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ABSTRACT
We study the type III migration of Saturn and Jupiter-mass planets in low-viscosity discs. A
Saturn-mass planet is found to experience cyclic episodes of rapid decay in orbital radius,
each amounting to a few Hill radii. We find this to be due to the scattering of large-scale
vortices present in the disc. The origin and role of vortices in the context of type III migration
is explored. It is shown through numerical simulations and semi-analytical modelling that
spiral shocks induced by a sufficiently massive planet will extend close to the planet’s orbital
radius as well as being global prominent features. The production of vortensity across shock
tips results in thin high vortensity rings with a characteristic width of the local scaleheight.
For planets with masses equal to and above that of Saturn, the rings are co-orbital features
extending all the way around the orbit. Linear stability analysis shows such vortensity rings
are dynamically unstable. There exists unstable modes that are localized about local vortensity
minima which coincide with gap edges. Simulations show that vortices are an outcome in the
nonlinear regime.

We used hydrodynamic simulations to examine vortex–planet interactions. Their effect is
present in discs with kinematic viscosity less than about an order of magnitude smaller than
the typically adopted value of ν = 10−5�prp(0)2, where rp(0) and �p are the initial orbital
radius and angular velocity of the planet, respectively. We find that the magnitude of viscosity
affects the nature of type III migration but not the extent of the orbital decay. The role of
vortices as a function of initial disc mass is also explored and it is found that the amount of
orbital decay during one episode of vortex–planet interaction is independent of initial disc
mass. We incorporate the concept of the co-orbital mass deficit in the analysis of our results
and link it to the presence of vortices at gap edges. Similar effects are found to occur for a
Jupiter-mass planet but with the extent of the fast migration episodes being larger because of
the stronger perturbation on the disc.
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1 IN T RO D U C T I O N

The importance of planet migration was realized with the discovery
of the first exoplanet with an orbital period of 4 d (Mayor & Queloz
1995). Such planets, classified as ‘hot Jupiters’, orbit so close to their
host stars that it is difficult to understand their formation in situ. It is
thought they form further out then migrate inwards due to torques
from the gaseous protoplanetary disc.

Tidal interactions between a protoplanet and protoplanetary
disc were in fact studied well before observations of exoplanets
(Goldreich & Tremaine 1979, 1980). In these early studies, the
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protoplanet is treated as a small perturbation, the linearized hy-
drodynamic equations are then solved for the disc response. Den-
sity waves launched at Lindblad resonances generally lead to de-
cay of the planet’s semimajor axis. This scenario is referred to as
type I migration (Ward 1997). Recent semi-analytical treatments
include Tanaka, Takeuchi & Ward (2002) for isothermal discs and
Paardekooper et al. (2010) for a non-isothermal equation of state.
For planet masses above that of Jupiter, linear theory ceases to ap-
ply and the non-linear disc response produces a surface density gap
about the planet (Lin & Papaloizou 1986). In this migration mode,
now called type II, the planet’s orbital radius is locked with the disc
viscous evolution. That is, it drifts towards the central star along
with disc material, while residing inside the gap.

Recently, a new migration mode, called runaway or type III mi-
gration, was introduced by Masset & Papaloizou (2003) and further
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discussed by Artymowicz (2004a) and Papaloizou (2005). Type III
migration is a self-sustaining mechanism with short migration
time-scales ≤ O(102) orbits. A series of detailed numerical studies
was presented by Pepliński, Artymowicz & Mellema (2008a,b,c),
who considered a Jupiter-mass planet and included thermal effects
and corrections for self-gravity (SG). They found that for a range
of surface density profiles that were non-decreasing inwards, that
provided the disc was massive enough, the planet’s semimajor axis
was reduced by a factor of between 2.5 and ∼3 within time of 40–60
orbital periods. They noted that this type III migration is strongly
dependent on the flow inside the Hill radius of the planet.

Type III migration is also applicable to intermediate-mass planets
comparable to Saturn in massive discs. The planet opens a partial
gap which, in the case of a migrating planet, allows a net drift of disc
material across the planet’s orbital radius through executing U-turns
at the end of horseshoe orbits. The change in the fluid elements’
orbital radius implies a torque on the planet that is proportional
to its migration rate. The migration rate also increases with the
co-orbital mass deficit δm, which is proportional to the difference
between surface density of the co-orbital region and that of the
orbit-crossing flow.

Most previous disc–planet simulations have either included a
large enough applied viscosity or had enough numerical diffusion to
suppress instabilities resulting in a smooth behaviour. For example,
the studies of Pepliński et al. (2008a,b,c) did not display instabilities
even with no applied physical viscosity. However, they employed
a Cartesian grid-based code (FLASH) which is indicated through
studies undertaken by de Val-Borro et al. (2007) to have too much
numerical diffusion to allow steep enough gradients to form and
subsequently become unstable.

In this work, we study a modified form of type III migration,
which is non-smooth, induced by large-scale vortices originating
from instabilities. The vortex forms outside the Hill sphere and flows
across the co-orbital region. Changing the gravitational softening
length applied to the planet potential, or adopting the equation of
state of Pepliński et al. (2008a), which modifies flow inside the
Hill sphere, is found not to significantly affect the vortex–planet
interaction described in this paper.

The linear theory of instabilities in inviscid accretion discs asso-
ciated with ring structures, sharp edges and vortensity extrema is
well known (Papaloizou & Pringle 1984; Papaloizou & Lin 1989;
Lovelace et al. 1999; Li et al. 2000) and vortices develop in the non-
linear regime (Li et al. 2001). In the context of protoplanetary discs,
steep gradients arise from gap edges associated with sufficiently
massive planets. de Val-Borro et al. (2007) performed simulations
of a Jupiter-mass planet held on fixed orbit to show the formation
of large-scale vortices at gap edges. The migrating case was consid-
ered by Ou et al. (2007) for a Neptune-mass planet. The authors find
non-smooth migration associated with non-axisymmetric surface
density enhancements near the gap edge. In this paper, we exam-
ine this effect in more detail for a Saturn-mass planet undergoing
type III migration.

This paper is organized as follows. Section 2 describes the set
of equations that we used to model the disc–planet system and
in Section 3 we describe the formation of vortensity rings using
numerical simulations and a semi-analytical model. We then study
their dynamical stability in Section 4. In Section 5, we present
hydrodynamic simulations of type III migration as a function of
viscosity, highlighting the effect of vortices at low viscosity. We
analyse the inviscid case in detail in Section 6 and the effects of
varying the disc mass as well as the type III migration of a Jupiter-
mass planet. Finally in Section 7 we summarize our results.

2 BA S I C E QUAT I O N S A N D M O D E L

We consider a planet of mass Mp orbiting a central star of mass
M∗. We adopt a cylindrical coordinate system (r, φ, z) where z is
the vertical coordinate increasing in the direction normal to the
disc plane for which the unit vector is k̂. We integrate vertically to
obtain a 2D flat disc model, for which the governing hydrodynamic
equations in a frame uniformly rotating with angular velocity �p k̂
are the continuity equation

D�

Dt
= −�∇ · u, (1)

and the equation of motion

Du
Dt

+ 2�p k̂ ∧ u = − 1

�
∇P − ∇�eff, (2)

where D/Dt is the total derivative and the vertically integrated
pressure P = c2

s (r)� with cs = h(GM∗/r)1/2. Here, � is the
surface density, u is the velocity and the effective gravitational and
centrifugal potential is given by

�eff = −GM∗
r

− GMp√
r2 + r2

p + 2rrp cos(φ − φp) + ε2

− 1

2
�2

pr
2 + GMp

r2
p

cos (φ − φp)

+ r

∫
G�(r ′, φ′)

r ′2 cos (φ − φ′)r ′dr ′dφ′ (3)

(Masset 2002). The last two terms on right-hand side (RHS) are in-
direct terms accounting for acceleration of the primary. In the above,
the cylindrical coordinates of the planet that is confined to remain in
the disc plane are (rp, φp, 0) and the softening length ε = 0.6H (rp),
where H (r) = hr is called the disc semithickness as it would cor-
respond to this quantity if the vertical structure is considered, and
h = 0.05 is the related constant aspect ratio. Although the numer-
ical and analytical work is based on the 2D equations, ε may be
regarded as accounting for the effect of the vertical stratification on
the vertically averaged potential calculation.

2.1 Vortensity conservation

The vortensity being the ratio of the z component of the vorticity
(hereafter just called the vorticity, ω) to the surface density is defined
to be

η = ω

�
≡ ωr + 2�p

�
, (4)

where ωr = ẑ · ∇ ∧ u is the relative vorticity seen in the rotating
frame. It is well known that in barotropic flows without shocks
it follows from (1) and (2) that the vortensity η = ω/� is con-
served for a fluid particle. When an isothermal equation of state
with variable sound speed as is used here is adopted, vortensity is
no longer strictly conserved. However, the sound speed varies on a
global scale so that when phenomena are considered on a local scale
vortensity is conserved to a good approximation in the absence of
shocks.

2.2 Hydrodynamic simulations

Our work is based on numerical simulations and specific parameters
depend on the problem at hand, as is described in the following
sections. Here, we present the general set up.
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For convenience, we adopt dimensionless units such that the
orbital radius of the planet, rp(t), is initially rp(0) = 2. Time is
expressed in units of the initial orbital period P0 = 2π/�p, where

�p =
√

GM∗/r3
p (0) is the planet’s initial Keplerian angular veloc-

ity. The unit of mass is taken to be the central mass M∗ which for
working purposes may be considered to be 1 M
. The disc has an
initially uniform surface density � = �0 × 10−4 with �0 being
a dimensionless constant taken to be in the interval [1, 9]. Some
simulations include a constant kinematic viscosity ν = ν0 × 10−5

in physical units of r2
p (0)�p, with ν0 being a dimensionless constant

with values taken to be in the interval [0, 1].
We use the FARGO code to solve for the disc response (Masset

2000a,b).FARGO evolves the hydrodynamic equations in global cylin-
drical co-ordinates centred on the central object. We used a non-
rotating frame for the simulations described here. Indirect terms
arising from the non-inertial frame are included in the potential.
The code uses a finite-difference scheme with van Leer upwind
advection, similar to the ZEUS code (Stone & Norman 1992) but it
employs a modified algorithm for azimuthal transport that allows
for large time-steps. We take 2π-periodic boundary condition in
azimuth and wave-damping boundary conditions at disc boundaries
(de Val-Borro et al. 2006). We remark that vortensity ring forma-
tion occurs as a result of shocks near the planet and therefore is
unaffected these boundary conditions.

In cases where the planet is allowed to migrate, a fifth order
Runge-Kutta method incorporated in FARGO was used to integrate
its equation of motion. The accuracy of this is governed by the sim-
ulation time-step which decreases in proportion with the resolution
which also determines the accuracy of the gravitational force cal-
culation. It is accordingly checked with the rest of the scheme by
increasing resolution. For our simulations this was varied by a factor
of four. We also ran simulations at the same resolution with halved
time-step. We found that simulation results were not affected. In
particular, the extent of planet migration induced by vortex scatter-
ing and the number of scattering events was found to be the same.
Thus, we believe the Runge–Kutta integrator is sufficiently accurate
to capture the orbital evolution.

3 R ING STRU C TURES IN D ISC–PLANET
I N T E R AC T I O N S

In this section, we present hydrodynamic simulations to show that
narrow surface density rings are brought about as a consequence of
the fact that highly peaked vortensity (being the ratio of the vorticity
to the surface density) rings are produced by flow through quasi-
steady shocks located close to the planet. For sufficiently massive
planets, the associated vortensity generation occurs as fluid ele-
ments execute a horseshoe turn in the co-orbital region. Focusing
on such cases, we construct a simple model that enables an estimate
of the shock location to be made together with rate of the vorten-
sity generation as material flows through it. Our model is in good
agreement with numerical simulations and confirms the process of
vortensity generation within a planet’s co-orbital region which later
plays an important role in modifying the flow structure there.

3.1 Vortensity generation by the shocks induced
by a Saturn-mass planet

We first consider the case with Mp = 2.8 × 10−4M∗ corresponding
to a Saturn-mass planet around a solar-mass star. Here, the planet
potential is switched on gradually over a time 5P0. The computation

Figure 1. Vortensity generation and destruction across shocks induced by
a Saturn-mass planet in an inviscid disc. The plot shows ln η = ln (ω/�).
Regions of increased vortensity are clearly visible as half horseshoes above
and below the planet. The increase occurs as material passes through parts
of the shock fronts that extend into the co-orbital region.

domain is r = [1, 3] and the resolution was Nr ×Nφ = 1024×3072,
corresponding to radial and azimuthal grid spacings of �r � 0.02rh

and r�φ � 0.05rh, respectively, where rh = [Mp/(3M∗)]1/3rp is
the planet’s Hill radius. The planet is held on fixed circular orbit
and the disc has density �0 = 1 with no explicit viscosity (ν = 0).

Fig. 1 shows the vortensity field at t = 7.07 close to the planet.
Vortensity is generated/destroyed as material passes through the
two spiral shocks. For the outer shock, vortensity generation occurs
for fluid elements executing a horseshoe turn (|r − rp|<∼ rh) while
vortensity is reduced for fluid that passes by the planet, but the
change is smaller in magnitude in the latter case. The situation
is similar for the inner shock, but some post-shock material with
increased vortensity continues to pass by the planet. This stream
begins at r � −rh but such feature is absent at the outer shock,
suggesting a lack of symmetry about r = rp, possibly resulting
from the non-uniform vortensity background being ∝ r−3/2. Note
that although a pre-shock fluid element that would be on a horseshoe
trajectory may in fact pass by the planet after crossing the shock, it
is clear that vortensity rings originate from passage through shock
fronts interior to the co-orbital region that would correspond to the
horseshoe region for free particle motion.

The streams of high vortensity eventually move around the whole
orbit outlining the entire co-orbital region. Fig. 1 shows that they
are generated along a small part of the shock front of length ∼rh.
This results in thin rings with a similar radial width. The fact that
they originate from horseshoe material can enhance the contrast as
post-shock inner disc horseshoe material is mapped from r − x to
r + x to become adjacent to post-shock outer disc material passing
by the planet.

We also show in Fig. 2 long-term evolution of average co-orbital
properties from a corresponding low-resolution run (Nr × Nφ =
256 × 768). The co-orbital region is taken to be the annulus
[rp−xs, rp+xs]. We fix xs = 2.5rh, as is typically measured from hy-
drodynamic simulations (Artymowicz 2004b; Paardekooper & Pa-
paloizou 2009) for intermediate or massive planets. In Appendix A
we show that in the particle dynamics limit xs

<∼ 2.3rh, comparable
to the value adopted above.

Vorticity generation occurs within t <∼ 25 orbits, after which it
remains approximately steady. For a Jupiter-mass planet, the time
taken to reach the corresponding state is about 50 orbits, but most

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 405, 1473–1490



1476 M.-K. Lin and J. C. B. Papaloizou

Figure 2. Long-term evolution of co-orbital properties for a Saturn-mass
planet held on fixed orbit. Vorticity, density and vortensity perturbations
are expressed relative to their values at t = 0. Angle brackets denote a
spatial average over the co-orbital region defined by the annulus r = [rp −
2.5rh, rp + 2.5xs ].

of the vorticity generation also occurs in the first ∼25 orbits. It
is important to note that subsequent vortensity increases occur in
narrow rings with fluctuations being due to instabilities associated
with them. The average surface density falls more gently as the
planet opens a gap, which is a requirement for the rings to be self-
supported. Consequently, we observe a rise in co-orbital vortensity.
Fig. 2 reflects modification of co-orbital properties on dynamical
time-scales due to shocks, so we expect migration mechanisms
which depend on co-orbital structure to be affected.

3.2 Location of the vortensity generation region for different
planet masses

The process of formation of vortensity rings discussed here differs
from that observed in Koller, Li & Lin (2003) and Li et al. (2005),
where the rings are generated by shocks outside the co-orbital re-
gion. This is because the authors used a smaller planet mass. To
illustrate the effect of reducing the mass, we ran simulations with
Nr × Nφ = 256 × 768 for Mp × 104 = 1, 2.8 and 10. Fig. 3
compares azimuthally averaged vortensity perturbations induced in
each case after 14.14 orbits. The intermediate- and high-mass cases
are qualitatively similar, having �(ω/�) maxima at r − rp ∼ ±2rh

and minima at r − rp ∼ 3rh. The magnitude of �(ω/�) increases
with Mp because higher masses induce higher Mach number shocks.
As the half-width of the horseshoe region is xs = 2.5rh for such
masses, vortensity rings are co-orbital features.

Figure 3. Azimuthally averaged vortensity perturbation for different planet
masses.

The low-mass Mp = 10−4 case has much smaller |�(ω/�)|.
There is a vortensity maximum at r − rp = −3rh but nothing of
similar magnitude at r−rp > 0. Paardekooper & Papaloizou (2009)
found the co-orbital half-width, in the limit of zero softening for
low-mass planets, to be

xs = 1.68(Mp/h)1/2rp. (5)

For Mp = 10−4, h = 0.05, xs = 2.33rh. Non-zero softening gives
a smaller xs . Hence, vortensity rings for low-mass planets occur
outside the co-orbital region as is confirmed in our simulations and
they are very much weaker.

3.3 A semi-analytic model for co-orbital vortensity generation
by shocks

We now construct a semi-analytic model describing the process
of shock-generation of vortensity. In this way, we gain an under-
standing of the physical processes involved and later how they lead
to strong torques and fast migration of the planet and under what
conditions simulations can represent them accurately.

More specifically, we model the outer spiral shock in Fig. 1. To
do this, we need the pre-shock flow field, the shock front location
and then to evaluate the vortensity change undergone by material
as it passes through the shock. We now consider these in detail.

3.3.1 Flow field

We first simplify the geometry by adopting the shearing box ap-
proximation (e.g. Paardekooper & Papaloizou 2009). As we are
concerned with the flow near the planet, we consider a local Carte-
sian co-ordinate system (x, y) co-rotating with the planet at angular
speed �p and with origin at its centre of mass. Without the planet,
the velocity field is Keplerian u = (0, −3�px/2). In order to deal
with the pre-shock flow, we make the assumption that pressure ef-
fects can be ignored when compared to the planet potential. This
ballistic approximation is appropriate for a slowly varying super-
sonic flow as is expected to be appropriate for the pre-shock fluid.
The velocity u satisfies the local form of equation (2) with P = 0
and the effective potential

�eff = − GMp√
x2 + y2 + ε2

− 3

2
�2

px
2 (6)

and thus follows from particle dynamics. The indirect terms are ne-
glected in this approximation. We write a fluid particle’s trajectory
in a steady-state flow in the form of x = x(y) and the corresponding
velocity field as u = u(y). Noting that on a particle trajectory we
have D

Dt
= uy

d
dy

, it follows from the local form of (2) that on a par-
ticle trajectory we have the following system of three simultaneous
first-order differential equations:

du2
y

dy
= −4�pux − 2Mpy

(x2 + y2 + ε2)3/2
≡ Q, (7)

d

dy

(
uxu

2
y

) = uy

[
3�2

px − Mpx

(x2 + y2 + ε2)3/2

]
+ uxQ

+ 2�pu
2
y,

(8)

d

dy

(
xu2

y

) = xQ + uxuy. (9)

We use these to solve for the state vector U(y) = [u2
y, uxv

2
y, xu2

y]
in x > 0 for a particular particle. The boundary condition is

(uy, ux, x) → (−3�px0/2, 0, x0) as y → ∞, (10)
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where x = x0 is the particle’s unperturbed path. The totality of paths
obtained by considering a continuous range of x0 then constitutes
the flow field. Having obtained the velocity field, we use vortensity
conservation to obtain �. The surface density is then

�(x, y) = 2�0

�p
(ωr + 2�p), (11)

where the unperturbed absolute vorticity is ω = �p/2. Numerically,
we calculated the relative vorticity by relating it to the circulation
through

ωr � 1

�A

∮
u · dl, (12)

where the integration is taken over a closed loop about the point
of interest and �A is the enclosed area. This avoids errors due to
numerical differentiation on the uneven grid in (x, y) generated by
solving the above system.

3.3.2 Location of the shock front

The physical reason for shock formation is the fact that the planet
presents an obstacle to the flow. Where the relative flow is sub-
sonic, the presence of this obstacle can be communicated to the
fluid via sound waves emitted by the planet. In regions where the
relative flow is supersonic, the fluid is unaware of the planet via
sound waves (but the planet’s gravity is felt). We estimate the lo-
cation of the boundary separating these two regions by specifying
an appropriate characteristic curve or ray defining a sound wave.
This is a natural location for shocks. Applying this idea to Keple-
rian flow, Papaloizou, Nelson & Snellgrove (2004) obtained a good
match between the predicted theoretical shock front and the wakes
associated with a low-mass planet. For general velocity field u, the
characteristic curves satisfy the equation

dys

dx
= û2

y − 1

ûx ûy −
√

û2
x + û2

y − 1
, (13)

where ûi = ui/cs . The positive sign of the square root has been
chosen so that the curves have negative slope in the domain x > 0
with uy < 0. As the fluid flows from super-sonic (y > ys) to
subsonic (y < ys), fluid located at y = ys begins to know about the
planet through pressure waves (Papaloizou et al. 2004). In Keplerian
flow, the rays defining the shock fronts originate from the sonic
points at x = ±2H/3, y = 0. In a general flow, sonic points where
|u| = cs , at which the rays may start, lie on curves and can occur
for x < 2hrp/3. The starting sonic point for solving equation (13)
that we eventually adopted has x = 0 and the value of y > 0 that is
furthest possible from the planet.

3.3.3 Vorticity and vortensity changes across a shock

The jump in absolute vorticity [ω] is readily obtained by resolving
the fluid motion parallel and perpendicular to the shock front (e.g.
Kevlahan 1997). As we do not solve the energy equation, shocks
are locally isothermal and our expression differs from those of
Kevlahan (1997), accordingly a brief derivation of [ω] is presented
in Appendix B. The result for a steady shock is

[ω] = − (M2 − 1)2

M2

∂u⊥
∂S

+ (M2 − 1)ω −
(

M2 − 1

u⊥

)
∂c2

s

∂S
, (14)

where u⊥ is the pre-shock velocity component perpendicular to the
shock front, M = u⊥/cs is perpendicular Mach number and cs =

hr−1/2 is the sound speed. ∂/∂S is the derivative along the shock. It
is important to note that for (14) to hold, the direction of increasing
S, the direction of positive u⊥ and the vertical direction should form
a right-handed triad. We take increasing S as moving away from the
planet. The local isothermal equation of state produces the last term
on RHS of equation (14). Because of the slow variation of cs , its
contribution is not important in this application.

The vortensity jump [ω/�] follows immediately from equa-
tion (14) as[ ω

�

]
= − (M2 − 1)2

�M4

∂u⊥
∂S

−
(

M2 − 1

�M2u⊥

)
∂c2

s

∂S
, (15)

which essentially reduces to the expression derived by Li et al.
(2005) if cs = constant (and a sign change due to different con-
vention). The sign of [ω/�] depends mainly on the gradient of
u⊥ (or M) along the shock. As in our case u⊥ < 0, the width of
the increased vortensity rings produced is determined by the length
along the shock where |M| is increasing. Note that [ω/�] does not
depend explicitly on the pre-shock vortensity, unlike the absolute
vorticity jump.

3.3.4 Comparison of the results of the semi-analytic model
with numerical simulations

We now compare the results of hydrodynamic simulations with
those obtained from the model. First, we illustrate the particle paths
that constitute the flow field together with the shock fronts obtained
by assuming coincidence with the characteristic curves that are
obtained from the semi-analytic model in Fig. 4. A polynomial fit
to the simulation shock front is also shown. Particle paths cross for

Figure 4. Solid lines: particle paths from the reduced zero-pressure mo-
mentum equations (equations 7–9); thick lines: curves composed of sonic
points on which |u| = cs ; dotted lines: theoretical shock fronts; dash–dotted
line: solution to equation (13) for Keplerian flow; dashed line: polynomial
fit to simulation shock front. The actual shock front begins at a sonic point
around x = 0.2rh.
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x > rh, y < −2rh so that the neglect of pressure becomes invalid.
Accordingly, the solution to equation (4) should not be trusted in
this region. Fortunately, vortensity generation occurs at a distance
from the planet that is within rh, where pre-shock particle paths do
not cross.

In Fig. 4, the estimated shock location is qualitatively good and
tends to the Keplerian solution further away. The important feature
is that the shock can extend close to x = 0, across horseshoe orbits.
If the flow were purely Keplerian, there could be no significant
vortensity generation close to x = 0 because the flow becomes
subsonic there. Furthermore, only circulating fluid can be shocked
in that case. Shock generation of vortensity inside the co-orbital
region is only possible for sufficiently massive planets that induce
large enough non-Keplerian velocities.

The key quantity determining vortensity generation is the per-
pendicular Mach number. Fig. 5 compares M from simulation and
model. Although the semi-analytic model gives a shock Mach num-
ber that is somewhat smaller than that found from the simulation,
all curves have |M| increasing from x = 0 → 1.3rh which is the
important domain for vortensity generation. Thus, equation (15) im-
plies vortensity generation in all cases. Fig. 6(a) illustrates various
combinations of semi-analytic modelling and simulation data that
have been used to estimate the vortensity jump across the shock.
The qualitative similarities between the various curves confirms that
vortensity generation occurs within co-orbital material about 1 Hill
radius away from the planet. It is shocked as it undergoes horseshoe
turns.

Assuming that material is mapped from x → −x as it switches
to the inner leg of its horseshoe orbit, we expect the outer spiral
shock to produce a vortensity ring peaked at r − rp ∼ −0.5rh of
width O(rh) [= O(H)], with a similar discussion applying to the
inner shock which is expected to produce a vortensity ring peaked
at r − rp ∼ 0.5rh. Of course, as a fluid element moves away from
the U-turn region, |r − rp| increases, but it remains on a horseshoe
orbit. Thus, thin vortensity rings are natural features of the co-orbital
region for such planet masses.

We have also tested our model for Mp = 2 × 10−4 in Fig. 6(b).
There is still a good qualitative match between the simulation and
the model; even though lowering Mp makes the zero-pressure ap-
proximation, adopted to determine the semi-analytic flow field, less

Figure 5. Perpendicular Mach number squared M2 along the outer spiral
shock illustrated in Fig. 1. Asterisks: simulation data; dotted line: M2 ob-
tained from the simulation shock and the semi-analytic flow; solid line: M2

obtained from the semi-analytic shock front and flow.

(a)

(b)

Figure 6. Semi-analytic and actual vortensity jumps across a shock in the
co-orbital region. Asterisks are measured from the simulations. The dashed
lines were obtained by using pre-shock simulation data coupled with the
jump condition specified by equation(15). The dotted lines were obtained
using the semi-analytic flow field together with the location of the shock
front obtained from the simulation. The solid curves correspond to the semi-
analytic model for both the flow field and shock front.

good. Decreasing Mp shifts vortensity generation away from the
planet in the semi-analytic model, as is also observed in the hy-
drodynamic simulation (Fig. 3). In this case, there is no vortensity
generation in r − rp < 0.5rh but vortensity rings are still co-orbital
(with peaks at ∼ 0.7rh).

We remark that steep vortensity gradients are associated with
dynamical instabilities (e.g. Papaloizou & Pringle 1985) and this is
explored in more detail below.

4 DYNAMI CAL STABI LI TY OF VO RTENSITY
R I N G S

Having established the origin of the vortensity rings and the mech-
anism for producing them, we go on to study the linear stability
of the shock-modified protoplanetary disc model described above.
This is an important issue as instability can lead to their breaking
up into mobile non-axisymmetric structures which can affect the
migration of the planet significantly.
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The linear stability of inviscid barotropic axisymmetric rings and
discs without a planet is well developed (Papaloizou & Pringle 1984,
1985; Papaloizou & Lin 1989). The extension to a non-barotropic
equation of state was undertaken more recently (Lovelace et al.
1999; Li et al. 2000). This work indicates that sharply peaked sur-
face density or vortensity features in the disc are associated with
dynamical instabilities. It is directly relevant to the types of con-
figuration that we have found to be produced by the disc planet in-
teractions described above. For example, de Val-Borro et al. (2007)
considered the linear instability of gap edges associated with a
Jupiter-mass planet and connected it to vortex formation there.

Here, we consider the stability of the partial gap opened by a
Saturn-mass planet, for which type III migration is expected in a
massive disc. In order to be able to do, this we need to be able to de-
fine an appropriate background equilibrium axisymmetric structure
to perturb. We show that this is possible.

4.1 Basic background state

The basic state should be axisymmetric and time independent with
no radial velocity (∂/∂φ = ∂/∂t = ur = 0). To set this up,
we suppose the vortensity profile η(r) is known (e.g. via shock
modelling as above) and that accordingly we have

η(r) = 1

r�

d

dr
(r2�). (16)

The radial momentum equation gives

r�2 = 1

�

dP

dr
+ GM∗

r2
. (17)

Using these together with the locally isothermal equation of state,
P = h2GM∗�/r, h being the constant aspect ratio, we obtain a
single equation for � in the form

h2 d2 ln �

dr2
= h2 − 1

r2
+ 2�η√

GM∗

(
1 − h2

r
+ h2 d ln �

dr

)1/2

−2h2

r

d ln �

dr
. (18)

We solve equation (18) for � with η(r) taken as an azimuthal
average from the fiducial simulation described in (Section 3.1) at a
time at which vortensity rings have developed. These structures are
essentially axisymmetric apart from in the close neighbourhood of
the planet. They are illustrated in Fig. 7. The boundary conditions is
� = �0 = 1 at r = 1.1, and r = 3. These conditions are consistent
with the fact that shock modification of the surface density profile
only occurs near the planet (r = 2).

A comparison between hydrostatic surface density and angular
velocity profiles obtained by solving equation (18) with those ob-
tained as azimuthal averages from the corresponding simulation is
illustrated in Fig. 8(a) and (b). The agreement is generally very good
indicating that the adoption of the basic axisymmetric state defined
by the simulation vortensity profile, together with equation (17), for
stability analysis should be a valid procedure. Fig. 8(a) shows that
vortensity rings reside in the horseshoe region just inside the gap.
At a surface density extrema, equation (18) implies that

h2 d2 ln �

dr2
= h2 − 1

r2
+ 2�η

√
1 − h2

GM∗r
.

Since h � 1, if η is sufficiently large then d2�/dr2 > 0. Hence,
vortensity maxima will coincide with surface density minima.
In our basic state, local minima and maxima are separated by
O(H) (�0.1). As vortensity rings originate from spiral shocks,

Figure 7. A contour plot of ln (�/ω) when the vortensity ring like structures
have formed in the co-orbital region. These are almost axisymmetric apart
from in the region very close to the planet. The centre of the small square
marks the planet position.

(a) Σ

(b) Ω Ωk

Figure 8. A comparison of the axisymmetric surface density and angular ve-
locity (scaled by Keplerian speed) profiles obtained by solving equation (18),
with the same quantities obtained by azimuthally averaging the simulation
data over 2π. The azimuthally averaged vortensity profile from simulation
data is also shown (dotted line). The co-orbital region is r = [1.77, 2.22].
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equation (18) demonstrates the link between shocks and gap for-
mation. Given the double-ringed vortensity profile η(r), which may
be estimated by modelling shocks as described above, we can solve
equation (18) for the axisymmetric surface density profile �(r). We
will then find that in order for the rings to be in hydrostatic equilib-
rium a gap in the surface density must be present around the planet’s
orbital radius, which is in between the vortensity peaks. Sufficiently
massive planets induce strong shocks, implying larger vortensity
maxima, and hence deeper surface density minima or gaps. Note
that the processes described above account for gap formation within
the coorbital region as arising from angular momentum transport
occurring as material passes through shocks. The shocks associated
with high-mass planets in the non-linear regime develop from the
wakes associated with Lindblad resonances that occur for small
mass planets in the linear regime. Thus, this angular momentum
transport can be connected with the Lindblad torques considered in
the linear regime.

4.2 Linearized equations

Having established the ring-basic state, we perform linear analysis
to determine its stability. Barotropic discs were studied in 3D and
2D by Papaloizou & Pringle (1987) where edges and the roles of the
vortensity and outgoing density waves were first considered. The
non-barotropic 2D disc case was studied by Li et al. (2000) who
assumed that fluid elements moved adiabatically. Our analysis is
for a 2D disc with a locally isothermal equation of state as adopted
in the simulations. We obtain the governing equation for locally
isothermal perturbations by linearizing the continuity equation and
the equation of motion as seen in the non-rotating frame in the form

∂�

∂t
+ ∇ · (�u) = 0 (19)

∂u
∂t

+ u · ∇u = − 1

�
∇P − ∇�, (20)

where P = c2
s � with c2

s = h2GM∗/r. The total potential � is
assumed fixed. We set⎛
⎝ �

ur

uφ

⎞
⎠ →

⎛
⎝ �

0
uφ

⎞
⎠ +

⎛
⎝ δ�(r)

δur (r)
δuφ(r)

⎞
⎠ × exp i(σ t + mφ),

where the first term on the RHS corresponds to the basic background
state, σ is a complex frequency and m, the azimuthal mode number,
is a positive integer. The linearized equation of motion (equation 20)
gives

δur = − c2
s

κ2 − σ̄ 2

(
iσ̄

dW

dr
+ 2im�W

r

)
(21)

δuφ = c2
s

κ2 − σ̄ 2

(
�η

dW

dr
+ mσ̄

r
W

)
, (22)

where W ≡ δ�/� is the fractional density perturbation, κ2 =
2��η is the epicycle frequency expressed in terms of the vortensity
η and σ̄ ≡ σ + m�(r) = σR + m�(r) + iγ is the Doppler-shifted
frequency with σR and γ being real.

Substituting equations (21)–(22) into the linearized continuity
equation

iσ̄W = − 1

r�

d

dr
(r�δur ) − im

r
δuφ (23)

yields a governing equation for W of the form

d

dr

(
�

κ2 − σ̄ 2

dW

dr

)

+
{

m

σ̄

d

dr

[
κ2

rη(κ2 − σ̄ 2)

]
− r�

GM∗h2
− m2�

r2(κ2 − σ̄ 2)

}
W = 0.

(24)

This equation leads to an eigenvalue problem for the complex eigen-
value σ. Corotation resonance occurs at σ̄ = 0 which requires γ = 0
for it to be on the real axis. Then for the equation to remain regular
the gradient of the terms in square brackets must vanish at corota-
tion. This results in the requirement that the gradient of ηr vanishes
there. Because the sound speed varies with radius, this is slightly
different from the condition that the gradient of η should vanish
which applies in the barotropic strictly isothermal case (Papaloizou
& Pringle 1984, 1985; Papaloizou & Lin 1989). However, because
η varies vary rapidly in the region of interest and the modes we
consider are locally confined in radius, this difference is of no es-
sential consequence. Lindblad resonances occur when κ2 − σ̄ 2 = 0,
but as is well known and can be seen from formulating a governing
equation for δur rather than W, these do not result in a singularity.

4.2.1 Simplification of the governing ODE

It is useful to simplify equation (24) to gain further insight. To
to this, we consider modes localized around the corotation circle
such that the condition κ2 � |σ̄ 2| is satisfied. Beyond this region
the mode amplitude is presumed to be exponentially small. Now,
recognizing that GM∗h2/r = c2

s , the ratio of the second to last to
last term in equation (24) is

r2κ2

m2c2
s

∼ 1

m2h2
.

For a thin disc, h � 1, so if we consider m = O(1) this ratio is
large and the last term in equation (24) can be neglected. This is
also motivated by the fact that only low m modes are observed in
simulations. Doing this and replacing κ2 −|σ̄ 2| by κ2, equation (24)
reduces to the simplified form

d

dr

(
rc2

s �

κ2

dW

dr

)
+

{
m

σ̄

d

dr

[
c2
s

η

]
− r�

}
W = 0. (25)

We comment that in this form equation (25) is valid for any fixed
cs profile.

4.2.2 Necessity of extrema

Multiplying equation (25) by W ∗ and integrating between [ r1, r2]
assuming, consistent with a sharp exponential decay, that W = 0
or dW/dr = 0 at these boundaries, we find that∫ r2

r1

m

σ̄

(
c2
s

η

)′
|W |2dr =

∫ r2

r1

r�|W |2dr +
∫ r2

r1

r�c2
s

κ2
|W ′|2dr,

(26)

where derivatives are indicated with a prime. Since the RHS is real,
the imaginary part of the left and side must vanish. For general
complex σ , this implies that

γ

∫ r2

r1

m

(σR + m�)2 + γ 2

(
c2
s

η

)′
|W |2dr = 0. (27)

Thus, for a growing mode (γ �= 0) to exist we need (c2
s /η)′ = 0 at

some r in [ r1, r2]. For our disc, c2
s varies on a scale O(r), but η varies
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on a scale H � r , thus given that the range of relative variation of
the vortensity η is of the order of unity we infer that this quantity
needs to have stationary points in order for there to be unstable
modes. In the barotropic case, Papaloizou & Lin (1989) have shown
that vortensity maxima are stable while minima are associated with
instabilities. We expect these conclusions to apply here also because
of the local nature of the modes of interest. We can approximate
c2
s ∼ constant, or equivalently adopt a barotropic equation of state

locally without changing the character of the problem. Referring
back to Fig. 8(a), it is clear that our basic state satisfies the necessary
criterion for instability.

4.3 Numerical solution of the eigenvalue problem

We have solved the eigenvalue problem for the full equation (24)
using a shooting method that employs an adaptive Runge–Kutta in-
tegrator and a multidimensional Newton method (Press et al. 1992).
For low m (≤ 3), unstable modes mainly comprise an evanescent
disturbance near co-rotation (or the vortensity minimum at r = r0)
and the simple boundary condition W = 0 applied at the inner
boundary r/rp = 0.55 and the outer boundary r/rp = 1.5 produces
good results. As m increases, the Lindblad resonances approach
r = r0 and a significant portion of the mode is wave like requiring
the application of outgoing radiation boundary conditions. We de-
termined these using the WKBJ approximation (see e.g. Korycansky
& Papaloizou 1995).

4.3.1 Eigenmode calculations

We now discuss some example solutions to illustrate the instability
of gap edges. We recall that the simulations indicate the ultimate
dominance of small m values. One class of mode is associated with
the inner vortensity ring while another is associated with the outer
ring.

As a typical example of the behaviour that is found for low m,

each type of eigenmode for h = 0.05 and m = 3 is shown in Fig. 9.
The background vortensity profile is also shown. The instabilities
(γ < 0) are associated with the vortensity minima at the inner and
outer gap edges, as has also been observed by Li et al. (2005) in
simulations. The modes are evanescent around corotation and the
vortensity peaks behave like a wall through which the instability
scarcely penetrates. The mode decays away from r = r0. For m =
3, Lindblad resonances occur at rL/r0 = 0.76, 1.21 from which
waves travelling away from corotation are emitted. However, the
oscillatory amplitude is at most �20 per cent of that at r = r0.
Hence, for low-m the dominant effect of the instability will be due
to perturbations near co-rotation. Increasing m brings rL even closer
to r0, waves then propagate through the gap. The growth time-scale
of the inner mode with m = 3 is ∼14P0. The outer mode has a
growth rate that is about three times faster. Very similar results and
growth rates were found for m = 1 and 2. Since the instability
grows on dynamical time-scales, we expect non-linear interaction
of vortices to occur within few tens of orbits and to affect planet
migration if the latter were also on similar or longer time-scales.

After the onset of linear instability and the formation of several
vortices, it has been observed that non-linear effects cause them to
eventually merge into a single vortex (de Val-Borro et al. 2007). This
eventually interacts with the planet. In the fiducial simulation, rapid
migration begins at 55P0 which is compatible with the characteristic
growth times found from linear theory.

Fig. 9 indicates that the outer edge is more unstable than inner
edge. The vortensity peaks are of similar height, but the inner mini-

(a) Inner edge

(b) Outer edge

Figure 9. m = 3 eigenmodes obtained with the boundary condition W = 0.

The perturbed quantities are plotted as |W | (solid line, black), |δur | (dotted
line, blue), |δuφ | (dashed line, green) each scaled by their maximum values
as functions of r for the interval [1.1, 3.0]. The background vortensity profile
is also shown (dash–dotted line, red). The inner and outer vortensity minima
correspond to r0 = 1.7 and 2.3, respectively.

mum in η is less pronounced than outer because of the background
profile. In this sense, the outer edge profile is more extreme, and
hence less stable.

For illustration, we show in Fig. 10 eigenfunctions for the m = 7
mode of the outer ring. The equivalent mode was not found for
the inner edge because high m are quenched. Radiative boundary
conditions were adopted in this case. Although the WKBJ condition
is the appropriate physical boundary condition, its application here
is uncertain because the boundaries cannot be considered ‘far’ from
the gap. However, solutions are actually not sensitive to boundary
conditions as reported by de Val-Borro et al. (2007). Note the two
spikes in δur and δuφ at r/r0 � 0.90, 1.09 which correspond to
Lindblad resonances. These are not singularities as can be seen from
W (r) which is smooth there; other eigenfunctions were calculated
from the numerical solution for W and thus may be subject to
numerical errors. We see that increasing m increases the amplitude
in the wave-like regions of the mode, but the growth rate is smaller
than for m = 3. As the instability operates on dynamical time-
scales, low-m modes will dominate over high-m modes, particularly
through non-linear evolution and interaction of the former.

We have also examined solutions with h = 0.03, 0.04 and 0.06.
In general, as h is lowered, γ becomes more negative. As the disc
temperature is lowered with h, there are stronger shocks, and larger
modifications to the disc profile, or steeper gradients. Hence, we
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Figure 10. m = 7 eigenmodes associated with the outer edge, obtained
with WKBJ boundary condition. The perturbed quantities |W | (solid line,
black), |δur | (dotted line, blue), |δuφ | (dashed line, green) each scaled by
their maximum values are plotted as functions of r for the interval [1.1, 3.0].
The background vortensity profile is also shown (dash–dotted line, red). The
radius of the outer vortensity minima is r0 = 2.3.

expect edges to become more unstable. In the case of h = 0.03,
the rings become unstable (vortices form) before they reach an
approximately axisymmetric state.

Having understood the origin of vortices, we proceed to study
their effect on planet migration, in the type III regime.

5 SI M U L AT I O N S O F FA S T M I G R AT I O N
D R I V E N BY VO RT E X – P L A N E T IN T E R AC T I O N

We now present hydrodynamic simulations of disc–planet interac-
tions where the planet is free to migrate, so that rp = rp(t). Vortices
that form in the co-orbital region near the gap edge move through
the co-orbital region and cause torques to be exerted on the planet.
The interaction between such large-scale structures and the planet
leads to non-monotonic type III migration and is the focus of this
section. The type III torque increases with the co-orbital mass deficit
δm:

δm = 8πrpBp

[
xsw(−xs) −

∫ 0

−xs

w(x)dx

]
(28)

(Masset & Papaloizou 2003), where w = �/ω and Bp = 1
2r

∂r (r2�)
is the Oort constant evaluated at the planet radius rp. Hence, the
inverse vortensity �/ω will be central to the discussion.

The simulations described below have computational domain
r = [ 0.4, 4.0 ] with resolution Nr × Nφ = 768 × 2304. The planet
is set in circular orbit after which the initial radial velocity is set to
be vr = −3ν/2r, as expected for a steady accretion disc (Lynden-
Bell & Pringle 1974). The initial surface density is chosen to be
�0 = 7.0, corresponding to a few times the value appropriate to
the minimum-mass solar nebula in order to achieve rapid migration
when a typical viscosity ν0 = 1 is used (Masset & Papaloizou
2003; de Val-Borro et al. 2007). For most of these simulations
the full planet potential is applied from t = 0. Similar results
were obtained if the potential is switched on over 5 orbits as in
Section 3 where the formation of vortensity rings was discussed.
In those cases, vortices were observed to form. Switching on the
planet potential over several orbits does not weaken the instability,
vortensity rings build up and vortex–planet interactions still occur
(see below), although at a slightly later time than if the planet is
introduced at t = 0.

Type III migration is numerically challenging due to its depen-
dence on flow near the planet, one issue being the numerical reso-

lution. D’Angelo, Bate & Lubow (2005) reported the suppression
of type III migration in high-resolution simulations. The main mi-
gration feature discussed below is brief phases of rapid migration
due to vortex–planet interaction, which does not depend on con-
ditions very close to the planet. Our preliminary experiments with
resolutions of Nr × Nφ = 192 × 576, 256 × 768 both show such
behaviour; thus, we believe the higher resolution used below is
sufficient to study this interaction.

The locally isothermal equation of state implies no temperature
changes due to the planet. This could lead to mass accumulation
in the Hill sphere and thus spurious torques from within. Pepliński
et al. (2008a) used an equation of state where temperature increases
close to the planet. We have also considered this model where
the modification is applied to within the Hill sphere and at t = 0,
cs(r = rp) is 18 per cent higher than the local isothermal value. This
again yields vortex–planet scattering, which is an indication that
significant torque contribution during the interaction is not due to
material inside the Hill sphere. Qualitatively, the same phenomenon
is observed for the case where the temperature increase is 38 per
cent.

Finally, there is the issue of softening. We set ε = 0.6H as before,
but have considered softenings of 0.5H and 0.7H and both cases
display vortex–planet interaction, although at earlier times when ε

is lower. This is expected since smaller softening has the same effect
as increasing the planet mass, and thus producing a more unstable
disc.

5.1 Viscosity and vortices

We have shown above that the ring structures formed by a Saturn-
mass planet in our case are linearly unstable. It has been shown
through numerical simulations that such instabilities are expected
to lead to vortex production (Li et al. 2001) and this has been seen
when steep surface density gradients are present outside the co-
orbital region of a lower mass planet (Koller et al. 2003; Li et al.
2005). Non-monotonic migration was observed by Ou et al. (2007)
when a vortex is present inside the co-orbital region, but the role of
the vortex was not analysed in detail.

Fixed orbit simulations of disc–planet interactions show that a
dimensionless viscosity of the order of 10−5 suppresses vortex for-
mation (de Val-Borro et al. 2007). As a consequence, studies using
viscous discs typically yield smooth migration curves. We have
confirmed this in our case with numerical simulations.

5.2 Dependence of the migration rate on viscosity

We first study type III migration as a function of viscosity. The
effect of vortices appears at low viscosities. Fig. 11 shows the
orbital semimajor axis a(t) for viscosities ν0 = 0–1. As the orbit is
very nearly circular, a(t) is always close to the instantaneous orbital
radius rp(t). In order to estimate the residual numerical viscosity,
we reduced the value of ν0. We found that only for ν0 below ∼10−3

were almost identical a(t) curves to that obtained with ν0 = 0
produced. This suggests that the numerical viscosity is of the order
of ν = O(10−8) which is much smaller than the typically adopted
physical viscosity of ν = 10−5. We remark that this estimate of the
magnitude of the numerical viscosity is in line with that made by
de Val-Borro et al. (2007) for the non-Cartesian grid based codes
they used.

With the standard viscosity ν0 = 1, a → a/2 in less than 100P0,
implying type III migration (Papaloizou et al. 2007). Comparing
different ν0, a(t) is indistinguishable for 0 < t <∼ 15, since viscous
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Figure 11. Type III migration as a function of viscosity.

time-scales are much longer than the orbital time-scale. At t = 20,
|ȧ| increases with ν0. In the limit ν → 0, the horseshoe drag for a
fixed orbit is ∝ ν (Balmforth et al. 2001; Masset 2002). However,
in this case ȧ �= 0 there is a much larger rate-dependent torque
responsible for type III migration, for which explicit dependence
on viscosity has not been demonstrated analytically.

Migration initially accelerates inwards (ȧ, ä < 0) and subse-
quently slows down at r ∼ 1.4 (independent of ν0). For ν0 =
1.0, 0.5, migration proceeds smoothly, decelerating towards the
end of the simulation at which point the orbital radius has de-
creased by a factor of ∼2.7. Migration curves for ν0 = 1.0 and
0.5 are quantitatively similar. Lowering ν0 further enhances the de-
celeration at r ∼ 1.4 until in the inviscid limit the migration stalls
before eventually restarting.

Despite differences in detail, the overall extent of the orbital
decay in all of these cases is similar. This is expected in the model
of type III migration where the torque is due to circulating fluid
material switching from rp − xs to rp + xs . In this model, the extent
of the orbital decay should not depend on the nature of the flow
across rp, but only on the amount of disc material participating
in the interaction, or equivalently the disc mass and this does not
depend on ν. On the other hand, the flow may not be a smooth
function of time with migration proceeding through a series of fast
and slow episodes as observed in Fig. 11. Our argument is only
valid if migration proceeds via the type III mechanism. We have
not explored viscosities, ν, exceeding a few times 10−5 in detail
but migration time-scales seen in test cases indicate that type III
migration then ceases to operate.

5.3 Stalling of type III migration

The issue discussed here is what inhibits the growth of |ȧ|? De-
scriptions of (inward) type III migration usually assume that the
libration time at rp − xs is much less than the time to migrate across
the co-orbital region (Masset & Papaloizou 2003). This implies that

χ ≡ |ȧ|πa

|Ap|x2
s

� 1, (29)

where Ap = 1/2(∂�/∂r) at rp(t) and a is the changing semimajor
axis. Papaloizou et al. (2007) present a similar critical rate, but
with the same dependence on �, a, xs . If equation (29) holds,
co-orbital material is trapped in libration on horseshoe orbits and
migrates with the planet. When χ >∼ 1, the horseshoe region shrinks
to a tadpole, and material is trapped in libration about the L4 and
L5 Lagrange points (as observed by Pepliński et al. 2008b). This

Figure 12. Evolution of χ , the ratio of libration-to-migration time-scale
as a function of viscosity. Libration time is measured at rp − r = xs and
migration time-scale is that across xs .

can tend to remove the co-orbital mass deficit δm1 which reduces
the migration torque. Comparing χ for cases shown in Fig. 12,
it is clear that migration with χ � 1 (hereafter in this context
termed as slow migration even though it may be much faster than
type II migration) does not always hold, with max(χ ) ∼ 0.6 being
comparable for different ν0. By following the evolution of a passive
scalar, we checked that horseshoe material no longer migrates with
the planet when |ȧ| is large. This occurs for all ν but only the low-
viscosity cases exhibit stalling. Hence, while horseshoe material
is lost due to fast migration, this is not responsible for stopping
it.2 By examining the inviscid case in detail later, we show that
the stopping of migration is due to the flow of a vortex across the
co-orbital region, where some of it becomes trapped in libration.

5.4 The connection between the vortensity and fast migration

The difference between the value of the inverse of the vortensity
�/ω evaluated in the co-orbital region and the value associated with
material that passes from one side of the co-orbital region to the
other defines the co-orbital mass deficit δm in Masset & Papaloizou
(2003). It is often assumed that the vorticity is slowly varying so
that the difference in the values of inverse vortensity reduces, to
within a scaling factor, simply to the difference in the values of the
surface density.

Although Masset & Papaloizou (2003) assumed steady, slow
migration in the low-viscosity limit, it is nevertheless useful to
examine its evolution in relation to the migration of the planet
(Fig. 11). Fig. 13 shows the azimuthally averaged �/ω-perturbation
following planet migration. Introducing the planet modifies the co-
orbital structure on orbital time-scales. Vortensity rings develop at
r−rp � ±2rh for t <∼ 10 (Fig. 13a). We showed above that this initial
modification is due to spiral shocks extending into the horseshoe
region and also that the ring-structure is unstable to the production
of vortices.

Increasing ν reduces the rings’ amplitude, but their locations are
unaffected. Taking the length-scale of interest as l = rh � 0.1, for
ν0 = 1 the viscous time-scale is td = l2/ν � 56P0. Hence, at t <∼ 10
viscous diffusion is not significant even locally. Thus, ring forma-
tion is not sensitive to the value of ν. We note the correspondence
between the similarity of the �/ω profiles and similarity in a(t) for

1We can regard the process of changing from a partial gap extending for
nearly the whole azimuth to one with a smaller azimuthal extent, as gap
filling.
2One may intuitively expect migration to be self-limited.
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(a) (b)

(c) (d)

Figure 13. �/ω-perturbation for different viscosities for the case �0 = 7
and Mp = 2.8 × 10−4. Here, we use ω = r−1∂r (ruφ) to approximate the
vorticity. This is valid since |ur | � |uφ |.

different ν in the initial phase. That is, the co-orbital disc structure
determines migration (Masset & Papaloizou 2003). Dependence
on the value of the viscosity is seen beyond t = 50 (Fig. 13b),
producing much smoother (and similar) profiles for ν0 = 0.5 and
ν = 1.0.

For a fixed orbit, we would expect profiles to be smoothed on a
viscous time-scale. When there is migration, we should also con-
sider advection of vortensity (in the planet frame). Following the
planet, the perturbed profile can be smooth if the planet migrates
through the background without carrying its original co-orbital ma-
terial. This can be regarded as the loss of horseshoe material due
to fast migration. Any deviation from the background must then be
due to local vortensity generation/destruction as the planet moves
through (e.g. shocks).

In Fig. 13(b), only the inviscid case is still in slow migration, and
only this disc retains the inner ring (low �/ω). This suggests that
the inner vortensity ring inhibits inward migration. In terms of δm,
for ν �= 0 the planet resides in a gap (co-orbital �/ω is less than
that at the inner separatrix, or δm > 0) whereas in the inviscid case
δm ∼ 0.

Consider the ν = 0 case. The outer vortensity ring has widened
to ∼2rh (cf. Fig. 13a). It is centred at 3rh so that co-orbital dynamics
may not account for it. However, the migration implies a flow of
material across rp from the interior region. The increased region
of low �/ω exterior to the planet may be due to this flow. Note
the high-�/ω ring at +4rh in Fig. 13(a) is no longer present in
Fig. 13(b) because this ring is not co-orbital and therefore does not
migrate with the planet.

At t = 65 (Fig. 13c), the ν0 = 0.5 and ν = 1.0 cases con-
tinue smooth rapid migration (Fig. 11) with qualitatively unchanged
profiles. For ν0 = 0.25, characteristic vortensity double rings re-
develop after a stalling event at t ∼ 60 (Fig. 11). The peaks and
troughs of �/ω recover forms that are close to those in the initial
phase (Fig. 13a). At this time, the inviscid case is in rapid migration.

Fig. 13(d) shows the final �/ω-perturbation profiles. Viscous
cases are in slow migration, and have much smoother profiles. This
can be due to diffusion (since we are at late stage of evolution)

and/or migration across the background, in both situations there is
little disc material carried by the planet. The inviscid case is also in
slow migration but retains the double-ring structure. This indicates
two possible co-orbital configurations which slow down type III
migration.

In this section, we reviewed the disc vortensity evolution and its
connection to the state of migration. A correlation between migra-
tion (fast, slow) and co-orbital structure is apparent. The effective
action of viscosity appears to be through its modification of the
disc structure, rather than associated viscous torques acting on the
co-orbital region.

5.5 Evolution of the co-orbital region

In Fig. 14, we illustrate the evolution of the following quantities
associated with the co-orbital region that are related to the migration
torque induced on the planet.

(i) The gravitational torque acting on the planet due to fluid
with |r − rp| ≤ 2.5rh, excluding fluid within rh of the planet. This
includes co-orbital material and orbit-crossing fluid, the latter being
responsible for the type III torque.

(ii) The co-orbital mass deficit δm is computed from azimuthally
averaged, 1D disc profiles. We took the separatrices to be at |r −
rp| = 2.5rh.

(iii) Mtr, the mass of a passive scalar initially placed such that
|r − rp| = 2rh.3 Note that Mtr = constant if it migrates with the
planet.

(iv) The average density 〈�〉 and vortensity 〈ω/�〉 of the region
|r − rp| < 2.5rh.

The evolution of viscous and inviscid cases is qualitatively similar
up to the stalling indicated by vertical lines in Fig. 14. Prior to this,
there is a rapid migration phase associated with large a negative
torque which we find originates from material crossing the planet
orbit. Co-orbital torques are oscillatory and the period/amplitude is
longer/larger for ν0 = 0 than for ν0 = 0.5. During rapid migration
phases, the inviscid torque is twice as negative than in the viscous
case. While the torque in a viscous disc remains negative, torques in
an inviscid disc can be positive due to the formation of large-scale
vortices. Note that the torque does not originate from within the
Hill sphere since it is excluded from the summation.

Migration is slow until sufficient difference builds up between
co-orbital and circulating flow at which point there is a sudden
flow-through the co-orbital region. At the same time, there is sig-
nificant loss of the original horseshoe material (Mtr decreases by
∼80 per cent). The flow-through is reflected in ν0 = 0.5 (ν0 = 0)
by a ∼ 17 per cent (36 per cent) increase in 〈�〉 from t = 25 to
50 (t = 50–75). In the case of zero viscosity, this material is in the
form of a high-surface-density vortex. We note from Fig. 14(b) that
there is a repeated episode where there is a fall followed by a rise
in 〈�〉. However, in the late stages of evolution of the case with
ν0 = 0.5, 〈�〉 decreases monotonically and the migration is slower.

The co-orbital mass deficit is initially negative4 as the rings de-
velop. It subsequently increases resulting in the onset of type III

3Due to the uncertainty in the horseshoe half-width xs we put the tracer well
within the region defined by xs = 2.5rh to ensure it is co-orbital.
4Ring structure in the vicinity of the separatrix means that the sign of δm is
sensitive to the adopted value of xs . Here, we regard δm as a representation
of gap depth, so we fix xs = 2.5rh.
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(a) ν0 = 0 5

(b) ν0 = 0

Figure 14. Effect of viscosity on co-orbital evolution. The time evolution
is illustrated for the model with ν = 0.5 (upper panel) and for the inviscid
model (lower panel). From top to bottom of each panel the evolution of
the orbital radius, a(t), the co-orbital mass deficit δm, the torque, the tracer
mass Mtr, the surface density 〈�〉 and the vortensity 〈 ω

�
〉 are plotted. Angle

brackets denote space averaging over the annulus [rp − 2.5rh, rp + 2.5rh]
and � denotes perturbation relative to t = 0. The vertical line indicates
stalling of migration.

migration and is most positive during the following rapid migra-
tion phase, with peak values δm × 103 ∼ 1, 2 for ν0 = 0.5, 0,
respectively. δm × 103 then falls to +0.5 in the viscous case but
to <∼ 0 in the inviscid case. In the latter case, material flowing into
the co-orbital region removes the co-orbital mass deficit and type
III is suppressed; migration experiences a more abrupt stall. δm

increases again for ν0 = 0 while it remains approximately constant

for ν0 = 0.5 and decreases towards the end. Type III migration
can restart in the inviscid disc but such behaviour is not observed
for large viscosity. Type III is not operating in the late stages of
the viscous case, in contrast to the inviscid evolution where fast
type III migration is recurrent, faster than in the cases with applied
viscosity, and is associated with large values of δm.

The above discussion shows that the magnitude of the applied
viscosity is significant in determining the character of the migration.
This is because the form of the flow through the co-orbital region is
sensitive to the choice of viscosity. In particular, for high viscosity,
this flow is smooth and there is less disruption of the co-orbital
region.

6 VO RT E X – P L A N E T IN T E R AC T I O N

We now focus on the inviscid case where the role of vortices sig-
nificantly affects the migration. We consider three phases apparent
from Fig. 11. These are: (a) t <∼ 45 (slow migration); (b) 60 <∼ t <∼ 70
(rapid migration); (c) t ∼ 75 (stalling) and (d) 75 <∼ t <∼ 110 (second
phase of slow migration). Typical migration rates at various times
are ȧ(25) ∼ −3×10−3; ȧ(65) ∼ −2×10−2 and ȧ(85) ∼ −2×10−3.
The vortex-induced rapid migration (phase b) is almost an order of
magnitude faster than the phases (a) and (d). Hence, we refer to
the latter as slow migration, but more accurately they are migration
associated with gap formation. They are not necessarily slow in
comparison to type I or type II migration.

Different migration phases correspond to different disc structures.
Fig. 15 shows the global surface density evolution. At t = 24.75,

during the slow migration phase (a), the planet resides in a partial
gap (r � rp ± 2.3rh) with surface density ∼20 per cent lower than
�0. The gap is circular but non-axisymmetric with a low surface
density arc along the outer gap edge trailing the planet. A partial
gap is necessary for the Type III migration mode (Papaloizou &
Terquem 2006) but not sufficient. A surface density asymmetry
ahead/behind the planet is needed to provide the net co-orbital
torque (Artymowicz 2004a). At this stage, this is too weak. Further
azimuthal density asymmetry has developed in the gap by t = 55
and there is a factor of ∼ 3 variation in the gap surface density, but
the asymmetry is still limited.

Figure 15. The evolution of ln � from early slow migration to stalling (∼75
orbits).
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Strong asymmetry can be provided by large-scale vortices near
the gap edges of azimuthal extent �φ ∼ π (Fig. 15). The outer
(inner) vortex rotates clockwise (counterclockwise) relative to the
planet so they are not co-orbital. Their origin was explained as a
natural consequence of the instability of the vortensity rings (see
Section 4), their occurrence near gap edges has a strong influence
on the type III migration mode.

At t = 65.05, Fig. 15 shows that the planet is just inside the inner
gap edge. The surface density contrast in the neighbourhood of the
planet is largest as the inner vortex enters the co-orbital region from
behind the planet. It exerts a net negative torque as the material
crosses the planet orbit and enters (is scattered into) the exterior
disc, and this snapshot corresponds to fast migration (phase b). At
t = 75, the migration stalls and the planet no longer resides inside
a gap. The planet has effectively left its gap by scattering vortex
material outwards. This completes a single vortex–planet episode,
during which the outer vortex simply circulates around the original
outer gap edge and does not influence the co-orbital dynamics,
though it contributes an oscillatory torque on the planet.

The vortex–planet interaction is magnified in Fig. 16. At t =
65, the vortex circulates at ∼rp − 3rh and has radial extent ∼3rh.
The gap depth is largest and the migration is fast. As the planet
migrates inwards, the vortex splits with some material entering the
co-orbital region while the rest continues to circulate (t = 70).
Vortex material becomes trapped just behind the planet at t = 75,
which would suggest a negative torque. However, the surface density
distribution does not support the usual type III migration where
horseshoe material moves with planet. Furthermore, the planet no
longer resides in a gap. Part of the original horseshoe material is
replaced with vortex material and gap filling takes place. The co-
orbital mass deficit is lost and the migration stalls.

It is useful to examine the evolution of �/ω, or inverse vortensity,
since it defines co-orbital mass deficit δm that drives the type III
torque (Masset & Papaloizou 2003). This is illustrated in Fig. 17. In
inviscid discs, �/ω is approximately conserved following a fluid so
we can track material. The vortensity ring basic state and its stability
were discussed in Section 4 (see Fig. 7). By t = 55, the inner vortex
has formed via non-linear evolution of the instability and begins to
interact with co-orbital region. Vortensity conservation implies that

Figure 16. Illustration of the surface density evolution from the start of
rapid migration to stalling at t = 75. Maps of ln � are plotted.

Figure 17. Vortensity evolution: maps of the inverse vortensity ln (�/ω)
are plotted spanning the time interval from early slow migration to stalling
(∼75 orbits) to the second phase of slow migration.

the ‘red blobs’ near the outer ring were part of the inner vortex,
consistent with inward migration of the planet via Type III (see
Fig. 17). Each time this vortex passes by the planet, some of its
material crosses the planet orbit from behind, thereby exerting a
negative torque. Rapid migration at t = 65 occurs when the main
vortex body flows across the co-orbital region. The inner ring is
disrupted and no longer extends 2π in azimuth.

This contrasts with the usual type III scenario where material
simply transfers from inner to outer disc leaving the co-orbital
region unaffected. In the inviscid disc, disruption is necessary due to
the existence of vortensity rings of much higher vortensity than the
vortex. Under type III and vortensity conservation, vortex material
must cross the planet orbit without changing its vortensity. This
would not be possible if a ring structure is maintained. In this sense,
the vortensity rings oppose the type III mode. Hence, migration is
slow until significant ring disruption occurs that is associated with
the vortex flowing across.

When migration stalls at t = 75, Fig. 17 shows that the vortensity
rings are much less pronounced compared to initial phase. The
vortex splits into several smaller patches circulating in the original
gap. At the planet’s new radius, material of high �/ω fills the new
co-orbital region, corresponding to lower co-orbital mass deficit.
However, by t = 85 (not shown) new vortensity rings are setup near
the new orbital radius and are qualitatively similar to those present
in the ring basic state. The vortex material which passed to the outer
disc during the first rapid migration phase is now irrelevant, much
like the outermost vortex. During the buildup to the second rapid
migration phase at t = 100, there is a single vortex associated with
inner gap edge and two associated with the outer ring. This simply
leads to a repeat of the first rapid migration phase. However, the
presence of a vortex inside the co-orbital region, from the first rapid
migration phase reduces the co-orbital mass deficit (Fig. 14b) and
hence the migration rate for the second rapid phase (at t ∼ 140).

6.1 The effect of changing the disc mass

Here, we consider type III migration in inviscid discs of different
masses obtained by scaling the parameter (�0). Simulations here
had a resolution Nr × Nφ = 512 × 1536.
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Figure 18. Vortex-induced migration in discs with different scalings of the
initial surface density profile. The extent of rapid migration is independent
of the initial surface density scaling.

Fig. 18 shows migration as a function of �0. For �0 = 5–9, the
planet migrates by the same amount during the first rapid migration
phase and stalls at the same radius. This is also observed for a
second rapid migration phase for �0 = 6–9. Although the highest
density case is unphysical due to the lack of inclusion of SG, results
are consistent with the notion that rapid migration is initiated by
sufficient contrast between co-orbital (gap) and circulating fluid
(vortex), measured by δm.

The jump in orbital radius, should it occur, is independent of
�0. As the interaction involves the vortex flowing from the gap
edge across the co-orbital region, its change in specific angular
momentum is independent of density, because the co-orbital region
size is fixed by planet mass. The results then suggest the vortex
needs to grow to a mass Mv , only dependent on the planet mass, in
order to scatter the planet. Since the vortex forms at the gap edge,
Mv can be linked to δm because the co-orbital mass deficit depends
on the edge surface density.

As the vortex originates from instabilities with growth rate in-
dependent of �0, increasing �0 means less time is needed for the
vortex to build up to critical mass or density. Hence, increasing sur-
face density only shortens the ‘waiting time’ before rapid migration.
However, if the density is too low, e.g. �0 = 3, then vortex-induced
rapid migration may never occur.

Consider an inner vortex of mass Mv formed by instability at
rv = rp − βrh (β > 0) with width αrh, where the Hill radius rh =
f0rp, f0 ≡ [Mp/(3M∗)]1/3. Mv is clearly limited by the amount of
material that can be gather into the vortex, so that Mv < 2παrhrv�.
Taking Mv/Mp = 3.5 as critical for rapid migration5, this means

�0 >
3.5Mp

2παf0(1 − βf0)r2
p

× 104. (30)

Taking representative values found in simulations of α = 3, β = 4
and rp ∼ 2 gives �0 > 3.5. For such cases rapid, vortex-induced
migration was indeed observed (Fig. 18) but for �0 = 3 it was
not. This is similar to the usual requirement that in order for Type
III migration to occur for intermediate planets the disc should be
sufficiently massive (Masset & Papaloizou 2003). In our case, the
limitation is specifically due to the maximum possible vortex mass.

5We estimate the vortex mass by monitoring the decrease in total mass of
an annulus interior to the inner gap edge.

(a) Σ0 = 9 (b) Σ0 = 7

(c) Σ0 = 5 (d) Σ0 = 3

Figure 19. Evolution of the co-orbital mass deficit as defined by inverse
vortensity. The average �/ω for co-orbital material is taken over r − rp =
[−2.5rh, 0], φ = [φp, φp − π/4]; and that of circulating material is taken
over r−rp = [−6,−2.5]rh, φ = [φp, φp−π/4]. Very similar behaviour was
obtained when we compared the co-orbital and circulating surface densities.

6.1.1 Critical co-orbital mass deficit

In order to link type III migration and vortex–planet scattering,
we measured the co-orbital mass deficit δm, which amounts to
comparing average inverse vortensity of co-orbital fluid just behind
the planet to that of circulating fluid just inside the inner separatrix
but also behind the planet:

δm = 2πxsr
−1/2
p (〈�/ω〉circ − 〈�/ω〉coorb).

This is a simplified version of the definition in Masset & Papaloizou
(2003). Results are shown in Fig. 19. The oscillatory nature of δm

reflects a vortex circulating at the gap edge, δm maximizing when
the vortex is within the patch of fluid where averaging is done. As
it grows, the high-vortensity vortex contributes to 〈�/ω〉circ hence
favouring type III migration. Cases with rapid migration share the
same evolution of δm. δm increases up to ∼4–5 before the vortex
first induces fast migration. For �0 = 3, which does not show such
a rapid migration phase, typically δm <∼ 5 with smaller amplitude
variation.

During fast migration δm rapidly decreases and migration stalls
when δm <∼ 0. This is because as the vortex flows across the co-
orbital radius, it contributes to 〈�/ω〉coorb, lowering δm. However,
we comment that details depend on the unperturbed (t = 0) sur-
face density profile. Discs discussed here initially have uniform
surface density. If a surface density � ∝ r−p, p > 0 were adopted,
the planet can be scattered to a region of higher background �/ω

compared to the flat case, so 〈�/ω〉circ may increase due to the back-
ground. We have run simulations with p = 0.3, 0.5 and found that
the periods of stalling are of shorter duration, consistent with the
discussion above regarding the variation with the surface density
scale.

6.2 A Jupiter-mass planet

For completeness we briefly consider the case of a Jupiter-mass
planet. The setup is the same as the previous section (with �0 = 7).
The planet potential is switched on over five orbits. Fig. 20 compares
the migration curves a(t) for Mp = 10−3 in inviscid and viscous
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Figure 20. Vortex-induced migration for a Jupiter-mass planet in an inviscid
disc (dotted line) and viscous disc (ν0 = 1, dashed line; ν0 = 2, dash–dotted
line) compared to Saturn-mass planet in a inviscid disc (solid).

(ν0 = 1, 2) discs to a Saturn-mass planet in a inviscid disc. The same
vortex–planet scattering occurs for the Jupiter-mass inviscid case.
This was checked explicitly by examining the vortensity evolution
and observing a vortex associated with the inner gap edge buildup
and flowing across the co-orbital region. Jupiter induces stronger
shocks and therefore higher amplitude vortensity rings, so they
are more unstable. The instability growth time-scale is therefore
shorter than that of Saturn, so the vortex-induced migration occurs
very soon after the planet in introduced.

The a(t) for Jupiter in an inviscid disc shows two migration
phases – fast and slow – and that significant orbital decay occurs
within ∼ 50P0. These features were also observed by Pepliński
et al. (2008b). However, the fast phase of Pepliński et al. is almost
a linear function of time, whereas in our inviscid case migration is
clearly accelerating inwards during t <∼ 50P0. In our case, there is an
abrupt transition to the slow phase whereas that of Pepliński et al. is
smoother and no vortices were identified. Although Pepliński et al.
did not include physical viscosity, their Cartesian code is more
diffusive and vortex formation is suppressed (de Val-Borro et al.
2007). In the late stages of the inviscid case, thin vortensity rings
reform and inhibit further migration. A new vortex develops at this
stage but it does not grow a sufficient size to induce another episode
within simulation time. This growth is limited by the availability
of mass being reduced because of proximity to the inner boundary.
We remark that inward migration is also inhibited as the planet
approaches the inner boundary due to lack of availability of mass in
the work of Pepliński et al.. None the less the fast migration phase is
more extensive than in the Saturn-mass case because of the stronger
perturbation.

Interestingly, adopting a standard viscosity ν0 = 1 results in a
similar behaviour for the fast migration phase, though the transition
to slow migration is smoother than for zero viscosity. The vortensity
distribution for ν0 = 1 is also much smoother than for ν0 = 0
and individual vortices were not identified for the inner gap edge.
This is consistent with de Val-Borro et al. (2007) who showed
that ν = O(10−5) suppresses vortex formation. With ν0 = 1, flow
through the co-orbital region is a smoother function of time, unlike
episodic behaviour of inviscid discs, and therefore the planet does
not experience sudden stalling.

A case with ν0 = 2 is also shown in Fig. 20. The orbital decay
time-scale is again ∼ 50P0, consistent with type III migration.
The transition from fast to slow migration is again smoothed (cf.
ν0 = 0, 1), the fast phase is now less abrupt and qualitatively closer
to that found by Pepliński et al. (2008b). These results indicate that

our inviscid cases have lower effective viscosity than that operating
in the work of Pepliński et al.

7 SUMMARY AND DI SCUSSI ON

In this paper, we have studied the role of large-scale vortices in
type III migration in low-viscosity discs. We focused mainly on
Saturn-mass planets because they open partial gaps, a configuration
where type III migration can operate if the disc is massive (Masset &
Papaloizou 2003). Type III migration would occur when the planet
is Saturn mass before growing to Jovian mass. We first demon-
strated through numerical simulations and semi-analytic modelling
of inviscid discs that vortensity rings originate from spiral shocks
induced by the planet. For Saturn or more massive planets, the
rings reside just inside the co-orbital region, while for less massive
planets they are not co-orbital features. Vortensity rings are set up
independent of whether the planet is introduced suddenly or grad-
ually over several orbits. A Jupiter-mass planet introduced in the
latter manner, that was held on a fixed circular orbit, was consid-
ered by de Val-Borro et al. (2007). They found vortex formation
at gap edges for small enough imposed viscosity. We remark that
this instability occurs independent of the disc mass so it is expected
to occur also for low-viscosity slow type II migration. But, as this
type of migration does not involve significant coorbital flow, the
vortex–planet interactions described in this paper, that operate for
fast migration, are not expected. This is found to be the case when
slow migration phases occur in the work presented here.

We also found that for a migrating Saturn-mass planet gap edges,
associated with local vortensity minima, are dynamically unstable
to non-axisymmetric perturbations. Dominant unstable modes are
localized go on to develop into vortices which merge in the non-
linear regime, as verified by simulations. The effect of vortices on
migration is most significant in low-viscosity discs (ν <∼ 0.25 ×
10−5) because the instability is suppressed at higher viscosity. In
the inviscid limit, we estimate that only a small numerical viscosity
is present and much smaller than an imposed physical viscosity of
ν = O(10−6). However, a viscosity of that magnitude is unable to
suppress the instability. Thus, our conclusions should be unaffected
by numerical viscosity. The presence of high density vortices at
the gap edge produces non-smooth migration, with episodes of
fast migration corresponding to the vortex–planet interaction. This
is analogous to planet–planet scattering, and the planet’s orbital
radius jumps by a few Hill radii in one episode. The vortex is also
responsible for stalling migration in discs with initially flat surface
density. In this case, there can be repeated episodes of vortex-
induced migration. Viscosity smooths the flow across the co-orbital
radius, but has limited effect on the extent of orbital decay via the
type III mechanism.

We also explored the role of vortices in inviscid discs of different
masses. The extent of orbital decay in a single episode of fast
migration is independent of initial surface density scaling. This
suggests a critical vortex mass or surface density is required to
interact, which can be linked to the concept of the co-orbital mass
deficit that drives type III migration. The case of a Jupiter-mass
planet in an inviscid disc also displayed vortex–planet interaction.

7.1 Outstanding issues

One issue not considered in detail in this paper are boundary effects,
although we used the damping boundary conditions (de Val-Borro
et al. 2006) which is aimed to remove reflections. The instabilities
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that lead to vortex development are localized near gap edges. As
long as the planet, and hence vortex formation, is far from the
disc edges, boundary effects on vortex–planet interaction should be
limited. We have run a simulation with a Saturn-mass planet, where
the domain is expanded to r = [0.2, 6.0] and compared a(t) to the
fiducial disc which occupies r = [0.4, 4.0]. The extended domain
case still exhibited non-smooth a(t) with similar orbital decays
during the first two episodes of rapid migration. As the domain was
extended inwards, there was a third phase of rapid migration which
is readily understood on account of the greater availability of mass
at small radii. Boundary effects should be examined in more detail
in future work, but should not change the main conclusion of this
paper, which is that in a low-viscosity disc type III migration is
induced by vortices and episodic.

Although we have demonstrated the effect of vortices on migra-
tion, it is natural to question their existence as long-lived structures
in real discs with finite viscosity. Recently, Li et al. (2009) studied
migration in nearly laminar discs in the type I regime. They found
effects at low viscosity, which tend to slow down migration, begin
to appear for ν ≤ 10−7. Their simulations last O(103) orbits. In
our case, non-smooth migration can be observed at ν = O(10−6).
We adopted a more massive planet so vortex formation occurs
quickly, and since type III migration time-scales are much shorter
than type I a very small viscosity is not required in order to allow
the development of sharp features in the disc (which the instability
relies on). Vortices can thus interfere with migration when vis-
cosity is one order of magnitude smaller than the standard value
ν = 10−5.

We have used the simplest model and numerical setup to describe
the disc–planet system. One physical issue is the lack of inclusion
of self-growity (SG). It may be important when discussing type III
migration since this operates in massive discs (Masset & Papaloizou
2003). In order to have self-consistent physics, SG is essential.
Although Li et al. (2009) included SG, its role was not discussed.
The effect of self-gravitating vortices on the migration of the larger
mass planets considered here should be explored. We note in the
standard viscous disc with ν = 10−5 vortices are transient features.
However, it is conceivable that SG may mitigate the effects of
viscous diffusion because vortices have high surface density. Thus,
vortices may exist for higher viscosity values in discs with SG.
These issues will be the subject of a future study.
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APPENDI X A : U PPER LI MI T ON
T H E H O R S E S H O E W I D T H

We deduce an upper limit on the horseshoe width xs that is valid
in the limit of either zero or constant pressure. Consider a local
Cartesian frame that has origin at the planet and hence co-rotates

with it with the Keplerian angular velocity �p =
√

GM∗/r3
p . Here,

M∗ is the mass of the central object and rp is the orbital radius of
the planet. In this frame, fluid elements approach the planet from
(x = x0 > 0, y = ∞) with velocity (0, −3�px0/2). Suppose such
a fluid element executes a horseshoe turn crossing the co-orbital
radius at q = (0, y) with velocity (vx, 0).

We wish to determine an upper bound on the value of x0 for
which such motion occurs. The equation of motion governing a
fluid element or particle is

Dv

Dt
+ 2�p ẑ ∧ v = −∇�eff, (A1)

where

�eff = − GMp√
x2 + y2

− 3

2
�2

px
2. (A2)

Here, the effective potential �eff contains contributions from the
gravitational potential of the planet of mass Mp and the tidal poten-
tial associated with the central object.

From equation (A1), it follows that the Jacobi invariant

J = 1

2
v2 + �eff (A3)
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is constant along a particle path. Equating J evaluated at (x, y) =
(x0, ∞) to J evaluated at q gives

−3

8
�2

px
2
0 = 1

2
v2

x − GMp

y
. (A4)

The steady-state Euler equation of motion for vy evaluated at q is

vx∂xvy + 2�pvx = −GMp/y
2. (A5)

Since in the neighbourhood of q for the type of streamline we
consider, vx < 0 and ∂xvy < 0 we deduce that

|vx | >
GMp

2�py2
. (A6)

Combining equations (A4) and (A6), we find that

−3

8
�2

px
2
0 >

1

2

(
GMp

2�py2

)2

− GMp

y
. (A7)

Writing x0 = x̂0rh, where the Hill radius rh = (Mp/(3M∗))1/3rp and
similarly setting y = ŷrh we obtain

x̂0 <

√
8

ŷ
− 3

ŷ4
<∼ 2.3. (A8)

Thus, because the maximum possible value of the RHS of the
above is 2.3, we deduce that particles executing a U-turn could not
have originated further than 2.3rh. This is comparable to the value
of 2.5rh that has been estimated from hydrodynamic simulations
(Artymowicz 2004b; Paardekooper & Papaloizou 2009).

APPEN D IX B: VORTICITY JUMP AC RO SS A
STEADY ISOTHERMAL SHOCK

Consider an isothermal shock that is stationary in a frame rotating
with angular velocity �p ẑ. In order to evaluate the vorticity jump
across the shock, it is convenient to use a 2D orthogonal coordinate
system (x1, x2) defined in the disc mid-plane such that one of the
curves x2 = constant = xs coincides with the shock. The curves
x1 = constant will then be normal to the shock where they intersect
it. In addition, the coordinates are set up so that (x1, x2, z) is a right-
handed system. The ẑ-component of relative vorticity ωr can then
be written as

ωr = 1

h1h2

[
∂(u2h2)

∂x1
− ∂(u1h1)

∂x2

]
, (B1)

where (h1, h2) are the components of the coordinate scalefactor.
We note that on x2 = xs, u1 is the velocity tangential to the shock.

The normal component u2 and other state variables undergo a jump
from pre-shock values to post-shock values on normally traversing
the curve x2 = xs. For an isothermal shock,
u2,post

u2
= M−2 = ρ

ρpost
, (B2)

where M = u2/cs is the pre-shock perpendicular Mach number,
and here and in similar expressions below connecting pre-shock
and post-shock quantities we have denoted post-shock values with
a subscript post while leaving pre-shock quantities without a corre-
sponding subscript.

Thus the jump in relative vorticity is

[ωr ] = ωr,post − ωr. (B3)

Quite generally, the x1 component of the equation of motion for
a steady-state flow is

u1

h1

∂u1

∂x1
+ u2

h2

∂u1

∂x2
− u2

(
u2

h1h2

∂h2

∂x1
− u1

h1h2

∂h1

∂x2

)

= − 1

ρh1

∂P

∂x1
− 1

h1

∂�

∂x1
+ 2�pu2, (B4)

or equivalently

u1

h1

∂u1

∂x1
+ u2

h1

∂u2

∂x1
− (2�p + ωr )u2 = − 1

ρh1

∂P

∂x1
− 1

h1

∂�

∂x1
,

(B5)

where P is the pressure and � the total potential (the latter quan-
tity being continuous across the shock). From (B5) we obtain an
expression for the relative vorticity in the form

ωr = 1

h1

∂u2

∂x1
+ u1

u2h1

∂u1

∂x1
+ 1

ρu2h1

∂P

∂x1
+ 1

u2h1

∂�

∂x1
− 2�p.

(B6)

Applying equation (B6) to give an expression for the post shock
relative vorticity, and using equation (B2) to express the post-shock
normal velocity and density in terms of the corresponding pre-shock
quantities, the vorticity jump can be written in the form

[ωr ] = 1

h1

∂(M−2u2)

∂x1
+ M2u1

u2h1

∂u1

∂x1
+ M2

u2h1

∂�

∂x1

+ 1

ρu2h1

∂Ppost

∂x1
− (ωr + 2�p). (B7)

Adopting a locally isothermal equation of state, we have Ppost =
M2P . Substituting this into equation (B7), while making use of
equation (B6) together with the relation u2 = csM, we obtain

[ωr ] ≡ [ω] = − cs(M2 − 1)2

M2h1

∂M

∂x1
+ (M2 − 1)ω

− (M4 − 1)

Mh1

∂cs

∂x1
, (B8)

where ω = 2�p + ωr is the absolute vorticity.
Setting h1dx1 = dS with dS being the corresponding element of

distance measured parallel to the shock, this takes the form

[ωr ] ≡ [ω] = − cs(M2 − 1)2

M2

∂M

∂S
+ (M2 − 1)ω

− (M4 − 1)

M

∂cs

∂S
. (B9)

This gives the vorticity jump across a shock in terms of pre-shock
quantities measured in the rotating frame in which it appears steady.
It is important to note that the expression (B9) applies specifically
in the right-handed coordinate system we have adopted with shock
location given by x2 = xs. If we instead adopt x1 = xs for this
location, the signs of the derivative terms would be reversed as in
the expression (2.23) given in Kevlahan (1997). Note too that the last
term on the RHS that is proportional to the gradient of cs along the
shock arises from the assumption of a locally isothermal equation of
state and is not present in the treatment given by Kevlahan (1997).
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