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Objects like deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) often form knots causing
them to become entangled. Understanding their behaviour can help develop insight into emergent
properties of complex structures. Our experiment aims to study properties associated with bead
knotting. We then compare them with known results. In particular, we verify the power law relation-
ship and survival probability. This is done by applying the central limit theorem on approximately
Gaussian unknotting distributions. We then use postulate a model for amplitude variation data.
After the experimental work, we verify the power law coefficient to be δ = 1.86±0.59 (dimensionless
units), this matches experimental predictions made by the Ben-Naim group δBN = 1.95±0.07. The
time-scaling factor was found to be to = 0.0116±1.1×10−5s. Subsequently, survival probability was
also found to match known results. Finally, after attempting functional and distributive approaches,
we fit a new model to amplitude variation data using the polynomial method. There is scope for
more work on model selection. Understanding the role of these knots provides insight into complex
structures such as DNA, RNA and polymers. Ultimately, studying the behavior of such vibrations
will benefit the broader scientific community.

I. INTRODUCTION

The study of knots and braids have shown to provide
deep insights into many physical systems. Knot theory
is the mathematical study of the knots using both
geometry and statistical methods [1]. Its study has lead
to the development of many useful practical applications
in biological science, physical chemistry and applied
physics [2–5]

Understanding the nature of these behaviours is
critical in understanding the underlying physics of the
interactions. Understanding knot theory is important
to the scientific community as it will open new avenues
of research in many other fields. Typical knot systems,
however, tend to be complex. In order to apply rigorous
quantitative analysis, simplifications to the system are
required. This will allow us to study these methods in
greater detail.

Our goal in this experiment is to simplify a knot-
ting system and apply statistical methods to study the
knot properties, comparing them with known experi-
mental results. We do this by using a pre-determined
bead size of a known length and mass to represent
a knotting string. We then apply a uniform known
oscillation with a measurable acceleration, we expect
that the string will unravel its knot. We then directly
observe the behaviour and confirm observations with
known laws from the literature [1].
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Our first aim is to experimentally verify the power
law and survival probabilities as measured in the lit-
erature [2, 6]. This is typically achieved by measuring
the unknotting time. We then explore the relationship
between the oscillation amplitude and the time taken to
unknot. As a byproduct, we aim to search for the reso-
nant frequency of the oscillations of the bead. Finally
we explore the role of the average error propagation as
a function of the number of times the knot flipped while
vibrating.

II. METHODOLOGY

A. Experimental Setup

The experimental setup consists of an oscillating plat-
form, an accelerometer and a power source. The power
source and accelerometer are connected to an oscilloscope
which displays both input and measured voltage. The os-
cillating platform is an aluminium plate driven by a SP10
sub-woofer speaker through the power amplifier. It has
a smooth metallic plate which is slightly curved inwards
to keep the beads at a central position. It is placed di-
rectly on the oscillating platform which drives the plate.
A signal is sent from the signal generator through the
amplifier to the sub-woofer. This causes vertical oscil-
lations [7]. An accelerometer,a MMA 1220 Low G mi-
cro machined developed by Freescale Semiconductors, is
connected to the sub-woofer which measures the realized
oscillation amplitude. It is placed under the plate in an
inverted position. It measures the acceleration as an out-
put voltage which scales linearly with plate acceleration.
The voltage that is measured which directly corresponds
to the acceleration of the plate. The beads were pre-
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pared from a yellow brass composite with a diameter of
2.4mm. The sole type of knot used in this experiment
was the trefoil knot, the simplest known knot. During
the experiment, oscillation frequencies vary from 10Hz
to 20Hz. Outside of these values consistent unknotting
was not observed.

B. Experimental Procedure

First, beads of fixed lengths were prepared. The diam-
eter, composition and mass were all fixed. A wide range
of lengths were needed to verify the power law relation-
ship. The oscillation frequency was set to 15Hz, the tight-
est knot possible was 13 beads long No = 13, the thick-
ness of the beads was measured to be 2.39mm±0.02, the
driving amplitude was set at 3 volts (peak-peak) which
corresponded to an accelerometer reading of 1.16V ±0.04.
When the bead strings were placed on the oscillating sur-
face, the knots were always set to have a left skew (the
left portion of the knot goes under the knot while the
right potion of the know goes over the knot).

C. Data Measurements

In all our data, we measure the time taken for the tre-
foil knot to unknot. This measured time varies greatly.
In order to approach the true time taken for a sample to
unknot, we must take multiple measurements and then
apply the central limit theorem (CLT). Applying cen-
tral limit theorem would allow us to assume a Gaussian-
distribution to the data which would allow us to easily
measure its mean. By doing this, we assume that each
drop is independent and identically distributed (idd).
Studies have shown that a minimum sample size of 20-30
is required for the data distribution to be approximately
Gaussian [8]. Following this we can find the average time
taken to unknot.

tavg =
1

N

N∑
i=1

ti (1)

This can be used to measure the variance associated with
the unknotting time.

σt =

√√√√ 1

N

N∑
i=1

(ti − tavg )
2

(2)

Since we assume the distribution is Gaussian distributed
through the CLT, we are able to find the average mean
uncertainty.

σavg =
σt√
N

(3)

This will be used in all sections of the experiment to
set error bounds on the unknotting time measurements.
Henceforth a measurement will be assumed to be taking
the mean value of 20-30 sample points.

D. Power Law

The first aim of this experiment was to verify the power
law relationship. This relationship relates the length of
the chain and the length of its tightest knot possible with
the average time taken to unknot. It is one of the key
results of knot theory and has been tested in many stud-
ies.

tavg = to(N −No)
δ (4)

Here we define to a constant with dimension of time,
and δ as a dimensionless constant. The former acts as
a scaling factor while the latter represents the power-
law relationship factor. In order to verify this rela-
tionship measurements were taken at varying lengths
N ∈ {41, 51, 61, 71, 85, 124}. Both the number of flips
and the bias direction of unknotting were also measured.
In post-processing, we aim to apply a fitting function to
derive the values of to and δ and compare them to known
values [5].

E. Survival Probability

The survival probability represents the cumulative
probability that a knot is likely to stay knotted or ”sur-
vive”. Recent literature has shown that the relationship
between a specific length knot and its survival probabil-
ity can be generalized by a scaling factor[4]. This can be
formalized through an equation.

S(t,N) = F (z), z =
t

τ
(5)

The equation above implies that the scaling of every mea-
surement taken from the power-law data should represent
an identical curve under the universal scaling constant.
This will be tested and further compared with known
values.

F. Amplitude Relationship

The relationship between the amplitude of oscillations
and the variation of unknotting time is one that has not
been deeply studied. As the amplitude of oscillations
increases, the acceleration of the plate increases. This
increases the force applied to the bead while it is in con-
tact with the surface of the plate. Here, the length of
the beads are fixed to N = 53. The acceleration is the
oscillation frequency of the plate with gravity. Since the
oscilloscope is delivering a sinusoidal frequency of oscil-
lation, we expect a sine dependence in the acceleration
[7].

A(t) =
cω2

g
sin t (6)

2
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The maximum amplitude of oscillation occurs when the
phase (sin t) maximizes A(t).

Amax =
cω2

g
(7)

This is directly measured from the inverted accelerom-
eter. The inversion results in the gravity acting on the
negative scale. As this is identical for all measurements,
it will not be included in the analysis. The experimen-
tal aim is to develop a model that well encapsulates the
data measured. This can then be used by other groups
as prior information for subsequent work.

G. Error Relationship

The final goal of this experiment is to determine the
relationship between the number of flips observed and the
average central limit theorem variance associated with
them. It is expected that the error should increase with
the number of flips observed.

III. RESULTS

The first measurements were aimed at determining the
relationship between number of beads and unknotting
time. In, particular fitting the power law relationship.

Length (N) tavg σavg Num Trials
41 6.23 0.7 30
51 11.87 1.2 30
61 13.95 1.0 30
71 21.46 1.6 30
85 34.87 5.6 30

124 73.55 16.4 30

TABLE I. Tabular representation of relationship between
varying length and time taken to unknot. An increase in
bead length corresponds to an increase in unknotting time.
There was a general upward trend in measurement variance
with increase in length.

After numerical fitting, the parameters of the power
law were estimated.

δ = 1.86± 0.59. (unitless)
to = 0.0116± 1.13× 10−5 (seconds)

These values can be represented graphically using the
power-law and data measured.

FIG. 1. Power-law relationship between number of beads and
unknotting time. The relationship is linear in log-space. This
matches theoretical expectations. The errors, while small
were non-negligible for the longest bead length. They were
measured to be the quadrature sum of the experimental vari-
ance with the power law fit.

We use the same data to compute both the survival
probabilities S(t,N) and the scaling factor. This is done
according to section II E.

FIG. 2. Graphical representation of the probability that a
knot survives as a function of scaling variable which is a func-
tion of time. Most curves follow a representative curve match-
ing theoretical expectations.

The values of survival probability can be directly
compared with other works [5]. There is good agreement
between cites works and ours.

The second set of measurements vary the ampli-
tude of oscillations (through acceleration) and measures
the change in time taken to unknot. The goal of this
section was to devise a model which succinctly describes
the behaviour that can be used in future studies. The
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results can be seen in the table below.

Amplitude (V) tavg σavg Num Trials
1.16 11.14 1.0 20
1.34 14.62 2.1 20
1.48 22.55 3.7 20
1.64 19.30 2.5 20
1.76 17.28 2.4 20

TABLE II. Tabular representation of the relationship between
the amplitude/acceleration of the plate and the average time
taken to unknot. Fewer trials were taken as the data was
already observed to look approximately Gaussian.

The results above were then used to generate poten-
tial models which would succinctly describe the ampli-
tude behaviour. First, a Poisson distribution was used
attempting to well represent the data. This however,
could not be done due to the integer requirement of the
factorial function in the distribution. Following this, a
generalized Beta distribution was attempted. This would
eliminate the factorial and allow floats. This requires a
(0,1) normalization. However, the value of gamma in the
beta distribution was un-normalizeable. The third ap-
proach was to use a functional skewed Gaussian of the
following form. tavg = a(x − c)e−b(x−d). While this at-
tempt was able to give a model fit to the data, the results
were clearly under fitted. This lead to the final approach
of using a polynomial fit. This can be seen below.

FIG. 3. Graphical representation of the relationship between
the driving amplitude measured by the accelerometer and the
average unknotting time.

The slightly larger error bars are associated with fewer
trials taken before analysis. As before, the bias and flips
were measured but have been omitted from the analysis.
The final values of the 3rd degree polynomial were as
follows.

tavg(x) = 646x3 +−823x2 + 349x− 162 (8)

This equation is unlikely to generalize. It does, however,
fit the constraints of our model well.

The final section of analysis involves the average
error associated with each measurement as a function
of the number of flips taken. This was initially not
an experiment objective but quickly became one once
the group observed that the amount of flips tends to
affect the unknotting time. This was formalized through

root mean squared error analysis. 1
N

√∑N
i=o(xi − µ)2.

Below, the root mean squared error is plotted as a
function of the number of flips.

FIG. 4. Graphical representation of the relationship between
the mean squared errors of each measurement and the number
of times a specific data sample flipped. As expected, the errors
increased with the flip frequency.

The root mean squared errors were computed between
individual data points and their mean. This was then
sorted by number of flips. This was done in order to pre-
serve the scale of an error for each data point, otherwise
larger length errors will dominate the data.

IV. DISCUSSION

The results clearly indicate that the behaviour of the
beads matched the theoretical predictions. This includes
the power-law relationship, survival probability. Further-
more, the results also indicate scope for developing new
models, such as the amplitude to unknotting time de-
pendence and the error as a function of flips relationship.

Firstly, the power law dependence was found to
power parameter δ = 1.86 ± 0.59. Recent literature has
computed this value to be δBN = 1.95 ± 0.07 [5]. The
matching values indicate that the power-law relationship
was successfully predicted. Furthermore, the straight
line in Figure 1 represents a power scale relationship.
The error bars observed arise from combining both the
systematic uncertainty with the statistical uncertainty.
Most points lie withing 1σ or 68% difference to the
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mean. The longer the string the longer the knot needs
to travel before it un-knots itself.

Following this, we examine the survival probabilities
associated with the length-unknotting time measure-
ments. Our computed values of S(t,N) represent the
probability of the bead string being knotted. Our data
seen in Figure 2 matches previous work [6]. While the
values of the scaling factor typically end at 3. Our
group measured readings varying from 2.3 to 6 with
the typical value being 3. This matches the theoretical
predictions. In conclusion, the beads length does not
affect its survival probability S(t,N). This factor will
ultimately allow us to use collect multiple measurements
for a single analysis decreasing the variance.

The third relationship studies the amplitude de-
pendence on the unknotting time. It was observed that
as the amplitude increased, so did the unknotting time.
However, once the driving amplitude was set beyond
3.5V, the unknotting time started to decrease again.
Our group expected a strictly decreasing amount of
time taken with amplitude of oscillations. At very low
amplitudes the beads were found to oscillate just enough
to unknot quickly. As the amplitude of oscillations
increased, the beads had enough time to shift both
towards and away from unknotting. This increased
the average time taken to unknot. Ultimately, the
beads were vibrating rapidly. This resulted in the knots
shifting multiple beads at a time which increased the
rate of unknotting. This behaviour represents the sharp
drop in unknotting time at large oscillations. Our model
is over fit and will be difficult to generalize. This is
due to the restrictive nature of the polynomial function.
More work is needed to understanding this behaviour
better. As a physical example, certain frequencies might
promote polymer generation or DNA disentanglement.

The final source of analysis studied the errors on
each measurement. The increasing errors as a function
of flips represent the extra distance traveled by a single
knot once it flips. As a simple example, a knot might
be at the end of a bead-string (thus about to unknot),
however, once a flip occurs the knot would have to
traverse the entire length of the bead-string. As a
result one would expect a larger error with an increased
number of flips. This was confirmed through observation
and analysis. Larger values of flips result in larger error
bars since they are less likely to occur, as a result, there
are fewer data points containing them. The implication
of this suggests that rare events could occur in which
polymers or DNA takes substantially large amount of
time to unknot. The uncertainty associated with this
will increase with complexity.

V. CONCLUSION

The ultimate goal of the experiment was to explore
the relationship between unknotting time of beads and
other dependent factors such as bead-length and oscilla-
tion amplitude. The central limit theorem was used to
collapse highly variable data into measurable data with
known variance. The power-law relationship was verified
with the power parameter measured to be δ = 1.86±0.59
(dimensionless) matching previous literature in which
δ = 1.95± 0.07. Following this, the cumulative probabil-
ity of a sample survival S(t,N) was found to be consis-
tent with theoretical models. Subsequently, a model for
the amplitude-unknotting time relationship was derived
fitting our data, but is unlikely to generalize well. More
work is needed in this region. Finally, the errors associ-
ated with each measurement were compared against the
number of times a flip was observed in the data. High flip
frequencies corresponded to a larger root-mean-squared
error suggesting. Our analysis confirms work done by
academic peers [5]. This opens new avenues of research
for future work. It has important significance to both
biological and chemical systems.
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