flux at r = r, are real. The imag-
inary part of the latter term was shown to be proportional to the
wave angular momentum flux. We assume that the mode is close
to marginal stability (subscript ‘ms’ below) with corotation at a
vortensity maximum where o = o, and write equation (36) in the
form F(S,0) = F(S, 0, + 60) = 0. Assuming 8o is small, we
then expand to first order in o, obtaining

80 + F(S,00) = (D, + D)o + F(S, 07) = 0. (57)

ms

Differentiating (36) we find

ro S 2 d
QZ<P/rmJJm>
no mo? dr

) o ry |dS  2mQe |
- Tl L 9 d 58
oo </,‘ D dr+ ri? S‘ r) B 8
and
s> d* /1
Di=——— |- (59)
mQ Q' dr2 \ n /|

Setting §0 = do, — iy, where y is the growth rate and taking the
imaginary part of (57), noting that the imaginary part of the first
two terms on the RHS of equation (36) contributes to the imaginary
part of F, giving this as Im(F) = — £ 2/m) [r(Fg + Fap)ll,, =
F(1/(mm)) Fr with Fr given above, we obtain

Fr D

=—= doy—. 60
v mrD, 7D, 60
Similarly the real part of (57) gives
D,§o, = —y D; — Re(F), (61)

where Re(F) is the real part of 7. We suppose that the waves emitted
by the edge disturbance result in y # 0, but that the back reaction
does not change the location of the corotation point from that of the
marginally stable mode (as indicated by numerical results). Thus,
corotation remains at the original vortensity maximum, implying
that conditions adjust so that o, = 0. We then have

Fr
mnD,’

y =T 62)
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where the upper (lower) sign applies to an inner (outer) edge. In this
case, instability occurs when wave emission causes negative (pos-
itive) angular momentum to be transferred to a negative (positive)
angular momentum edge disturbance located at an inner (outer)
sharp edge.

According to equation (62), to obtain instability (y > 0) for
an inner edge disturbance we need D, < 0 (since Fr > 0). For a
disturbance concentrated at corotation near an inner sharp edge, with
the disc lying beyond, the first term on the RHS of (58) dominates.
As corotation is at a vortensity maximum, we expect the contribution
to the first integral of D, from the region just beyond corotation,
where dn/dr < 0, to be negative and the contribution from the
region just interior to corotation, where dn/dr > 0, to be positive.
Because the region exterior to an inner edge has higher surface
density than that interior to it, and the integrand for the first term
in D, is proportional to X, we may expect the region exterior to
corotation dominates the contribution to D,, making it negative and
therefore unstable. Indeed, we find D, < 0 for the numerical fiducial
case presented in Section 6.1. In this case, there is instability due to
the reaction of the emitted outwardly propagating positive angular
momentum wave on the negative angular momentum inner gap edge
disturbance. A corresponding discussion applies to a disc with an
outer sharp edge.

We comment that the above considerations depend on the exci-
tation of waves at a Lindblad resonance that were transported with
a conserved action or angular momentum flux towards a boundary
where they were lost. However, our linear calculations and simula-
tions described below indicate lack of sensitivity to such a boundary
condition. This can be understood if it is emphasized that the sig-
nificant issue is that after emission, the wave action density should
not return to the edge disturbance responsible for it. This is possible
for example if the waves become trapped in a cavity in the wider
disc in which case a radiative boundary would not be needed.

6 LINEAR CALCULATIONS

In this section, we present numerical solutions to the linear nor-
mal mode problem where the background SG disc contains a gap,
presumed to have been opened by a planet. The basic state is ob-
tained from hydrodynamic simulations by azimuthally averaging
the surface density and azimuthal velocity component fields to ob-
tain one-dimensional profiles. The basic state is thus axisymmetric.
The radial velocity is assumed to be zero.

We adopt a local isothermal equation of state P = ¢2(r)X with
sound speed ¢ = hy/GM,/r and h = 0.05 for consistency with
non-linear simulations. The softening prescription used is that pre-
sented in Section 2. As for the analytic discussion, the gravitational
potential due to the planet and viscosity is neglected. The linearized
equations follow from equations (30)—(33) together with equations
(34) and (35). However, rather than solving in terms of the quantity
S = E/csz /= + @', which was convenient for analytic discussion,
we find it more convenient here to work in terms of the relative
surface density perturbation, W = X'/ for which a single govern-
ing equation may be written down explicitly. In terms of this, the
velocity perturbations u;, u;, can be written in the form

1 dw  do’\  2imQ
u = -5 {i& (cz— + ) 4 (W + <I>/)} (63)
r

! S dr dr

1 [«* [ ,dW  do’ mé , ,
L= — = (@ + ) + E (@w )| 64
o D{ZQ(Csdr—'_dr)—'—r (W + )} 64
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The gravitational potential perturbation &’ can be expressed in
terms of W through equations (34) and (35), and we note that
k2 = r73d(r*Q?)/dr. The derivatives d®’/dr and d*®’/dr? can
be computed by replacing K,,(r, ¥') with 9K,,/0r and 3*K,,/0r?,
respectively. Inserting (63) and (64) into the linearized continuity
equation yields the governing equation for W:

d [rZ [ ,dW n do’ N 2m (2Q) dc? 5| w
— =22 it el _
dr | D S dr dr I3 D dr g

2m d [(EQ m’z] N
N [?a (7> _ﬁ] (W + @) = LW) = 0.

(65)

Note that the term in dc?/dr has been kept for consistency with
simulations used to setup the basic state. We checked that this term
has negligible effect on the results obtained below, by solving the
linear problem without this term. This is because ¢ varies on a
global scale, whereas the edge disturbance is associated with strong
local gradients.

To solve equation (65) we discretized it on an equally spaced grid
applied to the domain r = [1, 10]. In practice this employed N, =
1025 grid points. Equation (65) together with the applied boundary
conditions (see below) is then converted into a matrix equation of
the form 27;1 L;;(0)W; = 0, where the matrix [£;;(c)] gives the
discretized linear operator, which is a function of the frequency o,
and W; is an approximation to W at the jth grid point. This problem
cannot be solved for any value of o. This has to be consistent with
the condition that the determinant of the system of linear equations
be zero. Thus o is an eigenvalue although it is not an eigenvalue of
(L;;) in the conventional sense.

We proceed by taking (£;;) to be a function of o. For a specified
value of o we solve the usual eigenvalue problem L;;(c)W; =
u(o)W; for an eigenvalue, u, which may also be considered to
be a function of ¢. The Newton—Raphson method is then used to
solve the equation (o) = 0. The values of o so obtained are the
required eigenvalues associated with the physical normal modes of
the system.

Because simulations suggest the important disturbances are asso-
ciated with the outer gap edge, it is reasonable to search for values
of o such that corotation lies near the outer gap edge. We checked
that the reciprocal of the final matrix condition number is small (at
the level of machine precision) in order for results to be accepted.
For simplicity, the boundary condition dW /dr = 0 was applied at
r=r;=1and r =r, = 10. As discussed in Section 4.6, modes are
found to be driven by the back reaction of emitted density waves on
a disturbance located at an outer gap edge, a process expected to be
insensitive to boundary conditions. Indeed, we find that our results
are insensitive as to whether the above or other boundary conditions
are used (see Section 6.5).

6.1 A fiducial case

In order to provide a fiducial case, we study the disc model with
a gap, for which Q, = 1.5, that is adopted in Section 7. However,
the simulations described in Section 7 from which the model was
extracted had v = 107>, whereas our linear calculations described
below are for inviscid discs.

The basic state gap profile is illustrated in Fig. 4 where the sur-
face density X, the relative deviation of the angular velocity from
the Keplerian value €2/Q2x — 1 and the vortensity »n are plotted. As
expected from our analytic discussion of modes near to marginal
stability, local extrema in 7 in the vicinity of gap edges are closely
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Figure 4. Gap profile produced by a Saturn mass planet in the Q, = 1.5 disc
with viscosity v = 107>, The surface density ¥ and vortensity 7 are scaled
by their values at » = 5.5. The relative deviation of the angular velocity from
the Keplerian value is also plotted. Vertical lines indicate corotation radii
re [where Re(6) = 0]. For the m = 2 mode, r. = 5.5, close to a vortensity
maximum. When self-gravity is neglected, r. = 5.8, close to a vortensity
minimum.
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Figure 5. m = 2 unstable modes found from linear stability analysis for the
fiducial model, with self-gravity (solid) and without self-gravity (dotted).
|W| has been scaled by its value at corotation.

associated with instability. This is manifested through mode coro-
tation points being very close to them.

The magnitude of relative surface density perturbation, |W/|, for
SG and NSG responses are shown in Fig. 5. For NSG cases we
set &' = 0. The eigenfrequencies for SG (NSG) modes are given
by —o = 0.1587 +i0.4515 x 1072 (=0 = 0.1458 + i0.2041 x
1072). These correspond to corotation points at r, = 5.4626 and
5.7959 for the SG and NSG modes, respectively. The SG growth
rate corresponds to ~3 times the local orbital period. Thus, although
ylog ~ 0.03 is relatively small, the instability grows on a dynamical
time-scale.

The corotation points of SG and NSG modes are very close to
local maximum and minimum of 7, respectively (Fig. 4). The SG
mode grows twice as fast as the NSG mode, consistent with the
observation made when comparing edge modes and vortex modes
in Section 3, where the former became non-linear sooner.

The SG and NSG eigenfunctions are similar around corotation
(r €[5, 6]), although the SG mode has a larger width and is shifted
slightly to the left (Fig. 5). As expected from the discussion in
Section 5.2, the SG mode has significant wave-like region interior
to the inner Lindblad resonance (r < 3.4) and exterior to the outer
Lindblad resonance at (r > 7.2). By contrast, the NSG mode has
negligible amplitude outside [5, 7] compared to that at corotation,
whereas the SG amplitude for r € [8, 10] can be up to >~ 56 per
cent of the peak amplitude near corotation. Increasing m in the NSG
calculation increases the amplitude in the wave regions, but even
for m = 6, we found the waves in [8, 10] for the NSG case have an
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Figure 6. Gravitational potential perturbation ®’ (= §® in the plot), scaled
by its value at r = 5.5 for the m = 2 mode with self-gravity.

amplitude of about 33 per cent of that at corotation, a smaller value
than that pertaining to the SG case with m = 2.

The behaviour in the wider disc, away from corotation, shows that
the for low m the NSG mode is a localized vortex mode, whereas
the SG mode corresponds to an edge mode with global spirals.
Noting that maxima in the vortensity and Toomre Q nearly coincide,
it makes sense that the SG mode is global because away from
corotation, the background Toomre Q is decreasing, which makes
it easier to excite density waves, because the evanescent zones
between corotation and the Lindblad resonances that are expected
from WKBJ theory narrow accordingly.

Comparing the SG and NSG modes shown in Fig. 5, we see
that including self-gravity in the linear response enables additional
waves in the disc at low m. Fig. 6 shows the gravitational potential
perturbation for the SG mode. A comparison with |W| in Fig. 5
shows that the surface density perturbation around 7, has an associ-
ated potential perturbation that varies on a more global scale. The
peak in |W| about r. is confined to r € [4.6, 6.2], whereas that for
|®’| is confined to r € [3.2, 7.5], overlapping Lindblad resonances
(see Fig. 2) in the latter case. Thus @’ is less localized around
corotation than |W|.

Rapid oscillations seen in |W/| for r > 7 are not observed for |®|
in the same region. Furthermore, ®'(r > 7) is at most =~ 20 per cent
of the corotation amplitude, which is a smaller ratio than that for
|W|. This leads to the notion that the disturbance at the outer gap
edge is driving the disturbance in the outer disc as in our analytical
discussion given above. In effect, the disturbance at corotation acts
like an external perturber (e.g. a planet) to drive density waves in
the outer disc, through its gravitational field. Clearly, this is only
possible in an SG disc.

6.2 Energy balance of edge and wave-like disturbances

The analysis in Section 5 describes the edge mode as being associ-
ated with a coupling between disturbances associated with vorten-
sity extrema near an edge and the smooth regions interior or ex-
terior to the edge. We apply this idea to the reference case (with
self-gravity) by considering the region r > r,. Specifically, we focus
on r € [5, 10] because hydrodynamic simulations indicate the spiral
arms are more prominent in the outer disc (Sections 3 and 7).

Multiplying the governing equation (65) by S'*, integrating over
[r1, 2] and then taking the real part, we obtain

n n
Re/ er = Re/ (Qcorol + Qwave) dr, (66)
n n
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where
QErEWS'*=r(cf|2’|2/2+2’¢/*), (67)
2m d [ XQ
corot = _— T S/ 27 68
Qeorot G dr ( D )l | ©8)
g d [rX [ ,dW n do’
wave = — | = \ & —— .
@ dr | D S dr dr

+ 27m (E) dcf WS/*_ @ls/|2 (69)
& D dr rD

o has dimensions of energy per unit length and, for a normal mode,
its real part is four times the energy per unit length associated with
pressure perturbations (the term o ¢?) and gravitational potential
perturbations (the term ox®’x). As the factor of four is immaterial
to the discussion, we simply call the integral of this quantity over
the region concerned the thermal-gravitational energy (TGE). We
remark that when self-gravity dominates, the TGE is negative and
when pressure dominates, it is positive.

When the integral is performed, one sees that the TGE is balanced
by various terms on the RHS of equation (66). For simplicity, we
split the terms on the RHS into just two parts that are integrals of
Ocorot aNd Qyave Over the region of interest. This is of course not
a unique procedure. The vortensity term o.oo has been isolated
because it contains the potential corotation singularity which can
be amplified by large vortensity gradients at the gap edge. The rest
of the RHS is collected into gy.y.. Note that the term in dcf /dr
is included in Qya., despite being proportional to 1/&. This is
motivated by trying to keep ocoror as close to the vortensity term
identified in the analytical formalism as possible. However, we
have considered attributing the dcs2 /dr term to Qcoror OF neglecting
it altogether. In both cases, it made negligible difference compared
to the splitting adopted above. Again, this is because ¢? varies on a
much larger scale than vortensity gradients.

It is important to note that while the real part of the combination
Ocorot + Owave gives rise to the TGE, we cannot interpret Re(0coror)
as an energy density of the corotation region. It contains a term con-
tributing to the TGE that is proportional to the vortensity gradient
(see below) and potentially associated with a corotation singularity.
Similar arguments apply to Qyave Which, in the strictly isothermal
case, can be seen to be associated with density waves (see Sec-
tion 4.6 above). We use this splitting to show that for the modes of
interest, the vortensity term contributes most to the TGE.

Numerically, however, quantities defined above are inconvenient
because of the vanishing of D for neutral modes at Lindblad reso-
nances. To circumvent this we work with D?0, D?0coror, a0d D? 0 ave-
We call these modified energy densities. This change does not dis-
rupt our purpose because the most important balance turns out to
be between the terms involving Re(D?@) and Re(D? 0coror), both fo-
cused near corotation, where D ~ «2. In the region near Lindblad
resonances and beyond, Re(p) and Re(0coror) are small. Thus the
incorporation of the D? factor does not influence conclusions about
the TGE balance. The modified energy densities are plotted in Fig. 7
for the m = 2 mode in the fiducial case. The curves share essential
features with those obtained using the original definitions without
the additional factor of D? (these are presented and discussed in
Appendix A).

Fig. 7 shows that Re(D?p) is negative around corotation which is
located near the outer gap edge, r € [5, 6]). Accordingly Re(o) <
0 and must be dominated by the gravitational energy contribution
since the pressure contribution is positive definite. This supports
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Figure 7. One-dimensional modified energy densities computed from the
eigenfunctions W, @’ for the fiducial case Q, = 1.5.

the interpretation of the disturbance as an edge mode where self-
gravity is important. If it were the vortex mode then Re(D?0) >
0 near corotation, because in that case self-gravity is unimportant
compared to pressure.

For r > 8.4, Re(D?p) becomes positive due to pressure effects and
oscillates towards the outer boundary as the perturbation becomes
wave-like. Similarly, the pressure perturbation dominates towards
the inner boundary (not shown). This signifies that self-gravity be-
comes unimportant relative to pressure within these regions. This is
consistent with the behaviour of the gravitational potential perturba-
tions, which are largest near corotation. We checked explicitly that
the gravitational energy contribution to the TGE is largely focused
around the gap edge (r € [5, 6]), even more so than the gravitational
potential perturbation.

Fig. 7 shows that Re(D? pcoror) and Re(D? pyave) have their largest
amplitudes for r € [5, 6]. Integrating over r € [5, 10], we find U < 0,
and using a normalization such that

10
U ERC/ D?odr = —|U],
5

we find

10
Ucorol = RC/ ngcoroldr = _0822|U|»
5

10
Uyave = Re / D?0yavedr >~ —0.179]0].
5

This implies the TGE is negative, and hence a gravitationally domi-
nated disturbance. We have |l7coml / U | ~ 0.8, suggesting the TGE is
predominantly balanced by the vortensity term which from Fig. 7,
is localized in the gap edge region, balances the gravitational energy
of the mode. Because vortensity gradients are largest near the gap
edge, gravitational energy is most negative here overtaking pressure,
resulting in a negative TGE.

6.2.1 Further analysis of the vortensity term

The vortensity term p.oo that we defined above differs from that
naturally identified in the alternative form of the governing equa-
tion in Section 4. However, this difference is not significant. The
vortensity term can be further decomposed as

Qcorot = Qcorot,1 + Ocorot,2

_ m d /1 IS
Ocorot,1 = 0__(1 _ ]_)2) dr n )
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2m dv
kn(1 —v2)2 dr
where D = & /«. Let us now temporarily consider Qcoror,1 as the new
vortensity term, 8o that Qcorot —> Ocoror,1 and attribute Qcoror,2 to the
wave term so that Owave = Owave + Ocorot,2- The new vortensity term
is proportional to the vortensity gradient explicitly. With the new
definitions, we find

|Uc0rm/(7| ~ 0.690.

v
Qcorot,2 = |

)

Thus the new corotation term alone accounts for ~70 per cent
of the (modified) TGE and giving almost the same result as the
previous one. In addition, as most of the contribution comes from
around corotation, where |9| < 1. Replacing the factor (1 — 12) by
unity has a negligible effect on the results. However, making this
replacement gives
m|S'|? d (1)
Pcorot,1 —> _ 5.\ =)
6 dr \\n

which corresponds to the vortensity term used in the analysis given
in Section 4. Whether this term contributes positively or negatively
to the TGE depends on the sign of [ _:2 Ocoror,1d7. We expect most
of the contribution to this integral comes from corotation where
& =~ 0. Then sgn(f:l2 Qcorot,1d7) = SgN(Qcoror. 1], )- Evaluating this
for a neutral mode with corotation at a vortensity extremum, we
find Qcorot.1lr. = —17218"|2(d?n/dr?)/ '|,.. Since quite generally,
€’ < 0, we conclude that if corotation occurs at a maximum value
of n, then the vortensity term contributes negatively to the TGE.
As stated above, when self-gravity dominates pressure, the TGE is
negative, so it can then be mostly accounted for by the vortensity
term. This is precisely the type of balance assumed for the neutral
edge mode modelled in Section 5.1.

However, a consequence of the above discussion is that if coro-
tation occurs at a minimum value of 7, then the vortensity term
contributes positively to the TGE. This can only give the domi-
nant contribution when the TGE is positive, which can only be the
case when the pressure contribution dominates over that from self-
gravity. In the limit of weak self-gravity, the TGE will be >0 and
it can be balanced by a localized disturbance with corotation at a
vortensity minimum as happens for the vortex modes.

6.3 Dependence on m and disc mass

We have solved the linear eigenmode problem for discs with 1.2 <
0, < 1.6. The basic state is set up from hydrodynamic simulations
as described in Section 3, with v = 107>, The local max(Q) near
the outer gap edge ranges between Q = 3.3 and 4.4. Self-gravity is
included in the response (&’ # 0).

Fig. 8(a) compares eigenfunctions , |W|, for different m for the
0, = 1.2 disc. Increasing m increases the amplitude in the wave
region relative to that around corotation (r. =~ 5.5), resulting in
m = 6 being more global than m = 3. High m modes do not fit
our description of edge modes in the region of interest (r > 5),
because the disturbance at corotation becomes comparable to or
even smaller than that in the wave region beyond the outer Lindblad
resonance. It is then questionable to interpret the waves as a sec-
ondary phenomenon induced by the edge disturbance, even though
the physics of the modes, as being entities driven by an unstable
interaction between edge and wave disturbances, may be more or
less the same. Hence, we typically find what we describe as edge-
dominated modes with m < 3 in simulations where the surface
density perturbation is maximal near the gap edge. For fixed m =
2, hence in that regime, Fig. 8(b) shows that lowering O, makes
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Figure 8. The effect of azimuthal wavenumber m (a) and the effect of disc
mass, parametrized by Q, (b) on linear edge modes.

I
]
TR

o o
o

T[T T T T T T T T

S

o

[he]
(O 5
»
o b
iat
ot
(o IS RSV IN N
|
[ S A R SR NP R SOPPTR POTRTRT PPTN

O DoO
o4
T

y><lO3

Figure 9. Corotation radii (a) and growth rates (b) as a function of azimuthal
wavenumber m, for a range of Q, values.

the corotation amplitude larger relative to that in the wave region.
This is expected because increasing the level of self-gravity means
the necessary condition for edge disturbance is more easily satisfied
(Section 5.1).

In Fig. 9 we plot the locations of the corotation points and the
growth rates for the unstable modes we found as a function of the az-
imuthal mode number, m, and a range of disc masses (parametrized
by Q,). Note that changing Q, affects both the background state
and the linear response, while m acts as a parameter of the linear
response only. The plots in Fig. 9(a) show that the corotation radius
tends to move outwards with increasing m and/or Q,. However,
corotation is always located in the edge region where the vortensity
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is either decreasing or maximal. The largest growth rates are found
for low m (< 3) edge-dominated modes.

Referring to the basic state (Fig. 4), we see that increasing
m and/or Q,, which weakens self-gravity, shifts corotation to-
wards max(n~") (the vortensity minimum), which disfavours edge-
dominated modes. For sufficiently low mass or NSG discs, we
expect corotation associated with vortensity minima and therefore
vortex modes to dominate (e.g. O, = 4 in Section 3). Thus we
only expect edge-dominated modes for low m and sufficiently large
disc mass. An exception to the general trend above is that the Q, =
1.6, m = 6 mode has a smaller corotation radius than the correspond-
ing mode with Q, < 1.6. This may be a boundary effect because for
this value of m and Q, the modes are distributed through the outer
disc and require the implementation of accurate radiative boundary
conditions, rather than the simplified boundary conditions actually
applied. However, such high m modes typically have growth rates
smaller than those for lower m, accordingly we do not expect them
to dominate, nor are they observed in the non-linear simulations
discussed later.

Fig. 9(b) shows that growth rates increase as Q, is lowered (in-
creasing surface density scale). We found that decreasing Q, results
in deeper gaps, because disc material trapped in the vicinity of
the planet adds to the planet potential, so that the effective planet
mass is larger for smaller Q,. Steeper gaps are expected to be more
unstable, therefore there is a contribution to the increased growth
rate from the changes to the background profile as the disc mass is
increased.

We also expect the effect of lowering Q,, through the linear
response, to destabilize edge-dominated modes as they rely on self-
gravity. However, the effect of self-gravity through the response is
weaker for larger m values because the size of the Poisson kernel
decreases. Hence, the increase of the growth rates with disc mass for
m = 4-6 is likely more attributable to the effect of self-gravity on the
basic state. Growth rates for the most unstable mode approximately
double as the disc mass is increased by 25 per cent (Q, = 1.5 —
0, = 1.2). Note for fixed Q, < 1.5, the m = 3-5 growth rates are
similar but m > 3 are not edge modes.

For Q, = 1.2, 1.3, the most unstable mode has m = 3, whereas for
Q, = 1.5, the m = 2 mode has the largest growth rate. As discussed
in Section 5, edge-dominated modes require sufficient disc mass
and/or low m. For fixed m, they are stabilized with increasing Q,.
Hence, for edge modes to exist with decreasing disc mass, they must
shift to smaller m. The higher m modes are less affected by self-
gravity. This may explain the double peak in growth rate plotted as
a function of m for Q, = 1.6 as we move from Q, = 1.5 (we remark
that for Q, = 1.5 the m = 3 growth rate is also slightly smaller than
m=2,4).

The integrals of the modified energy densities for each azimuthal
wavenumber are given for the fiducial case with O, = 1.5 in Table 1.
Only the modes with m < 2 are edge-dominated modes because for
these sum of the integrals contributing to the (modified) TGE is
negative, corresponding to a gravitationally dominated disturbance
and over 50 per cent of the energy is accounted by the vortensity
edge term. The mode with m = 2 had the largest growth rate and
corotation radius at r = 5.46. This is fully consistent with the non-
linear simulation of the fiducial case performed in Section 3.1. There
the dominant mode in the outer disc had m = 2 and corotation radius
atr~5.5.

For m > 2, the total (modified) energy becomes positive, which
must be due to the pressure term (c2|X’|/ ¥) becoming dominant.
The vortensity term alone cannot balance this because it contributes
negatively. For m > 4, the vortensity term contribution is small
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Table 1. Eigenfrequencies expressed in units of Qx(r = 1), corotation radii
and modified energy integrals for different azimuthal mode numbers, m, for
the fiducial disc with Q, = 1.5. The modified energy integrals are taken over
the outer disc r € [5, 10].

m —OR Yy X 102 re _Ucorot/lU‘ _Uwave/lg‘
1 0.079 0.270 5.454 0.65 0.35

2 0.159 0.452 5.463 0.82 0.18

3 0.237 0.404 5.498 0.34 —1.24

4 0.313 0.412 5.533 0.026 —1.03

5 0.386 0.366 5.585 0.0048 —1.004

6 0.462 0.242 5.603 0.0015 —0.998

7 0.524 0.223 5.699 0.0010 —0.997

8 0.599 0.189 5.699 0.00099 —0.995

consistent with high m solutions being predominantly wave-like
(Fig. 8). However, note that in spite of this the vortensity term may
still play some role in driving the modes through corotation torques.
These trends have also been found for other models so they appear
to be general. However, high m global modes are unimportant for the
problems we consider, as they are not seen to develop in non-linear
simulations.

6.4 Softening length

Gravitational softening has to be used in a two-dimensional cal-
culation. It prevents a singularity at » = " in the Poisson kernel
and approximately accounts for the disc’s vertical dimension but is
associated with some uncertainty. Apart from the linear response,
softening also has an effect through the gap profile set up by our
non-linear simulations. A fully self-consistent treatment requires a
new simulation with each new softening considered. For reasons of
numerical tractability though, we only performed experiments us-
ing two values of softening parameter €, in simulations to set up
the gap profile and range of values €4 used in the linear response.

Note that in non-linear simulations a single disc potential soften-
ing parameter €4 is used. Our results are summarized in Table 2.
The integrated total modified energy values indicate we have found
dominated edge modes since the major contribution is due to the
corotation/vortensity term.

Table 2. As for Table 1 but for linear calculations with different softening
parameters, for the Q, = 1.5 fiducial case and azimuthal mode number m =
2. Subscripts ‘I’ denote the softening parameter used in the linear response,
and ‘e’ denotes the softening parameter used in setting up the basic state.
Note that although growth rates vary by about a factor of 2, the location of
the corotation radius does not vary significantly.

€20,1 €g0,e —OR Yy X 102 _Ucorot/lgl _Uwave/lfj‘
0.03 0.3 0.159 0.560 0.66 0.33
0.05 0.3 0.159 0.544 0.67 0.32
0.1 0.3 0.159 0.508 0.69 0.30
0.2 0.3 0.159 0.461 0.74 0.23
0.3 0.3 0.159 0.452 0.82 0.18
0.5 0.3 0.158 0.435 0.87 0.14
0.3 0.6 0.159 0.420 0.91 0.09
0.5 0.6 0.158 0.410 0.95 0.064
0.6 0.6 0.158 0.375 0.99 0.0017
0.8 0.6 0.158 0.276 1.15 —0.14
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Comparing growth rates for fully self-consistent cases €y =
€g0,1 = 0.3, 0.6 shows that increasing the softening length stabilizes
edge modes, which is expected since they are driven by self-gravity.
In addition, all growth rates for €5 . = 0.6 are smaller than those
for €49, = 0.3 independently of €, ;. This indicates stabilization of
edge modes via the basic state when softening is increased. For fixed
€50,c, ¥ decreases as €, increases. We could not find edge modes
for €401 > 0.6 with €5 = 0.3, nor for €y, 2 0.83 with €4 =
0.6. An upper limit is expected from analytical considerations (see
Section 5.1) because if self-gravity in the linear response is too
weak, the vortensity/corotation disturbance cannot be maintained
so edge-dominated modes are suppressed. This is intuitive because
the edge mode requires gravitational interaction between gap edge
and the smooth disc.

6.4.1 Convergence issues

For fixed €, = 0.3, the energy ratios in Table 2 indicate con-
vergence as €5, — 0. Perhaps surprisingly, |I~Jc(,rol / U | decreases
with softening. We found this is because gy.aye, as defined by equa-
tion (69), includes a term proportional to d>®’/dr? which is the
dominant contribution to |y |, and its contribution mostly comes
from the corotation region (as the potential perturbation is largest
there). As the strength of self-gravity is increased by decreasing
softening, the edge disturbance is modified, but the subsequent ef-
fect of the d>®’/dr? term on the energies cannot be anticipated a
priori.

For €401 = 0.03, the vortensity term does not dominate the mod-
ified total energy as much. However, this case is in fact not self-
consistent because the softening used to set up the gap profile is
an order of magnitude larger than that used in linear calculations.
The limit of zero softening is also physically irrelevant because the
disc has finite thickness. For the self-consistent cases with reason-
able softening values (0.3, 0.6), the vortensity term dominates the
energy balance, so the analytic description developed above works
reasonably well.

6.5 Edge mode boundary issues

The boundary condition W = 0 was applied for simplicity. Vor-
tex modes in low mass or NSG discs are localized and insensi-
tive to boundary conditions (de Val-Borro et al. 2007). The edge-
dominated modes rely on self-gravity and are therefore intrinsically
global, boundary effects cannot be assumed unimportant a priori.

We performed additional experiments with varying boundary
conditions for the fiducial case (Q, = 1.5). These include relo-
cating the inner boundary to = 1.1,2.5 or the outer boundary to
r = 9.8 and approximating/extrapolating boundary derivatives using
interior grid points (Adams, Ruden & Shu 1989). In the last case,
the linear ODE is applied at the end points of the grid and therefore
no boundary conditions imposed. For SG disc calculations giving
edge-dominated modes, these various conditions gave corotation
radii varying by about 0.2 per cent and growth rates varying by at
most 10 per cent. Overall the eigenfunctions W are similar, showing
the essential features of the edge mode, including relative amplitude
of outer disc wave region and the corotation region. We conclude
that the existence of edge-dominated modes is not too sensitive to
boundary effects. Physically this is because edge modes are mainly
driven by the local vortensity maximum or edge, which is an internal
feature away from boundaries.

7 NON-LINEAR HYDRODYNAMIC
SIMULATIONS

We present non-linear hydrodynamic simulations of disc—planet
models with 1.2 < Q, < 2, corresponding to disc masses 0.079M, >
My > 0.047M,. Most simulations use a viscosity of v = 107> or
equivalently @ = O(107%), which has been typically adopted for
protoplanetary discs. This value has also been found to suppress
vortex instabilities (de Val-Borro et al. 2007). We adopt gravitational
softening parameter €, = 0.3. The planet is set on a fixed circular
orbit at r, = 5 in order to focus on gap stability. We briefly explore
the effects of varying viscosity and softening lengths later in this
section and planetary migration in the next section.

7.1 Numerical method

The hydrodynamic equations are evolved with the FArRGo code (Mas-
set 2000). FARGo is an explicit finite-difference code similar to zEus
(Stone & Norman 1992) but customized for disc—planet interactions.
It circumvents the time-step limit imposed by the rotational veloc-
ity at the inner boundary by splitting the azimuthal velocity into
mean and perturbed parts, azimuthal transport being performed on
each separately. Self-gravity for FARGO was implemented and tested
by Baruteau & Masset (2008). Two-dimensional self-gravity can
be calculated using Fast Fourier Transform (Binney & Tremaine
1987). This requires the radial domain to be logarithmically spaced
and doubled in extent. The planet potential is introduced at 25P
and its gravitational potential ramped up over 10P,, where Py is the
Keplerian period at r = 5.

The disc is divided into N; x N, = 768 x 2304 grid points
in radius and azimuth giving a resolution of Ar/H = 16.7. The
grid cells are nearly square, with Ar/rA¢ = 1.1. We impose open
boundaries at r; and non-reflecting boundaries at r, (Godon 1996).
The latter has also been used in the SG disc—planet simulations
of Zhang et al. (2008). As argued above, because edge modes are
physically driven by an internal edge, we do not expect boundary
conditions to significantly affect whether or not they exist. Indeed,
simulations with open outer boundaries or damping boundaries (de
Val-Borro 2006) all show development of edge modes.

7.2 Overview

We first present an overview of the effect of edge-dominated modes
on disc—planet systems. Fig. 10 shows the relative surface density
perturbation (AX/X) for Q, = 1.2, 1.5 and 2.0. The profile formed
in these cases has local max(Q) = 3.3,4.2,5.3 near the outer gap
edge and the average Q for r € [6, r,] is 1.6,2.0,2.6. Although
the edge mode is associated with the local vortensity maximum
[located close to max(Q) for gap profiles], it requires coupling to
the external smooth disc via self-gravity. Hence, edge modes only
develop if Q in these smooth regions is sufficiently small, otherwise
global disturbances cannot be constructed.

The case Q, = 2.0 gives a standard result for gap-opening planets,
typically requiring planetary masses comparable or above that of
Saturn. For that mass a partial gap of depth ~50 per cent is formed, a
steady state attained and remains stable to the end of the simulation.
This serves as a stable case for comparison with more massive discs.
This simulation was repeated with v = 1075, in which case we
identified both vortex and edge modes. The standard viscosity v =
107 thus suppresses both types of instabilities for Q, = 2. Although
we adopted v = 1073 to avoid complications from vortex modes, we
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Figure 10. Surface density perturbations (relative to t = 0) at # ~ 100P, as a function the minimum value of Toomre Q in the disc, Q,. From left to right:

0, =2.0,15,1.2.

note that they are stabilized for sufficiently massive discs anyway
(e.g. Qo = 1.5,v = 107° do not show vortices; see Section 3).

Gap edges become unstable for Q,, < 1.5 when v = 1075, As
implied by linear analysis, the m = 2 edge mode dominates when
0, = 1.5 and it saturates by ¢+ = 100P,. It is more prominent
in the outer disc, and overdensities deform the gap edge into an
eccentric ring. The underdensity in the gap also becomes more non-
axisymmetric, being deeper where the gap is wider. The inner disc
remains fairly circular, though non-axisymmetric disturbance (m =
3) can be identified. Note the global nature of the edge modes in the
outer disc: spiral arms can be traced back to disturbances at the gap
edge rather than the planet. Consider the spiral disturbance at the
outer gap edge just upstream of the planet where AX/X is locally
maximum. Moving along this spiral outwards, AX/X reaches a
local minimum at (x, y) = (6, —4) before increasing again. This
is suggestive of the outer disc spirals being induced by the edge
disturbance.

When the effect of disc self-gravity is increased to the Q, =
1.2 case, there is significant disruption to the outer gap edge, it
is no longer clearly identifiable. The m = 1 edge mode becomes
dominant in the outer disc, although overall it still appears to carry
an m = 2 disturbance because of the perturbation due to the planet.
The inner disc becomes visibly eccentric with an m = 2 edge mode
disturbance. The shocks due to edge modes can comparable strength
to those induced by the planet.

7.3 Development of edge modes for Q, = 1.5

We examine the fiducial case with Q, = 1.5. Fig. 11 shows the
development of the edge instability. The final dominance of m =
2 is consistent with linear calculations. The planet opens a well-
defined gap by ¢ ~ 40P, or ~5P; after the planet potential , ®, has
been fully ramped up. Atz ~ 46P, two overdense blobs, associated
with the edge mode, can be identified at the outer gap edge. At this
time the gap has A¥/¥ ~ —0.3, implying edge modes can develop
during gap formation, since the steady state stable gap in Q, = 2
reaches AX/¥ >~ —0.6. Edge modes are global and are associated
with long trailing spiral waves with density perturbation amplitudes
that are not small compared to that at the gap edge. This is clearly
seen at t ~ 50P, when spiral shocks have already developed. We
estimate that the edge modes have a growth rate consistent with
predictions from linear theory and become non-linear within the
time frame 46P, < t < 50P.

The edge perturbations penetrate the outer gap edge and trail an
angle similar to the planetary wake. Note the m = 3 disturbance
near r = 4 in the snapshots taken at r = 50P, and 56P,. Two of the
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three overdensities, seen as a function of azimuth, correlate to the
m = 2 mode in the outer disc, while the third overdensity adjacent to
the planet correlates with the outer planetary wake. These features
result from self-gravity and are unrelated to vortex modes.

The presence of both planetary wakes [with pattern speed
~Q(5)] and edge modes [with pattern speed ~€2;(5.5)] of compa-
rable amplitude enables direct interaction between them. Passage of
edge mode spirals through the planetary wake may disrupt the for-
mer, explaining some of the apparently split-spirals in the plots. At
t ~ 64P, Fig. 11 indicates that a spiral density wave feature coin-
cides with the (outer) planetary wake. The enhanced outer planetary
wake implies an increased negative torque exerted on the planet at
this time. This effect occurs during the overlap of positive density
perturbations. Assume that at a fixed radius the edge mode spiral
has azimuthal thickness nh, where n is a dimensionless number.
The time taken for this spiral to cross the planetary wake is AT =
nhl|x(5.5) — Q(5)| = 0.06nPy. This is <Py for n = O(1). We
expect such crossing spiral waves to induce associated oscillations
in the disc—planet torque.

The non-linear evolution of edge modes in disc—planet systems
can give complicated surface density fields. The gap can become
highly deformed. Fig. 11 shows that large voids develop to com-
pensate for the overdensities in spiral arms, leading to azimuthal
gaps (t = 64Py). At t = 72P,, the gap width ahead of the planet
is narrowed by the spiral disturbance at the outer edge trying to
connect to that at the inner edge. However, this gap-closing effect
is opposed by the planetary torques which tend to open it.

A quasi-steady state is reached by ¢ > 76P, showing an eccentric
gap. For t = 99.5P additional contour lines are plotted to indicate
two local surface density maxima along the edge mode spiral adja-
cent to the planet. This spiral is disjointed around r ~ 7.5 where on
traversing an arm, there is a minimum in AX/X. Taking corotation
of the spiral at r. = 5.5 gives the outer Lindblad resonance of an
m = 2 disturbance at r = 7.2, assuming a Keplerian disc. This is
within the disjointed region of the spiral arm, which supports our
interpretation that the disturbance at the edge is driving activity in
the outer disc by perturbing it gravitationally and launching waves
at outer Lindblad resonances.

7.3.1 Eccentric gaps

Several snapshots of the Q, = 1.5 run taken during the second half
of the simulation are shown in Fig. 12, which display the precession
of an eccentric outer gap edge. Deformation of a circular gap into
an eccentric one requires an m = 1 disturbance. By inspection of the
form of the relative surface density perturbation for Q, = 1.5 (see
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Figure 11. Evolution of the surface density perturbation (relative to r = 0) for the Q, = 1.5 case from ¢ ~ 40Py to t ~ 100Py.
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Figure 12. Precession of an eccentric gap in the presence of an m = 2 edge
mode for a disc with @, = 1.5.

Fig. 10), we see that edge modes are associated with an eccentric
outer gap edge. However, the inner gap edge remains fairly circular.

In their NSG disc—planet simulations, Kley & Dirksen (2006)
found eccentric discs can result for planetary masses M, > 0.003M,,
fixed on circular orbit. Our simulations show that edge modes in an

SG disc can provide an additional perturbation to deform the gap
into an eccentric shape for lower mass planets.

7.4 Evolution of the gap structure for Q, = 1.2

With increasing disc mass, evolution of the gap profile away from
its original form takes place. Fig. 13 illustrates the emergence of the
m = 3 edge mode, expected from linear calculations, and subsequent
evolution of the gap profile. By t ~ 42P, the m = 3 edge mode has
already become non-linear, whereas for Q, = 1.5 the m = 2 mode
only begins to emerge at ¢ ~ 44P,, being consistent with linear
calculations that the former has almost twice the growth rate of the
latter. In Fig. 13 there is a m = 3 spiral at r < r, in phase with the
mode for r > r,. The gap narrows where they almost touch. These
are part of a single mode. By r = 44P,, shocks have formed and
extend continuously across the gap. The self-gravity of the disc has
overcome the planet’s gravity which is responsible for gap opening.
Edge mode spirals can be more prominent than planetary wakes.
The evolution of the form of the gap is shown in the one-
dimensional averaged profiles plotted in Fig. 13. The quasi-steady
profile before the onset of the edge mode instability is manifested at
t ~ 40Py. By t = 44Py, the original bump at » = 6 has diminished.
This bump originates from the planet expelling material as it opens
a gap but is subsequently ‘undone’ by the edge mode as it grows
and attempts to connect across the gap. This gap filling effect is
possible as non-axisymmetric perturbation of the inner disc may
be induced via the outer disc self-gravity. Note also in Fig. 13 at
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Figure 14. The disc model with Q, = 1.2: evolution of the azimuthally
averaged vortensity 7 profile in the region of the gap.

t = 44P, the increased surface density at r >~ 7.5 implying radial
redistribution of material. By + = 120P, the inner bump (r = 4)
is similar to that produced by a standard gap-opening planet. By
contrast, the outer bump cannot be maintained. The gap widens and
there is an overall increase in surface density for » > 6.5. Note that
there is no additional diminishing of the outer edge bump from r =
Fig. 14 illustrates the evolution of the vortensity profile within
the gap. The development of edge modes temporarily reduces the
amplitude of the vortensity maxima set up by the perturbation of the
planet. This is particularly noticeable when the profiles at t = 40P,
and 44P, are compared. However, vortensity is generated through
material passing through shocks induced by the gravitational per-
turbation of the planet (Lin & Papaloizou 2010). This provides a
vortensity source that enables the amplitudes of vortensity maxima
to increase again, as can be seen from the profile at + = 60P,. The
maxima remain roughly symmetric about the planet’s location at
rp £ 2r,. Note a general increase in the co-orbital vortensity level
caused by fluid elements repeatedly passing through shocks.
Although the m = 3 mode emerges first and is predicted to be most
unstable from linear analysis, it does not persist. Linear theory can
only predict the initially favoured mode. In the non-linear regime,
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Fourier analysis shows that m = 2 becomes dominant for 60P, 2,
t 2 145P,. We suspect this be due to finite viscosity acting over
this time-scale. Larger m means shorter radial wavelengths, so over
given a time-scale, diffusion and hence stabilization by viscosity is
more effective than smaller m. The evolution is also complicated
by the planetary wake which may gravitationally interact with edge
modes. For Q, = 1.2 we found that m = 1 becomes dominant at
t 2 145 P, when there appears to be a coupling between the outer
planetary wake and the edge mode.

7.5 Mass transport

The similarity between the effects induced by an edge mode and
an external perturber (planet) is further illustrated by the induced
mass transport. Just as when a planet opens a gap, the development
of an edge disturbance results in a radial redistribution of mass. We
express the angular momentum transport in terms of an « viscosity
parameter, defined through o = Au,Au, /cg, where A here denotes
deviation from the azimuthal average.

Angular momentum is also transmitted through gravitational
torques. However, in practice we found this to be a small effect
compared to transport due to Reynolds stresses. The discs here are
not gravitoturbulent. The azimuthally averaged « parameters («) are
shown in Fig. 15. The stable disc with O, = 2 has non-axisymmetric
features entirely induced by the planetary perturbation and («) is
localized about the planet’s orbital radius giving a two-straw feature
about r,,. This is typical of disc—planet interactions, and it provides
a useful case for comparison with more massive discs to see the
effect of edge modes and their spatial dependence.

Increasing self-gravity by adopting Q, = 1.5, we see that angular
momentum transport is enhanced around r,, and for r < 4, signify-
ing the global nature of edge modes. Towards the inner boundary,
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Figure 15. Top: azimuthally averaged Reynolds stresses associated with
edge modes when they become non-linear (Q, = 1.2, 1.5), the Q, = 2 case
is shown as a stable case with no edge modes for comparison. Bottom:
evolution of the total disc mass for the three cases, scaled by initial mass.
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a ~ 1073 being twice as large as for the case with Q, = 2. The
0, = 1.5 case also has enhanced wave-like behaviour for » > 7 as
compared to Q, = 2.0.

The Q, = 1.2 case is more dramatic, with () reaching a factor
of 2-3 times larger than the imposed physical viscosity around the
planet’s location (v/h? = 4 x 1073). This case displays a three-straw
feature, with an additional trough at about » = 5.5, i.e. close to edge
mode corotation, as if another planet were placed there. Although
the Qp = 1.5 case also develops edge modes, there is no such
additional trough at corotation. We suspect this may because the
Q, = 1.2 case is more unstable, developing an m = 3 mode (which
produces three additional effective co-orbital planets placed at the
gap edge), whereas the Q, = 1.5 case develops a less prominent
m = 2 mode. However, compared to Q, = 1.5, Q, = 1.2 has no
enhanced transport away from the gap region.

Fig. 15 also shows the evolution of the disc mass as a function of
time, My(¢). Viscous evolution leads to mass loss (Q, = 2.0), and
there is clearly enhanced mass loss if edge modes develop (Q, =
1.2, 1.5). For t < 50P the curves are identical, this interval includes
gap formation and the emergence of edge modes. When edge modes
become non-linear, mass loss is enhanced (t >~ 50P,), but there is no
significant difference between Q, = 1.2 and 1.5, which is consistent
with the previous («) plots near the inner boundary. The O, = 1.2
curve is non-monotonic, though still decreasing overall, possibly
because of boundary effects, and mass loss is enhanced once more
around t = 125P,. As Q, is lowered, mass loss becomes less smooth,
showing the dynamical nature of edge modes.

7.6 Additional effects

We briefly discuss effects of softening and viscosity on edge modes.
To analyse mode amplitudes, the surface density field is Fourier
transformed in azimuth giving a,,(r) as the (complex) amplitude of
the mth mode. We then integrate over the outer disc r > 5 to get
C, = [ a,dr and consider A = C,,/Cy.

7.6.1 Softening

In linear theory, we found that edge modes cannot be constructed
for gravitational softening parameters that are too large. We have
simulated the Q, = 1.5 disc with €5y = 0.6, 0.8, 1.0.2

Fig. 16 shows the evolution of the running-time averaged m = 2
amplitudes. The evolution for all cases is very similar for ¢ < 40P.
Unstable modes develop thereafter, with increasing growth rates and
saturation levels as €4 is lowered. €4 = 1 displays either no growth
or a much reduced growth rate. The gap for Q, = 1.5,€5 = 1.0
reaches a steady state similar to the stable case with Q, = 2.0, €4 =
0.3. This is consistent with the fact that as softening weakens, edge
disturbances can no longer perturb the remainder of the disc via
self-gravity, the residual non-axisymmetric structure being due to
the planetary perturbation.

Interestingly, the decrease in saturation level in going from €, =
0.3 — 0.6 is smaller than going from €, = 0.6 — 0.8, which
is in turn smaller than €y = 0.8 — 1.0, despite a larger relative
increase in softening in one pair than the next. This is suggestive of
convergence for the non-linear saturation amplitude as €, — 0. This
can be expected from convergence in linear theory (Section 6.4.1).

21t should be remarked that increasing €g0 makes the Poisson kernel in
simulations increasingly non-symmetric, so the earlier analytical discussion
is less applicable.
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Figure 16. Running-time average of the surface density m = 2 Fourier
amplitude, integrated over r € [5, 10] and scaled by the axisymmetric
component, for the Q, = 1.5 disc, as a function of the gravitational softening
length.

However, at €, = 0.3 there are only five cells per softening length.
To probe even smaller €4 requires prohibitively high-resolution
simulations. Furthermore, since €, approximately accounts for the
disc’s non-zero vertical extent, very small softening lengths are not
physically relevant to explore.

7.6.2 Viscosity

An important difference between edge-dominated modes and the
already well-studied vortex modes in planetary gaps is the effect of
viscosity on them. The standard viscosity v = 107> prevents vortex
mode development, but we have seen in Section 3 that such viscosity
values still allow the m = 2 edge modes to develop. Vortices are
localized disturbances and more easily smeared out than global
spirals in a given time interval. Hence, vortex growth is inhibited
more easily by viscosity than spirals.

We repeated the Q, = 1.5 runs with a range of viscosities. Results
are shown in Fig. 17. Generally, lowering viscosity increases the
amplitudes of the non-axisymmetric modes. For v < 107°, the m =
3 mode emerges first (note that this is not in conflict with our linear
calculations which used v = 107 in its basic state), rather than m =
2. This is because lowering viscosity allows a sharper vortensity
peak to develop in the background model, and thus has the same
effect as increasing the disc mass. The latter can enable higher m
edge modes.

Unlike vortex modes, even with twice the standard viscosity (v =
2 x 107°), the edge mode develops and grows. It is only is sup-
pressed when v > 5 x 107>, However, this is because no vortensity
maxima could be set up at the gap edges due to vortensity diffusion
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Figure 17. Non-axisymmetric disc modes for the O, = 1.5 disc as a function
of applied viscosity v. The Fourier amplitude has been integrated over r €
[5, 10] and scaled by the axisymmetric amplitude and its running-time
average plotted. Thick lines indicate the m = 2 mode and is plotted for all v.
Thin lines indicate the m = 3 mode and is plotted for v = 10~7—107> only.
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Figure 18. (a) Disc torque per unit radius acting on the planet. The length-scale r, = (Mp/3)1/ 3rP is the Hill radius. (b) Time-dependent evolution of the
disc—planet torques, the contribution from the inner disc (dotted curve), the outer disc (dashed curve) and the total torque (solid curve). (c) The running-time

average of the total torque acting on the planet as a function of Q.

in the co-orbital region making an almost uniform vortensity dis-
tribution in the gap. Since the necessary condition for edge modes
is not achieved, no linear modes exist. This differs from the nature
of the suppression of vortex modes, because in that case vortensity
extrema that are stable can still be set up.

8 APPLICATIONS TO DISC-PLANET
SYSTEMS

In order to focus on the issue of the stability of the dip/gap in the
surface density profile induced by a giant planet, the planet was held
on a fixed orbit. However, torques exerted by the non-axisymmetric
disc on the planet will induce migration that could occur on a
short time-scale (e.g. Pepliniski et al. 2008). Such torques will be
significantly affected by the presence of edge modes. Accordingly,
we now discuss the torques exerted by a disc, in which edge modes
are excited, on the planet.

8.1 Disc—planet torques

The presence of large-scale edge mode spirals of comparable am-
plitude as the planetary wake will significantly modify the torque
on the planet, which in a stable disc is the origin of disc—planet
torques. Here, we measure the disc—planet torque but still keep the
planet on fixed orbit.

Fig. 18(a) shows the evolution of the torque per unit length for the
0, = 1.5 fiducial case. The torque profile at z = 40P, before the edge
modes have developed significantly, shows the outer torque is larger
in magnitude than inner torque, implying inward migration. Thisis a
typical result for disc—planet interactions and serves as a reference.
At t = 60Py and 100P,, edge modes mostly modify the torque
contributions exterior to the planet, though some disturbances are
seen in the interior disc (r — r, < —5ry, 1y, being the Hill radius).
The original outer torque at +ry, is reduced in magnitude as material
redistributed to concentrate around the corotation radius r. of the
edge mode (r, is ~2r, away from the planet).

Edge modes can both enhance or reduce disc—planet torques
associated with planetary wakes. Consider r — r, € [3, 5]r, in
Fig. 18(a). Comparing the situation at r = 60P to that at t = 40P,
the torque contribution from this region is seen to be more negative.
This is because an edge mode spiral overlaps the planetary wake,
and therefore contributes an additional negative torque on the planet.
However, at t = 100P,, an edge mode spiral is just upstream of the
planet, exerting a positive torque on the planet, hence the torque
contribution from r — r;, € [3, 5]ry, becomes positive.

Differential rotation between edge modes and the planet produces
oscillatory torques, shown in Fig. 18(b). Unlike typical disc—planet
interactions, which produce inward migration, the total instanta-
neous torques in the presence of edge modes can be of either sign.
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For a disturbance with m fold symmetry the time interval between
encounters with the planet is AT = (27t/m)/§2, where 62 is the
difference in angular velocity of the planet and the disturbance
pattern. Approximating §Q2 = [Qu(rp) — Qi (ro)| with r. = 5.46
obtained from linear theory, we obtain AT = 4.04P,. Indeed, the
oscillation period in Fig. 18 is >~ 4P,. Both inner and outer torques
oscillate, but since the edge mode is more prominent in the outer
disc, oscillations in the outer torque are larger, particularly after
mode saturation (¢t > 70P).

We compare time-averaged torques in Fig. 18(c). In all three
cases, on average a negative torque acts on the planet and its magni-
tude largest at t = 40P,. Up to this point, the torque becomes more
negative as the disc mass increases, as expected. However, devel-
opment of edge modes makes the averaged torques more positive,
and eventually reverses the trend with Q,,. While the disc with Q, =
1.5 also attains steady torque values as in Q, = 2, the disc with
0, = 1.2 has significant oscillations even after time-averaging and
remains non-steady at the end of the run.

Before the instability sets in, torques arise from wakes induced by
the planet, and the outer (negative) torque is dominant. Edge modes
concentrate material into spiral arms, leaving voids in between.
Therefore, except when spiral arms cross the planet’s azimuth, the
surface density in the planetary wake is reduced because it resides in
the void in between edge mode spirals. Hence the torque magnitude
is reduced. If the reduction in surface density due to edge mode
voids is greater than the increase in surface density scale produced
by decreasing Q,, the presence of edge modes will, on average,
make the torque acting on the planet more positive.

8.2 Outward scattering by spiral arms

If edge modes develop, planetary migration may be affected by
them. Their association with gap edges inevitably affects co-orbital
flows. While a detailed numerical study of migration is deferred
to future work, we highlight an interesting effect found when edge
modes are present. This is outward migration induced through scat-
tering by spiral arms.

We restarted some of the simulations described above at t = 50P,
allowing the planet to move in response to the gravitational forces
due to the disc. The equation of motion of the planet is integrated us-
ing a fifth-order Runge—Kutta integrator.? Fig. 19 shows the orbital
radius of the planet in discs with edge modes present. No obvious
trend with Q, is shown. This is because of oscillatory torques due
to edge modes and the partial gap associated with a Saturn mass
planet, which is associated with type III migration (Masset & Pa-
paloizou 2003). The initial direction of migration can be inwards or

3 Lin & Papaloizou (2010) found the same integrator to be adequate for
studying migration induced through scattering by vortices.
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Figure 19. Orbital radius evolution in discs with edge-mode disturbances.
The instantaneous orbital radius r,, is shown as a function of time.

outwards depending on the relative positioning of the edge mode
spirals with respect to the planet at the time the planet was first
allowed to move.

Outward migration is seen for Q, = 1.3 and 1.5. For Q, = 1.5,
the planet migrates by Ar = 2, or 8.6 times its initial Hill radius,
within only 4Py. This is essentially the result of a scattering event.
Repeating this run with tapering applied to contributions to disc
torques from within 0.6r, of the planet, we found outward scattering
still occurs, but limited to Ar = 1 and the planet remains at r, >~ 6
until # = 128 P,. Hence, while the subsequent inward migration seen
for O, = 1.5 may be associated with conditions close to the planet,
the initial outward scattering is due to an exterior edge-mode spiral.

For Q, = 1.3 the planet is scattered to r, ~ 8. It is interesting to
note that the subsequent inward migration for Q, = 1.5 and 1.3 stalls
at r ~ 6, i.e. the original outer gap edge. The planet remains there
for sufficient time for both gap and edge-mode development, and
for Q, = 1.3 a second episode of outward scattering occurs (it also
occurs for Q, = 1.5 to a small extent around r = 70Py). Interaction
with edge modes can affect the disc well beyond the original co-
orbital region of the planet. In the case of outward migration, it may
promote gravitational activity in the outer disc. However, boundary
effects may be important after significant outward scattering.

The spiral arm—planet interaction for Q, = 1.5 above is detailed
in Fig. 20. A spiral arm approaches the planet from the upstream
direction (t = 50.9P)) and exerts positive torque on the planet,
increasing r,. The gap is asymmetric in the azimuthal direction
with the surface density upstream of the planet being larger than
that downstream of the planet (r = 51.5P;). As the spiral arm passes
through the planetary wake (¢t = 51.5-52.1P;), the gap surface
density just ahead of the planet builds up as an edge mode is set up
across the gap. Note the fluid blob at r = 5, ¢ — ¢, = 0.37. This
signifies material executing horseshoe turns ahead of the planet. At
the later time r = 53.1P,, the planet has exited the original gap,
in which the average surface density is now higher than before
the scattering. Material that was originally outside the gap loses
angular momentum and moves into the original gap. This material
is not necessarily that composing the spiral.

We remark that migration through scattering by spiral arms differs
from vortex scattering (Lin & Papaloizou 2010). Vortices form about
vortensity minima, which lie further from the planet than vortensity
maxima. We can assume vortensity maxima are stable in the case of
vortex formation. This means the ring of vortensity maxima must
be disrupted in order for vortices to flow across the planet’s orbital
radius for direct interaction. Edge modes themselves correspond to
a disruption of vortensity maxima, hence direct interaction is less
hindered than in the vortex case. Furthermore, a vortex is a material
volume of fluid. Vortex-planet scattering results in an orbital radius
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Figure 20. Interaction between an edge-mode spiral and the planet (green
dot), causing the latter to be scattered outwards. log X is shown.

change of both objects. A spiral pattern is generally not a material
volume of fluid. It can be seen in Fig. 20 that the local max(X) in
the spiral remains at approximately the same radius before and after
the interaction. The spiral as a whole does not move inwards. In this
case, the spiral first increases the planet’s orbital radius, thereby
encouraging it to interact with the outer gap edge and scatter that
material inwards.

9 SUMMARY AND DISCUSSION

We have studied instabilities associated with a surface density gap
opened by a giant planet embedded in a massive protoplanetary
disc. Vortex producing instabilities, associated with local vortensity
minima, have previously been found to occur in weakly or NSG
discs. However, edge modes that are associated with local vortensity
maxima and require sufficiently strong self-gravity were found in
the more massive discs that we have focused on in this paper. These
have very different properties in that they are global rather than local
and are associated with large-scale spiral arms as well as being less
affected by viscous diffusion.

For our disc—planet models with fixed planet mass M, = 3 x
10~*M, and fixed disc aspect ratio & = 0.05, we found edge modes
to develop for gap profiles with an average Toomre Q < 2 exterior
to the planet’s orbital radius. In the unperturbed smooth disc, this
corresponds to Q < 2.6 at the planet’s location and Q < 1.5 at the
outer boundary, or equivalently a disc mass My 2 0.06M.,. For fixed
Mg, non-linear simulations show edge modes develop readily for
uniform kinematic viscosity v < 2 x 107> and self-gravitational
softening €, < 0.8H.

A theoretical description of edge modes was developed. The
edge mode is interpreted as a disturbance associated with an inte-
rior vortensity maximum that requires self-gravity to be sustained,
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and which further perturbs the remainder of the disc through its
self-gravity causing the excitation of density waves. Linear calcula-
tions confirm this picture and also show the expected strengthening
of the instability when self-gravity is increased via the disc mass
and the expected weakening of the instability through increasing
gravitational softening.

Hydrodynamic simulations of disc—planet interactions were per-
formed. We confirm earlier suggestions by Meschiari & Laughlin
(2008), who found gravitational instabilities associated with their
prescribed gap profiles without a planet. Indeed, we found that edge
modes can develop for gaps self-consistently opened by introducing
a planet into the disc. However, our models showed their develop-
ment during gap formation of a Saturn mass planet, when the gap
only consists of a 20-30 per cent deficit in surface density relative
to the unperturbed disc. This is much less shallow than the Jovian
mass planetary gaps considered in Meschiari & Laughlin (2008),
which are typically associated with a 90 per cent deficit. We found
edge modes to exist for disc models extending to a distance twice
as large as the planets orbit with masses My 2 0.06M,, again this
is less massive than required in Meschiari & Laughlin (2008), but
more massive than those typically used in modelling protoplanetary
discs.

We remark that in the disc model of Meschiari & Laughlin, the
local Q maximum occurs at the gap centre, presumably where the
planet would lie. However, gap opening by the planet may disrupt
the disturbance associated with this extremum, which is required to
induce perturbations in the smooth disc. It is then unclear if the edge
mode could be set up. Furthermore, since corotation lies at their gap
centre, there would be no relative motion between spirals and the
planet of the kind seen in our simulations. The case of Jovian mass
planets will be explored in a future work. We note in that case,
significant disruption of the disc, leading to fragmentation, may
occur (Armitage & Hansen 1999; Lufkin et al. 2004).

Our simulations show edge modes with m = 2 and 3. They
have surface density maxima localized near the outer gap edge, but
the disturbance they produce extends throughout the entire disc,
consistent with analytical expectation and linear calculations. One
important difference between edge modes and the vortex forming
modes in NSG discs is that the latter require low viscosity. The
typical viscosity values adopted for protoplanetary discs, v = 1075,
will suppress vortex formation but not edge modes associated with
self-gravity.

We have also considered the effect of edge modes on planetary
migration. They produce large oscillations in the disc torques acting
on the planet, which can be positive or negative. The presence of
edge modes reverses the trend of the time-averaged disc-on-planet
torque as a function of disc mass: the torque being more positive
as disc mass increases. Direct interaction between the planet and a
spiral arm associated with an edge mode is possible. These should
be more prominent in the disc section with the lower Q. In practise
this corresponds to r > r,, so the planet tends to interact with the
outer spirals, which results in a scattering of the planet outwards.

9.1 Outstanding issues

This work has been motivated by the wish to obtain a better under-
standing of disc—planet interactions in massive discs. In particular, a
proper discussion of phenomena such as type III migration requires
incorporation of self-gravity which we have undertaken here. We
have studied model discs which are unstable through the develop-
ment of edge modes when a dip/gap is produced by an embedded
giant planet but which would be stable without the planet.
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Our first calculations show that the disc torques acting on the
planet in the presence of edge modes change sign and are highly
time-dependent. Thus migration is unpredictable. A statistical ap-
proach may be ultimately required to assess the likelihood of re-
duced inward migration in practice. Furthermore, development of
edge modes during gap formation indicates their importance for
planets before they reach a Jovian mass. This leads to the possibil-
ity of type III migration, which is self-sustained and can be in either
direction.

Issues such as what is the appropriate softening length to use in
a two-dimensional simulation and the treatment of material inside
the Hill radius will be important for more thorough understanding
of planetary migration in the presence of large-scale spiral arms in
massive discs. Resolving these requires improved numerical mod-
elling which will be presented in a future work.
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Figure Al. The thermal and gravitational energy (TGE) per unit length
(solid) computed from eigensolutions for the fiducial case Q, = 1.5 from
linear theory. The contributions from the vortensity term (dotted line) and
other terms (dashed line), defined by equation (67), are also shown. The
relatively small bumps near » = 7 are numerical. However, as they are the
same magnitude for both contributions, incorporating them does not affect
conclusions concerning the overall energy balance in the system.

APPENDIX A: ENERGY DENSITIES IN
LINEAR THEORY

In Section 6 we defined and discussed the TGE and the different
contributions to it. There, a factor D? was applied to the TGE per unit
length and to each contributing term in order to overcome numerical
difficulties associated with Lindblad resonances. For completeness,
we provide here a discussion of the behaviour of the TGE and the
various contributions to it considered without the additional factor
D2

Fig. A1 shows very similar features to the corresponding curves
discussed in Section 6.2. Re(p) is negative around corotation, again
signifying a self-gravity-driven edge mode. Beyond r 2~ 6.4, Re(p)

becomes positive due to pressure. The most extreme peak at r =~
5.6 coincides with the background vortensity edge (Fig. 4). The
negative contribution from the corotation term is larger in magnitude
than that from the positive wave term, resulting in Re(p) < 0. The
corotation radius r. < 5.6, making the shifted frequency oz (5.6) =
m[R(5.6) — Q(r.)] < 0. Also at r = 5.6, d(n~")/dr > 0, resulting
in Re(peoror) < O at this point.

Re(pwave) and Re(pcoro) have relatively small spurious bumps
around r = 7.2 that are associated with the outer Lindblad reso-
nance and are numerical. The eigenfunctions W, ®’ are well de-
fined without singularities there, but evaluation of pcoror and Pyaye
involves division by D, which can amplify numerical errors at Lind-
blad resonances where D — 0. Integrating Re(p) over [5, 10], we
find U < 0, the TGE is negative, which means gravitational energy
dominates over the pressure contribution for r > 5. Integrating the
contributions to the TGE separately, we find

10
Ucorot = Re/ pcorotdr = _094|U|7
5

10
Ugave = Re/ Pwavedr >~ —0.077|U]|.
5

The integration range includes the OLR and thus the spurious bumps
in Pyave and peoor. However, we still find that U approximately
equals Ucorot + Uwave- The correct energy balance is still maintained
despite being subject to possible numerical error due to the diverging
factor 1/D. The above means that, aside from the spurious bumps,
the energy density values for » € [5, 10] may still be used to interpret
energy balance. We find |Ucoo/U| ~ 0.9, so as before the TGE is
predominantly accounted for by the vortensity term.
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