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ABSTRACT

Magnetorotational instability (MRI) and gravitational instability (GI) are the two principle routes to turbulent
angular momentum transport in accretion disks. Protoplanetary disks (PPDs) may develop both. This paper aims to
reinvigorate interest in the study of magnetized massive PPDs, starting from the basic issue of stability. The local
linear stability of a self-gravitating, uniformly magnetized, differentially rotating, three-dimensional stratified disk
subject to axisymmetric perturbations is calculated numerically. The formulation includes resistivity. It is found
that the reduction in the disk thickness by self-gravity (SG) can decrease MRI growth rates; the MRI becomes
global in the vertical direction, and MRI modes with small radial length scales are stabilized. The maximum vertical
field strength that permits the MRI in a strongly self-gravitating polytropic disk with polytropic index Γ = 1 is
estimated to be Bz,max � cs0Ω

√
μ0/16πG, where cs0 is the midplane sound speed and Ω is the local angular

velocity. In massive disks with layered resistivity, the MRI is not well localized to regions where the Elsasser
number exceeds unity. For MRI modes with radial length scales on the order of the disk thickness, SG can enhance
density perturbations, an effect that becomes significant in the presence of a strong toroidal field, and which depends
on the symmetry of the underlying MRI mode. In gravitationally unstable disks where GI and MRI growth rates
are comparable, the character of unstable modes can transition smoothly between MRI and GI. Implications for
nonlinear simulations are discussed briefly.
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1. INTRODUCTION
Astrophysical disks host a wide range of fluid instabil-

ities. Among them, the magnetorotational instability (MRI;
Chandrasekhar 1961; Balbus & Hawley 1991, 1998) and grav-
itational instability (GI; Toomre 1964; Goldreich & Lynden-
Bell 1965a, 1965b) provide robust pathways to turbulent
angular momentum transport that enables mass accretion
(Balbus & Papaloizou 1999; Armitage 2011; Turner et al. 2014
and references therein). They are also relevant to planet for-
mation theory. For example, the strength of MRI turbulence
directly affects planetesimal dynamics in protoplanetary disks
(PPDs; Yang et al. 2012; Gressel et al. 2012), while GI can po-
tentially form giant planets directly through disk fragmentation
(Boss 1997, 1998; Gammie 2001; Vorobyov 2013; Helled et al.
2013).

Accretion disks such as those surrounding black holes can
develop both MRI and GI (Menou & Quataert 2001; Goodman
2003). PPDs are also expected to be massive and magnetized
in their earliest evolutionary phase (Inutsuka et al. 2010). The
interplay between MRI and GI has been invoked to explain
outbursts in circumstellar disks (Armitage et al. 2001; Zhu et al.
2010; Martin et al. 2012b) and predicts similar phenomenon
in circumplanetary disks (Lubow & Martin 2012). This results
from the development of “dead zones”—magnetically inactive,
laminar regions near the disk midplane—with magnetized layers
above and below (Gammie 1996a; Martin et al. 2012a; Landry
et al. 2013). Mass accumulation in the dead zone can lead
to GI and trigger MRI through heating. In these models, the
condition required for MRI is realized through GI, but the MRI
is unaffected by disk self-gravity (SG).

PPDs subject to both MRI and GI are often modeled through
separate turbulent viscosity coefficients in a hydrodynamical
framework (Terquem 2008). This implicitly assumes that the
development of MRI and GI can be assessed independently.

Circumstellar disk models that explicitly combine the equations
of magnetohydrodynamics and SG have been limited to a few
early simulations (Fromang et al. 2004a, 2004c; Fromang 2005).
It will be necessary to revisit and extend these pioneering
calculations to fully explore the impact of MRI and GI on
the structure and evolution of PPDs. In preparation for this,
it is important to have a thorough understanding of the stability
properties of such systems.

Since compressibility is not fundamental for the MRI, much
of the early stability calculations assume incompressible per-
turbations (Goodman & Xu 1994; Jin 1996). However, recent
works indicate compressibility may be important under certain
conditions, such as strong fields (Kim & Ostriker 2000; Pessah
& Psaltis 2005; Bonanno & Urpin 2007). Previous MRI studies
have also focused on modes with vanishing radial wavenum-
bers because they are the most unstable (Sano & Miyama 1999;
Reyes-Ruiz 2001). SG has minimal effect on such perturbations
in a rotating disk. However, modes with radial length scales on
the order of the disk scale height may be subject to SG. It is
therefore of interest to generalize the MRI with non-zero radial
wavenumbers to massive disks.

The effect of a magnetic field on the GI of rotating disks has
been considered recently by Lizano et al. (2010), who general-
ized the Toomre stability criterion for razor-thin disks to include
a vertical field. For circumstellar disks, the authors concluded
that the field is stabilizing. This is consistent with a previous
analysis by Nakamura (1983) for three-dimensional (3D) uni-
formly rotating disks. However, the GI of 3D differentially rotat-
ing disks have mostly neglected magnetic fields (Mamatsashvili
& Rice 2010; Kim et al. 2012), but such disks are subject to the
MRI if magnetized.

This work marks the beginning of our study of magnetized,
self-gravitating PPDs. We start from linear calculations, which
have the advantage that a wide range of parameters can be
studied at negligible computational cost. This allows us to
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identify conditions, if any, under which MRI and GI cannot
be considered independent. It is also important to have such cal-
culations to benchmark and guide future nonlinear simulations.

This paper is organized as follows. Section 2 lists the
governing equations and describes the disk equilibria under
consideration. The linear problem is formulated in Section 3.
The impact of SG on the MRI with a vertical field is discussed
in Section 4, gravitationally unstable disks are considered in
Section 5, and equilibria including an azimuthal field is explored
in Section 6. We summarize results in Section 7 with a discussion
of important extensions to our current models.

2. LOCAL DISK MODEL

We study the local stability of an inviscid, self-gravitating,
and magnetized fluid disk orbiting a central star with potential
Φ∗(r, z), where (r, ϕ, z) are cylindrical coordinates from the
star. We use the shearing box approximation (Goldreich &
Lynden-Bell 1965b) to consider a small patch of the disk at a
fiducial radius r = r0. The local frame rotates at angular velocity
Ω0 = Ω(r0, 0) about the star, where rΩ2 = ∂Φ∗/∂r . We also
define S ≡ −r∂Ω/∂r as the local shear rate and Ω2

z ≡ ∂2Φ∗/∂z2

as the square of the local vertical frequency.
A Cartesian coordinate system (x, y, z) is set up in this

local frame, corresponding to the radial, azimuthal, and vertical
directions of the global disk, respectively. The shearing box fluid
equations read

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂v

∂t
+ v · ∇v + 2Ω0 ẑ × v = − 1

ρ
∇Π +

1

ρμ0
B · ∇ B − ∇Φ,

(2)

∂ B
∂t

= ∇ × (v × B − η∇ × B) , (3)

where ρ is the density field, v is the total velocity in the
local frame, B is the magnetic field that satisfies ∇ · B = 0,
Π ≡ P + |B|2/2μ0 is the total pressure, and μ0 is the vacuum
permeability. We choose a barotropic equation of state, specified
below, so that the gas pressure is given by P = P (ρ). The
resistivity η is either uniform or a prescribed function of height.

The total potential is Φ = Φext + Φd , where

Φext(x, z) = −Ω0S0x
2 +

1

2
Ω2

z0z
2 (4)

is the effective external potential (central plus centrifugal) in
the shearing box approximation, where S0 ≡ S(r0, 0) and
Ωz0 ≡ Ωz(r0, 0), and the gas potential Φd satisfies Poisson’s
equation

∇2Φd = 4πGρ, (5)

where G is the gravitational constant. For clarity, hereafter, we
drop the subscript 0 on the frequencies.

2.1. Equilibrium Disk

The unperturbed disk is steady and described by ρ = ρ(z),
B = Bz ẑ + By ŷ, where By,z are constants and the toroidal
field strength is By = εBz. The equilibrium velocity field is
v = −Sx ŷ. We consider Keplerian disks so that S = 3Ω/2

Figure 1. Equilibrium density field from solving Equations (6) and (7) subject
to an isothermal (top) and polytropic (bottom) equation of state. Note that the
normalization for the horizontal axis also depends on the strength of SG, i.e.,
H = H (Q), and is an increasing function of Q.

and the epicycle frequency κ ≡ √
2Ω(2Ω − S) = Ω = Ωz.

We assume a thin disk and neglect the radial component of the
self-gravitational force in the unperturbed disk.

The equilibrium density field is obtained by solving

0 = 1

ρ

dP

dz
+ Ω2

zz +
dΦd

dz
, (6)

d2Φd

dz2
= 4πGρ. (7)

We consider (1) isothermal disks with P = c2
s0ρ and (2)

polytropic disks with P = Kρ2 with K = c2
s0/2ρ0, where

ρ0 ≡ ρ(0) is the midplane density. The sound speed cs ≡√
dP/dρ so that cs0 is the global sound speed in the isothermal

disk and the midplane sound speed in the polytropic disk. For
the polytropic disk, the disk thickness H is such that ρ(H ) = 0.
Since the isothermal disk has no surface, we define H such
that ρ(H ) = 10−2ρ0. A non-dimensional measure of the disk
thickness is given by

f −1 = HΩ
cs0

, (8)

and f will appear in subsequent discussions.
We solve for ρ̂ ≡ ρ/ρ0 with boundary conditions ρ̂ = 1 and

dρ̂/dz = 0 at z = 0. This is done numerically for isothermal
disks and analytically for the polytropic disk (see Appendix A).
Examples of density profiles are shown in Figure 1. The
normalized density field is weakly dependent on the strength
of SG, provided the z axis is appropriately scaled.

2.2. Resistivity Profile

We adopt constant resistivity or a resistivity prescription
such that η(z) increase toward the midplane. In the latter case,
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we follow Fleming & Stone (2003) and use the resistivity profile

η(z) =
√

2η0[exp (−g+) + exp (−g−)]−1/2, (9)

where

g±(z) = Σ±(z) − Σ0

Σ∗
, (10)

Σ±(z) =
∫ ∞

±z

ρ(z′)dz′, (11)

and Σ0 ≡ Σ±(0) so that g±(0) = 0 and η0 = η(0). The constant
Σ∗ is chosen such that

cosh

(
Σ0

Σ∗

)
=

[
η0

η(∞)

]2

, (12)

and we define η0/η(∞) ≡ A as the conductivity boost factor
from the midplane to the disk surface. We remark that once ρ and
dρ/dz are obtained from Equations (6) and (7), the integration
for Equation (11) can be performed implicitly by using Poisson’s
equation.

We use the Elsasser number Λ, a non-dimensional measure
of conductivity,

Λ ≡ v2
A

ηΩ
, (13)

where vA ≡ Bz/
√

μ0ρ is the vertical Alfvén speed. Because
of the density stratification, the Elsasser number increases with
height even for constant resistivity. The disk may be considered
ideal where Λ � 1.

2.3. Disk Parameters

The strength of SG is parameterized by

Q ≡ Ω2

4πGρ0
(14)

(Mamatsashvili & Rice 2010), which is used to set the midplane
density ρ0. A relation between Q and the Toomre parameter for
GI of razor-thin disks, Q2D, is described in Appendix B.

The plasma β measures the inverse strength of the magnetic
field

β ≡ c2
s0

v2
A0

= c2
s0μ0ρ0

B2
z

, (15)

where vA0 is the midplane Alfvén speed. Note that we use the
vertical field for this definition throughout this paper.

The strength of conductivity is measured by the midplane
Elsasser number

Λ0 ≡ Λ(0) = v2
A0

η0Ω
. (16)

For non-uniform resistivity, we also specify A > 1.

3. LINEAR PROBLEM

We consider axisymmetric Eulerian perturbations to the
above equilibrium in the form Re[δρ(z) exp i(kxx + σ t)] and
similarly for other fluid variables. Here, kx is a constant radial
wavenumber and σ = −(ω + iγ ) is a complex frequency, where

−ω is the real mode frequency and γ is the growth rate. We
take kx > 0 without loss of generality. Hereafter, we suppress
the exponential factor and the real part notation.

The linearized continuity equation is

iσ

c2
s

W + ikxδvx + (ln ρ)′ δvz + δv′
z = 0, (17)

where ′ denotes d/dz and W = δP/ρ = c2
s δρ/ρ is the enthalpy

perturbation. The linearized equations of motion are

iσδvx − 2Ωδvy = −ikxW̃ +
Bz

μ0ρ

× [
δB ′

x − ikx

(
δBz + εδBy

)]
, (18)

iσδvy +
κ2

2Ω
δvx = Bz

μ0ρ
δB ′

y, (19)

iσδvz = −W̃ ′ − By

μ0ρ
δB ′

y, (20)

where the effective enthalpy perturbation W̃ = W + δΦ. The
components of the linearized induction equation are

iσ̄ δBx = Bzδv
′
x + ηδB ′′

x + η′δB ′
x − ikxη

′δBz, (21)

iσ̄ δBy = Bzδv
′
y − ByΔ − SδBx + ηδB ′′

y + η′δB ′
y, (22)

iσ̄ δBz = −ikxBzδvx + ηδB ′′
z , (23)

where iσ̄ = iσ + ηk2
x , Δ ≡ ∇ · δv = ikxδvx + δv′

z, and the
divergence-free condition is ikxδBx + δB ′

z = 0. Finally, the
linearized Poisson’s equation is

δΦ′′ − k2
xδΦ = Ω2ρ

c2
s Qρ0

W. (24)

We eliminate δB and δvz between the linearized equations
to obtain a system of ordinary differential equations for U =
(δvx, δvy,W, δΦ). We detail the steps in Appendix C for two
cases considered in this paper.

1. Purely vertical field with constant or variable resistivity so
that ε = 0 and η = η(z).

2. Tilted field with uniform resistivity so that ε 
= 0 and
η = constant.

Schematically, the numerical problem is to solve

L11δvx + L12δvy + L13W + L14δΦ = 0, (25)

L21δvx + L22δvy + L23W + L24δΦ = 0, (26)

L31δvx + L32δvy + L33W + L34δΦ = 0, (27)

L43W + L44δΦ = 0, (28)

where the differential operators L1j , L2j and L3j (j =
1, 2, 3, 4) can be read off Appendix C and L4j (j = 3, 4) from
the linearized Poisson’s equation above. We remark that the case
of a tilted field and variable resistivity can also be reduced to
the above form.
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3.1. Domain and Boundary Conditions

For a vertical field considered in Sections 4 and 5, we take
U to be an even function of z. Odd modes are permitted in
Section 6, where an azimuthal field may be included. In both
setups the gravitational potential boundary condition, given by
Goldreich & Lynden-Bell (1965a)

δΦ′(±Zs) ± kxδΦ(±Zs) = − Ω2ρξz

ρ0Q

∣∣∣∣
±Zs

, (29)

where ξz = δvz/iσ is the vertical Lagrangian displacement, and
z = ±Zs is the upper and lower disk surfaces, respectively.

3.1.1. Case 1: Vertical Field

Here, we impose dU/dz = 0 at z = 0. This permits higher
numerical resolution by reducing the computational domain to
z ∈ [0, Zs]. At the upper disk boundary z = Zs , we set

δBx(Zs) = δBy(Zs) = δvz(Zs) = 0, (30)

so the field remains vertical. The derivation of the magnetic field
boundary conditions may be found in Sano & Miyama (1999).

3.1.2. Case 2: Tilted Field

In this more general setup, the computational domain is
z ∈ [−Zs, Zs], and no symmetry across the midplane is
enforced. At the disk surfaces, we adopt the “halo” model of
Gammie & Balbus (1994) so that

Δ(±Zs) = 0, (31)

δBy(±Zs) = 0, (32)

δBz(±Zs) ∓ iδBx(±Zs) = 0, (33)

and this case permits δvz(±Zs) 
= 0.

3.2. Numerical Procedure

We use a pseudo-spectral method to solve the set of linearized
equations. Let

U(z) =
Nz∑
k=1

Ukψk(z/Zs), (34)

where

ψk =
{
T2(k−1) By ≡ 0 (case 1),
Tk−1 By 
= 0 (case 2), (35)

and Tl is a Chebyshev polynomial of the first kind of order l
(Abramowitz & Stegun 1965). Note that for case 1, the midplane
symmetry condition is taken care of by the choice of basis
functions.

The pseudo-spectral coefficients Un are obtained by demand-
ing the set of linear equations to be satisfied at Nz collocation
points along the vertical direction, chosen here to be the extrema
of Tlmax plus end points, where lmax is the highest polynomial or-
der. Our standard resolution is Nz = 256 (Nz = 257) for case 1
(case 2).

The above procedure discretizes the linear equations to a
matrix equation,

Mw = 0, (36)

where M is a 4Nz × 4Nz matrix representing the Lij plus
boundary conditions and w is a vector storing the pseudo-
spectral coefficients. Starting with an initial guess for σ , non-
trivial solutions to Equation (36) are obtained by varying σ using
Newton–Raphson iteration such that det M = 0 (details can be
found in Lin 2012).

3.2.1. Non-dimensionalization

We solve the linearized equations in non-dimensional form
by defining

z = ẑH, kx = k̂x/H, σ = σ̂Ω, δv = cs0δv̂, (37)

δB = Bzδ B̂, δρ = ρŴ/ĉ2
s , δΦ = c2

s0δΦ̂, (38)

where ĉs = cs/cs0. We also non-dimensionalize background
quantities, i.e., v̂A = vA/cs0, Ŝ = S/Ω, κ̂ = κ/Ω, Ω̂z = Ωz/Ω,
and η̂ = η/(H 2Ω).

3.3. Diagnostics

We visualize results in terms of dimensionless energy densi-
ties. We define

Em ≡ |δ B̂|2
2β

, (39)

Eg = ρ̂

2ĉ2
s

|Re(ŴδΦ̂∗)|, (40)

Ek = 1

2
ρ̂|δv̂|2, (41)

Et = ρ̂|Ŵ |2
2ĉ2

s

, (42)

as the perturbed magnetic, gravitational, kinetic, and thermal
energies, respectively, which are functions of z. Although we
do not solve an energy equation, we nevertheless define Et as
a measure of density perturbations (Kojima et al. 1989). The
total energy is E = Em + Eg + Ek + Et . We use 〈·〉 to denote an
average over z.

Since we will primarily be concerned with massive disks, we
define

τ ≡ 〈Eg〉
〈Eg〉 + 〈Em〉 (43)

as a measure of the importance of SG. Thus, modes with τ = 1
are energetically dominated by SG (GI) and modes with τ � 1
are dominated by magnetic perturbations (MRI).

4. MRI IN SELF-GRAVITATING DISKS

In this section, we focus on the MRI and use the vertical
field setup of case 1. We first consider MRI modes with
negligible density/potential perturbations to see the effect of
SG on the MRI through the background stratification, then go
on to examine MRI modes with density/potential perturbations
in massive disks.
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Figure 2. MRI growth rates as a function of Q and midplane Elsasser numbers
Λ0, in polytropic disks with β = 100 (solid, dotted, and dot–dashed lines). The
dashed–triple-dotted line is the Λ0 = 10 case with β = 25. The resistivity is
uniform.

4.1. Influence of Self-gravity on the MRI through
the Background Equilibrium

Here, we use polytropic disks, which have a well-defined disk
thickness. The upper disk boundary is set to Zs = 0.99H . We
fix β = 100 and kxH = 0.1 unless otherwise stated.

4.1.1. Uniform Resistivity

Figure 2 plots MRI growth rates as a function of Q and Λ0.
The resistivity is uniform (A = 1). For ideal MHD and a weak
field (Λ0 > 1, β = 100), there is negligible dependence on Q.
However, with β = 25 or in the resistive limit (Λ0 < 1), growth
rates decrease noticeably for Q < 0.5 (Q2D � 1.5). Since we
find density and potential perturbations to be negligible (i.e., the
linear response is non-self-gravitating), this shows that disk SG
can affect the MRI through the background equilibrium.

Sano & Miyama (1999) found that for MRI to operate, its
wavelength λ should fit inside the disk. That is,

λ ≡ max (λideal, λresis) � 2H, (44)

where the MRI wavelengths are given by

λideal

2H
= 4π√

15
f v̂A = 4πf√

15βρ̂
(45)

for ideal MHD, and

λresis

2H
= 2π√

3

η̂

v̂Af
= 2πf

Λ0

√
ρ̂

3β
(46)

in the limit of high resistivity.
Because ρ̂ is weakly dependent on Q (Figure 1), SG only

affects the MRI through the factor f, which increases with
decreasing Q (see Figure 17 in Appendix A). This implies that
sufficiently strong SG can stabilize the MRI by making 2H < λ.

In the ideal limit with β = 100, we find λ < 2H throughout
most of the disk for the values of Q considered, so SG does not
affect growth rates significantly. However, the ratio λ/2H does
increase with stronger SG. Consequently, the wavelength of the
instability, in units of H, increases. This is shown in Figure 3,
which plots the magnetic energies for Λ0 = 10 and a range of
Q values. The number of vertical nodes decrease with Q, i.e.,
the disk accommodates fewer wavelengths because increasing
vertical SG makes it thinner.

We repeated the Λ0 = 10 case with a stronger field β = 25,
shown in Figure 2 as the dashed–triple-dotted line. Here, strong

Figure 3. MRI magnetic energies in ideal polytropic disks for different strengths
of self-gravity.

Figure 4. Approximate wavelengths of the most unstable MRI modes as given
by Equations (44)–(46), normalized by the disk thickness as a function of height.
MRI is expected to operate if λ/2H � 1.

SG is effective in reducing the growth rate because decreasing
β enhances the dependence of λ/H on f (Q). For Q = 0.2 and
β = 25, we find λideal/2H ∼ 1 at the midplane and the growth
rate is reduced significantly.

SG also appreciably decreases the MRI growth rates in
the resistive limit. Figure 4 plots Equation (44) for Λ0 =
0.3. In the non-self-gravitating disk (Q = 4), the instability
criterion is marginally satisfied, and the MRI operates. As Q
decreases, Equation (44) is violated, and the MRI growth rate is
significantly reduced. This is seen for Q = 0.2, where λ � 2H
throughout the disk. (The instability is not suppressed since
Equations (45) and (46) are only exact for unstratified disks.)
Although the function f (Q) does not vary significantly for the
range of Q considered, the dependence of λ/H on f (Q) is
amplified by the denominator Λ0 < 1 in the resistive case.
Modes in Figure 4 have no nodes in the magnetic energy Em
except at z � 0, H , i.e., only the longest wavelength survives
against large resistivity.

4.1.2. Layered Resistivity

Here, we consider disks with midplane Elsasser number
Λ0 = 0.1 and a variable resistivity profile with A = 102.
Figure 5 compares the magnetic energies for Q = 0.2, 1 and
4. They have similar growth rates, γ /Ω = 0.53, 0.64 and
0.66, respectively. In the non-self-gravitating limit (Q = 4), the
MRI is effectively suppressed for z � 0.5H . This is consistent
with the picture of layered accretion proposed for non-self-
gravitating disks (Gammie 1996a; Fleming & Stone 2003).
However, in the massive disk (Q = 0.2), the mode occupies
a wider vertical extent because its wavelength (in units of H)
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Figure 5. Magnetic energies as a function of height for polytropic disks in which
the conductivity increases by a factor of A = 102 in going from the midplane to
the upper disk boundary. The vertical lines indicate Λ = 1 for each value of Q.

Figure 6. MRI growth rates in self-gravitating polytropic disks as a function
of the horizontal wavenumber kx . The disk is ideal (Λ0 = 102, A = 1) with
β = 40. These modes have negligible density/potential perturbations.

is larger. This suggests that in massive disks, the MRI is not
well localized to a sub-layer within the height, even when the
resistivity has a layered structure.

We also performed additional calculations with A = 103 and
A = 104 (see Figure 1 of Gressel et al. 2012). For Λ0 = 0.1, we
find no significant increase in the magnetic energy in the resistive
zones. However, lowering Λ0 gives similar results to Figure 5,
e.g., for A = 103 and Λ0 = 10−2 or A = 104 and Λ0 = 10−3, the
magnetic energy penetrates into the resistive zone for strongly
self-gravitating disks. In general, the magnetic energy density
maximum moves toward the midplane with increasing SG.

4.1.3. Dependence on kx

The above experiments show that with increasing disk SG,
the MRI becomes more global in the vertical direction. We
find a similar result in the horizontal direction. Figure 6 shows
MRI growth rates as a function of kx for a range of Q values.
Increasing SG decreases the cutoff radial wavenumber for the
MRI. We checked that these modes have negligible density
perturbations. Then we can understand this result by invoking
the instability criteria for incompressible MRI in an unstratified
Keplerian disk,

v2
A

(
k2
z + k2

x

)
< 3Ω2, (47)

where kz is a vertical wavenumber (Kim & Ostriker 2000).
Setting k2

z ∼ Ω2/v2
A and non-dimensionalizing, we find

kxH �
√

β

f
, (48)

Figure 7. Growth rates of MRI modes in isothermal self-gravitating disks with
Q = 0.2 (Q2D = 0.72) in the limit of ideal MHD (Λ0 = 102, A = 1) for a
range of field strengths β. The color bar measures the importance of self-gravity
by τ .

(A color version of this figure is available in the online journal.)

where order-unity factors have been dropped. Despite a simplis-
tic approach, this demonstrates that with increasing SG (increas-
ing f), we expect MRI modes with small radial length scales to
be suppressed.

4.2. Influence of Self-gravity on the
MRI through the Linear Response

Our goal here is to examine whether or not SG can amplify
the density perturbations associated with the MRI. We compute
unstable modes in a massive isothermal disk with Q = 0.2
(corresponding to Q2D = 0.72), which is still expected to be
marginally stable to GI (Mamatsashvili & Rice 2010, who find
a critical value of Q � 0.2). The upper disk boundary is set to
Zs = H .

4.2.1. Ideal Disks

We first consider ideal MHD by adopting a uniform resistivity
with Λ0 = 100. Figure 7 plots MRI growth rates as a function
of kx for several values of β. The curves are color-coded
according to τ . (Recall that τ → 1 implies that SG dominates
over magnetic perturbations and that τ → 0 is the opposite
limit.) The potential perturbation is negligible for all cases when
kxH � 0.5 since the MRI becomes incompressible as kx → 0.

For β � 1, i.e., a weak field, density perturbations are
negligible and the incompressible MRI operates. However, as
β is lowered and the MRI growth rate is reduced, we find non-
negligible potential perturbation for kxH = O(1). This suggests
that in a strongly magnetized disk that still permits the MRI, the
associated density perturbation can be important when the disk
is self-gravitating.

4.2.2. Resistive Disks

We repeat the above calculation for resistive disks, but fix
β = 100 and vary the midplane Elsasser number Λ0. Growth
rates are shown in Figure 8. Interestingly, the highly resistive
case Λ0 = 0.1 has comparable magnetic and gravitational
energies: at kxH � 1.3, we find τ ∼ 0.3, which corresponds to
〈Eg〉 ∼ 0.5〈Em〉. Figure 9 compares the magnetic energy of this
mode to that computed in the Cowling approximation, where the
Poisson’s equation is ignored in the linearized equations and the
potential perturbation set to zero (formally letting Q → ∞ in
Equation (24)). The growth rate increases when SG is included
in the linear response since SG is usually destabilizing. However,
γ and Em are very similar, indicating that the instability in the
self-gravitating calculation is fundamentally still the MRI.
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Figure 8. Growth rates of MRI modes in an isothermal self-gravitating disk
with Q = 0.2 (Q2D = 0.72) at fixed β = 100 for a range of midplane Elsasser
numbers. The resistivity is uniform. The color bar measures the importance of
self-gravity by τ .

(A color version of this figure is available in the online journal.)

Figure 9. Magnetic energy associated with the linear mode with largest
gravitational-to-magnetic energy ratio in Figure 8 (solid) compared with that
computed under the Cowling approximation (dotted).

Figure 10 plots the energies associated with the MRI mode
discussed above. The gravitational energy exceeds the magnetic
energy near the midplane (z � 0.2H ). The growth rate γ =
0.25Ω is not much smaller than that of the most unstable mode
(γ = 0.36Ω for kxH = 0.1), so significant density perturbations
will grow on dynamical timescales for this system, even though
GI is not expected.

4.2.3. Qualitative Interpretation

To make sense of the above results, we first return to ideal
MHD and consider regions close to the disk midplane (z ∼ 0),
where SG is expected to be most important. For this discussion,
we will ignore stratification and set d2/dz2 → −k2

z . The
governing equations are then

0 = v2
Ak2δvx + iσ (iσδvx − 2Ωδvy + ikxW̃ ), (49)

0 = v2
Ak2

z

(
δvy +

iS

σ
δvx

)
+ iσ

(
iσδvy +

κ2

2Ω
δvx

)
, (50)

0 = −k2
z W̃ +

σ 2

c2
s

W + σkxδvx, (51)

0 = k2δΦ +
Ω2

c2
s Q

W, (52)

Figure 10. Example of a resistive MRI mode with significant gravitational
potential perturbation. The disk is isothermal. The vertical line indicates Λ = 1.

where k2 = k2
z + k2

x . We imagine an iterative procedure to solve
the above equations, starting from the Cowling approximation
where δΦ → 0 and Q → ∞. This is the standard MRI and
we denote the solution as δv(0)

x , δv(0)
y and W (0). Equation (51)

implies

W (0) = c2
s σkxδv

(0)
x

c2
s k

2
z − σ 2

. (53)

We argue below that c2
s k

2
z � σ 2 by taking kz ∼ Ω/vA. Then,

recalling that W = c2
s δρ/ρ, we can write

δρ(0)

ρ
∼ σ

Ω
1

β

[
kxδv

(0)
x

Ω

]
. (54)

The MRI has, in general, a non-zero density perturbation.
However, it is negligible for kx → 0 and/or a weak field
(β � 1).

We now include SG. Poisson’s equation implies W (0) has an
associated potential perturbation,

δΦ = − Ω2

c2
s Qk2

W (0). (55)

Physically, we expect k2 � 0 so that a positive (negative) local
density perturbation causes a negative (positive) local potential
perturbation. We then insert δΦ back into the momentum
and continuity equations and ask how does this potential
perturbation modify the Cowling solution? Writing δv(0)

x →
δv(0)

x + δv(1)
x and similarly for δvy and W, we find

kxσδΦ = v2
Ak2δv(1)

x + iσ

× [
iσδv(1)

x − 2Ωδv(1)
y + ikxW

(1)
]
, (56)

0 = v2
Ak2

z

[
δv(1)

y +
iS

σ
δv(1)

x

]
+ iσ

[
iσδv(1)

y +
κ2

2Ω
δv(1)

x

]
, (57)

k2
z δΦ =

(
σ 2

c2
s

− k2
z

)
W (1) + σkxδv

(1)
x . (58)

Now, if the perturbations to the magnetic field remain un-
changed, i.e., the mode remains close to the standard MRI
as observed in Figure 9, then δv(1)

x ∼ 0 and δv(1)
y ∼ 0,
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Figure 11. Growth rates for modes with kxH = 1 in isothermal ideal disks with
Q = 0.18 (top), Q = 0.14 (middle), and Q = 0.12 (bottom). The color bar
measures the importance of self-gravity by τ .

(A color version of this figure is available in the online journal.)

so Equation (57) is satisfied. Equation (56) then requires
δΦ + W (1) ∼ 0. This is compatible with Equation (58) if

∣∣k2
z

∣∣ �
∣∣∣∣σ 2

c2
s

∣∣∣∣ . (59)

For the ideal MRI, we take kz ∼ Ω/vA. Then |σ 2/c2
s k

2
z | ∼

|σ 2/Ω2β| � 1 because |σ | � Ω and we are considering
β � 10. Thus, Equation (59) is generally satisfied.

The above assumptions imply

W (1) ∼ Ω2

c2
s Qk2

W (0), (60)

which indicates a non-zero density perturbation due to the
MRI can be amplified by SG. Now, for kxH ∼ 1, we have
|k2

z /k2
x | ∼ β/f 2 � 1 because f = O(1) and β � 10 for the

cases considered above. Then,∣∣∣∣W (1)

W (0)

∣∣∣∣ ∼ 1

Qβ
, (61)

suggesting stronger amplification of the density field by SG with
increasing field strength (decreasing β).

The above arguments can be adapted to the resistive disk.
Equations (51) and (52) are unchanged, while resistive terms

appearing in Equations (49) and (50) only involve the potential
perturbation through W̃ . For the resistive MRI, we take kz ∼
vA/η and |σ | ∼ v2

A/η = ΛΩ (Sano & Miyama 1999). Then,
|σ 2/c2

s k
2
z | ∼ 1/β � 1, so Equation (59) is satisfied. Noting that

k2
z ∼ Λ2Ω2β/c2

s , the feedback equation becomes∣∣∣∣W (1)

W (0)

∣∣∣∣ ∼ 1

Q
(
f 2k̂2

x + βΛ2
) , (62)

so increasing the resistivity (decreasing Λ) should enhance
density perturbations.

For weak fields in an ideal disk, the MRI has a vertical
wavelength λ � H . It will be almost incompressible so the
“seed” density perturbation W (0) is small. The perturbed mass
contained within ∼λ is small and its potential is unimportant.
Furthermore, considering the stratified disk, λ � H imply rapid
variations in the density perturbation across the disk height,
averaging to zero, so the magnitude of the associated potential
perturbation is small. SG does not affect the MRI in this regime.

However, a strong field and/or large resistivity increases
the MRI vertical wavelength. When the vertical scale of the
MRI becomes comparable to the disk thickness, i.e., λ ∼ H ,
the perturbed mass across the disk height can contribute to
a net potential perturbation. We therefore expect a necessary
condition for SG to affect the MRI is for the latter to be weak.

5. GRAVITATIONALLY UNSTABLE DISKS

GI becomes possible in a sufficiently massive and/or cold
disk. Here, we explore whether or not GI and MRI can interact
by computing unstable modes for isothermal disks with Q < 0.2
(Q2D � 0.67), which permits GI, as shown below. We consider
ideal disks with Λ0 = 100 and A = 1, unless otherwise stated.

5.1. Co-existence of MRI and GI

Figure 11 shows growth rates for modes with kxH = 1
as a function of β in disks with Q = 0.18, Q = 0.14, and
Q = 0.12. All three cases display distinct GI modes (red/brown
branch). The GI growth rates are γ � 0.25Ω, 0.6Ω, 0.8Ω for
Q = 0.18, 0.14, 0.12, respectively. GI is stabilized by magnetic
pressure for sufficiently small β. The critical field strength for
stabilizing GI increases with increasing SG, consistent with
Nakamura (1983). For Q = 0.18, GI is stabilized for β � 15.
Nevertheless, the MRI branch for β < 15 becomes self-
gravitating so that density perturbations still grow, even though
GI does not formally operate.

The GI and MRI branches only interact when their growth
rates are similar. This is seen in Figure 11 for Q = 0.18, where
the GI branch approaches an MRI branch at β � 25, γ � 0.2Ω.
In fact, following the red curve to smaller β indicates GI
transitions to MRI. The “gaps” in the GI and MRI branches
for Q = 0.18 and Q = 0.12 may be due to the phenomenon of
avoided crossing, as seen in stars (e.g., Aizenman et al. 1977)
and accretion tori/disks (e.g., Christodoulou 1993; Ogilvie
1998), where physically distinct modes approach one another in
frequency and exchange character. However, we cannot exclude
the possibility that some modes may have been missed in a
numerical search of eigenfrequencies.

Thus, our results do not rigorously prove that the GI and
MRI branches do not intersect. Nevertheless, the continuous
variation of τ strongly suggest that unstable modes can transition
smoothly from MRI to GI and vice versa, especially at low β.
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Figure 12. Growth rates of unstable modes in the massive isothermal disk with
Q = 0.12 and β = 20, as a function of the horizontal wavenumber kx . The color
bar measures the importance of self-gravity by τ . The solid line corresponds to
MRI modes in the Cowling approximation. The dashed line corresponds to pure
GI modes, obtained by including a high resistivity in the full problem.

(A color version of this figure is available in the online journal.)

5.1.1. Case Study

In reality, perturbations with a range of kx will be present for
a given set of disk parameters. Figure 12 shows growth rates as
a function of kx in a disk with Q = 0.12, β = 20, where MRI
and GI have comparable growth rates. All perturbations with
kxH � 3.5 grow dynamically (γ � 0.1Ω or �1.6 orbits).

We also plot in Figure 12 the growth rates obtained from the
Cowling approximation, which isolates MRI, and that from a
high-resistivity run, which isolates GI by allowing the field lines
to slip through the fluid. We refer to these as pure MRI and pure
GI, respectively. For kxH � 0.7, growth rates are equal to those
on the pure MRI and pure GI branches. That is, MRI and GI
operate independently until their growth rates become equal as
a function of kx .

The dispersion relation γ (kx) deviates from the pure
GI/MRI curves with increasing kx , implying stronger inter-
action between magnetic and density perturbations. Comparing
pure GI (dashed line) and the gravitationally dominated portions
of γ (kx) shows that inclusion of magnetic field stabilizes high-
kx pure GI. (Note also the slight decrease in the most unstable
kx .) This stabilization is due to magnetic pressure (Lizano et al.
2010), consistent with pressure-stabilizing small-wavelength GI
only.

Comparing pure MRI (solid line) and the magnetically
dominated portions of γ (kx) show that SG increases MRI growth
rates at large kx . This effect is small but noticeable, which can
be used as a code test for nonlinear simulations. Note that this
destabilization is through SG in the linear response, rather than
through the background stratification (which is stabilizing).

6. EFFECT OF AN AZIMUTHAL FIELD

In this section, we use the setup of case 2 described in
Section 3 and examine the effect of an azimuthal field so that
By 
= 0, parameterized by ε ≡ By/Bz. However, we continue to
use Bz for normalizations, and β is associated with the vertical
Alfvén speed. We also extend the previous calculations to the full
disk z ∈ [−Zs, Zs], which allows us to compare the effect of SG
on MRI modes with different symmetries across the midplane.
We use an isothermal disk throughout.

6.1. Ideal Disks with MRI

We consider disks with Q = 0.2 (Q2D = 0.72) and β = 10 in
the limit of ideal MHD (Λ0 = 100). GI is not expected because

Figure 13. MRI growth rates in isothermal disks with Q = 0.2 (Q2D = 0.72)
and β = 10 for a range of azimuthal field strengths By/Bz. The dots are
solutions computed from the full problem, with the color bar measuring the
gravitational potential perturbation via τ , while the solid curves are computed
from the Cowling approximation. For By = 0, modes in the top and bottom
panels have W ′(0) = 0 and W (0) = 0, respectively.

(A color version of this figure is available in the online journal.)

Figure 11 shows that even for Q = 0.18, GI is suppressed for
β � 15.

Figure 13 shows MRI growth rates for By/Bz = 0, 1, 2, and
3. We divide the modes into two categories depending on the
extremum of magnetic energy at the midplane. The top panel
shows modes where Em has a local minimum at z = 0, and the
bottom panel shows modes where Em has a local maximum at
z = 0. The latter set of modes were excluded in the previous
sections by midplane boundary conditions. We also plot growth
rates computed in the Cowling approximation. As expected,
〈Eg〉 < 〈Em〉, so none of the modes are energetically dominated
by SG.

Consider first modes in the top panel of Figure 13. As
with previous results, SG destabilizes modes with kxH �
O(1). Consequently, the cutoff wavenumber is larger when
SG is included. Destabilization is most effective for purely
vertical fields: with ε = 0, kxH � 1.4, SG increases the
growth rate by ∼30%. For By = 0, we find the density
perturbation W (z) is an even function. Although these modes
are fundamentally magnetic, this is consistent with Goldreich &
Lynden-Bell (1965a), who showed that SG can only destabilize
symmetric density perturbations. With increasing By, we find W
deviates from an even function. Together with the increased total
magnetic pressure with By (since Bz is fixed), destabilization
by SG weakens. Thus, the Cowling approximation becomes
increasingly good with stronger By for these modes.

The modes in the bottom panel of Figure 13 display opposite
behavior. For By = 0, we find W (z) is odd, and SG has no
effect. When By > 0, W deviates from an odd function and
the midplane density perturbation |W (0)| increases. SG is sta-
bilizing for these modes at all wavelengths and is most effective
at kxH = O(1). Figure 14 shows eigenfunctions for ε = 3
and kxH = 1.1, with and without the Cowling approximation.
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Figure 14. Energy densities for an MRI mode in an isothermal ideal disk with
an azimuthal field By = 3Bz, computed in the Cowling approximation (top) and
with full self-gravity (bottom). These modes correspond to those in the bottom
panel of Figure 13.

SG significantly enhances the midplane density perturbation,
making the gravitational potential energy comparable to the
magnetic energy, which becomes more confined near the mid-
plane.

To interpret the above result for modes with magnetic energy
concentrated at the midplane, we note that compressibility
affects the MRI in the presence of an azimuthal field even in
a non-self-gravitating disk. If the perturbed disk remains in
vertical hydrostatic equilibrium, then

|W | ∼ By

μ0ρ
|δBy |, (63)

to the order of magnitude in a non-SG disk. Thus, a strong
azimuthal field can cause a large density perturbation (Pessah
& Psaltis 2005). We checked that for the modes in Figure 14,
vertical velocities are small, |δvz|/(|δvx |2 + |δvy |2)1/2 � 0.2.

Compressibility is enhanced by an azimuthal field, which is
stabilizing for the MRI (Kim & Ostriker 2000). This effect is sig-
nificant for ε = 3 because the azimuthal Alfvén speed is sonic.
Figure 14 indicates that SG further enhances compressibility,
and therefore stabilization. We suspect this is overwhelmed by
the destabilization effect of SG because the density perturbation
has an anti-symmetric component.

6.2. Resistive Disks with GI

Here, we examine a resistive disk which permits MRI and
GI by setting Q = 0.18, Λ0 = 0.1, and β = 100. Figure 15
shows growth rates for ε = 0, 1, and 2. For By = 0, MRI and
GI are decoupled except for a narrow range of kx in which the
lower MRI modes transitions to GI. Note that the upper MRI
modes intersect the GI branch. There is no interaction because
the upper MRI modes have anti-symmetric W (z), whereas the
GI modes have symmetric W (z).

Figure 15. Growth rates in isothermal resistive disks with Q = 0.18 (Q2D =
0.67), β = 100, and Λ0 = 0.1. For By = 0, the upper and lower MRI modes
have anti-symmetric and symmetric density perturbations, corresponding to
W (0) = 0 and W ′(0) = 0, respectively. For By/Bz = 2, the overstable modes
have non-zero real frequencies.

(A color version of this figure is available in the online journal.)

Introducing By = Bz leads to an exchange in the mode
characters. For kxH � 0.9, the modes on the two MRI branches
are similar to the vertical field case. However, for kxH � 0.9,
the upper MRI mode transitions to GI, for which Em(0) is
a minimum, and the lower MRI mode has Em(0) being a
maximum. We find that all perturbations with kxH � 0.9 have
symmetric W (z).

Increasing the azimuthal field further to By = 2Bz, we find
overstable MRI modes with non-negligible real frequencies
(Gammie 1996a). An example is shown in Figure 16. Note
the density/potential perturbation is offset from the midplane.
This is not possible for pure GI (Goldreich & Lynden-Bell
1965a). Thus, these overstable MRI modes indeed become self-
gravitating before being stabilized.

Note also in Figure 15 the disappearance of magnetic modes
between 0.8 � kxH � 1.5 as By is increased. For By = 2Bz,
MRI and GI are again independent because they operate at
distinct radial scales. This implies that perturbations unstable to
GI cannot develop MRI.

7. SUMMARY AND DISCUSSION

In this paper, we have performed axisymmetric linear stability
calculations of magnetized, self-gravitating, vertically stratified
disks in the local approximation. Our models include resistivity
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Figure 16. Overstable MRI mode in an isothermal resistive disk with Q = 0.18
(Q2D = 0.67), Λ0 = 0.1, and β = 100. The mode has a real frequency
ω = 0.059Ω or ω/γ � 0.2.

and azimuthal fields. We have identified regimes under which
the MRI is affected by disk SG.

For a vertical field, the requirement for the MRI to operate
is that its vertical wavelength λ � 2H . The disk thickness
H = H (Q) decreases with increasing SG. This reduces MRI
growth rates when β, and hence λ, is fixed. Thus, a sufficiently
massive disk can potentially suppress the MRI. The MRI is also
restricted to larger radial scales as Q is lowered. This means that
the MRI becomes more global in self-gravitating disks.

The condition λ < 2H may be written more precisely as

n

min(Λ0, 1)

f (Q)√
β

� 1, (64)

where n ∼ 3 is a numerical factor and min(Λ0, 1) accounts for
the ideal and resistive limits (see Equations (45) and (46)). Since
f increases with decreasing Q, Equation (64) implies the MRI
requires larger values of β with increasing SG. For definiteness,
consider the ideal polytropic disk. Then, Equation (64) is

β−1/2 �
√

15

4π

√
Q arccos

(
Q

1 + Q

)
. (65)

For a non-self-gravitating disk, Q → ∞, and Equation (65) is
β � 16π2/30 � 5. For Q � 1, the condition is β � 64/15Q,
giving β � 20 for Q = 0.2. We confirm this numerically,
finding the MRI growth rate γ � 0.1 Ω when β � 3.3 for
Q = 20 and β � 17 for Q = 0.2.

We can also place an upper bound on the absolute field
strength Bz. Writing vA0 = Bz

√
4πGQ/μ0Ω2, we find

Equation (65) is independent of Q for Q � 1, and

Bz

cs0Ω

√
πG

μ0
�

√
15

16
(66)

is needed for the MRI to operate in the ideal polytropic disk
with strong SG. Although both the MRI wavelength and disk
thickness vanish as Q → 0, the MRI can still operate provided
the field is sufficiently weak according to Equation (66).

Interestingly, for layered resistivity, we do not find layered
magnetic perturbations when the disk is massive. This is con-
sistent with the MRI becoming vertically global with increasing
SG. For non-self-gravitating disks, λ � H , so the MRI can
be restricted to regions of size L < H , i.e., an active layer.
This is not compatible with λ ∼ H , as found for massive disks.

Hence, we find magnetic perturbations penetrate into the high-
resistivity dead zone (e.g., Q = 0.2 in Figure 5), and there is
no distinct boundary between active and dead layers. This sug-
gests that the picture of layered accretion (e.g., Fleming & Stone
2003) may not be applicable to self-gravitating disks.

We find MRI modes with radial scales of ∼H can acquire
density perturbations in massive but Toomre-stable disks. This
occurs when the MRI is weak, for example, with a strong field
or high resistivity. We argue in that case that λ ∼ H , so the MRI
is compressible, and the associated density perturbation can be
enhanced by SG.

At this point, it is worth mentioning previous nonlinear simu-
lations of magnetized self-gravitating galactic and circumstellar
disks (Kim et al. 2003; Fromang et al. 2004d, 2004c). These
authors find SG did not enhance MRI density fluctuations sig-
nificantly. However, they employed ideal MHD simulations with
gas-to-magnetic pressure ratios of the order of 102–103. This is
qualitatively consistent with our results, as SG is not expected
to influence the MRI in this regime of β, except through the
background state. For example, Fromang et al. (2004c) found
MRI turbulence is more coherent in self-gravitating disks. This
may be related to our finding that small radial scale MRI is
suppressed when SG is included in the background equilibria.

Physically, we expect MRI to interact with SG when their
spatial scales are similar. Because SG acts globally in the
vertical direction, for it to affect the MRI, future nonlinear
simulations should consider parameter regimes in which the
MRI is vertically global. Indeed, in the setup of Kim et al. (2003),
the disk scale height exceeds the MRI vertical wavelength, and
SG has little impact.

Curiously, when GI and MRI are simultaneously supported,
we find unstable modes transition between MRI and GI. Modes
exist with comparable potential and magnetic energy pertur-
bations, which demonstrate MRI and GI can interact. These
transitions occur smoother with decreasing β (Figure 11) or
increasing kx (Figure 12). The latter implies that in order to cap-
ture the magnetogravitational interactions represented by these
intermediate modes, nonlinear simulations must resolve radial
scales smaller than the most unstable GI mode. For example,
Figure 12 suggests radial scales down to ∼H/2 should be well
resolved.

We examined the effect of an additional azimuthal field,
while keeping the vertical field at fixed strength. In this case,
we also relaxed the equatorial symmetry condition applied
previously and considered the full disk column. SG affects the
MRI differently depending on its character. SG destabilizes
MRI modes where the magnetic energy has a minimum at
z = 0; these modes have a symmetric density perturbation in the
limit By → 0. However, SG stabilizes MRI modes where the
magnetic energy has a maximum at z = 0; these modes have an
anti-symmetric density perturbation in the limit By → 0. This
stabilization effect is stronger for increasing By. Previous linear
calculations show that increased compressibility associated with
a toroidal field stabilizes the MRI (Kim et al. 2003). We
conjecture that SG further enhances this effect. Nonlinear MRI
simulations with strong toroidal fields that neglect SG may
overestimate the strength of MRI turbulence.

7.1. Caveats and Outlooks

We discuss below two major extensions to our linear model
that should be undertaken before embarking on nonlinear
simulations of magnetized, self-gravitating disks, which is our
eventual goal.
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Figure 17. Function f (Q) describing vertical hydrostatic equilibrium in self-
gravitating polytropic disks (solid line). The horizontal dashed line is the
asymptotic value of 1/

√
2 for large Q.

Beyond the shearing box. The shearing box ignores the
curvature of toroidal field lines present in the global disk
geometry. Pessah & Psaltis (2005) demonstrated new effects on
the MRI when the curvature of a super-thermal toroidal field is
accounted for, although Pessah & Psaltis focused on modes with
large (small) vertical (radial) wavenumbers, for which we expect
SG can be ignored. Since compressibility becomes important for
strong toroidal fields, the effect of SG on modes with kxH ∼ 1
may become significant when super-thermal toroidal fields are
considered. However, global disk models will be necessary to
self-consistently probe this regime.

Beyond axisymmetry. Axisymmetric perturbations, as we
have assumed, preclude gravitational torques (Lynden-Bell
& Kalnajs 1972). The local non-axisymmetric stability of
magnetized self-gravitating thin disks has been considered by
several authors (Elmegreen 1987; Gammie 1996b; Fan & Lou
1997; Kim & Ostriker 2001). However, two-dimensional models
exclude the MRI. It will be necessary to generalize these studies
to 3D in order to investigate the impact of the MRI on angular
momentum transport by GI. Furthermore, self-gravitating disks
can develop global spiral instabilities while stable against
local axisymmetric perturbations (Papaloizou & Lin 1989;
Papaloizou & Savonije 1991). Global non-axisymmetric linear
models will be desirable to support nonlinear simulations of this
kind (Fromang et al. 2004b; Fromang 2005).

I thank K. Menou, S. Fromang, and A. Youdin for helpful
discussions during the course of this project. The project source
codes may be found at https://github.com/minkailin/sgmri.

APPENDIX A

ANALYTIC EQUILIBRIUM FOR THE POLYTROPIC DISK

For a polytropic disk with P = Kρ2, the dimensional
equilibrium equation to be solved is

0 = c2
s0

d2

dz2

(
ρ

ρ0

)
+ Ω2

z +
Ω2

Q

(
ρ

ρ0

)
, (A1)

which is obtained by combining Equations (6) and (7) with the
above equation of state. The solution is

ρ

ρ0
=

(
1 +

Ω2
z

Ω2
Q

)
cos (az) − Ω2

z

Ω2
Q, (A2)

Figure 18. Relation between the self-gravity parameter Q used in this paper and
the Toomre parameter Q2D for razor-thin disks.

where

a2 ≡ Ω2

Qc2
s0

. (A3)

The polytropic disk thickness is

H = cs0

Ω
√

Q arccos

(
Ω2

zQ

Ω2 + Ω2
zQ

)
. (A4)

Given a fixed midplane temperature, the function f (Q) ≡
cs0/ΩH is an inverse measure of the disk thickness, and f
increases with decreasing Q, as shown in Figure 17. This
corresponds to a thinner disk with increasing strength of
vertical SG.

APPENDIX B

RELATION BETWEEN Q AND THE
TOOMRE PARAMETER

The Toomre parameter defined for razor-thin disks is

Q2D ≡ κcs

πGΣ
, (B1)

where Σ is the total column density. To relate our SG parameter
Q and Q2D, we replace cs by cs ≡ ∫

ρcsdz/
∫

ρdz, and κ by Ω,
giving

Q2D = 2Qf

∫ 1
0 ρ̂ĉsdẑ( ∫ 1
0 ρ̂dẑ

)2 , (B2)

where each term on the right-hand-side is non-dimensionalized
(see Section 3.2.1). Figure 18 plots this relation for isothermal
and polytropic disks.

APPENDIX C

REDUCTION TO LINEAR HYDRODYNAMICS

Our task here is to remove the magnetic field and vertical
velocity perturbations from the linearized equations. Let us first
define operators

D0 = 1, D1 = ρ ′

ρ
+

d

dz
,

D2 = ρ ′′

ρ
+

2ρ ′

ρ

d

dz
+

d2

dz2
(C1)
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and

D0 = ηD0, D1 = η′D0 + ηD1,

D2 = η′′D0 + 2η′D1 + ηD2. (C2)

We define the variables

U ≡ iσδvx − 2Ωδvy + ikxW̃ , (C3)

V ≡ iσδvy +
κ2

2Ω
δvx. (C4)

We first express the continuity equation in terms of horizon-
tal velocity, density, and potential perturbations. The vertical
velocity perturbation is

δvz = i

σ
(W̃ ′ + εV ), (C5)

where the linearized y momentum equation was used (i.e.,
eliminating δB ′

y between Equations (19) and (20)). Inserting
this into the linearized continuity equation (Equation (17)), we
obtain

0 = W ′′ + (ln ρ)′ W ′ +
σ 2

c2
s

W + δΦ′′

+ (ln ρ)′ δΦ′ + σkxδvx + εD1V. (C6)

Next, we separately examine the cases of a vertical field
with variable resistivity and that of a tilted field with uniform
resistivity. (A similar procedure can be performed in the general
case of a tilted field with variable resistivity.)

C.1. Vertical Field with Variable Resistivity

First, consider ε = 0 and η = η(z) in the linearized equations.
Denoting the nth vertical derivative as (n), the equations of
motion give

δB(n)
x = μ0ρ

Bz

Dn−1U + ikxδB
(n−1)
z , (C7)

δB(n)
y = μ0ρ

Bz

Dn−1V, (C8)

for n � 1. Differentiating the divergence-free condition for the
magnetic field gives

ikxδB
′
x + δB ′′

z = 0. (C9)

We insert the expression for δB ′
x from Equation (C7) and the

expression for δB ′′
z from the z component of the linearized

induction equation (Equation (23)) to obtain

−σδB(n)
z = kxBzδv

(n)
x + kx

μ0ρ

Bz

DnU. (C10)

Inserting the above expressions for δB ′′
x , δB ′

x (Equation (C7))
and δB ′

z (Equation (C10)) into the right-hand side of the
x-induction equation (Equation (21)) gives

iσδBx = Bzδv
′
x +

μ0ρ

Bz

D1U. (C11)

(σ̄ 
= 0 has been assumed to obtain this.) We differentiate this
expression with respect to z and eliminate the resulting δB ′

x

using Equation (C7) to obtain

0 = v2
A

(
δv′′

x − k2
xδvx

)
+

(
D2 − k2

xD0 − iσD0
)
U. (C12)

We follow a similar procedure as above to remove δBy . We use
Equations (C11) and (C8) to eliminate δBx, δB

′
y and δB ′′

y from
the right-hand-side of the y-induction equation (Equation (22)),

iσ̄ δBy = Bzδv
′
y +

iS

σ

(
Bzδv

′
x +

μ0ρ

Bz

D1U

)
+

μ0ρ

Bz

D1V.

(C13)

We differentiate this expression with respect to z, then eliminate
δBy and δB ′

y from the left-hand side of the resulting expression
using Equations (C13) and (C8), respectively. We obtain

0 = v2
A

(
δv′′

y − σ̄ ′

σ̄
δv′

y

)
+

iSv2
A

σ

(
δv′′

x − σ̄ ′

σ̄
δv′

x

)
+

iS

σ

(
D2 − σ̄ ′

σ̄
D1

)
U +

(
D2 − σ̄ ′

σ̄
D1 − iσ̄D0

)
V.

(C14)

Equations (C12) and (C14) constitute the first two linearized
equations to be solved.

C.2. Tilted Field with Uniform Resistivity

Here, we allow ε 
= 0 but take η to be constant. We first obtain
expressions for δBx and δBy . Differentiating the x momentum
equation and replacing the resulting δB ′

z using the divergence-
free condition and δB ′

y using the y momentum equation, we
obtain an expression for δB ′′

x which can be inserted into the x
induction equation. This gives

iσδBx = Bzδv
′
x +

ημ0ρ

Bz

(D1U + iεkxD0V ) . (C15)

We can insert this into the y induction equation to obtain

iσ̄ δBy = −ByΔ + Bzδv
′
y +

iS

σ

×
[
Bzδv

′
x +

ημ0ρ

Bz

(D1U + iεkxD0V )

]
+

ημ0ρ

Bz

D1V, (C16)

where we have also used the derivative of the y momentum
equation to eliminate δB ′′

y . Recall Δ ≡ ikxδvx + δv′
z so that

Δ = ikxδvx +
i

σ
(W̃ ′′ + εV ′)

= −
[

iσW

c2
s

+
i (ln ρ)′

σ
(W̃ ′ + εV )

]
, (C17)

where the second equality results from the continuity equation.
Now, consider

δB ′
x − ikxδBz = μ0ρ

Bz

D0U + iεkxδBy

= σ

σ̄
δB ′

x +
ik2

xBz

σ̄
δvx, (C18)
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where the first equality corresponds to the x momentum equation
and the second equality results from replacing δBz using the z
induction equation. We can now use the above expressions for
δBx and δBy (Equations (C15) and (C16)) to obtain

0 = v2
A

[
k2
x(1 + ε2)δvx − εkxS

σ
δv′

x − δv′′
x

]
+ iεkxv

2
Aδv′

y +
ε2kxv

2
A

σ
(W̃ ′′ + εV ′)

−
[
η

(
D2 +

εkxS

σ
D1

)
− iσ̄D0

]
U − iε2k2

xS

σ
ηD0V.

(C19)

Similarly, we differentiate Equation (C16) and use the y
momentum equation to eliminate δB ′

y to obtain

0 = v2
Aδv′′

y +
iS

σ
v2

Aδv′′
x +

iS

σ
ηD2U

+

{
η

(
D2 − εkxS

σ
D1

)
+ i

[
ε2v2

A (ln ρ)′′

σ
− σ̄

]
D0

}
V

+ iεv2
A

{
σ

c2
s

[
W ′ − (

ln c2
s

)′
W

]
+

1

σ

[
(ln ρ)′ (W̃ ′′ + εV ′) + (ln ρ)′′ W̃ ′] }

. (C20)
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