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Primordial gravitational waves (GWs) are a key area of study when examining the Universe. We
review the ongoing work connecting them to the Hubble constant H0. Assuming the linearized
version of Einsteins equations we derive an analytic expression relating parameters of primordial
GWs to the H0. We write this in terms of key parameters such as the tensor-to-scalar ratio r
and the spectral index nT . In doing so, we treat the evolution of primordial GWs radiatively. We
then assume that primordial GWs behave as an extension to neutrinos and thus may contribute
to their relativistic degrees of freedom Nν+GW

eff . We use this to compute an analytic relation for
the H0. We then examine recent analysis to show that primordial gravitational waves relax the
H0 tension. Studying the constraints on the spectral index for various models we examine values
for an updates H0. Our discussion includes data from Planck, BICEP2/Keck array , the laser
interferometer gravitational-wave observatory (LIGO) and the baryonic acoustic oscillations survey
(BAO). Finally we highlight extensions to different models which may further relax the ongoing
Hubble tension. Such studies are important as observational data is likely to restrict many models.
These constraints will set bounds for new fundamental physics.

I. INTRODUCTION

Over a century ago, Einstein created the theory of
general relativity (GR), in this theory he postulates an
equation relating matter to the curvature of space-time
[1]. Solving the linearized version of his equations, we
obtain gravitational waves (GWs). He defines these
waves to be both transverse and longitudinal pertur-
bations on the fabric of spacetime. GWs are the mass
quadrupole moment of an accelerating or asymmetric
source [2]. They may also be generated from primordial
fluctuations in the early Universe [3]. The underlying
physics which generates gravitational waves is a common
area of study today. Observationally studying them al-
lows us to investigate multiple astrophysical phenomena.
[4].

Primordial gravitational waves arise from cosmic
inflation and are orders of magnitude smaller than
GWs from compact-object mergers. New projects probe
the possibility of high-precision measurements which
are able to detect them [5–7]. Projects, such as Deci-
hertz Interferometer Gravitational Wave Observatory
(DECIGO) aim to directly detect gravitational waves
that arise from cosmic inflation [8]. With future data
expected from DECIGO and other missions such as
LiteBIRD [9] and CMB-S4 [10]. The study of primordial
gravitational waves has gathered interest in the cosmol-
ogy community. An improved theoretical background
will help us distinguish between various models of
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primordial gravitational waves. They are also able help
us determine the rate of expansion of the Universe H0

[11].

Experimentally, primordial GWs have yet to be detected
[12]. They occur when Thompson scattering on free
electron generates polarization in the cosmic microwave
background (CMB). Quadrapoles from gravitational
waves results in B-mode polarization of the CMB [13].

Theoretically, inflationary GWs play an important
role in the early Universe [14]. By considering primor-
dial perturbations to the metric tensor and expansion
rate of the Universe during inflation, we are able to
predict the primordial GWs spectrum. The tensorial
perturbations help us determine the initial magnitude
of GWs during inflation. The expansion rate, helps us
determine how the density of primordial gravitational
waves changes as its strength dissipates through cosmic
expansion [15]. The inflationary history of gravitational
waves provides insight into different inflationary models.
Hence their study is important.

Primordial gravitational waves can be separated
into two forms, those from metric perturbations in
inflation, and those from astrophysical events that occur
between the end of inflation and big bang nucleosynthe-
sis (BBN) [16]. Some examples include; GWs produced
during reheating [17], from phase transitions [18] or by
primordial black holes [19]. We will ignore the second
category as it has a smaller impact on the Hubble
constant H0 [20, 21].

Our bold assumption that primordial gravitational
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waves arise from predictions of inflation [22] allow
us to ignore the electroweak and first-order phase
transitions [23, 24]. We use perturbations to the Fried-
mann–Lemâıtre–Robertson–Walker (FRW) metric to
derive a dimensionless power spectrum which denotes
the amplitude of perturbations at a given Fourier
mode k [25]. Standard slow-roll inflationary models
correspond to a flat primordial GW background for
many frequencies [16]. We use the tilt of the primordial
power spectrum to describe variations from a flat GW
background. This is caused by frequency dependence in
the inflationary Hubble parameter [2].

h2
0Ωgw(f) ∼ fnT (1)

This frequency dependence can be described through the
characteristic tensor spectral index nT . It is an experi-
mental parameters which observationalists can measure
and report. It holds information that characterizes the
primordial GW [26]. Using the consistency relation, we
are able to find the tensor-to-scalar ratio r.

r (k∗) ≡
AT (k∗)

AS (k∗)
(2)

This ratio determines the amplitudes between the
tensorial power spectrum parameterization and its scalar
counterpart for a given k∗. The tensorial amplitude At is
set by the expansion rate which is close to constant dur-
ing inflation [27]. The scalar amplitude As is dependent
on the spectral scalar index ns where ns = 1 represents
perfect scale invariance (k-mode independence). Un-
fortunately, this convention is different to that of the
tensorial index in which nT = 0 represents perfect scale
invariance [25].

The tensor-scalar-value r is highly dependent on
the inflationary model. As a result, it has a large
parameter space [3]. This ratio can be constrained with
observational data which narrows the inflationary model
selection [11, 28].

A negative value of nT corresponds to red-tilted
values and positive values of nT are associated with
blue-tilted value. The tilt holds information about the
equation of state of the Universe when modes enter
the horizon [3]. In general, inflationary data from
CMB polarization may predict blue-tilted spectral index
nT < 0 [29].

Primordial gravitational waves have a similar effect
on the CMB as massless neutrinos [30]. This occurs
when the primordial GWs energy density perturbations
are adiabatic [30]. Since they radiate similarly to neutri-
nos, primordial GWs are able to contribute relativistic
degree’s of freedom to the standard value of Neff.

Nnew
eff = Neff +NGW

eff

= 3.046 +NGW
eff

(3)

We aim to use Nnew
eff to determine an analytic solution

to the Hubble constant H0. We will do this by equating
the energy densities at matter-radiation equality. We will
then show how these contributions alleviate some of the
H0 tension. This adds to ongoing work in understanding
the Hubble tension [31].

II. THEORETICAL BACKGROUND

A. Single-field slow-roll inflation

Quantum fluctuations of fields describe the inflationary
evolution of the early Universe. In its simplest form, we
use a neutral scalar field and metric tensor [25]. We begin
with the standard FRW metric.

ds2 = dt2 − a2(t)
{
gijdx

idxj
}

(4)

Using a(t) as the scale factor in non-conformal time (co-
ordinate time). From here, we then apply small tensorial
perturbations hµν . Using the gauge (hµ0 = 0) we can re-
cover the perturbations in only spacial components [20].

ds2 = dt2 − a2(t) (δij + hij) dx
idxj (5)

Following this, we impose the transverse (∂ihT
ij = 0) and

traceless (hi
i = 0) conditions to obtain the fully perturbed

metric solutions as shown below [32].

g00 = −a(τ)

(
1 + 2

+∞∑
n=1

1

n!
Ψ(n)

)
(6)

g0i = a2(τ)

+∞∑
n=1

1

n!
ω
(n)
i (7)

gij = a2(τ)

[
1− 2

(
+∞∑
n=1

1

n!
Φ(n)

)]
δij + a2(τ)

+∞∑
n=1

1

n!
h
(n)
ij

(8)

Notice here, Φ(n), ω
(n)
i , Ψ(n) and h

(n)
ij are the correspond-

ing nth order perturbations. We will now show that these
can be used, along with the slow-roll parameters to ob-
tain the tensor-scalar ratio r. First, we define the Hubble
expansion parameters for slow roll inflation [33].

ϵ(ϕ) ≡ 3ϕ̇2

2

[
V +

1

2
ϕ̇2

]−1

=
m2

Pl

4π

(
H ′(ϕ)

H(ϕ)

)2

(9)

Here we have used textbook formulation Ḣ = − 1
2 ϕ̇

2 to
rewrite the slow-roll parameters [34]. We have also used
the textbook definitions of the Klein-Gordon equation
3Hϕ̇ ≈ V ′ [25]. In slow-roll approximation, we assume
that these parameters are very small, hence |ϵ|, |η| < 1.

η(ϕ) ≡ − ϕ̈

Hϕ̇
=

m2
Pl

4π

H ′′(ϕ)

H(ϕ)
= ϵ− mPlϵ

′
√
16πϵ

(10)

2
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Physically, we enforce that the scalar perturbation must
be positive ϕ̇ > 0, hence H ′(ϕ) < 0, without this we
would have accelerating expansion in the early Universe.
Due to this we must take the negative root for ϵ(ϕ). For-

mally,
√
ϵ = −

√
m2

Pl/4πH
′/H. The amount of inflation

can be represented as an e-fold and can be written as the
following (Baumann) [25].

Ntot =

∫ tE

tI

H(t)dt = − 4π

m2
Pl

∫ ϕe

ϕ

dϕ
H(ϕ)

H ′(ϕ)
(11)

Following this, we solve assuming an inflationary scale
factor a(ϕ) ∝ ef(ϕ) for some arbitrary function of ϕ. We
can hence obtain the equation for a(ϕ). We do this by
assuming that the scalar components of the fluctuations
follow a power-law relationship.

a(ϕ) = ae exp[−N(ϕ)] (12)

This formula connects two periods of inflation. It is used
to determine how rapidly the scale passes outside of the
Hubble radius. Evaluating the expression with a scale
matching the Hubble radius k = aH. We obtain the
following equation.

k(ϕ) = aeH(ϕ) exp[−N(ϕ)] (13)

Subsequently, we take the exponential derivative to find
the characteristic relation between k and ϕ.

d ln(k)

dϕ
=

4π

m2
Pl

(
H

H ′ (ϵ− 1)

)
=

4π

m2
Pl

(
H

H ′

[
m2

Pl

4π

(
H ′

H

)2

− 1

]) (14)

This equation shows us how primordial GWs leave the
Hubble radius.

Using these parameters, we are able to obtain the
scalar and tensorial primordial spectral amplitudes [20].
This is done using quantum perturbations which are
beyond the scope of this paper. In theory, one would
apply the canonical quantization formulae to a quantum
oscillator system in de Sitter space. This would then
lead to zero-point fluctuations which is used to derive
the Mukhanov-Sasaki equation. After applying the
Minkowski initial condition, one would be able to obtain
the power spectra below [25].

AS(k) ≡
2

5
P1/2
S ≃ 4

5

H2

m2
P1 |H ′|

∣∣∣∣
k=aH

(15)

AT (k) ≡
1

10
P1/2
T ≃ 2

5
√
π

H

mPl

∣∣∣∣
k=aH

(16)

Here As(k) and AR(k) represent scalar and tensor ampli-
tudes of the power spectrum introduced in section I. We
have simply shown the lowest order approximation above.

It is possible to write each as a power expansion.
The scalar case written as follows [11].

ns − 1 +
1

2
dns/d ln k ln (k/k∗) + . . . ≈ ns − 1

Below is the equivalent tensorial formulation.

nt +
1

2
dnt/d ln k ln (k/k∗) + . . . ≈ nt

Here we define the spectrum around a specific pivot point
k∗ in which the approximation is made. Combining all
of this together, we are able to rewrite the tensorial and
scalar power spectrum’s. These are the forms most com-
monly seen in textbooks and the community.

Ps(k) =
k3

2π2
|T (k, τ)|2 ≈ As(k∗)

2

(
k

k∗

)ns−1

(17)

Pt(k) =
k3

2π2

(∣∣h+
k

∣∣2 + ∣∣h×
k

∣∣2)
= At (k∗)

2

(
k

k∗

)nt(k∗)+
1
2nt,run ln(k/k∗)

≈ At(k∗)
2

(
k

k∗

)nt(k∗)

(18)

We are now able to resolve the scalar and spectral indices
in terms of their slow-roll parameters. We do this by
taking the first derivative of equations 15 and 16 and
substituting it into equation 14. Taking the first order
approximation O(η, ϵ), we find the following relations.

ns − 1 ≈ 2η − 4ϵ (19)

nT ≈ −2ϵ (20)

Using the new power spectra and their slow-roll approx-
imations, we are able to finally determine the tensor-to-
scalar ratio. This determines the variation of the scalar
field during the inflationary period [35]. We do this by
using equations 19 and 20 to determine the amplitude
ratio.

At(k∗)
2

As(k∗)2
=

(
2

5
√
π

H

mPl

)2(
4

5

H2

m2
P1 |H ′|

)−2

=

(
H ′mPl

2
√
πH

)2

= ϵ

(21)

We then substitute this into the equation for the power
spectrum.

r =
Pt(k∗)

Ps(k∗)
= 16

At(k∗)
2

As(k∗)2
≈ 16ϵ (22)

3
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We can further combine the result from equations 22 and
20 to obtain the tensor spectral index in terms of the
tensor-scalar ratio.

nT ≈ −2ϵ = −r

8
(23)

We have analytically arrived at the quantity which obser-
vationalists will measure and report. In order to equate
this to H0 we shift our focus to computing the energy
density.

B. Energy Density

Now we must obtain the energy density of the gravi-
tational waves. This will allow us to relate nT and r to
H0. The energy density from the tensorial power spec-
trum can be obtained by applying density perturbations
to the standard scalar field action [21, 25].

S =

∫
d4x

√
−g

[
1

2
M2

plR− 1

2
gµν∂µφ∂νφ− V (φ)

]
(24)

We now apply perturbations to the metric through hij ,
the gauge invariant transverse traceless quantity. Com-
puting the Christoffels, Riemann and Ricci tensor, we are
able to derive the perturbed stress-energy tensor.

gµν = ḡµν + δgµν (25)

As before, we use the FRW metric which defines hi,j

in terms of the spacial components of the metric per-
turbations δgij = a(t)2hij . When computing the
stress-energy-tensor (through the Ricci tensor) we ig-
nore modes who’s perturbations are larger horizon limit
k = a(t)H(t). This can be done since larger modes have
been shown to have insignificant effect on the GW energy
density [21].

Rµν = R̄µν +R(1)
µν +R(2)

µν + . . . (26)

The first and second orders terms are shown explicitly.

R(1)
µν =

1

2
(D̄αD̄µhνα + D̄αD̄νhµα−

D̄αD̄αhµν − D̄νD̄µh)
(27)

R(2)
µν =

1

2
ḡρσ ḡαβ

[
1

2
D̄µhραD̄νhσβ

+
(
D̄ρhνα

) (
D̄σhµβ − D̄βhµσ

)
+ hρα

(
D̄νD̄µhσβ + D̄βD̄σhµν

− D̄βD̄νhµσ − D̄βD̄µhνσ

+

(
1

2
D̄αhρσ − D̄ρhασ

)
×
(
D̄νhµβ + D̄µhνβ − D̄βhµν

)
(28)

It can be shown that the the first and third terms of the
Rµν expansion contain lower order frequencies while the

linear first term contains higher order frequencies [27].
This is known as the short-wave approximation. We use
this approximation to rewrite Einstein’s equations.

R̄µν = −
(
R(2)

µν

)(Low)

+ 8πG

(
Tµν − 1

2
gµν

)(Low)

(29)

Before calculating the stress-energy tensor, we eliminate

the high frequency dependence in the R
(2)
µν term (Refer

to the short-wave approximation in Kip Thorne’s text
on gravitation) [27]. Once again, this can be done since
larger modes do not have much impact on the GW energy
density [21].

R̄µν = ⟨R(2)
µν ⟩+ 8πG ⟨Tµν − 1

2
gµνT ⟩ (30)

Inverting this, we find the solution for the gravitational
wave stress energy tensor.

TGW
µν =

−1

8πG
⟨R(2)

µν − 1

2
ḡµνR

(2)⟩+O(δg3) (31)

Converting to transverse traceless gauge, we are able to
convert space-time indices to spacial ones {µ, ν} → {i, j}.
This can be described in terms of the covariant deriva-
tives of the metric perturbations. Here we use equations
27 and 28 to rewrite the stress energy tensor. Notice
that the covariant derivatives has now been converted to
normal derivatives Dµ → ∂µ. We are able to do this by
assuming the background spacetime is flat [36].

R(2)
µν =

1

2

[
1

2
∂µhαβ∂νh

αβ + hαβ∂µ∂νhαβ

− hαβ∂ν∂βhαµ − hαβ∂µ∂βhαν

+ hαβ∂α∂βhµν + ∂βhα
ν ∂βhαµ

− ∂βhα
ν ∂αhβµ − ∂βh

αβ∂νhαµ

+ ∂βh
αβ∂αhµν − ∂βh

αβ∂µhαν − 1

2
∂αh∂αhµν

+
1

2
∂αh∂νhαµ +

1

2
∂αh∂µhαν

]
(32)

Using this, and plugging back into equation 31 we ob-
tain the energy-density of gravitational waves (by taking
{0, 0} component of the stress energy tensor). Notice
here that we are working to second order.

ρGW = TGW
00

=
1

32πGa4
δikδjℓ ⟨(∂0 − 2H) δgij (∂0 − 2H) δgkℓ⟩

+O
(
δg3
)

=
1

32πG
δikδjℓ

〈
ḣij ḣkℓ

〉
+O

(
δg3
)

(33)
Hence we can then directly write the gravitational wave
energy-density [3].

ρgw =
1

32πGa2
〈
h′
ij(x, η)h

′ij(x, η)
〉

(34)

4



Volume XX, Number Y PHYSICAL REVIEW LETTERS May 10, 2023

This can be defined in terms of a transfer function which
allows us to obtain the final form of the energy-density
of gravitational waves. This form matches most common
textbooks [25].

⟨
〈
hij(x, η)h

′ij(x, η)
〉
⟩ =

∫
d log k∆2

h(x, η) (35)

Below is the definition of the power spectrum. In it con-
tains the transfer function T (k, η) [25].

∆2
h(x, η) = Pt(k)T (k, η) (36)

Using this and equation 34 we are able to define the full
form of the energy density.

ρGW =

∫ k

0

d log k
Pt(k)

32πGa2
T ′(k, η)2 (37)

C. Primordial Gravitational Waves Energy Density

Now that we have defined the gravitational wave
density, we intend to show how it impacts the H0

tensor-to-scalar ratio r. We will use both sections IIA
and IIB to show this.

Notice that we are able to written the k-modes in
terms of frequency to re-parameterise equation 22 [21].

f

Hz
=

k

2πaτ0
=

1.6× 10−15

Mpc−1 (38)

We will now rewrite equation 22. In order to do this, we
must define the pivot scale (k∗). The pivot scale deter-
mines the scale of tensorial mode measurements. Typ-
ical values range from k∗ ≈ 0.01 − 0.05Mpc−1 [11]. In
our work we assume k∗ = 0.01Mpc−1. The choice of
pivot scale has been studied in the literature and often
warrants a full section [37].

Pt(f) = rAs

(
f

f∗

)
= rAs

(
f/Hz

1.6× 10−17

)
(39)

As previously mentioned, since we are only considering
lower frequencies [27] a sensible assumption to make is
to consider frequencies in the UV bandwidth k = kUV .
As a result of this, we are able to re-write equation 37 in
terms of kUV .

ρGW =

∫ kUV

0

d log k
Pt(k)

32πGa2
T ′(k, η)2 (40)

The goal is to now define a suitable transfer function and
integrate this equation to achieve the gravitational-wave
density in terms of the total density.

The transfer function is typically a linear combina-
tion of Bessel and Neumann functions. They are

normalized such that they approached unity as k → 0
[3, 25, 38]. We obtain them by imposing boundary
conditions on the massless Klein-Gordon equation for
plane waves [39].

h′′
λ,k +

(
2a′

a

)
h′
λ,k + k2hλ,k = 16πGa2Πλ,k (41)

The general solution to this equation is hλ
k = hλ

k,prim [39].
We use the equation above to compute the transfer func-
tion. For values of k less than keq. T (k < keq) = jo(kτ).
Taking its derivative we find T ′(k < keq) = −kj1(kτ).
We now applying this to equation 40 to obtain an ana-
lytic form of ρGW .

ρGW =

∫ kUV

kIR

d log k
Pt(k)

32πGa2
[T ′(k, τ)]

2

=
Asr

32πGa2

∫ kUV

kIR

kdk

(
k

k∗

)nT

j21(kτ)

(42)

Here the bounds of integration are fixed between kIR and
kUV . kIR is defined to be far inside the horizon (sub-
horizon scales). Hence, we set kIR << H(t)a(t). Now,
notice the k dependence of the derivative of the transfer
function for small values of k.

T ′(k, τ)2 = (−kj1(kτ))
2

= k2
(
sin kτ

(kτ)2
− cos kτ

kτ

)2

≈ k2
(

kτ

(kτ)2
−

1− 1
2 (kτ)

2

kτ

)2

=
k4τ4

4

(43)

The k4 dependence in the square transfer function in
the k → 0 limit highlights that the integral above in
equation 42 should converge for values of nT ≥ −4 in the
kIR → 0 limit. This should occur for any arbitrary value
of kUV . As a result of this, we are able to approximate
the lower bound frequency in this limit. Hence, kIR = 0.
The upper bound kUV varies depending on model choice.
Here we restrict the value of kUV to be larger than the
Plank scale, this is a fair assumption as we do not expect
primordial gravitational waves to be generated on scales
smaller than this.

We now adopt the LIGO model in which scales of
UV are 60 e-folds smaller than the horizon scale
a(to)H(to) [40]. We further consider the models in which
the UV energy dominates the total energy of the system,
this enforces a positive spectral index nT > 0. As a

5
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result of this we are able to take the limit kIR

kUV
→ 0.

ρGW =
Asr

32πGa2

∫ kUV

kIR

kdk

(
k

k∗

)nT

j21(kτ)

=
Asr

32πGa2knT
∗

∫ kUV

≈0

k3+nT dk

(
sin kτ

(kτ)2
− cos kτ

kτ

)2

=
Asr

32πGa2

(
kUV

k∗

)nt 1

2nt

1

τ2
+O (1/(kUVτ ))

(44)
Notice above that we have used the assumption that since
kUV dominates we are able to take 1

kτ to be very small.
Hence we arrive at a closed form of the gravitational wave
density.

ρGW =
Asr

32πG

(
kUV

k∗

)nT 1

2nT (aτ)2

=
Asr

24nT

(
kUV

k∗

)nT

ρtot

(45)

Notice above we have used the assumption that 1
(aτ)2 =

H2 = 8πGρtot

3 , which is true in the radiation dominated

era (since t → τ2). To do this, we must also assume flat
curvature and negligible dark energy constant [41].

D. Hubble Tension

Now that we have obtained the gravitational wave den-
sity, its time to use this, along with our knowledge of
density in the radiation dominated era to work towards
an analytic solution of Ho. We take the total energy
density to be the sum of photon, baryon and primordial
gravitational wave energy densities.

ρtot = ργ + ρν + ρGW (46)

Trivially, the neutrino density is dependent on the effec-
tive number of neutrinos [25]. It is dependent on the
non-instantaneous neutrino decoupling which still occurs
while electron-positron annihilation takes place [25].

ρν =
7

8
Neff

(
4

11

)4/3

ργ (47)

Subsequently, we are able to compute the total energy
density in terms of Neff.

ρtot = ργ

(
1 +

7

8

(
4

11

) 4
3

Neff

)
(48)

Here we have assumed that the GWs energy density is
very small compared to the total energy density, hence
we ignore it in the additive component. Using this we are

able to rewrite the GW energy density in term of Neff.

ρGW =
Asr

24nT

(
kUV

k∗

)nT

ργ

(
1 +

7

8

(
4

11

) 4
3

Neff

)

=
As(−8nT )

24nT

(
kUV

k∗

)nT

ργ +
7

8

(
4

11

) 4
3

Neff

(
kUV

k∗

)nT

ργ

= −3.046
7

8

(
4

11

) 4
3

ργ +
7

8

(
4

11

) 4
3

ργNeff

=
7

8

(
4

11

) 4
3

(Neff − 3.046) ργ

(49)
We now substitute the equation above into the total
energy density in equation 45. We assume a primor-
dial gravitational wave extension to the standard model.
Neff = 3.046 +NGW

eff , i.e. we assume no other degrees of
freedom beyond the standard model.

ρGW

ρtot
=

Asr

24nt

(
kUV

k∗

)nt

=
7
8

(
4
11

)4/3
(Neff − 3.046) ργ(

1 + 7
8

(
4
11

)4/3
Neff

)
ργ

(50)

This can be inverted to solve for Neff.

Neff =

8
7

(
11
4

)4/3 [ Asr
24nt

(
kUV

k∗

)nt
]
+ 3.046

1−
[

Asr
24nt

(
kUV

k∗

)nt
]

≈

(
8

7

(
11

4

)4/3 [
Asr

24nt

(
kUV

k∗

)nt
]
+ 3.046

)

×
(
1 +

[
Asr

24nt

(
kUV

k∗

)nt
])

= 3.046 +

(
3.046 +

8

7

(
11

4

)4/3
)

Asr

24nt

(
kUV

k∗

)nt

+O

((
Asr

24nt

(
kUV

k∗

))2
)

(51)

Here we have Taylor expanded in terms of Asr
24nt

(
kUV

k∗

)
.

We have then taken the leading order behaviour, in other
words we are treating the gravitational energy density as
small compared to the total energy density ρGW << ρtot.
This gives the final key result for Neff.

Neff ≈ 3.046 +

(
3.046 +

8

7

(
11

4

)4/3
)

Asr

24nt

(
kUV

k∗

)nt

(52)
Referring back to equation 45, the short-wave approxi-
mation allows us to assume that the gravitational waves
redshift analogous to radiation [27]. We can compute the
effect this has by investigating the primordial GWs dur-
ing matter radiation equality (a = aeq). Before we do

6
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this, we must compute the energy density for relativistic
photons and neutrinos [42]. Below is the equation for
radiation without the addition of neutrinos.

ργ =
1

2
gγaT

4 (53)

We have defined a as the radiation constant , gr = 2
for a photon and T to be the temperature of the CMB
(i.e. black body photon). Following this, we apply the
correction to g to obtain the relativistic version.

g∗ = 2

(
1 +Neff

7

8

(
4

11

)4/3
)

(54)

Substituting this in, we obtain the fully relativistic ver-
sion.

ρr = 1 +Neff
7

8

(
4

11

)4/3

aT 4 (55)

Hence, using the Friedmann equation for a flat Universe,
we find the Hubble constant as a function of effective
degree’s of freedom [34].

ρm(aeq) = ρr(aeq)

ρm,0

(
a0
aeq

)3

= ρr,0

(
a0
aeq

)4

3H2
0Ωm

8πG
aeq = aradT

4
γ,0

(
1 +Neff

7

8

(
4

11

)4/3
) (56)

This equation analytically solves for the Hubble constant
in terms of the parameters of the primordial gravitational
waves. We are able to make this more explicit with a
singular H0 dependence below.

H2
0 =

8πG

3Ωm

arad
aeq

T 4
γ,0

(
1 +Neff

7

8

(
4

11

)4/3
)

≈ 8πG

3Ωm

arad
aeq

T 4
γ,0

×

{
1 +

[
3.046 +

(
3.046 +

8

7

(
11

4

)4/3
)

Asr

24nt

(
kUV

k∗

)nt
]

× 7

8

(
4

11

)4/3
}

(57)
We have thus shown, that the gravitational wave param-
eters directly influence the Hubble constant. The com-
putedH0 is model dependent on our choice of ultra-violet
cutoff kUV. We now examine what this observationally
looks like.

III. RESULTS AND DISCUSSION

In this section, we draw heavily from the results of
Dr. Graef and Dr. Benetti [43]. There they use the

LIGO and VIRGO experiments to apply constraints on
the tensor scalar r ratio and spectral index nT . They
investigate two models, varying the UV cut-off kUV as
highlighted in equation 57.

In the first model, they take a cut-off correspond-
ing to the grand unified theory (GUT) scale, i.e.
kUV/k∗ ≈ 1056 and fUV ≈ 1040Hz. In their second
model, they take a 60 e-fold assumption in the power
spectrum. This corresponds to kUV/k∗ ≈ 1024 and

fUV ≈ 108. This model matches the expected inflation
of the Universe. They use data releases from; Planck
and BICEP2 collaborations (BKP), LIGO and baryonic
acoustic oscillations survey (BAO) to constrain the spec-
tral index and tensor-to-scalar amplitudes [11, 44–48].
The initial data is known as ”base”.

They then include measurements by Gaia space
observatory and the Hubble space telescope (HST).
Below we observe the main result from their paper which
directly compares the effect of the spectral index nT on
the Hubble constant H0. Tolman–Oppenheimer–Volkoff
(TOV) equation It can be observed that the value of H0

increases as the spectral index nT increases. This occur-
rence exceeds the limits bounded by the standard model
[11]. The computed values of the Hubble constant H0

can be found in the table below. Constraining the spec-
tral index with the base + HST data suggests a higher
value of the Hubble constant. Their best model (Model
2 - Inflation, base + HST) predicts H0 = 68.49 ± 0.83.
This is closer to late-time measurements when compared
with other early Universe predictions [11], but still far
from early-time measurements.

Since the maximum-a-posteriori (MAP) values bring
their H0 closer to those measured from late Universe
times such as cepheid’s [46]. Primordial GWs alleviates
the ongoing Hubble tension [43].

Figure 1 demonstrates the effect of the nT vs H0

plot as determined by the relativistic degrees of freedom
(Neff).

From this plot, it is clear that positive values of
the spectral index are most likely to result in relaxing
of the Hubble tension. This matches the possible CMB
exclusion of red-tilted values nT < 0. Constraints on
nT are only expected to get stronger with newer, more
powerful GW detectors coming online in the coming
years [5–10]. In making the following predictions we
have had to assert some assumptions. We will now
state them explicitly for the reader. Firstly, we assume
that the effect of primordial GWs are similar to that of
neutrinos. We are hence able to add to their relativistic
degrees of freedom. We also assume that GWs do not
interact with matter or radiation. We then assume
the consistency relation of standard inflation in which
the tensor-to-scalar ratio r can be determined as the

7
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TABLE I. Table representing the computer maximum-a-posteriori values for the Hubble constant with their respective 1σ
confidence interval. Both models in the base dataset decrease the value of H0 compared to the standard CDM model. They
tighten the Hubble tension.However, both models under the base + HST dataset relax the Hubble tension. This table was
taken directly from Graef et. al [43]

FIG. 1. Here, they use the base + HST dataset to plot the
change in effective degrees of freedom on the Hubble constant.
Colours closer to blue represent values of Neff closer to the
standard model. This plot was also taken directly from Graef
et. al [43]

ratio of tensorial to scalar power spectrum amplitudes.
Then, we compute the total density of the Universe,
we assume that it is the sum of radiation density +
gravitational waves and nothing else (stated in equation
46). Finally, we assume that the GW energy density
evolves identically to photon radiation from inflation.
Making these assumptions allows us to compute an
analytic form of the Hubble constant H0.

IV. EXTENSIONS TO SLOW-ROLL THEORY
FOR PRIMORDIAL GRAVITATIONAL WAVES

While the primary focus of this paper is to analyze the
standard slow-roll case and its direct impact on the Hub-
ble constant H0. A review of primordial gravitational
waves would be incomplete without a brief overview
of extensions to the slow-roll scenario. The choice
of inflationary model will determine the new physics
the community adopts. Alternatives to the slow-roll
scalar field are necessary to explore a wider parameter
space of nT and r. These alternatives can then be
constrained through upcoming observational data. Our
paper will not rigorously study this alternatives. Instead
we will state them and leave their analysis of H0 as an
opportunity of further study to the reader.

The natural extension to this is to consider models
other than the slow-roll case in GR. These models
typically study physical properties which lead to a
non-trivial GW power spectrum [3]. Examples of this
include different scenarios for inflation such as solid,
elastic, trapped or warm inflation [49–54]. Some work
also highlights the possibility of primordial GWs during
kination domination [55]. There has also been work
on a modified gravity (MG) approach to determining
primordial gravitational waves. This is done in order
to achieve an accelerated expansionary rate in the early
Universe. Theoretically we do this by including a matter
Lagrangian Lmatter and using it cumulatively with the
Einstien-Hilbert Lagrangian Lgrav in the action.

S =

∫ √
−g (Lgrav + Lmat) d

4x (58)

There has also been work studying inflation that is cou-
pled to a scalar field. This typically includes an interac-

8
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tion term with an extra scalar field χ [56].

L = −1

2
∂µφ∂

µφ− V (φ)− 1

2
∂µχ∂

µχ− g2

2
(φ− φ0)

2
χ2

(59)

Another approach is one known as the effective
field theory (EFT) method. This, like the previous
example leads to cosmic acceleration, and a quasi
de-Sitter Universe expansion [57].

Finally there are additional possibilities for the emission
of gravitational waves through classical production
(GWs generated by an accelerating body or asymmetry
during BBN) [3]. Here we require the presence of
a source term. They are a growing field of study,
with plenty of scope for extensions to improve our
understanding of the Hubble H0 tension.

V. CONCLUSION

In this paper we extend the standard model consisting
only of primordial GWs energy density. We used this
to analytically relate the properties of primordial GWs
(r and nT ) to the Hubble constant H0. In the early
Universe, the effects of primordial GWs resulted in a
larger contribution to the effective number of relativistic
species Neff. This lead to a higher expansion rate of a
Universe H0. We obtained H0 by setting bounds on
r, nT . We did this by examining data from various
collaborations [8–11, 13].

Theoretically, we applied relativistic perturbations
to the FRW metric. From this we obtained its energy
density. After relating this to Neff we treated GWs as an
extension to neutrinos, something the standard model
does not account for. Equating this to the total energy
density ρtot we analytically expressed H0 in terms of
Neff, spectral index and ratios r, nT .

We then studied data which demonstrates that a
positive spectral index nT > 0 could relax the Hubble
tension. Following this, we discussed key results from
Graef et. al in which they analysed LIGO and HST data
against the base measurements predicted by ΛCDM. In
those results, all models resulted in a greater H0. The
best improvement occurred for positive spectral indices
nT > 0 (blue tilted). It is clear that the current data
prefers positively tilted spectral value.

The results of this paper showed that an analysis
of H0 using various models for GWs is possible. The as-
sumptions we make about the UV cutoff and short-wave
approximation may introduce other effects that clutter
the constrains. As a result, one should interpret the
results of this paper with reservations.

Finally we outline possible extensions to the current
literature beyond the standard slow-roll approximation.
As an open field of study, there is scope for analysis
on a broader range of models and their effect on H0.
As new data from observationalists further constrain
the value of Neff, we head towards an exciting time for
fundamental physics. Primordial GWs are a viable way
of relaxing the Hubble tension. In the coming years,
improved observational data may provide evidence for
them. [58]
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