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ABSTRACT
Vortex formation through the Rossby wave instability (RWI) in protoplanetary discs has been
invoked to play a role in planet formation theory and suggested to explain the observation of
large dust asymmetries in several transitional discs. However, whether or not vortex formation
operates in layered accretion discs, i.e. models of protoplanetary discs including dead zones
near the disc mid-plane – regions that are magnetically inactive and the effective viscosity
greatly reduced – has not been verified. As a first step towards testing the robustness of
vortex formation in layered discs, we present non-linear hydrodynamical simulations of global
3D protoplanetary discs with an imposed kinematic viscosity that increases away from the
disc mid-plane. Two sets of numerical experiments are performed: (i) non-axisymmetric
instability of artificial radial density bumps in viscous discs and (ii) vortex formation at
planetary gap edges in layered discs. Experiment (i) shows that the linear instability is largely
unaffected by viscosity and remains dynamical. The disc–planet simulations also show the
initial development of vortices at gap edges, but in layered discs, the vortices are transient
structures which disappear well into the non-linear regime. We suggest that the long-term
survival of columnar vortices, such as those formed via the RWI, requires low effective
viscosity throughout the vertical extent of the disc, so such vortices do not persist in layered
discs.
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1 IN T RO D U C T I O N

Recent observations have revealed a class of transition discs – cir-
cumstellar discs which are dust poor in its inner regions – with
non-axisymmetric dust distributions in its outer regions (Brown
et al. 2009; Mayama et al. 2012; Isella et al. 2013; van der Marel
et al. 2013). One interpretation of such a non-axisymmetric struc-
ture is the presence of a large-scale disc vortex, which is known
to act as a dust trap (Barge & Sommeria 1995; Bracco et al. 1999;
Chavanis 2000; Inaba & Barge 2006; Ataiee et al. 2013; Birnstiel,
Dullemond & Pinilla 2013; Lyra & Lin 2013). Because of its oc-
currence adjacent to the inner dust hole, i.e. a cavity edge, it has
been suggested that such a vortex is a result of the Rossby wave
instability (RWI): a hydrodynamical instability that can develop in
radially structured discs.

Modern work on the RWI began with two-dimensional (2D) lin-
ear stability analysis (Lovelace et al. 1999; Li et al. 2000). These
studies show that a disc with radially localized structure, such
as a surface density enhancement of � 10 per cent over a radial
length-scale of the order of the local disc scaleheight, is unstable
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to non-axisymmetric perturbations, which grow on dynamical (or-
bital) time-scales. Early 2D non-linear hydrodynamic simulations
showed that the RWI leads to multivortex formation, followed by
vortex merging into a single large vortex in quasi-steady state (Li
et al. 2001; Inaba & Barge 2006).

While these studies consider disc models with artificial radial
structure, it has recently been established that a natural site for the
RWI is the edge of gaps induced by disc–planet interaction (Koller,
Li & Lin 2003; Li et al. 2005; de Val-Borro et al. 2007; Li et al.
2009; Lyra et al. 2009; Lin & Papaloizou 2010, 2011). Indeed, this
has been the proposed explanation for the lopsided dust distribution
observed in the Oph IRS 48 transition disc system (van der Marel
et al. 2013).

An important extension to the aforementioned studies is the gen-
eralization of the RWI to three-dimensional (3D) discs. Both non-
linear 3D hydrodynamic simulations (Meheut et al. 2010, 2012b;
Lin 2012a; Lyra & Mac Low 2012; Richard, Barge & Le Dizes
2013) and 3D linear stability calculations (Umurhan 2010; Lin
2012b, 2013b; Meheut, Yu & Lai 2012a) have been carried out.
These studies reveal that the RWI is a 2D instability, in that there
is negligible difference between growth rates obtained from 2D
and 3D linear calculations. The associated density and horizontal
velocity perturbations have weak vertical dependence, and vertical
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velocities are small. In non-linear hydrodynamic simulations, the
vortices are columnar and extend throughout the vertical extent of
the disc (Richard et al. 2013).

The RWI therefore appears to be a global instability in the direc-
tion perpendicular to the disc mid-plane: the vortical perturbation
involves the entire fluid column. Thus, conditions away from the
disc mid-plane may have important effects on vortex formation via
the RWI. For example, Lin (2013a) only found linear instability
for certain upper disc boundary conditions. This issue is relevant to
protoplanetary disc models including ‘dead zones’.

It is believed that mass accretion in protoplanetary discs is driven
by magnetohydrodynamic (MHD) turbulence as a result of the mag-
netorotational instability (MRI; Balbus & Hawley 1991, 1998).
However, it is not clear if the MRI operates throughout the vertical
extent of the disc, because the mid-plane of protoplanetary disc is
dense and cold (Armitage 2011). As a result, Gammie (1996) pro-
posed the layered disc model: accretion due to MHD turbulence is
small near the mid-plane (the dead zone), while MHD turbulence-
driven accretion operates near the disc surface (the active zone). The
layered accretion disc model has been subject to numerous studies
(e.g. Fleming & Stone 2003; Terquem 2008; Oishi & Mac Low
2009; Dzyurkevich et al. 2010; Kretke & Lin 2010; Okuzumi &
Hirose 2011; Flaig et al. 2012; Landry et al. 2013). If MRI-driven
accretion can be modelled through an effective viscosity (Balbus
& Papaloizou 1999), this corresponds to a low-viscosity mid-plane
and high-viscosity atmosphere. It is therefore valid to ask how such
a vertical disc structure would affect large-scale vortex formation
via the RWI.

This problem is partly motivated by viscous disc–planet sim-
ulations which show that gap-edge vortex formation only occurs
when the viscosity is sufficiently small (de Val-Borro et al. 2006,
2007; Edgar & Quillen 2008). What happens if the effective vis-
cosity near the mid-plane is sufficiently low for the development of
Rossby vortices, but is too high away from the mid-plane?

In this work, we examine vortex formation through the RWI in
layered discs. As a first study, we take an experimental approach
through customized numerical hydrodynamic simulations. We sim-
ulate global 3D protoplanetary discs with an imposed kinematic
viscosity that varies with height above the disc mid-plane.

The central question is whether or not applying a viscosity only
in the upper layers of the disc damps the RWI and subsequent vor-
tex formation. The purpose of this paper is to demonstrate, through
selected simulations, the potential importance of layered disc struc-
tures on vortex formation. We defer a detailed parameter survey to
a future study.

This paper is organized as follows. The accretion disc model is
set up in Section 2 and the numerical simulation method described
in Section 3. Results are presented in Section 4 for viscous discs
initialized with a density bump. These simulations employ a special
setup such that the density bump is not subject to axisymmetric
viscous diffusion. This allows one to focus on the effect of layered
viscosity on the linear non-axisymmetric instability. Section 5 re-
visits vortex formation at planetary gap edges, but in 3D layered
discs, where it will be seen that vortex formation can be suppressed
by viscous layers. Section 6 concludes this work with a discussion
of important caveats of the present disc models.

2 D I S C M O D E L A N D G OV E R N I N G
E QUAT I O N S

We consider a three-dimensional, locally isothermal, non-self-
gravitating fluid disc orbiting a central star of mass M∗. We adopt

a non-rotating frame centred on the star. Our computer simulations
employ spherical coordinates r = (r, θ, φ), but for model descrip-
tion and results analysis, we will also use cylindrical coordinates
r = (R, φ, z). We also define ψ ≡ π/2 − θ as the angular displace-
ment from the disc mid-plane. For convenience, we will sometimes
refer to ψ as the vertical direction. The governing equations are

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂v

∂t
+ v · ∇v = − 1

ρ
∇p − ∇(

�∗ + �p

) + f ν + f d , (2)

where ρ is the mass density, v is the velocity field (the azimuthal
angular velocity being 	 ≡ vφ/R) and p = c2

s ρ is the pressure. The
sound speed cs is prescribed as

cs = hr0	k(r0) ×
( r0

R

)q/2
, (3)

where h is the aspect ratio at the reference radius r0, 	k(R) =√
GM∗/R3 is the Keplerian frequency and G is the gravitational

constant. The power-law index q specifies the radial temperature
profile: q = 0 corresponds to a strictly isothermal disc, while q = 1
is a locally isothermal disc with constant aspect ratio. In equation
(2), �∗(r) = −GM∗/r is the stellar potential and �p is a planetary
potential (see Section 2.3 for details).

Two dissipative terms are included in the momentum, equations:
viscous damping f ν and frictional damping f d . The viscous force
is

f ν = 1

ρ
∇ · T , (4)

where

T = ρν

[
∇v + (∇v)† − 2

3
(∇ · v) 1

]
(5)

is the viscous stress tensor and ν is the kinematic viscosity († denotes
the transpose). The frictional force is

f d = −γ (v − vref ) , (6)

where γ is the damping coefficient and vref is a reference velocity
field. ν and γ are prescribed functions of position only (see below).

2.1 Disc model and initial conditions

The numerical disc model occupies r ∈ [rin, rout], θ ∈ [θmin, π/2]
and φ ∈ [0, 2π] in spherical coordinates. Only the upper disc is
simulated explicitly (ψ > 0), by assuming symmetry across the
mid-plane. The maximum angular height is ψmax ≡ π/2 − θmin. The
extent of the vertical domain is parametrized by nh ≡ tan ψmax/h,
i.e. the number of scaleheights at the reference radius.

The disc is initially axisymmetric with zero cylindrical verti-
cal velocity: ρ(t = 0) ≡ ρi(R, z) and v(t = 0) ≡ (vRi , R	i , 0) in
cylindrical coordinates. The initial density field is set by assum-
ing vertical hydrostatic balance between gas pressure and stellar
gravity:

0 = 1

ρi

∂pi

∂z
+ ∂�∗

∂z
, (7)

where pi = c2
s ρi is the initial pressure field. We write

ρi = �i(R)√
2πH (R)

exp

{
1

c2
s

[�∗(R) − �∗(r)]

}
, (8)
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where H = cs/	k is the pressure scaleheight. The initial surface
density �i(R) is chosen as

�i(R) = �0

(
R

r0

)−σ

× B(R), (9)

where σ is the power-law index, and the surface density scale �0

is arbitrary for a non-self-gravitating disc. The bump function B(R)
is

B(R) = 1 + (A − 1) exp

[
− (R − r0)2

2
R2

]
, (10)

where A is the bump amplitude and 
R is the bump width. The
initial surface density has bump if A > 1 and is smooth if A = 1.

The initial angular velocity is chosen to satisfy centrifugal balance
with pressure and stellar gravity:

R	2
i = 1

ρi

∂pi

∂R
+ ∂�∗

∂R
, (11)

so 	i = 	i(R) for a strictly isothermal equation of state (q = 0).
The initial cylindrical radial velocity vRi and the viscosity profile

ν depends on the numerical experiment and will be described along
with simulation results. Note that vRi and ν are not independent if
one additionally requires a steady state (see Section 4).

2.2 Damping

We apply frictional damping in the radial direction to reduce re-
flections from boundaries (e.g. Bate et al. 2002; de Val-Borro et al.
2007). The damping coefficient γ is only non-zero within the ‘damp-
ing zones’, here taken to be r ≤ rd, in, r ≥ rd, out,

γ = γ̂ 	i ×
{

ξin(r) r ≤ rd,in

ξout(r) r ≥ rd,out

, (12)

where γ̂ is the dimensionless damping rate. We choose

ξin(r) =
(

rd,in − r

rd,in − rin

)2

and ξout(r) =
(

r − rd,out

rout − rd,out

)2

(13)

for the inner and outer radial zones, respectively.

2.3 Planet potential

Our disc model has the option to include a planet potential �p,

�p(r, t) = − GMp√
|r − rp(t)|2 + ε2

p

+ GMp

|rp|3 r · rp, (14)

where Mp is the planet mass, rp(t) = (r0, π/2, 	k(r0)t + π) its
position in spherical coordinates, εp = εp0rh is a softening length
and rh = (Mp/3M∗)1/3r0 is the Hill radius. For the purpose of our
study, �p is considered as a fixed external potential. That is, orbital
migration is neglected.

3 N U M E R I C A L E X P E R I M E N T S

The necessary condition for the RWI – a PV extremum (Li et al.
2000) – is either set as an initial condition via a density bump
or obtained from a smooth disc by evolving it under disc–planet
interaction. The setup of each experiment is detailed in subsequent
sections.

We adopt units such that G = M∗ = 1 and the reference radius
r0 = 1. We set σ = 0.5 for the initial surface density profile and

apply frictional damping within the shells r < rd, in = 1.25rin and
r > rd, out = 0.84rout.

The fluid equations are evolved using the PLUTO code (Mignone
et al. 2007) with the FARGO algorithm enabled (Masset 2000;
Mignone et al. 2012). We employ a static spherical grid with (Nr, Nθ ,
Nφ) zones uniformly spaced in all directions. For the present simula-
tions, the code was configured with piecewise linear reconstruction,
a Roe solver and second-order Runge–Kutta time integration.

Boundary conditions are imposed through ghost zones. Let the
flow velocity parallel and normal to a boundary be v‖ and v⊥, re-
spectively. Two types of numerical conditions are considered for the
(r, θ ) boundaries: (a) reflective: ρ and v‖ are symmetric with respect
to the boundary, while v⊥ is antisymmetric and (b) unperturbed:
ghost zones retain their initial values. The boundary conditions
adopted for all simulations are unperturbed in r, reflective in θ and
periodic in φ.

3.1 Diagnostics

We list several quantities calculated from simulation data for use in
results visualization and analysis.

3.1.1 Density perturbations

The relative density perturbation δρ and the non-axisymmetric den-
sity fluctuation 
ρ are defined as

δρ(r, t) ≡ ρ − ρi

ρi
, 
ρ(r, t) ≡ ρ − 〈ρ〉φ

〈ρ〉φ , (15)

where 〈 · 〉φ denotes an azimuthal average. In general, 
ρ accounts
for the time evolution of the axisymmetric part of the density field,
but if ∂t 〈ρ〉φ = 0, then 
ρ is identical to δρ − 〈δρ〉φ .

3.1.2 Vortical structures

The Rossby number

Ro ≡ ẑ · ∇ × v − 〈 ẑ · ∇ × v〉φ
2〈	〉φ (16)

can be used to quantify the strength of vortical structures and to
visualize it. Ro < 0 signifies anticyclonic motion with respect to the
background rotation. Note that while for thin discs the rotation pro-
file is Keplerian, the shear is non-Keplerian for radially structured
discs (i.e. 	 � 	k, but the epicycle frequency κ �= 	).

3.1.3 Potential vorticity

The potential vorticity (PV, or vortensity) is η3D = ∇ × v/ρ. How-
ever, it will be convenient to work with vertically averaged quanti-
ties. We define

ηz = 1

�

∫
ẑ · ∇ × v dz (17)

as the PV in this paper, where � = ∫
ρdz, and the integrals are

confined to the computational domain. We recall that for a 2D
disc the vortensity is defined as η2D ≡ ẑ · ∇ × v/� and extrema in
η2D is necessary for the RWI in 2D (Lovelace et al. 1999; Lin &
Papaloizou 2010). If the velocity field is independent of z, then ηz

is proportional to η2D (at fixed cylindrical radius).
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3.1.4 Perturbed kinetic energy density

We define the perturbed kinetic energy as W ≡ ρ|v|2/[ρi|v(t =
0)|2] − 1, and its Fourier transform Wm ≡ ∫ 2φ

0 W exp (−imφ)dφ.
We will examine |Wm(r, θ )| averaged over subportions of the (r, θ )
plane.

4 N ON-AXISYMMETRIC INSTABILITY O F
ARTIF ICIA L R A DIAL DENSITY BUMPS IN
LAY ERED D ISCS

We first consider strictly isothermal discs (q = 0) initialized with
a density bump (A > 1). Our aim here is to examine the effect
of (layered) viscosity on the RWI through the linear perturbation.
In general, a density bump in a viscous disc will undergo viscous
spreading (Lynden-Bell & Pringle 1974), but we can circumvent
this by choosing the viscosity profile ν and initial cylindrical radial
velocity vRi appropriately. Although artificial, this setup avoids the
simultaneous evolution of the density bump subject to axisymmetric
viscous spreading and growth of non-axisymmetric disturbances;
only the latter of which is our focus.

4.1 Viscous equilibria for a radially structured disc

In choosing ρi and 	i, we neglected radial velocities and viscous
forces in the steady-state vertical and cylindrical radial momentum
equations (equations 7 and 11, respectively). This is a standard
practice for accretion disc modelling (e.g. Takeuchi & Lin 2002).

However, vR and ν cannot be ignored in the azimuthal momentum
equation. Indeed, if a steady state is desired, then the conservation
of angular momentum in a viscous disc implies special relations
between the viscosity, cylindrical radial velocity and density field.

4.1.1 Initial cylindrical radial velocity

For axisymmetric flow with 	 = 	(R), the azimuthal momentum
equation reads

RρvR

∂

∂R

(
R2	

) = ∂

∂R

(
R3ρν

∂	

∂R

)
. (18)

Note that the viscous term due to vertical shear (∂z	) is absent
because in this experiment we are considering barotropic discs.
Assuming a steady state with vz = 0, mass conservation (equation
1) implies that the mass flux Ṁ ≡ RρvR is independent of R. In
this case, equation (18) can be integrated once to yield

ṀR2	 = R3ρν	′ + C(z) if ∂RṀ = 0, (19)

where ′ denotes d/dR, and C(z) is an arbitrary function of z. Equa-
tion (19) motivates the simple choice

vRi = ν

R

d ln 	i

d ln R
(20)

for the initial cylindrical radial velocity. Next, we choose the vis-
cosity profile ν to make Ṁ independent of R.

4.1.2 Viscosity profile for a steady state

If the initial conditions corresponds to a steady state, then RρivRi

can only be a function of z. With vRi chosen by equation (20), this
implies Rρiν	′

i/	i is only a function of z. We are therefore free to
choose the vertical dependence of viscosity.

Figure 1. Example of a two-layered kinematic viscosity profile resulting
from equation (21). This specific plot corresponds to case V2. The solid line
delineates the upper boundary of the computational domain.

Let ν = ν̂r2
0 	k(r0), where ν̂ = ν̂(R, z) is a dimensionless func-

tion describing the magnitude and spatial distribution of the ax-
isymmetric kinematic viscosity. We choose ν̂ such that

ν̂ρi(R, z)
d ln 	i

d ln R
= ν̂0 [1 + Q(z/H0)] ρi(r0, z)

d ln 	i

d ln R

∣∣∣∣
r0

, (21)

where ν0 is a constant dimensionless floor viscosity, and

Q(ζ ) = (Aν − 1)

2

[
2 + tanh

(
ζ − ζν


ζν

)
− tanh

(
ζ + ζν


ζν

)]
(22)

is a generic function describing a step of magnitude Aν − 1. The po-
sition and width of the step is described by ζ ν and 
ζν , respectively,
with 
ζν � ζ ν . In equation (21), we have set the dimensionless
coordinate ζ = z/H0, where H0 = H(r0). We can translate ν̂ to an
alpha viscosity using ν = αcsH (Shakura & Sunyaev 1973) so that
α = ν̂/h2 at R = r0. This gives α ∼ 10−2 for h = 0.1 and ν̂ = 10−4.

Equation (21) implies that at the fixed cylindrical radius R = r0,
the dimensionless viscosity increases from ν̂ = ν̂0 at the mid-plane
to ν̂ = Aνν̂0 for z > ζ νH0. An example of such a layered viscosity
profile is depicted in Fig. 1.

4.2 Simulations

We consider discs with radial extent [rin, rout] = [0.4, 2.0]r0, vertical
extent nh = 2 scaleheights and aspect ratio h = 0.1 at R = r0. We
use (Nr, Nθ , Nφ) = (256, 64, 512) grid points. The resolution at the
reference radius is then 16, 32 and 8 cells per scaleheight in (r, θ ,
φ) directions, respectively. The planet potential is disabled for these
runs (Mp ≡ 0). We apply a damping rate γ̂ = 1 with the reference
velocity vref = v(t = 0).

The bump parameters are set to A = 1.25 and 
R = 0.05r0 for all
runs in this section. The corresponding PV profile is shown in Fig. 2.
The spherical radial velocity is subject to random perturbations of
magnitude 10−4cs a few time-steps after initialization.

4.2.1 Linear growth rates and frequencies

The present setup allows us to define a linear instability in the usual
way: exponential growth of perturbations measured with respect to
an axisymmetric steady equilibrium. A proper linear stability anal-
ysis, including the full viscous stress tensor, is beyond the scope of
this paper, but we can nevertheless extract linear mode frequencies
from the non-linear simulations.

The mth Fourier component of the density field is

ρ̂m(r, θ, t) ≡
∫ 2π

0
ρ(r, t) exp (−imφ) dφ. (23)
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Vortices in viscous discs 579

Figure 2. PV profile for simulations initialized with a surface density bump,
as described by equation (10). The RWI is associated with the local PV
minima at unit radius.

The magnitude of a Fourier mode is measured by

am(t) ≡ bm(t)

b0(0)
, bm(t) ≡ 〈|ρ̂m|〉r , (24)

where 〈 · 〉r denotes averaging over a spherical shell (to be chosen
later). The complex frequency σ m associated with the mth compo-
nent is defined through

∂ρ̂m

∂t
≡ −iσmρ̂m. (25)

The time derivative in equation (25) can be computed implicitly
by Fourier transforming the continuity equation (as done in Lin
2013b).

In a linear stability problem, σ m is a constant eigenvalue. How-
ever, when extracted numerically from a non-linear simulation,
we will generally obtain σ m = σ m(r, θ , t). Thus, we compute
〈σ m〉r = mωm + iqm, where ωm is the mode frequency and
qm is the growth rate. We normalize the linear frequencies by
	0 ≡ 	i(r0) � 	k(r0).

4.3 Results

Table 1 summarizes the simulations presented in this section. For
reference, we simulate an effectively inviscid disc, case B0, with
the viscosity parameters ν̂0 = 10−9 and Aν = 1. Thus, viscosity is
independent of z at R = r0. Inviscid setups similar to case B0 have
previously been simulated both in the linear and non-linear regimes
(Meheut et al. 2012a; Lin 2013b).

We then simulate discs with floor viscosity ν̂0 = 10−6. The con-
trol run case V0 has Aν = 1. Thus, case V0 is the viscous version
of case B0. We then consider models where the kinematic viscosity
increases by a factor Aν = 100 for z > ζ νH0 at the bump radius.
We choose ζν = 1.5and 1.0 for cases V1 and V2, respectively. This
gives an upper viscous layer of thickness 0.5H and H at R = r0.

Figure 3. Evolution of the inviscid case B0. Top: mid-plane density fluc-
tuation, 
ρ(z = 0). Bottom: mid-plane Rossby number (note the different
axis range from the top panel). Here, χ is an empirical measure of the final
vortex aspect ratio. φ0 is the azimuth of max[|
ρ(z = 0)|].

(See Fig. 1 for a plot of the kinematic viscosity profile for case V2.)
For cases V1 and V2, the transition thickness is fixed to 
ζν = 0.2.
Finally, we consider a high-viscosity run, case V3, with ν̂0 = 10−4

and Aν = 1. This is equivalent to extending the viscous layer in case
V1/V2 to the entire vertical domain.

4.3.1 Inviscid reference case

Fig. 3 shows the density fluctuation and Rossby number for case
B0. The dominant linear mode is m = 4 with a growth rate 0.2	0,
consistent with recent 3D linear calculations (Meheut et al. 2012a;
Lin 2013b). The non-linear outcome of the RWI is vortex formation
(Li et al. 2000). Four vortices develop initially and then merge on a
dynamical time-scale into a single vortex. Case B0 evolves similarly
to previous simulations of the RWI in an inviscid disc (e.g. Meheut
et al. 2010, 2012b, where more detailed analyses are given). This,
together with the agreement with linear calculations, demonstrates
the ability of the PLUTOcode to capture the RWI.

4.3.2 The effect of a viscous layer

We now examine viscous cases V0–V3. Recall from Table 1 that
the viscous layer (with ν̂ ∼ 10−4) occupies the uppermost 0, 25, 50
and 100 per cent of the vertical domain at R = r0 for cases V0, V1,
V2 and V3, respectively.

Table 1. Summary of hydrodynamic simulations initialized with a density bump. Linear
mode frequencies and the non-linear mode amplitudes am are averaged over r ∈ [0.8, 1.2]r0.

t = 10P0 (linear phase) t = 100P0

Case log ν̂0 Aν ζ ν m ωm/	0 qm/	0 m 102am min[Ro(z = 0)]

B0 −9 1 n/a 4 0.985 0.199 1 8.5 −0.15
V0 −6 1 n/a 4 0.985 0.199 1 6.8 −0.11
V1 −6 100 1.5 4 0.986 0.191 1 7.8 −0.19
V2 −6 100 1.0 4 0.986 0.182 1 4.9 −0.21
V3 −4 1 n/a 4 0.986 0.131 3 3.7 −0.25
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580 M.-K. Lin

Figure 4. Vortex formation in viscous discs initialized with a density bump at unit radius. Snapshots are taken at t = 100P0. The thickness of the viscous layer
increases from left to right: case V0, V1, V2 and V3. Top: non-axisymmetric density field at the mid-plane 
ρ(z = 0). Bottom: mid-plane Rossby number
Ro(z = 0). Here, φ0 is the azimuth of max [
ρ(z = 0)].

We first compare the viscous case V0 to the inviscid case B0.
Table 1 shows that despite increasing the viscosity by a factor of
103, the change to the linear mode frequencies is negligible. The
value of am and minimum Rossby number indicate that the final
vortex in V0 is only slightly weaker than that in B0. This is also
reflected in Fig. 3 (case B0) and the leftmost column in Fig. 4 (case
V0). Case V0 develops a more elongated vortex with smaller |
ρ|
than that in B0.

As we introduce and thicken the viscous layer from case V0 to
V3, the dominant linear mode remains at m = 4 (Table 1), but
linear growth rate does appreciably decrease (by ∼34 per cent
from case V0 to V3). However, these linear growth time-scales
are still ∼P0. We thus obtain the important result that viscosity
(layered or not) does not significantly affect the linear instability
because the RWI grows dynamically even in the high-viscosity
disc.

The effect of layered viscosity in the non-linear regime is more
complicated. The bottom row of Fig. 4 compares the Rossby num-
ber associated with the overdensities. Thickening the viscous layer
decreases the vortex aspect ratio. Since their widths remain at ∼2H0,
the vortices become smaller with increasing viscosity. This is partly
attributed to fewer vortex merging events having occurred as viscos-
ity is increased, which usually results in larger but weaker vortices
(smaller |Ro|). If merging is resisted, then each vortex can grow in-
dividually. Strangely, vortices become stronger (more negative Ro)
as viscosity is increased.

Fig. 5 compares the perturbed kinetic energy for cases B0, V0 and
V1, which are all dominated by a single vortex in quasi-steady state.
We compute W1 and compare its average over the disc atmosphere

Figure 5. The m = 1 component of the kinetic energy density, averaged
over r ∈ [0.8, 1.2]r0, for the inviscid case B0 (solid), low-viscosity case V0
(dotted) and a layered viscosity case V1 (dashed). For each, the contribution
averaged over the disc atmosphere (tan ψ ∈ [1.5, 2.0]h, thin lines) and over
the disc bulk (tan ψ ∈ [0, 1.5]h, thick lines) are plotted separately.

and over the disc bulk. There is only a minor difference between
the perturbed kinetic energy densities between the disc bulk and
atmosphere, even in case V1 where the kinematic viscosity in the
two regions differs by a factor of ∼102. This suggests that the vortex
evolves two dimensionally.

The energy perturbation in cases B0 and V0 are both subject to
slow decay (a result also observed by Meheut et al. 2012a). By
contrast, case V1, which includes a high-viscosity layer, does not
show such a decay. We discuss this counter-intuitive result below.
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Vortices in viscous discs 581

4.4 Order of magnitude comparison of time-scales

The characteristic spatial scale of the background density bump and
of the RWI is the local scaleheight H, so the associated viscous
time-scale is

tν = H 2

ν
∼ h2

ν̂	
. (26)

The linear instability growth time-scale is

tRWI = 1

ε	
, (27)

where ε is found from numerical simulations. The ratio of these
time-scales is

tν

tRWI
∼ εh2

ν̂
. (28)

Table 1 indicates ε ∼ 0.1. Inserting h = 0.1 and ν̂ = 10−4 gives
tν ∼ 10tRWI. Thus, viscosity damping is slower than linear growth,
even for the highest viscosity values we consider. Consequently, the
linear RWI is unaffected by viscosity.

Meheut, Lovelace & Lai (2013) argued that tRWI is also the vor-
tex turn-over time tturn when the instability saturates and the linear
phase terminates. Then, tν ∼ 10tturn, implying that viscous effects are
unimportant over one turn-over time. However, if we estimate a vor-
tex turn-over time as tturn ∼ 2π/|Ro|	, then tν ∼ (h2|Ro|/2πν̂)tturn.
Inserting h = 0.1, ν̂ = 10−4 and |Ro| = 0.25 (case V3) gives tν ∼
4tturn. Therefore, depending on the vortex shape, tν may not be much
larger than tturn.

In any case, our high-viscosity simulations span several local
viscous time-scales, tsim ∼ 10tν (for ν̂ ∼ 10−4), so viscous damping
should have taken place, making the observation that Ro becomes
more negative as the viscous layer increases from case V0 to V3,
a surprising result. However, recall that we imposed a stationary,
radially structured viscosity profile consistent with a steady-state
disc containing a density bump. We suggest that for such setups,
viscosity attempts to restore the initial disc profile, i.e. the initial
PV minimum, thereby acting as a vorticity source.

4.5 Potential vorticity evolution

The RWI is stronger for deeper PV minima (Li et al. 2000). We
thus expect deeper PV minima to correlate with stronger vortices.
For the above simulations, the axisymmetric PV perturbation at the
bump radius is

〈ηz〉φ(t = 100P0)

ηz(t = 0)

∣∣∣∣
R=r0

− 1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3.99 case V0

3.03 case V1

2.24 case V2

1.71 case V3

. (29)

(This value is 4.92 for the inviscid case B0.) The PV perturba-
tion is positive; thus, the initial PV minimum is weakened by the
vortices (Meheut et al. 2010). This effect diminishes with increas-
ing viscosity. One contributing factor is the reduction in the linear
growth rate (Table 1), implying that the instability saturates at a
smaller amplitude (Meheut et al. 2013). This is expected to weaken
the background axisymmetric structure to a lesser extent. However,
the imposed viscosity profile may also actively restore the initial
density bump.

When viscosity is small, the local viscous time-scale tν is long
compared to our simulation time-scale tsim. Then, vortex formation
weakens the PV minimum with viscosity playing no role. Increasing

viscosity eventually makes tν < tsim. This means that over the course
of the simulation, our spatially fixed viscosity profile can act to
recover the initial PV minimum.

We also notice reduced vortex migration in Fig. 4 with increased
viscosity (e.g. the vortex in case V0 has migrated inwards to R �
0.9r0, while that in case V3 remains near R �r0). Paardekooper
et al. (2010) have shown that vortex migration can be halted by
a surface density bump which, in our case, can be sourced by the
radially structured viscosity profile.

We conjecture that in the non-linear regime there is competition
between destruction of the background PV minimum by the vortices
and reformation of the initial radial PV minimum by the imposed
viscosity profile. The latter effect should favour the RWI, since the
anticyclonic vortices are regions of local vorticity minima. In this
way, viscosity acts to source vorticity, and this effect outweighs
viscous damping of the linear perturbations. We discuss additional
simulations supporting this hypothesis in Appendix A.

5 VO RT E X F O R M AT I O N AT PL A N E TA RY G A P
E D G E S IN L AY E R E D D I S C S

The previous simulations, while necessary to isolate the effect of
viscosity on the linear RWI, has the disadvantage that the radially
structured viscosity profile can act to source radial disc structure in
the non-linear regime. In this section, we employ a radially smooth
viscosity profile and use disc–planet interaction to create the disc
structure required for instability. Then, we expect viscosity to only
act as a damping mechanism.

Vortex formation at gap edges is a standard result in 2D and
3D hydrodynamical simulations of giant planets in low-viscosity
discs (de Val-Borro et al. 2007; Lin & Papaloizou 2010, 2011;
Lin 2012b; Zhu et al. 2013). The fact that this is due to the RWI
has been explicitly verified through linear stability analysis (de
Val-Borro et al. 2007; Lin & Papaloizou 2010). Here, we simulate
gap-opening giant planets in 3D discs where the kinematic viscosity
varies with height above the disc mid-plane. Our numerical setup is
similar to those that in Pierens & Nelson (2010), but our interest is
gap stability in a layered disc.

5.1 Radially smooth viscosity profile for disc–planet
interaction

Using the same notation as in Section 4.1.2, we impose a viscosity
profile ν̂ such that

ν̂�i(R) = ν̂0 [1 + Q(ψ)] �i(r0). (30)

We have set the dimensionless argument in equation (22) to ζ = ψ .
Recall that ψ = π/2 − θ is the angular height away from the mid-
plane. Viscosity increases from its floor value ν̂0 by a factor Aν

for ψ > ζν . So, the viscous layer is a wedge in the meridional
plane, which conveniently fits into our spherical grid. The angular
thickness of the viscosity transition is fixed to 
ζν = 0.2h. Fig. 6
gives an example of this viscosity profile.

5.2 Disc–planet simulations

We simulate locally isothermal discs with constant aspect ratio
h = 0.05 (by choosing q = 1), vertical extent nh = 3 scaleheights
and radial extent [rin, rout] = [0.4, 2.5]r0. Initially, the surface density
is smooth (A = 1) with zero meridional velocity (vr = vθ = 0). The
standard resolution is (Nr, Nθ , Nφ) = (256, 96, 768), corresponding
to 6, 32 and 6 cells per H along the r, θ and φ directions at the
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582 M.-K. Lin

Figure 6. Example of the viscosity profile imposed in disc–planet simula-
tions (equation 30). For a disc with constant aspect ratio, the viscous layer
occupies a constant number of scaleheights across the radial range. This
specific plot corresponds to case P1, so the viscous layer (yellow–white
colours) always occupies the uppermost H at each cylindrical radius. The
solid line delineates the upper boundary of the computational domain.

Figure 7. PV profile for a planet gap before it becomes unstable (case P0).
The planet is located at R = r0 and the RWI first develops at the PV minima
near the outer gap edge at R �1.2r0.

reference radius. We apply a damping rate γ̂ = 2 with the reference
velocity field vref = (0, 0, vφ) in spherical coordinates.

We insert into the disc a planet of mass Mp = 10−3M∗, which
corresponds to a Jupiter mass planet if M∗ = M�. The softening
length for the planet potential is εp = 0.5rh. The planet potential is
switched on smoothly over t ∈ [0, 10]P0. We note that the disc can
be considered as two-dimensional for gap-opening giant planets,
because the Hill radius rh exceeds the local scaleheight H (rh/H �
1.4 in our cases). Fig. 7 shows a typical PV profile associated with
the gap induced by the planet.

We remark that, apart from the viscosity prescription, the above
choice of physical and numerical parameter values is typical for
global disc–planet simulations (e.g. de Val-Borro et al. 2006;
Mignone et al. 2012).

5.3 Results

Table 2 summarizes the disc–planet simulations. The main simu-
lations to be discussed are cases P0–P1, with a floor viscosity of
ν̂0 = 2.5 × 10−7. The fiducial run P0 has Aν = 1, i.e. no viscous
layer, so that α ∼ 10−4 everywhere. The more typical viscosity
value adopted for disc–planet simulations, ν̂ ∼ 10−5 or α ∼ 10−3,
is known to suppress vortex formation (de Val-Borro et al. 2007;
Mudryk & Murray 2009). Thus, vortex formation is expected in
case P0. For cases P0.5 and P1, we set Aν = 100 with transition
angle ζ ν = 2.5h and 2h, respectively, so the viscous layer with α ∼
10−2 occupies the uppermost 0.5H and H of the vertical domain.
Case P0R is case P0 restarted from t = 100P0 with the layered
viscosity profile of case P1.

5.3.1 Density evolution

Fig. 8 compares the time evolution of the mid-plane density per-
turbation δρ(z = 0) for cases P0, P0.5 and P1. In all the cases, we
observed that the RWI with m = 4 develops early on (t � 20P0),
consistent with the limited effect of viscosity on the linear insta-
bility, as found above. The no-layer case P0 and layered case P0.5
(viscous layer of 0.5H) behave similarly, showing that a thin viscous
layer has little effect on the evolution of the unstable gap edge, at
least over the simulation time-scale of 200P0.

Case P1 evolves quite differently from case P0. While a single
vortex does form at t ∼ 100P0, it is transient, having disappeared
at the end of the simulation for P1. The final m = 1 amplitude
is about three times smaller than that in case P0 (Table 2). This
result is significant because the upper viscous layer in case P1, of
thickness H, only occupies ∼4 per cent of the total column density,
but the vortex is still destroyed. This suggests that vortex survival
at planetary gap edges requires low effective viscosity throughout
the vertical fluid column.

5.3.2 Kinetic energy density

Here, we compare the m = 1 component of the kinetic energy
density (W1) between the no-layer case P0, layered case P1 and
case P0R which is P0 resumed from t = 100P0 with a viscous layer.

Table 2. Summary of disc–planet simulations. These runs employ the ‘wedge’ viscosity model described by equation (30). The
thickness of the viscous layer is measured from the upper disc boundary. The m = 1 mode amplitude was averaged over the shell r
∈ [1.2, 1.6]r0, and the overbar denotes a further time average over t ∈ [tmax, 200]P0, where tmax is when max(a1) is attained. Case
P0R employs the viscosity profile of P0 for t ≤ 100P0, and that of P1 for t > 100P0.

Case 106ν̂0 Aν Visc. layer 102a1 102a1(200P0) Comment

P0 0.25 1 0 18.3 14.5 Single vortex by t = 130P0 and persists until end of sim.
P0.5 0.25 100 0.5H 17.4 8.6 Single vortex by t = 90P0 and persists until end of sim.
P0R 0.25 1→100 0 → H 10.1 2.5 Single vortex by t = 130P0, disappears after t = 180P0

P1 0.25 100 H 12.5 2.1 Single vortex by t = 80P0, disappears after t = 170P0

Pb0 1.0 1 0 9.2 5.4 Single vortex by t = 130P0, disappears after t = 160P0

Pb0.5 1.0 10 0.5H 7.3 3.0 Similar to Pb0
Pb1 1.0 10 H 5.7 2.2 Single vortex by t = 120P0, disappears after t = 140P0

Pc0.5 1.0 100 0.5H 4.2 2.3 Two vortices at t ∼ 100P0, no vortices after t ∼ 120P0

Pc1 1.0 100 H 2.2 1.6 Two weak vortices at t ∼ 60P0, no vortices after t ∼ 80P0
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Vortices in viscous discs 583

Figure 8. Relative density perturbation δρ for disc–planet simulations. Top: case P0 (no viscous layer), middle: case P0.5 (viscous layer of 0.5H), bottom:
case P1 (viscous layer of H). The vertical extent of the computational domain is 3H and the viscous layer is measured from the upper disc boundary.

Fig. 9 shows W1(t) averaged over the outer gap edge. For each case,
we average W1 over the disc bulk and the atmosphere, and plot them
separately in the figure.

The m = 1 component does not emerge from the linear instabil-
ity, but is a result of non-linear vortex merging. Fig. 9 shows that
merging is accelerated by a viscous layer: the single vortex appears
at t ∼ 70P0 for case P1 but only forms at t ∼ 120P0 for case P0. Also
note that for all cases, W1 in the disc bulk (thick lines) is similar
to that in the disc atmosphere (thin lines), implying that the m = 1
disturbance (i.e. the vortex) evolves two dimensionally. We checked
that this is consistent with the Froude number Fr ≡ |Ro|H/z < 1
away from the mid-plane (Barranco & Marcus 2005; Oishi & Mac
Low 2009).

Case P0R shows that introducing a viscous layer eventually de-
stroys the vortex. The local viscous time-scale is tν ≡ H2/ν �
16P0, so on short time-scales after introducing the viscous layer
(t = 100P0), vortex merging proceeds in case P0R similarly to case

P0 (t ∈ [100, 110]P0). However, W1 decays for t > 110P0 and
evolves towards that of case P1. We expect viscosity to damp the
m = 1 disturbance in the disc atmosphere between t ∈ [110, 200]P0

because this corresponds to ∼6tν , but the disturbance in the disc
bulk is also damped out: the evolution remains two-dimensional.

We emphasize that the kinetic energy is dominated by horizontal
motions, with max(|vz|/|v|) < 0.03 at the outer gap edge (r ∈ [1.2,
1.6]r0). Vertical motions are well subsonic. When averaged over z ∈
[0, 2]H and z ∈ [2, 3]H, the vertical Mach number Mz ≡ |vz|/cs �
0.05, 0.08 (P0), Mz � 0.04, 0.06 (P0R) and Mz � 0.05, 0.06 (P1),
respectively.

5.3.3 Potential vorticity

We examine the PV evolution for case P0R in Fig. 10. To high-
light the vortices, which are positive (negative) density (verti-
cal vorticity) perturbations, we show the inverse PV perturbation,
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584 M.-K. Lin

Figure 9. Evolution of the m = 1 component of kinetic energy density,
averaged over r ∈ [1.2, 1.6]r0. This average is split into that taken over disc
bulk (z ∈ [0, 2]H, thick lines) and the disc atmosphere (z ∈ [2, 3]H, thin
lines). Case P0 has no viscous layer (solid) and case P1 has a viscous layer
in z ∈ [2, 3]H (dashed). Case P0R (dotted) is identical to P0 up to t = 100P0,
but was simulated for t > 100P0 with a viscous layer of thickness H.

δη−1
z ≡ ηz(t = 0)/ηz − 1. As noted above, a single vortex still

forms despite introducing a viscous layer at t = 100P0. However,
it decays rapidly compared to case P0. The region with δη−1

z > 0
(i.e. the vortex) elongates and shifts outwards from R �1.38r0 at
t = 140P0 to R �1.5r0 at t = 200P0, by which the vortex has
disappeared. (A similar evolution was observed for case P1.) The
vortex is stretched azimuthally much more than radially. This is not
surprising since the imposed viscosity profile is axisymmetric. The
important point is that viscosity is only large near the disc surface,
but still has a significant effect on the vortex.

5.3.4 Resolution check

We repeated simulations P0 and P1 with resolution (Nr, Nθ ,
Nφ) = (512, 96, 1536), corresponding to 12 and 32 cells per scale-
height in (r, φ) and θ , respectively. We denote these runs as P0HR
and P1HR below.

We observe similar evolution in P0HR and P1HR as their standard
resolution versions. However, due to lower numerical diffusion,
we find stronger vortices in P0HR. Although the vortex in P1HR
persisted longer than the standard resolution run, it was still subject
to rapid decay in comparison with P0HR. At t = 200P0, we find
the m = 1 amplitude to be a1 = 0.29 and 0.10 at the outer gap
edge, respectively, for P0HR and P1HR, a similar contrast as that
between P0 and P1. A weak overdensity was still observed in P1HR

Figure 11. Logarithmic inverse PV perturbation associated with a vortex,
log [ηz(t = 0)/ηz], for high-resolution cases P0HR (left, no viscous layer)
and P1HR (right, with a viscous layer). These cases are the same as P0
and P1, but with double the (r, φ) resolution. The vortex in P1HR (right)
eventually disappears after t ∼ 200P0.

at t = 200P0, but it further decays to a1 = 0.06 at t = 230P0 and
there is no vortex. By contrast, P0HR was simulated to t = 250P0

and the vortex survived with little decay (a1 = 0.25).
Interestingly, we observe small-scale (� H) disturbances inside

the vortex in P0HR. This is shown in the left-hand panel of Fig. 11
in terms of the (inverse) PV perturbation. We checked that the den-
sity field remains smooth, so this small-scale structure is due to
vorticity variations. This is unlikely the elliptic instability (Lesur
& Papaloizou 2009), though, because the numerical resolution is
still insufficient for studying such instabilities, especially since the
vortex is very elongated with large aspect ratio ∼10 (so the elliptic
instability is weak; Lesur & Papaloizou 2009). Despite the distur-
bances, the vortex overdensity in P0HR remains coherent until the
end of the simulation, possibly because the planet maintains the
condition for RWI. On the other hand, the vortex in the layered case
P1HR does not develop small-scale structure (Fig. 11, right-hand
panel), yet it is destroyed by the end of the simulation.

5.4 Additional simulations

Locally isothermal, low-viscosity discs are vulnerable to the so-
called vertical shear instability because ∂z	i �= 0 (Nelson, Gressel
& Umurhan 2013). Nelson et al. employed a radial resolution �60

Figure 10. Inverse PV perturbation, ηz(t = 0)/ηz − 1, for case P0R, which was resumed from the no-layer case P0 from t = 100P0 with the introduction of a
viscous layer of H.
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Vortices in viscous discs 585

Figure 12. Same as Fig. 9, but with floor viscosity ν̂0 = 10−6: cases Pb0
(solid, no viscous layer) and Pb1 (dotted, viscous layer of H). The thick
(thin) lines indicate W1 averaged over z ∈ [0, 2]H (z ∈ [2, 3]H).

cells per H to resolve this instability because it involves small ra-
dial wavelengths (�H). Our numerical resolution is unlikely to
capture this instability. Nevertheless, we have performed additional
simulations designed to eliminate the vertical shear instability.

5.4.1 Larger floor viscosity

We performed several simulations with ν̂0 = 10−6. A viscosity of
ν̂ ∼ 10−6 is expected to damp the vertical shear instability (Nelson
et al. 2013), while still permitting the gap-edge RWI. Table 2 sum-
marizes these cases with Aν = 10 (‘Pb’ runs) and Aν = 100 (‘Pc’
runs).

In these simulations, we find that vortices eventually decay, even
in the no-layer case Pb0. For Aν = 10, the layered cases Pb0.5 and
Pb1 evolve similarly to Pb0: three vortices formed by t ∼ 30P0,
merging into two vortices by t ∼ 40P0, then finally into a single
vortex by t ∼ 130P0, which subsequently decays. However, the
final vortex decays faster in the presence of a viscous layer. This is
shown in Fig. 12, which compares the m = 1 kinetic energy density
for cases Pb0 and Pb1. The evolution only begins to differ after the
single vortex has formed.

For Aν = 100 (cases Pc0.5 and Pc1), we find that the m = 2
amplitude dominated over m = 1, so a single-vortex configuration
never forms. For both Pc0.5 and Pc1, the m = 2 (two-vortex con-
figuration) amplitude decreases from t ∼ 50P0. For case Pc1, the
vortices are transient features and are entirely absent for t � 80P0.

5.4.2 Strictly isothermal discs

We repeated simulations Pb0, Pb1 and Pc1 with a strictly isothermal
equation of state (q = 0). These are summarized in Table 3. Fig. 13
compares their m = 1 kinetic energy density evolution at the outer
gap edge. Consistent with the above simulations, a viscous layer
causes a faster decay in this quantity. Most interesting, though, is
that we found case Iso2 (with a viscous layer of ∼H) only shows

Table 3. Disc–planet simulations with a strictly isother-
mal equation of state (q = 0). The thickness of the viscous
layer is quoted at the reference radius R = r0.

Case 106ν̂0 Aν Visc. layer 102a1 Vortex

Iso0 1.0 1 0 19.3 Yes
Iso1 1.0 10 H0 12.8 Yes
Iso2 1.0 100 H0 1.1 No

Figure 13. Same as Fig. 9, but for strictly isothermal Iso0 (solid, no viscous
layer so ν̂ ∼ 10−6), Iso1 (dotted, viscous layer with ν̂ ∼ 10−5) and Iso2
(dashed, viscous layer with ν̂ ∼ 10−4). The thick (thin) lines indicate W1

averaged over tan ψ ∈ [0, 2]h (tan ψ ∈ [2, 3]h).

very weak non-axisymmetric perturbations early on (t � 50P0):
vortex formation is suppressed.

6 SU M M A RY A N D D I S C U S S I O N

We have performed customized hydrodynamic simulations of non-
axisymmetric instabilities in 3D viscous discs. We adopted height-
dependent kinematic viscosity profiles, such that the disc mid-plane
is of low viscosity (α ∼ 10−4) and the disc atmosphere is of high
viscosity (α ∼ 10−2). We were motivated by the question of whether
or not the RWI, and subsequent vortex formation, operates in layered
accretion discs.

We first considered viscous disc equilibria with a radial density
bump and varied the vertical dependence of viscosity. This setup can
isolate the effect of viscosity on the linear RWI. We found that the
linear RWI is unaffected by viscosity, layered or not. The viscous
RWI remains dynamical and leads to vortex formation on time-
scales of a few 10 s of orbits. We continued these simulations into
the non-linear regime, but found that vortices became stronger as the
viscous layer is increased in thickness. We suggest that this counter-
intuitive result is an artefact of the chosen viscosity profile because
it is radially structured: viscosity attempts to restore the equilibrium
radial density bump, which favours the RWI. This effect outweighs
viscosity damping the linear instability.

We also simulated vortex formation at planetary gap edges in lay-
ered discs with a radially smooth viscosity profile. Although vortex
formation still occurs in layered discs, we found that the vortex can
be destroyed even when the viscous layer only occupies the up-
permost scaleheight of the vertical domain which is 3 scaleheights.
This is significant because most of the disc mass is contained within
2 scaleheights (i.e. the low-viscosity layer), but simulations show
that a viscous atmosphere inhibits long-term vortex survival. We
found that the non-axisymmetric energy densities have weak ver-
tical dependence, so the disturbance evolves two dimensionally. It
appears that applying a large viscosity in the disc atmosphere is
sufficient to damp the instability throughout the vertical column of
the fluid.

Barranco & Marcus (2005) have described two 3D vortex mod-
els: tall columnar vortices and short finite-height vortices. Rossby
vortices are columnar, i.e. the associated vortex lines extend ver-
tically throughout the fluid column. One might have expected an
upper viscous layer to damp out vortex motion in the disc atmo-
sphere, leading to a shorter vortex. This, however, requires vortex
lines to loop around the vortex (the short vortex of Barranco &
Marcus). Such vortex loops form the surface of a torus (see, for
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example, fig. 1 in Barranco & Marcus 2005), instead of ending on
vertical boundaries. This implies significant vertical motion near
the vertical boundaries of the vortex, which would be difficult in
our model because of viscous damping applied there. We suspect
that this is why short/tall vortices fail to form/survive in our layered
disc–planet models. We conclude that vortex survival at planetary
gap edges require low viscosity (α � 10−4) throughout the vertical
extent of the disc.

6.1 Relation to other works

Pierens & Nelson (2010) simulated the orbital migration of giant
planets in layered discs by prescribing a height-dependent viscosity
profile. They considered significant reduction in kinematic viscosity
in going from the disc atmosphere (the active zone, with α ∼ 10−2)
to the disc mid-plane (the dead zone, with α ∼ 10−7). According
to previous 2D simulations, such a low kinematic viscosity should
lead to the RWI (de Val-Borro et al. 2006, 2007). However, Pierens
& Nelson (2010) did not report vortex formation, nor are vortices
visible from their plots. Very recent MHD simulations of giant
planets in a layered disc also did not yield vortex formation (Gressel
et al. 2013). These results are consistent with our simulations.

Oishi & Mac Low (2009) carried out MHD shearing box sim-
ulations with a resistivity profile that varied with height to model
a layered disc: the disc atmosphere was MHD turbulent, while the
disc mid-plane remained stable against the MRI. They envisioned
the active zone as a vorticity source for vortex formation in the
mid-plane. Although their setup is fundamentally different to ours,
they also reported a lack of coherent vortices in the dead zone.
They argued that the MHD turbulence in the active layer was not
sufficiently strong to induce vortex formation in the dead zone. If
MHD turbulence can be represented by a viscosity, the lack of tall
columnar vortices in Oishi & Mac Low (2009) is consistent with
our results. That is, even when MRI turbulence is only present in
the disc atmosphere, it is able to damp out columnar vortices.

6.2 Caveats and outlooks

The most important caveat of the current model is the viscous
prescription to mimic MRI turbulence. In doing so, an implicit
averaging is assumed (Balbus & Papaloizou 1999). The spatial
averaging should be taken on length-scales no less than the local disc
scaleheight, and the temporal average should be taken on time-scales
no less than the local orbital period. These are, however, the relevant
scales for vortex formation via the RWI. Furthermore, our viscosity
profile varies on length-scales comparable to or even less than H
(e.g. the vertical transition between high- and low-viscosity layers).
Nevertheless, our simulations demonstrate the importance of disc
vertical structure on the RWI. That is, damping, even confined to
the disc atmosphere, can destroy Rossby vortices.

Another drawback of a hydrodynamic viscous disc model is the
fact that it cannot mimic magnetoelliptic instabilities (MEI), which
are known to destroy vortices in magnetic discs (Lyra & Klahr 2011;
Mizerski & Lyra 2012). A natural question is how Rossby vortices
are affected by the MEI when it only operates in the disc atmosphere.
Extension of this work to global non-ideal MHD simulations will
be necessary to address RWI vortex formation in layered discs.

However, some improvements can be made within the viscous
framework. A static viscosity profile neglects the back-reaction of
the density field on the kinematic viscosity. Thus, our simulations
only consider how Rossby vortices respond to an externally applied
viscous damping. A more physical viscosity prescription should

depend on the local column density (Fleming & Stone 2003), with
viscosity decreasing with increasing column density. The effective
viscosity inside Rossby vortices would be lowered relative to the
background disc because disc vortices are overdensities. If the over-
density is large, then it is conceivable that vortex formation itself
may render the effective viscosity to be sufficiently low throughout
the fluid column to allow long-term vortex survival. Preparation for
this study is underway and results will be reported in a follow-up
paper.

AC K N OW L E D G E M E N T S

This work benefited from extensive discussion with O. Umurhan. I
also thank R. Nelson for discussion and M. de Val-Borro for a help-
ful report. Computations were performed on the CITA Sunnyvale
cluster, as well as the GPC supercomputer at the SciNet HPC Con-
sortium. SciNet is funded by the Canada Foundation for Innovation
under the auspices of Compute Canada, the Government of Ontario,
Ontario Research Fund Research Excellence and the University of
Toronto.

R E F E R E N C E S

Armitage P. J., 2011, ARA&A, 49, 195
Ataiee S., Pinilla P., Zsom A., Dullemond C. P., Dominik C., Ghanbari J.,

2013, A&A, 553, L3
Balbus S. A., Hawley J. F., 1991, ApJ, 376, 214
Balbus S. A., Hawley J. F., 1998, Rev. Mod. Phys., 70, 1
Balbus S. A., Papaloizou J. C. B., 1999, ApJ, 521, 650
Barge P., Sommeria J., 1995, A&A, 295, L1
Barranco J. A., Marcus P. S., 2005, ApJ, 623, 1157
Bate M. R., Ogilvie G. I., Lubow S. H., Pringle J. E., 2002, MNRAS, 332,

575
Birnstiel T., Dullemond C. P., Pinilla P., 2013, A&A, 550, L8
Bracco A., Chavanis P. H., Provenzale A., Spiegel E. A., 1999, Phys. Fluids,

11, 2280
Brown J. M., Blake G. A., Qi C., Dullemond C. P., Wilner D. J., Williams

J. P., 2009, ApJ, 704, 496
Chavanis P. H., 2000, A&A, 356, 1089
de Val-Borro M. et al., 2006, MNRAS, 370, 529
de Val-Borro M., Artymowicz P., D’Angelo G., Peplinski A., 2007, A&A,

471, 1043
Dzyurkevich N., Flock M., Turner N. J., Klahr H., Henning T., 2010, A&A,

515, A70
Edgar R. G., Quillen A. C., 2008, MNRAS, 387, 387
Flaig M., Ruoff P., Kley W., Kissmann R., 2012, MNRAS, 420, 2419
Fleming T., Stone J. M., 2003, ApJ, 585, 908
Gammie C. F., 1996, ApJ, 457, 355
Gressel O., Nelson R. P., Turner N. J., Ziegler U., 2013, ApJ, in press
Inaba S., Barge P., 2006, ApJ, 649, 415
Isella A., Pe’rez L. M., Carpenter J. M., Ricci L., Andrews S., Rosenfeld K.,

2013, ApJ, 775, 30
Koller J., Li H., Lin D. N. C., 2003, ApJ, 596, L91
Kretke K. A., Lin D. N. C., 2010, ApJ, 721, 1585
Landry R., Dodson-Robinson S. E., Turner N. J., Abram G., 2013, ApJ, 771,

80
Lesur G., Papaloizou J. C. B., 2009, A&A, 498, 1
Li H., Finn J. M., Lovelace R. V. E., Colgate S. A., 2000, ApJ, 533, 1023
Li H., Colgate S. A., Wendroff B., Liska R., 2001, ApJ, 551, 874
Li H., Li S., Koller J., Wendroff B. B., Liska R., Orban C. M., Liang E. P.

T., Lin D. N. C., 2005, ApJ, 624, 1003
Li H., Lubow S. H., Li S., Lin D. N. C., 2009, ApJ, 690, L52
Lin M.-K., 2012a, MNRAS, 426, 3211
Lin M.-K., 2012b, ApJ, 754, 21
Lin M.-K., 2013a, MNRAS, 428, 190

 at U
niversity of T

oronto L
ibrary on D

ecem
ber 9, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/


Vortices in viscous discs 587

Lin M.-K., 2013b, ApJ, 765, 84
Lin M.-K., Papaloizou J. C. B., 2010, MNRAS, 405, 1473
Lin M.-K., Papaloizou J. C. B., 2011, MNRAS, 415, 1426
Lovelace R. V. E., Li H., Colgate S. A., Nelson A. F., 1999, ApJ, 513, 805
Lynden-Bell D., Pringle J. E., 1974, MNRAS, 168, 603
Lyra W., Klahr H., 2011, A&A, 527, A138
Lyra W., Lin M.-K., 2013, ApJ, 775, 17
Lyra W., Mac Low M.-M., 2012, ApJ, 756, 62
Lyra W., Johansen A., Klahr H., Piskunov N., 2009, A&A, 493, 1125
Masset F., 2000, A&AS, 141, 165
Mayama S. et al., 2012, ApJ, 760, L26
Meheut H., Casse F., Varniere P., Tagger M., 2010, A&A, 516, A31
Meheut H., Yu C., Lai D., 2012a, MNRAS, 422, 2399
Meheut H., Keppens R., Casse F., Benz W., 2012b, A&A, 542, A9
Meheut H., Lovelace R. V. E., Lai D., 2013, MNRAS, 430, 1988
Mignone A., Bodo G., Massaglia S., Matsakos T., Tesileanu O., Zanni C.,

Ferrari A., 2007, ApJS, 170, 228
Mignone A., Flock M., Stute M., Kolb S. M., Muscianisi G., 2012, A&A,

545, A152
Mizerski K. A., Lyra W., 2012, J. Fluid Mech., 698, 358
Mudryk L. R., Murray N. W., 2009, New. Astron., 14, 71
Nelson R. P., Gressel O., Umurhan O. M., 2013, MNRAS, 435, 2610
Oishi J. S., Mac Low M.-M., 2009, ApJ, 704, 1239
Okuzumi S., Hirose S., 2011, ApJ, 742, 65
Paardekooper S.-J., Baruteau C., Crida A., Kley W., 2010, MNRAS, 401,

1950
Pierens A., Nelson R. P., 2010, A&A, 520, A14
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APPEN D IX A : A RTIFICIAL RADIAL DENS I TY
BU M P S W I T H A R A D I A L LY S M O OT H
VISCOSITY PRO FILE

In Section 4, we found that vortices became stronger as the viscous
layer thickness is increased, even though linear growth rates were
reduced. Here, we present additional simulations to support the
hypothesis that this is due to the localized radial structure in the
viscosity profile.

We repeated simulation V2 (see Table 1) with a radially smooth
viscosity profile given by

ν̂
ρi(R, z)

B(R)
= ν̂0 [1 + Q(z/H0)]

ρi(r0, z)

B(r0)
. (A1)

Recall that the functions B and Q are given by equations (10) and
22, respectively. We set the floor viscosity ν̂0 = 10−7 to mitigate
axisymmetric viscous diffusion of the initial density bump. The
viscous layer with ν̂ ∼ 10−5 occupies z ∈ [1, 2]H0 at R = r0. This
viscosity profile is shown in Fig. A1.

This simulation is shown as the dotted line in Fig. A2 in terms
of the m = 1 component of the kinetic energy density. We compare
it to the corresponding case using the radially structured viscosity

Figure A1. The radially smooth viscosity profile given by equation (A1).
This plot is to be compared with Fig. 1.

Figure A2. Evolution of the m = 1 component of the kinetic energy den-
sity, averaged over the shell r ∈ [0.8, 1.2]r0, for a layered disc initialized
with a radial density bump. The solid line employs the radially structured
viscosity profile given by equation (21) (see Fig. 1). The dotted line employs
the radially smooth viscosity profile given by equation (A1) and shown in
Fig. A1.

profile in Section 4 (i.e. the original case V2 but with lowered floor
viscosity). Vortex formation occurs in both runs. With a radially
smooth viscosity profile, the vortex decays monotonically after |W1|
reaches maximum value of ∼0.05. Using the radially structured
viscosity profile (solid line) gives a larger disturbance amplitude at
the linear stage (max |W1| ∼ 0.08), and although it subsequently
decays, the decay is halted for t � 110P0.

The contrast between these cases show that the radial structure in
the viscosity profile helps vortex survival. This experiment indicates
that the dominant effect of viscosity is its influence on the evolution
of the axisymmetric part of background disc. The radially structured
viscosity profile is a source for the radial PV minimum, which is
needed for the RWI.

Our result here is qualitatively similar to that in Regály et al.
(2012), where a sharp viscosity profile was imposed in a 2D simula-
tion and vortex formation ensues via the RWI. The vortex eventually
disappears, but redevelops after the system returns to an axisym-
metric state. This is because the imposed viscosity profile causes
the disc to develop the required PV minimum for the RWI.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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