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ABSTRACT
The simple pendulum is a common system studied in most undergraduate physics labs. It’s demonstrates many faucets of
physics which students can study and learn from. Studying its motion improves one’s understand of experimental science and
the scientific method. This paper demonstrates the steps taken in building, recording and analysing a homemade pendulum. The
purpose of this experiment was to test the theoretical models against the values found from data collection. The parameters
studied include; the system symmetry, decay constant, time period, damping coefficient and acceleration due to gravity. This
was done by varying the mass 𝑀 , length 𝐿 and release angle \0, recording the motion and then analysing the recorded data.
In most cases studied, the data collected matches the values predicted by the theoretical model (a more in-dept version of
this can be found in the introduction). The few mismatches between theory and experiment were explainable. The results and
error propagation demonstrate the theoretical model’s robust predictions given the imperfections of the pendulum system. The
analysis offered insights into reliable pendulum design using homemade materials. These insights can be used in developing
new experiments which will ultimately lead to more reliable measurements of the simple pendulum and analogous experiments
in more specialized fields of physics.
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1 INTRODUCTION

The pendulum is an object which is free to move held from a
pivot position. Its first documentation was in the Han Dynasty
with more modern developments made in the 1600’s namely
by Galileo and Huygens Fulcher & Davis (1976). Today, an
idealization of this pendulum is commonly studied in undergraduate
labs. The purpose of this paper is to demonstrate the methods
and results in building a simple homemade pendulum and the
study of its motion, namely damped harmonic motion. While
the purpose is quite general the following will be studied: The
time period of the pendulum, the gravity associated with the
characteristic time period, the damping coefficient of the system as
a function of the variations of mass 𝑀 , length 𝐿 and release angle \0.

In the first experimental setup which varies the masses, the
time period for oscillations was independent of the masses
𝑇 = 2.08𝑠 ± 0.05, this was within 1% of both the theoretical models
which are going to be introduced below. The damping coefficient
was found to be independent of mass (as will be demonstrated in the
theoretical background below), with a mean value of 1.48.

In the second experiment, the release angle \0 was varied.
Both the time period and decay parameter were constant with
𝑇𝑎𝑛𝑔𝑙𝑒𝑠 = 1.935 ± 0.04 and 𝛾 = ±77 ± 4. The length of the
pendulum was changed between setups, hence the time period from
this does not match the time period in the first experiment.
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In the final experiment, the length was varied. The decay pa-
rameter remained constant 𝛾 = 111 ± 6, as expect. The acceleration
due to gravity was computed from the differences in the time period,
this was found to be 𝑔 = 9.98±, 0.3 which is within 2% of the
theoretical model. In the following section, the equations being used
to compute these parameters will be highlighted. The values being
measured will be clearly mentioned, as will the parameters used in
the fitting.

2 THEORETICAL BACKGROUND

2.1 The Wilson Model

This is the model used by Professor Brian Wilson who is then under
the Department of Physics at the University of Toronto. His model
assumes underdamped harmonic motion.

\ (𝑡) = \0e−𝑡/𝜏 cos
(
2𝜋

𝑡

𝑇
+ 𝜙0

)
Furthermore, his model predicts that the final time period of the
pendulum will not depend on the time period of oscillations 𝑇 not
the decay constant 𝛾.

𝑇𝑜 = 2(𝐿 + 𝐷)1/2

The first goal of this experiment is to verify his results (or prove
them wrong in our case). The subsequent goals of the experiment
are to demonstrate the accuracy the model that is introduced in the
following sections.
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2.2 Equations of Motion

The set for the equations has been deliberately made different
from recent literature (PHY324 Guidelines) as its follows under-
damped motion more accurately Aggarwal et al. (2005). The mo-
tion occurring in the simple homemade pendulum models a damped
harmonic oscillator. Using Newton’s 2nd Law, we can arrive at its
differential equation Aggarwal et al. (2005). The setup of the ODE
has been intentionally included because it provides additional in-
sights into the forces involved and assumptions made (like the drag
being linear).

𝑑2\

𝑑𝑡2
+ 𝑐

𝑚

𝑑\

𝑑𝑡
+ 𝑔

𝑙
sin \ = 0

Here 𝑐 represents the the linear drag coefficient, 𝑔 represents the ac-
celeration due to gravity and 𝐿 represents the length of the pendulum
(from its center of mass to the pivot point). The differential equation
can be solved to give the angular equation of motion.

\ (𝑡) = 𝑒−𝛾𝑡 𝐴 cos (𝜔1𝑡 − 𝛼)

We have defined 𝜔1 =

√︃
𝜔2
𝑜 − 𝛾2 where 𝜔1 is the angular frequency

of the under-damped motion, 𝜔𝑜 is the angular frequency of the
motion given that there was no damping. The decay constant is
denoted by 𝛾, the phase shift is written as 𝛼. Note that we are working
under the small angle approximation sin \ ≈ \. Hence we can re-write
this equation as a function of the x-position (using trigonometry).

𝑥(𝑡) = 𝐿 sin(\ (𝑡)) ≈ \ (𝑡) = 𝑒−𝛾𝑡 �̃� cos (𝜔1𝑡 − 𝛼)

We have used �̃� = 𝐴𝐿 with 𝐿 representing the length of the string.
This is the equation that will be used in order to derive most of
the desired quantities and parameters. It will also be used in the
curve_fit() function to build a theoretical model and goodness of
fit parameter.

2.3 Studying the Pendulum Symmetry

Before the detailed goals of the experiment are computed, the sym-
metry of the pendulum needs to be checked. If the pendulum is not
symmetric, then we cannot trust the remaining goals checked in the
remaining sections of the experiments. This will be determined by
computing the difference between the peaks of the positive ampli-
tudes and negative amplitudes respectively. The first intuition was to
use the reduced chi squared 𝜒2

𝑟𝑒𝑑
. However, this does not work since

the values less than machine precision from 0 will end up causing
a divide by zero error. Hence a new system needed to be generated
in order to determine the symmetry of the system. From this the
symmetry parameter was introduced.

Symmetry Parameter =
max(t)∑︁
𝑡=0

|𝑑𝑡 |

Here 𝑡 represents the time step of measurement, we expect this to be
very small (one per time period of the pendulum). The value of the
difference between the positive and negative peak at this time step
is denoted by 𝑑𝑡 . The symmetry parameter represents the sum
of all the differences in peaks at each moment in the pendulums
motion. If the value of the symmetry parameter is below 0.05 for
all oscillations and 0.02 and small oscillations, then the pendulum is
said to be symmetric.

2.4 Determining the Damping Coefficient

In our derivation for the equations of motion, we have assumed that
there is linear drag taking place with its coefficient dependent on the
masses and the decay constant of the curveAggarwal et al. (2005).

𝐹𝑑𝑎𝑚𝑝 = −𝑐𝑣

𝑐 = 2𝑚𝛾

The goal in determining the decay constant will be to first determine
if the decay is considered to be exponential, this is done by applying
curve_fit(). After this the decay constants calculated should all
be equal to one another. The final goal of the section is to verify this.
It is also possible to apply this technique to determine the variability
of the decay constant as the release angle \0 is change.

2.5 Time Period of an Underdamped Gravity Pendulum

The time period of the pendulum representing under-damped motion
is given by.

𝑇1 =
2𝜋
𝜔1

In order to derive the non-damped time period, we must convert
our angular frequency to that of the non-damped motion. This value
should equal the theoretical derivation for the time period of a simple
gravity pendulum.

𝑇𝑜 =
2𝜋√︃

𝜔2
𝑜 + 𝛾2

= 2𝜋

√︄
𝐿

𝑔

Note that this equation can be inverted to solve for the value of the
acceleration due to gravity

𝐿 (𝜔2
𝑜 + 𝛾2) = 4𝜋2𝐿

𝑇2
𝑜

= 𝑔

According to this equation, the time period is expected to be inde-
pendent of both the mass 𝑀 and the angle of release \0.

2.6 Measuring Acceleration due to gravity

As an extension of the equation shown above, we can use this to
compute the acceleration due to gravity by varying the length of the
pendulum and measuring its time period. From the equation above:

𝑇𝑜 =

√︄
4𝜋2𝐿

𝑔
= 𝑎

√
𝐿

The constant 𝑎 represents the popt parameter that will be used in
the curve_fit() function. The graph we will plot is T vs L, we
expect a sqaure root relationship, we will apply the curve fit using
that relationship to find the value of 𝑎. This in turn will give the value
of g.

3 MATERIALS AND PREPARATION

3.1 Materials

All of the materials used were either present in the household in
which the experiment took place, or bought at an inexpensive price
from Dollarama which is a local retail store. PlayDoh was used as
the variable masses, this was chosen since it was homogeneous, and
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Figure 1. Size comparison of the masses used to measure the oscillations of
the homemade pendulum. The mass on the left is approximately 5-10g while
the mass on the right is in excess of 150g.

its moment of inertia can be easily controlled. Green garden string
was chosen as the massless string, this was chosen because it was
lightweight. An iPhone 8 was used as the camera’s measurement
device. A camera was preferred to human measurements as video
footage enables software tracking and is reproducible. Finally, the
variables masses were stored in a ziplock bag which was tied with the
massless string. Both medium and small sizes were used to prevent
avoidable drag.

3.2 Preparation of Masses

The PlayDoh being used was extracted from four different tubs each
containing 113g. The PlayDoh was separated into different weights
in an attempt to generate a double order of magnitude difference in
the mass. At the time, a mass balance was not present so the data
was taken without initial knowledge of the mass. The masses were
rolled into a cylindrical ellipsoid shape. This was chosen because its
moments of inertia have principle axis around the vertical axis with
the horizontal planar axis free to rotate without changing motion.
This mitigates some of the spinning effect that may be observed due
to the string. The color choices of the mass was deliberately chosen
in order to give the tracking software optimum conditions.

3.3 Experimental Setup

The final, refined version of the experimental setup has been shown.
This is the outcome of an iterative redesign initiative which allowed
for more accurate measurements to occur. First I had only used one
string, but found that the motion was co-planar resulting in unwanted
circular motion. Additionally, I improved the shapes of the masses to
give the same moments of inertia.

Figure 2. The experimental setup of the homemade pendulum. The massless
string is attached to the adjustable pivot point. This point is then attached to a
hook which allowed for the quick interchanging of masses, it is also attached
to a double pivot to stop the co-planar (circular) motion of the pendulum.
The video recorded is fixed in place using the baggage handle and a measured
15cm line has been placed in order to convert the tracked pixels to meters.
Fine angle markings were done but cannot be seen in the diagram. The lengths
of the string are the same since the pivot is adjustable.

MNRAS 000, 1–17 (2021)
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3.4 Control Variables and Minimizing Uncertainties

In this section, the methods used in minimizing the uncertainties will
be shown. The first control variable in all experiments is the angle of
video recording. At all times the camera was placed perpendicular
to the rest center of mass of the pendulum. This ensured that the
tracking software would calculate the true position.

The lengths of all masses were calibrated in order to main-
tain the same length of the pendulum. The reader can see this
in Figure 1 in which two lines were drawn with the lengths of the
strings varied to equal one another while keeping the position of the
center of mass the same.

When the masses were being prepared, all the additional ele-
ments of the zip-lock bags were taped in order to minimize the
frictional force from oscillations. This could not be fully done for
the smaller masses. The smallest mass in Figure 1 has additional
surface area which could cause friction. As a result, we expect
the smaller masses to have additional friction. Additionally, extra
caution was taken to ensure that the shape of the mass remained
constant. This will ensure that its moment of inertia stays the same.

When the experiment was being recorded, all heating and air
conditioning was switched off to reduce unobserved wind
channels of air that would skew the results. When the experiment
was first done, this effect caused a noticeable anti-symmetry in the
pendulum.

When the experiment was first done, the circular motion of
the pendulum distorted the single dimensional motion. In the
redesigned setup of the experiment, two strings with two pivots were
used instead of one. This eliminated circular planar motion of the
pendulum. The length of both pivots were the same distance from
the center of mass.

Finally, when a specific setup of the experiment was done,
the elements that were varied in the other setups were kept constant.
For example, if the length was being changed, then the mass and
angle of release were kept constant.

4 EXPERIMENTAL PROCEDURE

This section is broken down into two parts, procedure and experi-
mental notes. The experimental notes will highlight possible sources
of error.

4.1 Methodology

(i) The experiment was set up according to Figure 2 and the
masses were prepared according to Figure 1 in according with the
Preparation of Masses criteria. When the mass was attached to the
string, it was ensured that the mass did not spin and were vertically
oriented. The paper was ensured to be level to the horizontal place.
Even a small change in its angle will result in inaccurate values alter
on.

(ii) A central black spot was drawn 109cm from the top of the
pivot point. This served as the reference point for which all masses
needed to be adjusted too. The length of the string was adjusted so
that the center of mass was parallel (along the vertical axis) to the
black dot drawn.

Figure 3. Video capture analysis software. The box represents the item being
tracked, the red circle represents the centroid of the item from which the
position will be calculated. The green line represents what 15cm would be in
real life.

(iii) The mass was drawn back and set at a specific \0 defined
from the pivot point. This became the reference point for all future
masses to be swung from.

(iv) The video recorded was started, and the mass was set free to
swing ensuring that its motion in the y direction (towards and away
from the camera) was zero. All air conditioning and heating was
turned off to ensure a turbulent-free environment. Once the mass’s
oscillations became visibility negligible (< 0.5cm). The recording
was stopped.

(v) The steps above were repeated for each mass element from
M1 to M6, with 3 trails taken for each data-set, the average of all
data-sets were plotted.

(vi) The entire procedure above was repeated with both the angle
of release \0, and the length 𝐿 varied separately. For experiments in
which the mass was not changed, the mass was fixed to Mass 3 (M3).

(vii) The video was processed through the Python software and
the symmetry of the pendulum was checked before taking subsequent
trials.

4.2 Experimental Notes

• I noticed that if the lengths of the ziplock bags tied were not
symmetric, then the ziplock bag would start to spin due to the tor-
sional energy stored in the spring.

• The object would settle down in to a forward and backward
motion, towards and away from the camera. This could have been due
to the natural frequency of oscillations of the door and hang-mount.
In order to eliminate this, a second string was added to restrict the
motion to a simple xz planar surface.

• Due to the attached clip, the mass did not completely line up
with the string attached to the pivot point.

• The string was observed to be very slightly elastic. It would
stretch by around 1cm when pulled firmly. The errors in 𝐿 should
demonstrate this.

4.3 Custom Video Tracker: Data Preprocessing

Viewing the following video (2 mins, uploaded by me) is highly
recommended for the reader as it demonstrates the video analysis
section of the methodology in action.
https://www.youtube.com/watch?v=f92H_bB6VAs The initial idea
was give by Adrian Rosebrock and Corey M. Schafer Larsen et al.
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Mass Number Mass (±1𝑔)

1 10
2 25
3 60
4 90
5 110
6 160

Table 1. Table representing the correlation between the mass number and the
weights of the masses. It was observed that as the mass number increased,
the mass value also increased. The scale being used was only accurate to 1g.
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Figure 4. An example of what the plot of the decay coefficient looks like.
There is characteristic exponential decay in the maximum amplitudes of the
oscillations. The region at the beginning was purposely set beyond the small
angle approximation to demonstrate that the theory does not fit perfectly in
this region.

(2016); Goyal et al. (2017); Villán (2019), this was done under their
MIT License which permits copying, using and distributing their
code for private and commercial use. The software was then special-
ized and made useful to the recorded video by me.

5 RESULTS

After all the data was collected the masses were measured with their
values listed in the table below. These values should not play a role
in both the damping coefficient and the time period of oscillations.

5.1 Determining Damping Coefficient using Exponential Decay

In this section, we analyse the exponential decay of the oscillations.
In the sample plot below, the oscillations followed exponential decay
through oscillations. This was not the case for all masses. Using
the curve_fit() function, the value and error for 𝛾 were able to
be computed. The mass was purposely swung beyond the small
angle approximation.

5.1.1 Comparison of Damping Coefficients

𝑐 = 1.479 ± 0.3(units)

Since this is the same pendulum setup with different masses,
we expect the damping coefficient to stay the same. This was
observed for most masses (except Mass M4). The uncertainty in the
damping coefficient increases as the decay constant 𝛾 gets smaller.
Hence the uncertainties are very large for large masses. The full

Number Mass Gamma Damp Coeff Damping Coeff Error

1 10 0.0326 0.651 0.0294
2 25 0.0325 1.626 0.1990
3 60 0.0121 1.449 0.1328
4 90 0.0094 1.696 0.1626
5 110 0.0069 1.527 0.5110
6 160 0.0060 1.927 0.5746

Table 2. This table represents the correlation between the values of the masses
and the damping coefficients of motion. As the mass increased, the value of
gamma was observed to decrease, however, the damping coefficient stayed
relatively stable baring the exception of the first value of mass. The errors in
the damping coefficient increases with mass.
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Figure 5. The values of the damping coefficient in arbitrary units is plotted as
a function of the mass of the pendulum. As the mass increased, the value of
the damping coefficient stayed relatively stable. The value of the first damping
coefficient was very different from the rest of the values.

error propagation for this is attached in the appendix on the
recommendation by Professor Wilson.

5.2 Verifying Pendulum Symmetry

Before further in-depth analysis was done to the pendulum sys-
tem, its symmetry was verified. The scientific python function
scipy.signal.find_peaks() was used in order to determine
these peaks.

Symmetry Parameter =
max(t)∑︁
𝑡=0

|𝑑𝑡 | (1)

= np.sum(abs(differences)) (2)
= 0.016730 (3)

Where 𝑑𝑡 is the difference at time step 𝑡. This means that the absolute
sum of all the differences is less than 0.02. As a result, it can be
concluded that the pendulum is indeed symmetric.

This verification was done for all further sets of experiments.
If the symmetry parameter was below 0.02 for small angle
oscillations, and 0.05 for all oscillations and there was no skew
in the difference then the pendulum was said to be symmetric.
The individual plots have been omitted from the report since the
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Figure 6. Plot representing the original data with the positive and negative
peaks. The original data followed characteristic underdamped motion while
the positive and negative peaks followed positive and negative exponential
decay, respectively.
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Figure 7. This plot represents a refinement Figure 6 shown above. Positive
and negative peaks are shown with their difference. The difference is almost
always near zero but varies slightly. The expected difference for all oscillations
in a perfect pendulum is zero.

difference was very close to zero. If any skew was found, then the
experiment was repeated.

5.3 Measuring the Period

The data was measuring using the custom video tracker highlighted
in the section above. The goal of this section is to show how the
values for time period were calculated and to compare them with
the theoretical value for the time period. Firstly the useful data was
extracted from the tracking footage. In the second Sample Errors for
Time Period the methods for calculating the errors represented in
the plot will be demonstrated. Once the useful data was extracted
from the motion detector. The curve_fit() function was applied
from the scipy.optimize package. Following this, the time period
of each mass was predicted using the parameter and error values
computed from the curve fit. Attached in Appendix A is a sample of
what was done for every plot. The 𝜒2 values were computed for each
mass setting using scipy.stats.chisquare() and represented in
the table.

5.3.1 Comparison of Time Periods

Using the plotted values of the time period as well as their errors
calculated. The final plot demonstrating the time period for each
individual mass was drawn. The value of the time period according
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Figure 8. Data representing the stable state motion of the M5 mass. The
oscillations at the start did not represent exponential decay due to the mass
spinning. Only stable motion data is used to calculate the time period.
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Figure 9. Figure representing the model fit of the curve_fit() function
as the pendulum oscillates for the M2 mass. The exponential decay factor is
plotted as an overlay. The decay curve fits the measured values perfectly.

Mass Number Time Period (s) Time Period Error (±𝑠) 𝜒2

1 1.99 3.16e-02 -2.84
2 2.10 1.05e-01 -45.86
3 2.06 2.47e-02 1.37
4 2.08 2.86e-02 6.98
5 2.09 7.36e-02 139.33
6 2.08 3.38e-02 -13.32

Table 3. Here I have included the tabulated results of all the data included.
This includes the sample data shown in the pages above. All the periods of
oscillation lie between 2.0 to 2.10 seconds. It was also observed that as the
mass increased, the time period also increased. Values with higher absolute
𝜒2 values were found to have a greater error in time. Hence for large values
of M, the data was not fully trusted. More measurements would be required.

to an idealized theoretical assumption was found to be 2.094s, with
the mean value of the computed time periods being 2.077𝑠 ± 0.05.
The length 𝐿 was measured to be 1.09m with an uncertainty of 5cm
due to the worn down measuring tape.

𝑇𝑡ℎ𝑒𝑜𝑟𝑦 =
2𝜋
𝐿

=
2𝜋

1.09
= 2.0944𝑠

MNRAS 000, 1–17 (2021)



PHY324 Final Project: Not Peer Reviewed 7

0 1 2 3 4 5 6 7
Mass Weight (non-liner arbitary units)

1.95

2.00

2.05

2.10

2.15

2.20

Ti
m

e
Pe

ri
od

(s
)

Time Period of Homemade Simple Pendulum

Theory Model T = 2π
√

L
g = 2.094s

Wilson Model T = 2
√

L= 2.088s
np.mean(T)= 2.08s
Additional Friction (Ziplock-Bag)
Time Periods by Mass

Figure 10. All the time periods measured for each individual mass is plotted
as a function of mass. The theoretical mean is plotted as a horizontal line with
the uncertainties individually calculated as a sum of tracking uncertainty and
curve_fit() uncertainty.

𝑇𝑡ℎ𝑒𝑜𝑟𝑦_𝑒𝑟𝑟 = 𝑇𝑡ℎ𝑒𝑜𝑟𝑦

√︄(
𝐿𝑒𝑟𝑟

𝐿

)2
(4)

= 2.0944

√︄(
0.05
1.09

)2
(5)

= ±0.09607 (6)

𝑇𝑒𝑥𝑝 =
1
6
(𝑇𝑀1 + 𝑇𝑀2 + 𝑇𝑀3 + 𝑇𝑀4 + 𝑇𝑀5 + 𝑇𝑀6) (7)

= 2.0768𝑠 ± 0.05𝑠 (8)

5.3.2 Comparison with The Wilson Model

By empirical observations the motion measured by the custom tracker
matches that described by the initial equation given in the Wilson
Model. Additionally, the time period is given by 2( �̃� + 𝐷)1/2. In our
calculations we have included the length of �̃� +𝐷 in our value for L,
hence we arrive at 𝑇 = 2

√
𝐿. Since 𝐿 is measured to be 1.09 ± 0.05

we arrive at our time period according to Professor Brian Wilson.

𝑇𝑊𝑖𝑙𝑠𝑜𝑛 = 2
√
𝐿 =

√
1.09 = 2.08806s

Errors in quadrature are also used to compute the error in the time
period.

𝑇𝑒𝑟𝑟 = 𝑇𝑜

√︄
𝐿2
𝑒𝑟𝑟

𝐿

2
= 2.08806

√︄
0.052

1.092 = ±0.0958s

The value for the time period computed is within the uncertainty
range of the experimental time period𝑇𝑒𝑥𝑝 = 2.0768𝑠±0.05s and the
more accurate theoretical time period 𝑇𝑡ℎ𝑒𝑜𝑟𝑦 = 2.0944± 0.09607s.

5.4 Determining the Equation of Motion

Using the scipy.optimize.curve_fit() the values of the coef-
ficients in the equation can be determined. Recall that the theoretical
model for the equation of motion is described by a underdamped
harmonic oscillation.

𝑥(𝑡) = 𝑒−𝛾𝑡 𝐴 cos (𝜔1𝑡 − 𝛼)

# 𝜔1 𝜔1± 𝛾 𝛾± A 𝐴± 𝛼 𝛼±

1 3.3 1.7e-04 0.04 1.7e-04 0.2 6.0e-04 0.2 2.9e-03
2 3.3 1.1e-04 0.02 1.1e-04 0.2 5.3e-04 0.3 2.7e-03
3 3.3 8.8e-05 0.02 8.8e-05 0.2 7.3e-04 0.3 3.5e-03
4 3.2 8.5e-05 0.01 8.4e-05 0.2 1.0e-03 0.1 4.2e-03
5 3.2 5.6e-05 0.01 5.6e-05 0.2 8.7e-04 0.1 3.7e-03
6 3.2 2.5e-05 0.01 2.5e-05 0.2 3.4e-04 0.9 1.8e-03

Table 4. Table representing the values of the equation of motion for all the
masses used using the scipy.curve_fit() function. The oscillation fre-
quency was observed to decrease, the damping coefficient was also observed
to decrease, the amplitude stayed relatively stable and the value for alpha
varied.
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Determining Decay Parameter using θ0 : 5 degrees
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γ , γ =78.36±3.494

Figure 11. Motion represented by the underdamped motion of the pendulum
with an initial release of \0 = 5𝑜 . The entire motion followed exponential
decay. The amplitude of oscillation was small, so was the uncertainty on the
decay parameter 𝛾. The value of 𝛾 was found to be 0.0128.

The full equation will be shown for the Mass 3 (M3) with the other
values tabulated in the table below. According to the curve_fit()
function we found that 𝛾 = 0.017, 𝐴 = 0.207, 𝜔1 = 3.248, and
𝛼 = 0.25. When this is plugged back in, the resulting equation is
found.

𝑥(𝑡) = 𝑒−0.017𝑡0.207 cos (3.248𝑡 − 0.25)

Note that for this section of the experiment, the oscillations began at
different starting locations \0, hence 𝛼 is expected to vary. Addition-
ally the amplitudes 𝐴 were not controlled, so we expect them to also
vary. Tabulating these result in a table now.

5.5 Variable Angle, Computing the Decay Constant

In this section, the relationship between the decay constant and the
variable release angle \0 will be studied. According to theory high-
lighted in the introduction. Since the decay constant depends only
on the mass, we expect it to remain constant throughout the experi-
ment. The length L was adjusted to 0.95m when conducing this
experiment, so we expect a different time period. First, sample
data will be shown, then the plot showing the difference in the decay
coefficients will be shown highlighting the motion which violates
simple harmonic motion. The mass has been kept constant as Mass
3 (𝑀3 = 0.6𝑘𝑔) through out the experiment. The uncertainty on the
angle was taken to be 1 degrees (due to an old protractor) and the
uncertainty on the decay constant was given by the curve_fit()
function.
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Beyond small-angle approximation

Figure 12. Motion represented by the underdamped motion of the pendulum
with an initial release of \0 = 15𝑜 . The entire motion followed exponential
decay. The initial oscillations violated the small angle approximation
they were not ignored, unlike in the previous section. The amplitude of
oscillation was small, so was the uncertainty on the decay parameter 𝛾. The
value of 𝛾 was found to be 0.0133.

\0 𝛾 Δ𝛾

5 78.36 3.49
10 78.08 3.54
15 75.00 3.50
20 79.50 4.69

Table 5. Table representing the differences in the decay parameter with the
release angle. The parameter was found to remain relatively stable as the
angle changed, so were the uncertainties.
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Mean Decay Constant γ: 77.74
Decay Constant by Angle

Figure 13. Graph representing the decay parameter for each release angle.
The values for the decay parameter stayed relatively constant within the given
uncertainties. Additionally, the errors on the decay constant, each computed
through curve_fit() represent a reasonable degree of error, increasing with
the angle as expected.The value for the mean error was computed according
to Appendix A.

5.6 Relationship between Release Angle and Time Period

Using the same experimental setup as before, the time period should
also remain independent of the release angle. As before the model
was curve fit, the parameter for time period computed as a result
and then plotted as a function of the angle of release \0. Below you
will find an example of the curve_fit() the the variations in time
period.
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Decay: eγt, T = 1.936±0.0409
Beyond small-angle approximation
Data: Original

Figure 14. Graph representing the fit between the decay model and the
resulting function from curve fit. As before, values that did not obey the
small angle approximation were not ignored.

\0 Period 𝑇 Δ𝑇 𝜒2

5 1.934 0.0299 77.82
10 1.936 0.0409 -1004.76
15 1.934 0.0229 -0.33
20 1.937 0.0419 389.74

Table 6. Table representing the variation between the time period and the
release angle of the pendulum. The time period remains relatively constant.
The goodness of fit values vary greatly, with slightly larger errors in values
with bad fit representing this.
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np.mean(T)= 1.935s
Time Periods by Angle

Figure 15. Graph representing the fit between the decay model and the
resulting function from curve fit. As before, values that did not obey the
small angle approximation were not ignored. The value for the mean error
was computed according to Appendix A.

The data for all these values are tabulated into both tables and
graphs.

5.7 Determining the decay constant for varied length

The goal of this section is to determine the decay constant. The
method of analysis are exactly the same as those in the previous two
computations of the decay constant. As a result of this, the analysis
graphs are omitted from the report.
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Length (±0.03) 𝛾 Δ𝛾

0.40 113.12 8.16
0.50 106.06 7.20
0.60 117.98 6.77
0.70 106.81 4.61
0.80 111.58 5.24
0.90 116.07 5.66
1.00 109.06 5.49

Table 7. Table representing the variation between the length of the string
and its decay constant. The length remained constant within the range of
uncertainties given.
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Figure 16. This is the plot representing the data shown above. The decay con-
stant parameters are shown with their mean value. All computed parameters
with their uncertainty fell within the mean value shown in the plot.

Lengths Time Period Time Period Error Chi-Squared

1.00 1.953 0.0486 4.93
0.90 1.852 0.0467 4.33
0.80 1.741 0.0457 3.49
0.70 1.613 0.0429 0.64
0.60 1.476 0.0476 -13.60
0.50 1.344 0.0583 -26.61
0.40 1.187 0.0475 24.85

Table 8. Table representing the relationship between the length of the pendu-
lum and its time period computed from curve_fit().

5.8 Measuring acceleration due to gravity: g (Length vs Time)

The fitting to compute the value of the acceleration due to gravity
was computed as per the equation highlighted in the acceleration due
to gravity section of the theoretical background. This section shows
the results of that fitting along with its uncertainty.
The calculation of the acceleration due to gravity has been moved
to Appendix A on the recommendation of Professor Wilson.

6 DISCUSSION

The following section will collect all the results in a textual format.
Its analysis will be discussed followed by the errors involved with the
experiment.
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Figure 17. Plot representing the relationship between the length of the pen-
dulum and its time period. As the length was increased, the time period also
increased following the characteristic 2𝜋

√︁
𝑥/𝑔 relationship highlighted in

the curve_fit() model.

6.1 Analysis

In the first experimental setup, in which the mass of the pendulum
was varied, the oscillations were first allowed to fall below the
small angle approximation. The values from the results indicate that
the oscillations were exponentially decaying. The decay constant
𝛾 decreased as the mass was increased, the damping coefficient 𝑐
remained constant with a mean value of 𝑐 = 1.479± 0.3 (units). The
errors for the damping coefficient increased with mass.

Following exponential decay, the symmetry of the pendulum
was computed. The pendulum was determined to be symmetric by
taking the difference of the positive and negative peaks. If the sum of
the absolute difference was below 0.02 for small angles oscillations,
and 0.05 for all oscillations the pendulum was said to be symmetric.
The sample value computed was 0.017 which was well smaller than
the threshold set for symmetry. This was repeated in every single
case and the pendulum was found to be symmetric every time.
Since over 500 values of difference were taken, the errors associated
with this difference were orders of magnitudes below the threshold.

The time period of the varying mass was now computed. The
time period was found to be 𝑇𝑒𝑥𝑝 = 2.0768𝑠 ± 0.05 which
matched both the theoretical model proposed by Professor Wilson,
and myself. 𝑇𝑒𝑥𝑝 was also found to agree with the theoretical
model in remaining constant, the only exception to this was mass
𝑀1. This was due to the non-negligible friction and the mass of
the string. The goodness of fit 𝜒2 for the curve_fit() varies
by model, the largest being mass M5 and the smallest being
mass M3. This variation was also evident in the error analysis.
Large values of 𝜒2 reduce the reliability of the result, hence the
data collected from mass 𝑀5 must be trusted less than that from
mass 𝑀3. This did not affect the verification of the theoretical model.

An auxiliary goal of the experiment was to determine the
equations of motion. The results were as expected, the damped
angular frequency increased with mass, the decay constant decreased
with mass (due to the damping coefficient) and the amplitude stayed
constant. Alpha 𝛼, was found to vary greatly. This is not surprising
as it was not set as a control variable in this particular experi-
ment. Taking 5-10 trials instead of 3 will reduce the uncertainty here.
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Now lets consider the analysis of the second experimental
setup in which the release angle \0 was varied. The motion once
again followed underdamped oscillations, the value of the decay
constant once again remained constant with a mean value of
𝛾 = 77.74± 4, this once again confirmed the theoretical predictions.
The time period for this experimental setup also remained constant
with a mean value of 𝑇𝑎𝑛𝑔𝑙𝑒𝑠 = 1.935 ± 0.04. Once again, this is
within the values of both my and Professor Wilson’s models. The
uncertainty in time period was found to be very large. This was
due to the lack of a good fit (due to higher 𝜒2). Hence, this result
should not be fully trusted without further investigation. Looking at
this holistically, the values of the decay parameter and time period
were expected to change, since we assume a non-ideal environment.
But they did not change. The fitting function forced the equation
into underdamped motion giving the time period which matched the
theoretical model. This means the large, non-linear oscillations were
ignored resulting in idealized results which was what was observed,
hence constant time period and decay parameter. As a result the
result should not be fully trusted. The fitting curve_fit() used
the theoretical model to fit the data to match the theoretical model.
While the fitting was successful, it does not fully represent the data.

In the final experimental setup the length of the string was
varied. It was found that changing the length of the string did
not alter the value of the decay constant which stayed within its
uncertainties at 𝛾 = 111.53 ± 6.16. This once again matched the
theoretical model. The errors in the decay constant, although large,
stayed within reasonable bounds. Following this, the change in time
period was not constant. This was used to compute the acceleration
due to gravity 𝑔. This was found to be 9.98 ± 0.3 which is within
2% of the known value of gravity in Toronto. The errors in the
time period remained relatively uniform at around ±0.04, values
of lengths smaller than 𝐿 < 0.5 had large values of 𝜒2 reducing
the reliability in their respective time periods. In general, their
uncertainties stayed low, so the data was still considered to be
reliable. In each section, there were many potential sources of errors.

6.2 Error Discussion

The experiment consisted of three different setups, one with the
mass varied, another with the angle of release varied, and a final
one with the length varied. Each setup exposed a different set of
potential errors. This section is dedicated to studying those sources
of errors.

The first possible source of error would be the spinning of
the mass held inside the ziplock bag. The spinning would create
torsional energy which would then be converted into kinetic energy
as the object oscillated. This can be seen in Figure 6 in which the
first potion of the oscillations has varying amplitudes which did not
match the exponential decay curve. The two solutions to dealing
with this was widen the string grip holding the masses, and to wait
for the spinning to stop before the video analysis took place.

A second possible source of error could have been the non-
negligible mass of the paperclip. This clip has a non-negligible
mass which adds to the total mass of the pendulum while altering
its moment of inertia. Since the mass of the clip was much less than
that masses, this did not alter the results.

Another possible source of error was the elasticity of the

string. At a fully length of 1.09m the string would be able to stretch
up to an additional 1cm given enough downward force. This would
increase the length of the string thus increase the time periods of
the larger masses. It is likely that the masses were not able to apply
enough force for this effect to occur. In either case, the error in the
string length was increased due to this phenomenon, this explains
the larger errors in the time period analysis.

One final source of error is in the assumptions of the theoret-
ical model. The models make multiple assumptions which are
nonphysical. For example, both theoretical models assume that the
string is massless. For values of small mass, the mass of the string
would play a larger role in skewing the results. These assumptions
would add variability between the computed result and the theory. It
was surprising to see that most values feel within the given range of
uncertainties.

7 CONCLUSION

To conclude, the goal of this experiment was to build a simple
homemade pendulum and study its motion by changing different
parameters such as 𝑚, 𝐿 and \𝑜. The pendulum was built with a
custom designed tracker to determine the motion. First, the peri-
odicity of the pendulum was confirmed using a custom difference
algorithm. Following this, other parameters were studied.

For the first experimental setup, the mass was varied. The
time period of the oscillations were found to be independent of mass
with a value of 2.0768𝑠±0.05𝑠 this was within 1% of the value from
the first theoretical model: 𝑇𝑚𝑦𝑠𝑒𝑙 𝑓 = 2.094 ± 0.09𝑠 and less than
1% from the second theoretical model: 𝑇𝑊𝑖𝑙𝑠𝑜𝑛 = 2.088 ± 0.09. In
addition to this, the damping coefficient was found to be independent
of mass with a mean value of 1.48. Most values fell within their
uncertainty range of this number sans the lightest mass.

When directly comparing the varied release angles \0 ± 0.3,
time period and decay parameter. Both the decay parameter and
time period were found to be constant 𝑇𝑎𝑛𝑔𝑙𝑒𝑠 = 1.935 ± 0.04,
𝛾 = 78 ± 4. This matched the theoretical predictions for this model.
Due to the fitting model assuming the theoretical models during
fitting, these results cannot be fully trusted.

The final experimental setup consisted of varying the lengths
of the pendulum. The decay constant was found to remain constant,
as expected. The decay constant was computed to be 𝛾 = 111 ± 6,
the time period varied. A non-linear fitting was applied to the change
in the time period which was used to calculate the acceleration due
to gravity 𝑔. This was computed to be 𝑔 = 9.98 ± 0.03 which is
within 2% of the known value.

Almost all elements of the experiment were considered to be
a success with the exception of the forceful curve_fit() men-
tioned above. This was because the experiment was being constantly
improved on. The success of the data collection was due to multiple
repeats of redesigning the pendulum. There were mistakes in each
iteration which were not previously noticed. Only the final version
of the pendulum is being presented in this paper.

If the experiment were to be repeated, additional trials should
be taken to reduce the standard deviation of uncertainties. Overall,
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the experiment was a success with key concept of an underdamped
pendulum tested.
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APPENDIX A: APPENDIX A: SAMPLE ERROR
CALCULATIONS

A1 Sample Time Period Calculations with Errors

Here the formula for error quadrature is used to determine the uncer-
tainty in time for each specific mass. I will show the example for
the time period and errors in Mass M3.

𝑇𝑀3 =
2𝜋√︃

𝜔2
1 + 𝛾2

=
2𝜋

√
3.05022 + 0.0120732

= 2.0599𝑠

𝑆𝑒𝑟𝑟 =
1√︃

𝑤2
𝑜 + 𝛾2

√︃
𝑤2
𝑒𝑟𝑟 + 𝛾2

𝑒𝑟𝑟

𝑇𝑒𝑟𝑟 = 𝑇

(√︂
𝑤0
2
𝑆𝑒𝑟𝑟

)
(A1)

= 2.06

(√︄
3.05

2
1

√
3.06

√︁
1.62 × 10−4 + 6.4 × 10−7

)
(A2)

= 0.02467𝑠 (A3)

Combining these we get out value for the time period of mass 𝑀3,
𝑇𝑀3 = 2.06𝑠 ± 0.025𝑠 as shown in the plot.

A2 Sample Damping Coefficient Calculations with Errors

The formula for error quadrature along with the formula for the
damping coefficient was used to calculate the error in the damp-
ing coefficient. I will show a sample calculation for Mass M3.
The gamma error for M3 was 𝛾𝑒𝑟𝑟 = 2.7 × 10−5 obtained from
curve_fit(). Unit conversions have been ignored since gamma
is a unitless number.

𝑐 = 2𝑚𝛾 = 2(60) (0.01233) = 1.4796

𝑐𝑒𝑟𝑟 = 𝑐

√︄(
𝑀𝑒𝑟𝑟

𝑀

)2
+

(
𝛾𝑒𝑟𝑟

𝛾

)2
(A4)

= 1.4496

√︄(
0.01
60

)2
+

(
2.7 × 10−5

0.01208

)2
= 0.3277 (A5)

A3 Sample Errors: Acceleration due to Gravity

After measuring the time periods in both the theoretical models and
the experimental setup, these values can be used to compute the
acceleration due to gravity 𝑔. By doing this, more elements can be
found which will ultimately give the constants highlighted in the
equations of motion.

𝑔 =
4𝜋2𝐿

𝑇2
𝑒𝑥𝑝

=
4𝜋2 (1.09)
2.07682 = 9.97792𝑚𝑠−2

Once again, using errors in quadrature, we compute the uncertainty
in g. Notice we are computing the uncertainty in the square value of
T.

𝑔𝑒𝑟𝑟 = 𝑔

√︄(
𝐿𝑒𝑟𝑟

𝐿

)2
+

(
(𝑇𝑒𝑥𝑝/2)

𝑇𝑒𝑥𝑝−𝑒𝑟𝑟
𝑇𝑒𝑥𝑝

)2
(A6)

= 9.97792

√︄(
0.05
1.09

)2
+

(
(2.0768/2) 0.05

2.0768

)2
= ±0.321 (A7)

Using this the experimental value of the acceleration due to gravity
𝑔 = 9.98 ± 0.3𝑚𝑠−2

APPENDIX B: APPENDIX B: PYTHON CODE PYTHON3.8

B1 Time Period

print("[STATUS] Initializing...")
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from scipy.optimize import curve_fit
from scipy.stats import chisquare
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mpl.rcParams[’legend.frameon’] = False
mpl.rcParams[’figure.autolayout’] = True

plt.rcParams.update({
"text.usetex": True,
"font.family": "sans-serif",
"font.sans-serif": ["Helvetica"]})

plt.rcParams.update({
"text.usetex": True,
"font.family": "serif",
"font.serif": ["Palatino"],

})

def utkarshGrid():
plt.minorticks_on()
plt.grid(color=’grey’,

which=’minor’,
linestyle=":",
linewidth=’0.1’,
)

plt.grid(color=’black’,
which=’major’,
linestyle=":",
linewidth=’0.1’,
)

def underdamped_oscillator(t, Amp, gamma, omega, alpha):
exponential_factor = np.exp(-gamma * t)
cos_factor = Amp * np.cos(omega * t + alpha)
return exponential_factor * cos_factor

def centralizeX(_data):
# centerX = (_data.x.max() + _data.x.min()) / 2
# _data["x"] = centerX - _data.x
_data["x"] = np.mean(_data.x) - _data.x
return _data

def wrapUp():
print("[STATUS] All Done!")

print(’[STATUS] Stage 1...’)

# Load Data
data1 = pd.read_csv(’m1.csv’)
data2 = pd.read_csv(’m2.csv’)
data3 = pd.read_csv(’m3.csv’)
data4 = pd.read_csv(’m4.csv’)
data5 = pd.read_csv(’m5.csv’)
data6 = pd.read_csv(’m6.csv’)

# Convert to real time
m1Time = 2 * 60 + 24
m2Time = 2 * 60 + 50
m3Time = 4 * 60 + 3
m4Time = 6 * 60 + 14
m5Time = 7 * 60 + 17
m6Time = 9 * 60 + 35

data1[’time’] = np.linspace(0, m1Time, len(data1.x))
data2[’time’] = np.linspace(0, m2Time, len(data2.x))
data3[’time’] = np.linspace(0, m3Time, len(data3.x))

data4[’time’] = np.linspace(0, m4Time, len(data4.x))
data5[’time’] = np.linspace(0, m5Time, len(data5.x))
data6[’time’] = np.linspace(0, m6Time, len(data6.x))

data1 = centralizeX(data1)
data2 = centralizeX(data2)
data3 = centralizeX(data3)
data4 = centralizeX(data4)
data5 = centralizeX(data5)
data6 = centralizeX(data6)

# Plot Figures
plt.figure()
utkarshGrid()
plt.plot(data5.time, data5.x, linewidth=0.5,

label="Complete Motion", color="dodgerblue")
plt.ylabel("Position $r(t)$ (m)")
plt.xlabel(r"Time ($s$)")
xmin = 100
xmax = data5.time.max() - 10
plt.axvspan(xmin, xmax, label="Stable Motion",

color="red", alpha=0.1)
plt.tight_layout()
plt.legend()
plt.title("Sample Data using Mass-5")
plt.savefig("fig1.pdf")

EOM = pd.DataFrame(columns=[’Mass’,’Omega’, "OmegaErr",
’Gamma’, "GammaErr", ’Amp’, "AmpErr", ’Alpha’,
"AlphaErr"])

mass_list = [1,2,3,4,5,6]
omega_list = [3.384363748879389, 3.298038983067513,

3.2482444198618436, 3.236717918650125,
3.1968754066813188,

3.175153037033223]
gamma_list = [0.039384731537753806, 0.022600942462282572,

0.017004989469935578, 0.013809010292495013,
0.010063699780439006, 0.007861198189241804]

Amp_list = [0.20770949541621692, 0.19107836037464626,
0.2078927306662884, 0.24390768684178987,
0.2372968740176148,

0.19102950043602088]
Alpha_list = [0.20176968713558593, 0.313439547407809,

0.25918052879539766, 0.1126303928487382,
0.01326325726679072,

0.8349842549813317]

omega_err_list = [0.00017122461801893305 ,
0.00010943583477115274, 8.808102703353578e-05,
8.448552618128108e-05, 5.5869172375435496e-05,
2.465447755484106e-05]

gamma_err_list = [0.00016987079908491114 ,
0.0001101461627217873, 8.78108261670863e-05,
8.432341457410364e-05, 5.581301683408848e-05,
2.472540131864058e-05]

Amp_err_list = [0.0006013334594600011,
0.000527078164400348, 0.0007294759393692631,
0.0010132796175279298, 0.0008664533286610733,
0.00033678555633287493]

Alpha_err_list = [0.0029330886221547404,
0.0027344647170478254, 0.00353143405293673,
0.004167191257674186, 0.0036554444205268385,
0.0017524902055905621]

EOM["Mass"] = mass_list
EOM["Omega"] = omega_list
EOM["Gamma"] = gamma_list
EOM["Amp"] = Amp_list
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EOM["Alpha"] = Alpha_list
EOM["OmegaErr"] = omega_err_list
EOM["GammaErr"] = gamma_err_list
EOM["AmpErr"] = Amp_err_list
EOM["AlphaErr"] = Alpha_err_list

def fig_and_chiSquared(_data, number, cqs_list):
print(f"\n[STATUS] Starting Data Point {number}")
guess = [0.06, 0.002, (2 * np.pi / 3), 2]

popt, pcov = curve_fit(underdamped_oscillator,
xdata=_data.time,
ydata=_data.x,
p0=guess
)

omeg = popt[2]
gamma = popt[1]
Amp = popt[0]
phase = popt[3]
# print("Omega: ",omeg,"\nGamma: ", gamma,"\nAmp: ",

Amp,"\nAlpha: ", phase)
theory = underdamped_oscillator(_data.time, Amp,

gamma, omeg, phase)
exp = Amp * np.exp(-gamma * _data.time)

p_err = np.sqrt(np.diag(pcov))

omeg_err = p_err[2]
gamma_err = p_err[1]
Amp_err = p_err[0]
phase_err = p_err[3]
print("OmegaErr: ", omeg_err, "\nGammaErr: ",

gamma_err, "\nAmpErr: ", Amp_err, "\nAlphaErr:
", phase_err)

summ = omeg ** 2 + gamma ** 2
w0 = np.sqrt(summ)
T = (2 * np.pi) / w0

# Compute Chi Squared
cqs, p = chisquare(_data.x, theory)

# Tracking Error was within 40 pixels
tracking_err = 0.02

# Computing errors in quadrature
omeg_sqaured_err = omeg * 2 * omeg_err
gamma_squared_err = gamma * 2 * gamma_err
sum_err = np.sqrt(omeg_sqaured_err * 2 +

gamma_squared_err * 2)
w0_err = w0 * 0.5 * sum_err
quadrature_err = T * sum_err / summ
T_err = quadrature_err * np.sqrt(abs(cqs)) +

tracking_err
# print(omeg_sqaured_err, gamma_squared_err)

# Curve Fit
plt.figure(figsize=(6, 3))
utkarshGrid()
plt.plot(_data.time, theory, linewidth=0.5,

label=r"Data: \texttt{curve\_fit()}, $\chi^2
=$"f"{round(cqs, 2)}",
color="purple")

plt.scatter(_data.time, _data.x, label=r"Data:
\textit{Original}", color="dodgerblue", s=0.15,
marker="x")

plt.plot(_data.time, exp, linewidth=2,

label=r"Decay: $e^{\gamma t}$"f", T =
{round(T, 3)}"r"$\pm$"f"{round(T_err,
4)}", color="goldenrod")

plt.plot(_data.time, -exp, linewidth=2,
color="goldenrod")

plt.ylabel("Position $r(t)$ (m)")
plt.xlabel(r"Time ($s$)")
plt.tight_layout()
plt.legend()
plt.title(f"Mass-{number} Decay Model- Fitting")
plt.savefig(f"fig2m{number}.pdf")

cqs_list.append(cqs)

print(f"Mass{number}- Time Period: {round(T, 3)} +/-
{round(T_err, 9)}")

print(f"Mass{number}- Chi-Squared: {cqs}\n")
return T, T_err

cq_list = []

t1, t1_err = fig_and_chiSquared(data1, 1, cq_list)
t2, t2_err = fig_and_chiSquared(data2, 2, cq_list)
t3, t3_err = fig_and_chiSquared(data3, 3, cq_list)
t4, t4_err = fig_and_chiSquared(data4, 4, cq_list)
t5, t5_err = fig_and_chiSquared(data5, 5, cq_list)
t6, t6_err = fig_and_chiSquared(data6, 6, cq_list)

xRanges = np.arange(1, 7, 1)
massTable = pd.DataFrame(columns=[’Mass Number’, ’Mass’])
massTable["Mass"] = xRanges
massTable["Mass Number"] = xRanges
# massTable["Chi-Squared"] = np.array(cq_list)

print(’[STATUS] Completed Stage 1...’)
print(’[STATUS] Stage 2...’)

T_arr = np.array([t1, t2, t3, t4, t5, t6])
T_arr_err = np.array([t1_err, t2_err, t3_err, t4_err,

t5_err, t6_err])

L = 1.09

plt.figure(figsize=(6, 4))
utkarshGrid()
T_mean = float(np.mean(T_arr[1:]))
T_mean_err = np.mean(T_arr_err)
print(f"Mean Time Period: {T_mean}s +/- {T_mean_err}s")
theoryT = 2 * np.pi * np.sqrt(L / 9.81)
print(f"Theoretical Time Period: {theoryT}")
plt.hlines(theoryT, min(xRanges) - 1, max(xRanges) + 1,

label=r"Theory Model $T =
2\pi\sqrt{\frac{L}{g}}$=
"f"{round(theoryT, 3)}s", color="teal",

alpha=0.5, zorder=3)
plt.hlines(2*np.sqrt(L), min(xRanges) - 1, max(xRanges) +

1,
label=r"Wilson Model $T = 2\sqrt{L}$=

"f"{round(2*np.sqrt(L), 3)}s",
color="lime",

alpha=0.5, zorder=3)
plt.hlines(T_mean, min(xRanges) - 1, max(xRanges) + 1,

label=r"\texttt{np.mean(T)}= "f"{round(T_mean,
3)}s", color="salmon",

alpha=0.5, zorder=3)
plt.errorbar(x=xRanges,

y=T_arr,
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yerr=T_arr_err,
xerr=0.1,
elinewidth=0.5,
capsize=2,
ecolor=’black’,
fmt=’o’,
label="Time Periods by Mass",
zorder=1
)

plt.scatter(1, t1, color="red", label="Additional
Friction (Ziplock-Bag)", zorder=2)

plt.xlabel("Mass Weight (non-liner arbitary units)")
plt.ylabel("Time Period (s)")
plt.legend()
plt.title("Time Period of Homemade Simple Pendulum")
plt.savefig("fig3.pdf")

tTable = pd.DataFrame(columns=[’Mass Number’, ’Time
Period’, "Time Period Error", "Chi-Squared"])

tTable["Mass Number"] = xRanges
tTable["Chi-Squared"] = np.array(cq_list)
tTable["Time Period"] = T_arr
tTable["Time Period Error"] = T_arr_err

from tabulate import tabulate

print(tabulate(tTable, tablefmt="latex",
floatfmt=(".0f", ".2f", ".2e", ".2f", ".2e",

".2f", ".2e", ".2f", ".2e"),
headers=list(tTable.columns),
showindex=False
))

wrapUp()

B2 Decay Constant

print("[STATUS] Initializing...")
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from scipy.optimize import curve_fit
from scipy.stats import chisquare

mpl.rcParams[’legend.frameon’] = False
mpl.rcParams[’figure.autolayout’] = True

plt.rcParams.update({
"text.usetex": True,
"font.family": "sans-serif",
"font.sans-serif": ["Helvetica"]})

plt.rcParams.update({
"text.usetex": True,
"font.family": "serif",
"font.serif": ["Palatino"],

})

def utkarshGrid():
plt.minorticks_on()
plt.grid(color=’grey’,

which=’minor’,

linestyle=":",
linewidth=’0.1’,
)

plt.grid(color=’black’,
which=’major’,
linestyle=":",
linewidth=’0.1’,
)

def underdamped_oscillator(t, Amp, gamma, omega, alpha):
exponential_factor = np.exp(-gamma * t)
cos_factor = Amp * np.cos(omega * t + alpha)
return exponential_factor * cos_factor

def centralizeX(_data):
# centerX = (_data.x.max() + _data.x.min()) / 2
# _data["x"] = centerX - _data.x
_data["x"] = np.mean(_data.x) - _data.x
return _data

def wrapUp():
print("[STATUS] All Done!")

print(’[STATUS] Stage 1...’)

# Load Data
data1 = pd.read_csv(’m1.csv’)
data2 = pd.read_csv(’m2.csv’)
data3 = pd.read_csv(’m3.csv’)
data4 = pd.read_csv(’m4.csv’)
data5 = pd.read_csv(’m5.csv’)
data6 = pd.read_csv(’m6.csv’)

# Convert to real time
m1Time = 2 * 60 + 24
m2Time = 2 * 60 + 50
m3Time = 4 * 60 + 3
m4Time = 6 * 60 + 14
m5Time = 7 * 60 + 17
m6Time = 9 * 60 + 35

data1[’time’] = np.linspace(0, m1Time, len(data1.x))
data2[’time’] = np.linspace(0, m2Time, len(data2.x))
data3[’time’] = np.linspace(0, m3Time, len(data3.x))
data4[’time’] = np.linspace(0, m4Time, len(data4.x))
data5[’time’] = np.linspace(0, m5Time, len(data5.x))
data6[’time’] = np.linspace(0, m6Time, len(data6.x))

data1 = centralizeX(data1)
data2 = centralizeX(data2)
data3 = centralizeX(data3)
data4 = centralizeX(data4)
data5 = centralizeX(data5)
data6 = centralizeX(data6)

data_list = [data1, data2, data3, data4, data5, data6]
number_arr = [1, 2, 3, 4, 5, 6]
t_violation_arr = [0, 0, 10, 0, 0, 0]
tau_list = []
gamma_list = []
gamma_err_list = []

for i in range(len(t_violation_arr)):
_data = data_list[i]
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number = number_arr[i]
t_violation = t_violation_arr[i]

guess = [0.06, 0.002, (2 * np.pi / 3), 2]

popt, pcov = curve_fit(underdamped_oscillator,
xdata=_data.time,
ydata=_data.x,
p0=guess
)

omeg = popt[2]
gamma = popt[1]
Amp = popt[0]
phase = popt[3]

p_err = np.sqrt(np.diag(pcov))

omeg_err = p_err[2]
gamma_err = p_err[1]
Amp_err = p_err[0]
phase_err = p_err[3]

theory = underdamped_oscillator(_data.time, Amp,
gamma, omeg, phase)

exp = Amp * np.exp(-gamma * _data.time)
tau = 1 / gamma
tau_list.append(tau)
gamma_list.append(gamma)
gamma_err_list.append(gamma_err)

# Plot Figures
plt.figure(figsize=(6,3))
utkarshGrid()
plt.plot(_data.time, _data.x, linewidth=0.75,

color="dodgerblue")
plt.plot(_data.time, exp, linewidth=3,

color="goldenrod",
label=r"Decay: $e^{\gamma t}$,

"r"$\gamma=$"f"{round(gamma,
4)}"r"$\pm$"f"{round(gamma_err, 6)}")

plt.plot(_data.time, -exp, linewidth=3,
color="goldenrod")

plt.axvspan(0, t_violation, label="Beyond Small Angle
Approximation", color="limegreen", alpha=0.3)

plt.ylabel("Position $r(t)$ (m)")
plt.xlabel(r"Time ($s$)")
plt.tight_layout()
plt.legend()
plt.title(f"Determining Underdamped Decay using

Mass-{number}")
plt.savefig(f"fig4m{number}.pdf")

# print(f"Mass{number}- Decay Constant: {round(tau,
3)} +/- {round(0, 9)}")

print("[STATUS] Computing Damping Coefficient")

masses = np.array([10, 25, 60, 90, 110, 160]) # g
mass_err = np.ones(len(masses)) * 1 # g

gamma_list = np.array(gamma_list)
gamma_err_list = np.array(gamma_err_list)

c = 2 * masses * gamma_list
c_err = masses * np.sqrt((mass_err / masses) ** 2 +

(gamma_err_list / gamma_list) ** 2)

dTable = pd.DataFrame(columns=[’Mass Number’, ’Mass’,
"Gamma","Damping Coefficient", "Damping Coefficient
Error"])

dTable[’Mass Number’] = np.arange(1, 7, 1)
dTable[’Mass’] = masses
dTable["Gamma"] = gamma_list
dTable[’Damping Coefficient’] = c
dTable[’Damping Coefficient Error’] = c_err

plt.figure(figsize=(6, 4))
utkarshGrid()
c_mean = float(np.mean(c))
plt.hlines(c_mean, min(dTable["Mass"]),

max(dTable["Mass"]),
label=r"Mean Damping Coefficient

$\gamma$:"f"{round(c_mean, 2)}",
color="forestgreen",

alpha=0.5, zorder=3)
plt.errorbar(x=dTable["Mass"],

y=dTable["Damping Coefficient"],
yerr=dTable["Damping Coefficient Error"],
xerr=mass_err,
elinewidth=0.5,
capsize=2,
ecolor=’black’,
fmt=’o’,
label="Damping Coefficient by Mass",
color = "darkorange",
zorder=1
)

plt.scatter(dTable["Mass"][0], dTable["Damping
Coefficient"][0],

color="red", label="Additional Friction
(Ziplock-Bag)", zorder=2)

plt.xlabel("Mass (g)")
plt.ylabel("Damping Coefficeint (arbitary units)")
plt.legend()
plt.title("Linear Damping Coefficient of a Homemade

Simple Pendulum")
plt.savefig("fig5.pdf")

from tabulate import tabulate

print(tabulate(dTable, tablefmt="latex",
floatfmt=(".0f", ".0f", ".4f", ".3f", ".4f"),
headers=list(dTable.columns),
showindex=False
))

B3 Symmetry

print("[STATUS] Initializing...")
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from scipy.optimize import curve_fit
from scipy.stats import chisquare
from scipy.signal import find_peaks

mpl.rcParams[’legend.frameon’] = False
mpl.rcParams[’figure.autolayout’] = True

plt.rcParams.update({
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"text.usetex": True,
"font.family": "sans-serif",
"font.sans-serif": ["Helvetica"]})

plt.rcParams.update({
"text.usetex": True,
"font.family": "serif",
"font.serif": ["Palatino"],

})

def utkarshGrid():
plt.minorticks_on()
plt.grid(color=’grey’,

which=’minor’,
linestyle=":",
linewidth=’0.1’,
)

plt.grid(color=’black’,
which=’major’,
linestyle=":",
linewidth=’0.1’,
)

def underdamped_oscillator(t, Amp, gamma, omega, alpha):
exponential_factor = np.exp(-gamma * t)
cos_factor = Amp * np.cos(omega * t + alpha)
return exponential_factor * cos_factor

def centralizeX(_data):
# centerX = (_data.x.max() + _data.x.min()) / 2
# _data["x"] = centerX - _data.x
_data["x"] = np.mean(_data.x) - _data.x
return _data

def wrapUp():
print("[STATUS] All Done!")

print(’[STATUS] Stage 1...’)

data90 = pd.read_csv(’l90.csv’)
l90Time = 2 * 60 + 53
data90[’time’] = np.linspace(0, l90Time, len(data90.x))
data90 = centralizeX(data90)

_data = data90
number = 90
t_violation = 0

guess = [-5.23360498e+03, 2.24496234e-01, 5.28912890e+00,
-1.05371727e+02]

if t_violation > 0:
fitData = _data
for i in range(len(_data.time)):
if abs(_data.time[i] - t_violation) < 0.3:
fitData = _data[i:]

else:
fitData = _data

popt, pcov = curve_fit(underdamped_oscillator,
xdata=fitData.time,
ydata=fitData.x,
p0=guess,

maxfev=10000
)

omeg = popt[2]
gamma = popt[1]
Amp = popt[0]
phase = popt[3]

p_err = np.sqrt(np.diag(pcov))

omeg_err = p_err[2]
gamma_err = p_err[1]
Amp_err = p_err[0]
phase_err = p_err[3]

theory = underdamped_oscillator(_data.time, Amp, gamma,
omeg, phase)

exp = Amp * np.exp(-gamma * _data.time)
tau = 1 / gamma

tau_err = tau * np.sqrt(gamma_err / gamma)

# fitData = fitData[:int(len(fitData)/1.5)]

# Find Peaks
peaks_ind = find_peaks(fitData.x, height=0.01)[0]
peaksData = fitData.iloc[peaks_ind]
peaks_time = peaksData.time
peaks_x = peaksData.x

negpeaks_ind = find_peaks(-fitData.x, height=0.01)[0]
negpeaksData = fitData.iloc[negpeaks_ind]
negpeaks_time = negpeaksData.time
negpeaks_x = negpeaksData.x

# Plot Figures
exp_color = "goldenrod"
plt.figure(figsize=(6, 3))
utkarshGrid()
plt.plot(_data.time, _data.x, linewidth=0.75,

color="grey", label=r"\textit{Original Data}",
alpha=0.5)

plt.scatter(peaks_time, peaks_x, label=r"Positive Peaks",
s=3, marker="x", color="red")

plt.scatter(negpeaks_time, negpeaks_x, label="Negative
Peaks", s=3, marker="x", color="blue")

# plt.plot(_data.time, exp, linewidth=2,
color="goldenrod",

# label=r"Decay: $e^{\frac{-t}{\gamma}}$,
"r"$\gamma=$"f"{round(tau,
2)}"r"$\pm$"f"{round(tau_err, 3)}")

# plt.plot(_data.time, -exp, linewidth=2,
color="goldenrod")

if t_violation > 0:
plt.axvspan(0, t_violation, label="Beyond small-angle

approximation", color="limegreen", alpha=0.3)
plt.ylabel("Position $r(t)$ (m)")
plt.xlabel(r"Time ($s$)")
plt.tight_layout()
plt.legend()
plt.title(r"Symmetry Peaks with sample data using

\texttt{scipy.signal.find\_peaks()}")
plt.savefig(f"fig30.pdf")

difference = peaks_x[1:].reset_index() +
negpeaks_x.reset_index()

realDifference = difference.x
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plt.figure(figsize = (6,3))
utkarshGrid()
plt.scatter(peaks_time, peaks_x, label=r"Positive Peaks",

s=3, marker="x", color="red")
plt.scatter(negpeaks_time, negpeaks_x, label="Negative

Peaks", s=3, marker="x", color="blue")
plt.hlines(0, xmin=0, xmax=max(peaks_time),

color="limegreen", linewidth=1, alpha=0.6, label =
"Expected Difference")

plt.scatter(peaks_time[1:], realDifference,
label=r"Difference", s=3, marker="x", color="green")

plt.xlabel("Time (s)")
plt.ylabel("Peak Difference (Amplitude)")
plt.title("Demonstrating pendulum symmetry")
plt.legend(ncol=2)

print(chisquare(realDifference,
np.zeros(len(realDifference))))

plt.savefig("fig31.pdf")
wrapUp()

This paper has been typeset from a TEX/LATEX file prepared by the author.
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