

2007.05.18
Introduction to Parallel Computing

What is parallel computing?

A computational method that utilizes multiple processing elements to solve a

problem in tandem

Implementing parallelism requires modification of an application such that the

workload is decomposed into independent tasks

Why bother?
Faster results

N people can dig a hole N times faster than 1 person

Larger amounts of memory available

The price of memory and the underlying architecture increases dramatically as

one adds more memory to a computer

The technological trend is for greater parallelism to be incorporated at all levels of

the computing hierarchy.

Parallelism in hardware

Parallelism is abundant in computer hardware and primarily drives increased throughput:

Parallel instruction scheduling (multiple instructions computed at once)

Parallel data buses that move many bits of data simultaneously

Multiple processing cores per computer

Multiple computers connected by a network that work as a whole

With respect to parallel programming, we are concerned with the last two. The main
distinction between them is how each of the processing cores is connected to the
memory of the entire system, and hence, how they communicate data amongst one
another.

Multiple cores on the same computer have what is called “sh ared-memory”

all of the cores are able to directly access all of the memory

Multiple computers on a network have what is called “d istributed-memory”

each of the cores can directly access only it’s local memory

The line between these are often blurred, and modern platforms are primarily a
combination of the two.

2007.05.18
Introduction to Parallel Computing

Parallel programming

Shared-memory systems are usually programmed to take advantage of multiple
processing cores by threading applications:

OpenMP

POSIX threads (pthreads)

Both are application programming interfaces (APIs). OpenMP is easier to implement
and is generally supported by the compiler, whereas pthreads is more complex and is
used as an external library. We will only focus on OpenMP.

On distributed memory systems one uses a team of processes that simultaneously run
on a network of computers and pass data in the form of messages to one another. This
is facilitated by the Message Passing Interface (MPI).

This also an API and is typically available as an external library and runtime programs
that are used to compile and execute MPI programs.

There are many MPI implementations, some that are very portable and open-source (
Open MPI), and others that are highly-optimized and vendor-specific.

One can run MPI programs on shared-memory systems, or even mix the two
approaches.

2007.05.18
Introduction to Parallel Computing

http://www.openmp.org/
http://en.wikipedia.org/wiki/POSIX_Threads
http://www.mpi-forum.org/
http://www.open-mpi.org/

Breaking down the problem

There are two main approaches to decomposing a problem so that it can run in parallel:

Data parallelization

Data which is being processed is broken up into independent chunks

Each compute element only deals with its local data

Most common approach for scientific applications

eg. Mesh-based calculations, linear algebra

Task parallelization

Different computational tasks performed by a program are done in parallel

More useful for programs that have distinct and independant operations

eg. Real-time signal correlator

One thread to do I/O, one to do message passing, other threads process data

Fine grained vs coarse grained parallelism

Refers to the amount of work that each compute element is given before a

synchronization point

2007.05.18
Introduction to Parallel Computing

The parallelization process in practice

In some cases a major re-design of a code is necessary to convert it to run in parallel.
Data structures may have to change and new methods to solving problems may have to
be implemented. Once these changes are made, and for more straight-forward
problems, the parallelization process follows the same procedure used to optimize a
program:

Identify “ho t-spots” (functions/routines that use the most cycles)

Requires profiling / timing instrumentation in the code

Modify code to parallelize hot-spots

Not all operations can be parallelized

Check for accuracy and correctness, debug any program errors that are introduced

Tune for performance, repeat process as necessary

2007.05.18
Introduction to Parallel Computing

Amdahl's Law

In a parallel computational process, the degree of speedup is limited by the fraction of
code that can be parallelized:

Tparallel = { (1 – P) + P / NP } * Tserial + overhead

Where:
Tparallel == time to run application in parallel
P == fraction of serial runtime that can be parallelized
NP == number of parallel elements (cores/nodes)
Tserial == time to run application serially
overhead == overhead introduced by adding the parallelization

To make compare the parallelization to the original serial code, one uses the term
scaling, which is just:

Scaling = Tserial / Tparallel

*Note that this is for “stron g-scaling” app lications.

2007.05.18
Introduction to Parallel Computing

Scaling

efficiency of a program in utilizing parallel resources

2 different measures are often used:

Weak scaling

Workload / compute element is kept constant as one adds more elements

In a linearly scaling case, a problem N times larger takes the same amount of

time to do on N processes

An example is large N-body simulations

Strong scaling

Total workload is kept constant as one adds compute elements

Linear scaling in this case means that the runtime will decrease in direct

proportion to the number of compute elements used

An example is inverting a fixed-size matrix

One usually compares parallel efficiency to the expected linear scaling

2007.05.18
Introduction to Parallel Computing

Processes and threads

A process is an instance of a computer program that is being executed

Includes binary instructions, different memory storage areas, hidden kernel data

Performs serial execution of instructions

Depending on the nature of the execution stream, it may be possible to perform many
operations simultaneously (the instructions are independent of one another).

To process these instructions in parallel, the process can spawn a number of threads.

A thread is a light-weight process

Inherently connected to the parent process, sharing it's memory space

Threads each have their own list of instructions and independent stack memory

The process of splitting up the execution stream is typically called a “fork-j oin” mode l

Execution progresses serially, then a team of threads is created, work in parallel,

and return execution flow to the parent process

2007.05.18
Introduction to Parallel Computing

OpenMP

programmed by utilizing special compiler directives and functions in the OpenMP

runtime library

the compiler will only consider the directives if it is directed to do so

 In simple cases (loop-level parallelism), one doesn't have to make any code

modifications, only addition of these directives

It's easy to incrementally add parallelization

Blocks of code that are to be done in parallel are considered parallel regions, and

must have only 1 entry and 1 exit point.

Threaded programs are executed in the same fashion as serial programs

OMP_NUM_THREADS environment variable to set number of threads, or else

hardwire it in your code

2007.05.18
Introduction to Parallel Computing

Data Scoping

The concept of data scoping is crucial to using OpenMP

Scoping refers to how different variables should be accessed by the threads. Basic

scoping types are:

Private: each thread gets a copy of the variable that is stored on it's private stack

Values in private variables are not returned to the parent process

Shared: all threads access the same variable

If variables are only read from, it's safe to declare them as shared

Reduction: like private, but the value is reduced (sum,max,min,etc.) and returned

to the parent process.

2007.05.18
Introduction to Parallel Computing

A simple OpenMP example

#pragma omp parallel default(shared) private(i,x) reduction(+:pi_int)

 {

#ifdef _OPENMP

 printf("thread %d of %d started\n", omp_get_thread_num(),

omp_get_num_threads());

#endif

#pragma omp for

 for (i = 1; i <= n; ++i) {

 x = h * (i - 0.5) ; //calculate at center of interval

 pi_int += 4.0 / (1.0 + pow(x,2)) ;

 }

 }

2007.05.18
Introduction to Parallel Computing

What is a message?

 a way to transfer the value of local memory to a remote process

Consists of network packets

Sensitive to the network bandwidth (how much data can be transferred in a given

time) and latency (how long it takes for each packet to move from source to

destination)

Can be synchronously or asynchronously sent between processes

May require buffer memory usage to store outgoing/incoming messages, can be

explicitely stated

2007.05.18
Introduction to Parallel Computing

MPI

programmed by utilizing functions/routines in the MPI library

Requires more work than implementing OpenMP

involves new data structures and increased algorithmic complexity

portable

runs on both shared and distributed memory

MPI programs are executed on top of an underlying MPI framework. Typically each

computing element (network node) runs an MPI daemon that facilitates the passing

of messages

Usually executed with a special mpirun command

takes the number of processes to be used as arguments

2007.05.18
Introduction to Parallel Computing

The 6 basic MPI routines

MPI essentially boils down to only 6 different subroutines:

MPI_Init()

MPI_Comm_size(MPI_COMM_WORLD,&numprocs)

MPI_Comm_rank(MPI_COMM_WORLD,&rank)

MPI_Send(buffer,buffer_size,MPI_TYPE,to_rank,tag,mpi_comm)

MPI_Recv(buffer,buffer_size,MPI_TYPE,from_rank,tag,mpi_comm,status)

MPI_Finalize()

All other communication patterns fundamentally consist of sends and receives.

There are different types of sends and recieves

Buffered, asynchronous, synchronous

More complex communication routines exist

Reductions, broadcasts, barriers, alltoall

2007.05.18
Introduction to Parallel Computing

The simplest MPI example

#include "mpi.h"

int main(int argc, char *argv[])

{

 int numprocs, myrank;

 MPI_Init(&argc,&argv);

 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

 printf("Hello World from rank %d of %d\n", myrank, numprocs);

 MPI_Finalize();

 return 0;

}

2007.05.18
Introduction to Parallel Computing

Parallel Libraries

There are many useful parallel libraries that internally use OpenMP / MPI:

Intel MKL

Threaded FFTs, linear algebra, random number generators

FFTW

Threaded and MPI parallel FFT routines

Scalapack

MPI routines for doing linear algebra

These can relieve a great deal of the burden of parallel programming – use the m!

Be careful not to oversubscribe processors by calling threaded library routines from

inside parallel regions.

2007.05.18
Introduction to Parallel Computing

Debugging

While there are powerful commercial parallel debugging tools (Totalview, Intel

Thread Analyzer, etc) we are cheap and don't have any

 The usual route is to use a lot of print statements

Both gdb and idb support debugging threaded applications

One can also run a separate debugger for each MPI process, which is sometimes

helpful, but it is only limited to running on one node

Many problems result from incorrect synchronization

Deadlocking (posting a receive before a send)

2007.05.18
Introduction to Parallel Computing

