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ABSTRACT

We propose a method to estimate non-Gaussian error barseomdkter power spectrum
from galaxy surveys in the presence of non-trivial survdga®n functions. The estimators
are often obtained from formalisms like FKP and PKL, whicly ren the assumption that
the underlying field is Gaussian. The Monte Carlo method isenagcurate but involves the
tedious process of running and cross-correlating a largeben of N-body simulations, in
which the survey volume is embedded. From 200 N-body sirnmuiatwe extract a non-linear
covariance matrix as a function of two scales and of the abgteeen two Fourier modes.
All the non-Gaussian features of that matrix are then sinpgisameterized in terms of a few
fitting functions and Eigenvectors. We furthermore develdpst and accurate strategy that
combines our parameterization with a general galaxy susedgction function, and incor-
porate non-Gaussian Poisson uncertainty. We describe dnovearporate these two distinct
non-Gaussian contributions into a typical analysis pipeland apply our method with the se-
lection function from the 2dFGRS. We find that the observadrieo modes correlate at much
larger scales than that predicted by both FKP formalism gourmg N-body simulations in a
‘top hat’ selection function. In particular, the observaxiFier modes are already 50 per cent
correlated ak ~ 0.1hMpc™2, and the non-Gaussian fractional variance on the powetrspec
(03/P?(k)) is about a factor of B larger than the FKP prescription. At~ 0.4hMpc™?, the
deviations are an order of magnitude.

Key words: Large scale structure of Universe — Surveys — Dark matterstabce Scale —
Cosmology : Observations — Methods: data analysis

1 INTRODUCTION The strength of the BAO technique relies on an accurate and
precise measurement of the matter power spectrum, whosg-unc
tainty propagates on to the dark energy parameters via erHisa-

trix (Tegmark 1997). It is thus of the utmost importance teéha
optimal estimators of both the mean and the uncertainty ef th
power spectrum to start with. The prescription to constauces-
timator for the power spectrum of a Gaussian random field, in a
given galaxy survey, was pioneered by Feldmann, Kaiser aad P
cock (Feldman et al. 1994) (FKP for short). It states thastireey
selection function fectively couples Fourier bands that are other-
wise independent, and that the underlying power shouldlibate-
convolved (Sato et al. 2011). This technique has been usadriy
power spectrum measurement (Feldman et al. 1994; Pertighl e
2001; Cole et al. 2005; Hutsi 2006; Blake et al. 2010). Alifo it

is fast, the error bars between the bands are correlatesljtglas

the undesired tendency to smear out the underlying power spe
trum, which can ffectively reduce the signal-to-noise ratio in a
BAO measurement. In that sense, the FKP power spectrumds sai
to besuboptimal

With new galaxy surveys probing a larger dynamical rangeunf o
Universe, our ability to constrain cosmological paran®ierim-
proving considerably. In particular, one of the most impottgoal

of modern cosmology is to understand the nature of dark gnerg
(Albrecht et al. 2006), a challenging task since there aresatly

no avenues for direct observations. It is however possibfgdbe

its dynamics via its equation of state which enters in the Fried-
mann equation that governs the expansion of the Univers@rngm
different waysw can be measured, the detection of the baryonic
acoustic oscillations (BAO) dilation scale (Eisensteirakt2005;
Tegmark et al. 2006; Hitsi 2006; Percival et al. 2007; Blekal.
2011) is one of the favourite, both because of the low system-
atic uncertainty and the potentially high statistics one aehieve
with current (Huchra et al. 1990; York et al. 2000; Collesaket
2003; Drinkwater et al. 2010) and future galaxy surveyséRen

et al. 2006; Acquaviva et al. 2008; Schlegel et al. 2009; LSSiT
ence Collaborations et al. 2009; Benitez et al. 2009; Beaet al.

2010).
The band correlation induced by the FKP prescription can be

removed by an Eigenvector decomposition of the selectioe-fu
* E-mail: jharno@cita.utoronto.ca tion, following the Pseudo Karhunen-Loéve formalism (stey &
+ E-mail: pen@cita.utoronto.ca Szalay 1996)(PKL). This was used in the analysis of the SC8& d
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(Tegmark et al. 2006) and is the most optimal (i.e. loss}less- matrix into a set of multipoles, each of which can further beain-
mator for Gaussian random field, as understood from therimder posed into a product of Eigenvectors. Thieetively factorizes the
tion theory point of view. It is nevertheless a well knowntfttat three dimensions of the covariance, hence the convolutonbe
this Gaussian assumption about the field is only valid in the | broken down into smaller pieces. By doing so, the non-Gaunssi
ear regime, since the non-linear gravitational collapsthefden- calculation is within reach, and we present in this papefitbeat-

sity efectively couples dferent Fourier modes together (Meiksin  tempt at measuring deviations from Gaussian calculatioojd-
& White 1999; Rimes & Hamilton 2005), and the phases of the ing both Poisson noise and a survey selection function.drtstne
modes are no longer random (Coles & Chiang 2000). Both the main ideas of this paper can be condensed as follow:

FKP and PKL prescriptions, by their Gaussian treatment, ao n
take into account the intrinsic non-linear coupling of theufer
modes. It follows from this that for both methods, the meadur
power spectrum is suboptimal and the error bars are systsitat
biased. Although the bias is usually small, it causes a probthen
estimating derived quantities that need to be measuredoeitbent

level accuracy.

For instance, the observed BAO signal sits right at the tran-
sition between the linear and the non-linear regime, toeeefn
optimal estimator of the power spectrum must incorporate th
non-linear modes. In particular, constraints on dark enémgm
BAO measurements require an accurate measurement of the mat
ter power spectrum covariance matrix. Under the FKP and PKL
formalisms, the covariance matrix is biased as it tends tteres-
timate the uncertainty and the amount of correlation betwbe Concerning the second point, the parameters that best fit our
power bands. Alternative ways of estimating the errormethods measurements are provided in section 7, but these are telpara
that involve mock catalogues, do model these non-lineammiyn  testable, and could be verified by other groups and in othgswa
ics, but it is not clear that the results are precise enoughei@sure These are anyway expected to change when one uses haleeslinst

(i) The underlying non-linear covariance matrix of the raatt
power spectrum exhibits many non-Gaussian features irrdine-t
and non-linear regimes. First, the diagonal elements oftitge-
averaged covariance grow stronger, and correlation adifiesent
scales becomes important. Second, Fourier modes withesi(oit
identical) magnitudes correlate more if the angle betwbemtis
small.

(i) It is possible to model all of the aboved mentioned non-
Gaussian aspects with a small number of simple functions.

(iif) With such a parameterization, it is possible, for thesfi
time, to solve the six-dimensional integral that enterscitrevolu-
tion of the covariance of the power spectrum with the galaxyey
selection function.

four-points statistics, and we rather rely on accurate bytsmu- of particles. The third point is, however, a straightford/aecipe

lations. that is robust under possible changes of best-fitting paemsieand
Even more relevant is the recent realization that an opfimal provides, assuming that the input parameters are cornectnbi-

i.e. non-Gaussian, estimate of the BAO dilation scale rega pre- ased measurement of the non-Gaussian uncertainty of thermat

cise measurement of thisverseof the matrix, which is challeng- power spectrum.

ing due the noisy nature of the forward matrix. It was newadhs Our first objective is thus to measure the covariance of the

shown that, by consistency, the error bars on a suboptimal me power spectrum between various scales and angles, andizegan
surement of the power spectrum should be calculated in a@nann this information into a compact matrig(k, k', ). We describe how
that incorporates some noise in the measurement of the rivgam ( we solve this problem in a fast way, which is based on a sefies o
etal. 2011). Only an optimal measurement of the mean poveersp  fast Fourier transforms that can be run in parallel on a lacgeber

trum can be matched with the straightforward (i.e. noiss)l@on- of computers. We find that the angular dependence, at fixdessca
linear covariance matrix, and it was shown in the same pdgaert  (k # k'), is rather smooth, it agrees with analytical predictiams i
both estimators dier by a few percent. the linear regime, but deviates importantly from Gaussyafor
When constructing an estimator of the covariance matrik tha smaller scales. The dependence is somehow similar whemvthe t
corresponds to the sensitivity of a particular survey, the/olution scales are identical, up to a delta function for vanishingjes1 We
with the survey selection function is one of the most chaiieg also found that, once projected on to a series of Legendsmpol
part. Whereas the convolution of the underlying power spect mials, it takes very few multipoles to describe the compteiginal
can be operated with angle averaged quantities, the cdivolof function. We perform this transform for all scale combinat and
the covariance matrix must be done in 6 dimensions, sincarthe  group the results in terms of multipole moments.
derlying covariance is not isotropic: Fourier modes witlafier an- Our second objective is to provide a general method to com-
gular separations are more correlated than those withrlargges bine this C(k,k’,6) with a survey selection function and non-
(Chiang et al. 2002; Bernardeau et al. 2002). The first chgdle Gaussian Poisson noise, and hence allow the extraction ref no
is to measure accurately this angular correlation, whichl$® Gaussian error bars on the measured power spectrum. We test
scale dependent. Neither second order perturbation timeorpg- our technigue on the publicly available 2dFGRS selectiarcfu
normal densities have been shown to calculate this quaentity- tions (Norberg et al. 2002) and find that there is a significant
rately, we must therefore rely on N-body simulations. Thiguires departure between the Gaussian and non-Gaussian treatiment
a special approach, since a naive pair counting of all Foomasles particular, the fractional error of the power spectrung (P(k))
in the four-point function, at a given angle, would take f@eto atk ~ 0.1hMpc™! is about a factor of 3.0 higher in the non-
compute. The second challenge comes from the 6-dimensional Gaussian analysis, and the departure reaches an order pitutkgy
volution of the covariance matrix with the survey functidiis is by k ~ 0.4hMpct. The method proposed here can be also applied
a task that current computer clusters cannot solve by boute fso to other kinds of BAO experiments, including intensity mangp
we must find a way to use symmetries of the system and reduce thefrom the emission of the 21 cm line by neutral Hydrogen (Peter
dimensionality of the integral. The fact is that the undedyco- et al. 2006; Lazio 2008; Schlegel et al. 2009), or Lynaaferests
variance really depends only on three variables: two seaidghe surveys (McDonald & Eisenstein 2007; McQuinn & White 2011).
relative angles between the two Fourier modes. Moreovaurtis We did not, however, include thdfect of redshift distortions, and

out, as we describe in section 6, that it is possible to expttas focused our fforts on dark matter density fields obtained from sim-
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ulated particles. An improved version of this work wouldlirde
both of these fects, however.

As indicated by the title, this paper is the first part of a gen-
eral strategy that aims at constructing unbiased, non-€kaugsti-
mators of the uncertainty on the matter power spectrum medsu
in galaxy surveys. The second part, which we hereafter tefas
HDP2 (in preparation), exploits the fact that the measur¢mighe
C(k, k’, 8) matrix provides a novel handle at measur@(g, k'): the
two quantities are related by a straightforward integratiwer 6.

As shown in a later section of the current paper, it turns loait the
main contributions t&€(k, k') come from small angles, while larger
angles are noise dominated. It is thus possible to performisen
weighted integral, which results in a more optimal measerrof

C(k, k") and of its error bars, compared to direct or bootstrap sam-
pling. We can then extract accurate non-Gaussian errordoettse
power spectrum with fewer realizations, which opens the oo

an error estimate directly from the data (i.e. an interntirese), a
significant step forward in the error analysis of galaxy sysv

The current paper is organized as follow: in section 2, we
briefly review the FKP method, and describe how to estimate no
Gaussian error bars in realistic surveys, given a previoowledge
of C(k, K, 8). We then lay down the mathematical formalism that
describes how we extract this quantity from simulated dgfigilds
in section 3. Section 4 describes sanity checks, null tast,our
N-body simulations. We present our measuremen@(kfk’, 6) in
section 5, and describe the multipole decomposition in@eét In
section 7, we further simplify the results by extracting phiecipal
Eigenvectors and provide fitting formulas to reconstrusilgahe
full covariance matrix. Section 8 contains results of apmyour
method for a set of simple selection functions. We finallycdss
some implications and extensions of our methods in sectian®
conclude in section 10.

2 MATTER POWER SPECTRUM FROM GALAXY
SURVEYS

In this section, we quickly review the general FKP methodicivh
is commonly used in data analysis (Feldman et al. 1994; Rarci
et al. 2001; Blake et al. 2010). We then point out some of thema
flaws of such techniques when measuring the uncertaintydand
scribe how non-Gaussian error bars could be estimatedriniple.
Before moving on, though, we first lay down the conventioresdus
throughout the paper. The reader familiar with the FKP metho
may skip to section 2.2.

A continuous density field(x) is related to its Fourier trans-
form 6(k) by
(k) = fd(x)ék‘XdSX Q)
wherek is the wave number corresponding to a given Fourier mode.
The power spectrurR(k) of the field is defined as:

(6(k)6" (k")) = (21)°P(k)dp(k — k') &)
and is related to the mass auto-correlation function by :

_ 1 —ik-x 3
&(x) = ZoE fe P(k)d°k (©)]

In the above expressions, the angle brackets refer to a echwer-
age in Fourier space, awng(k) stands for the Dirac delta function.

2.1 The optimal estimator of the power spectrum

The power spectrum of the matter field contains a wealth @frinf
mation about the cosmic history and the principal constitsief
the Universe. Unfortunately, it is not directly detectalsdimce our
observations are subject to cosmic variance, detecticsenbtght
to mass bias, redshift distortions and incomplete sky stsrvEhe
FKP method provides an optimal estimator of the matter power
spectrumP(k) under the assumption that the density field is Gaus-
sian. It is formulated in terms of the survey selection fioreW(x),
the galaxy number density, the dimensionsrg, ny, n,) of the grid
where the Fourier transforms are performed, and the acturabar
count per pixeh(x). All the following calculations can be found in
Feldman et al. (1994), and are included here for the sakerof co
pleteness.

The first step is to construct series of weights) as

1 1
1+W(X)NenPy — 1+ nP

W(x) = 4
whereN; = ny,nyn,, nis the mean galaxy density aRd is a char-
acteristic amplitude of the power spectrum at the scale we wa
measure. Since the latter is not knowarpriori, it is usually ob-
tained from a theoretical model, and sometimes updatedtiiiely.
The selection function is also normalized such tHaw/(x) = 1.

The optimal estimator of the power spectruRag(k), is ob-
tained first by re-weighting each pixel by the weights in [B}.
then by subtracting from the result a random catalogue vhith
same selection function, weights and number of objéttéfter
taking the expectation value of the results, the 2-poirgtssics of
the pixel counts becomes

—

(EIN(X)Y = AN (L + £(x — X)) + Ndp (X — X') (5)

wheren'is the mean density in the patch over which the average is
performed. The Fourier transform is then given by

In(k) = NW(K)2 — N 3, Wx)W?(X)

(Pes()) = NZN, 3., W2GOWE(K)

(6)

where denominator is a convenient normalization. This nveaks
power is aliased by the grid mass assignment scheme, antiishou
be divided by the appropriate function (Jing 2005).

What this estimator measures is not the underlying power
spectrumP(K), but a convolution with the survey selection func-
tion:

T PRYIW(K - k)P
Ne 2 W2()W2(x)

<Pest(k)> = (7)
It ideally needs to be deconvolved, an operation that is ey
possible.

For many survey geometries, the convolutidieetively trans-
fer power across dierent bins which are uncoupled to start with
(Tegmark et al. 2006). As mentioned previously, the PKL grips
tion also assumes that the density field is Gaussian, buegoitato
a basis in which the bins are decoupled. In that sense, thet @itk
nigue is more optimal than the FKP, unless the selectiortiumés
close to a “top hat”, in which case the induced mode coupliang v
ishes. Both case, however, rely on the fundamental assomibtat
the underlying density field is Gaussian, which is known tae-
curate in the trans- and non-linear regime, where one sitite/an
accurate measure of the power spectrum for a BAO analysis. Ob
taining accurate error bars is a requirement for optimalyses,
and we shall examine how these are usually obtained.
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2.2 The FKP covariance matrix

The covariance matrix of the angle averaged power spectsum i
four point function that contains the information about thend
error bars, and possible correlation between them. As oreedi
earlier, it is required for many cosmological parametedigs! It is
generally obtained from the power spectrum as

C(k k') = (AP(KAP(K')) (8)

whereAP(k) refers to the fluctuations of the measured values about
the mean, which is ideally obtained from averaging over nmany
alizations. In a typical galaxy survey, such independealizations

are obtained by sampling well separated patches of the #ky. B
cause of the cost of such an operation, the number of patshes i
usually very small. The covariance matrix is thus not restffirom

the data, and the error bars are obtained with external igobs,

i.e. from mock cataloguésor directly from Gaussian statistics (see
HDP2 for a prescription that overcomes this challenge).aFoni-
form (top-hat) selection function, the Gaussian covagamatrix

is estimated as:

2
NG 9)
wherePgho: = 1/n and N(K) is the number of Fourier modes that
enters in the measurement®(k). In the ideal scenario of perfect
spherical symmetry and resolutioN(K) = 47rk2Ak(§)3, with Ak
being the width of thek-band. The Kronecker delta function en-
sures that there is no correlation betwedfedent modes, an inher-
ent property of Gaussian random fields. This equation caly ées
modified to deal with measurements without angle averaging.

The FKP prescription provides a generalization of [Eq. 9] fo
the case where the selection function varies across theneollt is
obtained from [Eg. 6] and given by

CCausyk, k) = (P(K) + PsnodSiic

CHP(k,K") = W Z IPQ(k — k') + S(k — k")? (10)
k.k’
where
2
- s
— 1) 2 W(X)Wz(x)equkx)
007 (W) T W2(x)W2(x) (12)

In [Eq. 10], P is taken to be the mean of the power spectrum at
separatiork — k’. Because the selection functions are usually quite
compact abouk = 0, that approximation is reasonable for Gaus-
sian fields. Also, [Eq.9] can be recovered by setiiigx) = 1/N..

2.3 Non-Gaussian error bars

As mentioned in the last section, it is necessary to havesacce
to many realization of the matter field in order to measure r& no
Gaussian covariance matrix of power spectrum. This coupdim
ciple be done from data across manffelient patches in the sky, but
even then, we have only one sky to resolve the largest modeshw
would therefore be dominated by cosmic variance. Not to foent
the cost and time involved in measuring many large but discon
nected volumes. Fortunately, N-body simulations are nawiate
and fast enough to generate large numbers of measuremehts of

1 We post-pone the discussion on mock catalogues until theseetion

matter power spectrum. Since they model the non-linear dyna
ics of structure growth, the density fields they generatenare
Gaussian. The covariance matrix constructed from a highbeum
of simulations indeed shows a correlation acrogiedént scales in
the non-linear regime (Meiksin & White 1999; Rimes & Hamilto
2005; Takahashi et al. 2009; Ngan et al. 2011).

Although much more representative of the underlying cevari
ance, such matrices are hard to incorporate in a data asdiyst
because they are based on a fixed set of cosmological paramete
but also because the simulated volume is cubic and periEdich
survey group typically needs to run at least one N-Body satiarh,
and measure the power spectrum with and without the measured
selection function, in order to quantify the bias of theirasere-
ment. The complete approach would then be to run hundreds of
these to measure the covariance matrix, and that over a @fnge
cosmological parameters values. This whole procedurepsrex
sive, which explains why it is never done in practice. Theralh-
tive is to use mock galaxy catalogues, obtained, for exanfign
log normalization of Gaussian densities, second ordeugstion
theory (PT), haloPT, and so on. Unfortunately, the accucdsych
techniques at modelling the four-point functions and arigipen-
dencies has not been fully quantified.

Another artefact of the simulations is that the number of par
ticles can be arbitrarily adjusted such as to suppress tissdto
noise down to a level where it is negligible. This is certainbt
true for many galaxy survey, in which the number density terof
much lower. We measure a non-Gaussian Poisson error by sam-
pling random fields with a selection threshold chosen as toimi
the number density of a realistic survey, and incorporatedfiect
manually in the analysis, as explained in section 8.

To measure non-Gaussian error bars on a realistic suney, th
most accurate procedure would be to convolve the best alaila
estimator of the covariance matrix with the selection fiorctBe-
cause the later is generally not spherically symmetrig thée full
6-dimensional covariance matri€(k,k’), that needs to be inte-
grated over. Let us suppose, for a moment, that we succhyssful
measured that complete non-Gaussian covariance matvixulid
first contain an element for each Fourier mo#gs.e. with no an-
gular averaging), and from [Eq. 7 and 8], we can write:

Zk”.k”’ <Ap(k//)AP(kw)>|W(k _ k//)|2|W(k/ _ k///)|2
(N2N; 3, W2(x)W2(x))?2

Cestk. k') =
(13)

where the angled bracket is nothing else but that full cavene
matrix C(k”, k”"). We can then simplify the result since the covari-
ance between two Fourier modes depends only on the arlgte
tween them, and not on the absolute orientation of the papéce.

In other words, we make use of this symmetry argument to write
C(k”, k") = C(k”,K”,v) without lost of generality. This angle can
further be expressed in terms of the two angles made’tgndk””

as

Ccogy = cog’'cog)” + sing”’sing”’ cos@” — ¢"') (14)

We show in a later section of this paper that the true covaeian
matrix can be decomposed into a sum of factorized terms, @ach
the form Fy(k”)Fa(k”")G1(8”, ¢")G2(8", ¢"”"). Therefore the dou-
ble convolution of [Eqg. 13] can actually be broken into a sum o
smaller pieces, with at most 3-dimensional integrals téqoar.
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3 MEASURING THE ANGULAR DEPENDENCE: THE
METHOD

As mentioned above, our first objective is to extract the danae
matrix of the power spectra from N-Body simulations, as afiom
of two scales and one anglg(k, k', 8). In this section, we develop
a novel way to obtain covariances and cross-correlatiodswdich
allows us to perform this measurement.

3.1 Cross-correlations from Fourier transforms

Since manyAk subtend the same anglewe can perform an aver-
age over them and compute

2(9) = (2 (AK))akcak (24)

3.2 Normalization

The quantityz'} (9) is not exactly equal t€(k;, k;, 6), because there

is a subtle double countingfect which is purely geometrical, and
which needs to be cancelled. To see how this arises, we work
out a very simple scenario, in which the density field is petje

We begin by assuming we have measured the power spectrum fromisotropic. In that case, we can writd(k) = AP(K), hence the an-
a large number of simulations. We first compute the mean of the gular integration in [Eq.20] is straightforward and we get:

angle average®(k) = (P(k))no and the deviation from the mean
of each mode:

AP(K) = P(K) — B(K) (15)

We then select two scaldg,andk;, that we want to cross-correlate.
We make two identical copies of three-dimensional powecspe
and multiply each one by a radial top hat function correspantb
the particular scales:

AP;(k) = AP(K)ui(k]) (16)

whereu; (k) = 6(k—k)0(—k+k; +6K) is the product of two Heaviside
functions. Alsogk is the shell thickness, taken to be very small. We
then cross-correlate the subsets and define:

1
(2n
We then express bothP; j(k)’s in [EqQ. 17] in terms of their mass
auto-correlation functionaé; j(x). We first integrate over exi¥ -
(x+x’)]d®k and obtain a delta function, which allows us to get rid of

one of the real space integral. After slightly rearrangimg terms,
we obtain:

s (Ak) = f APi(K)AP;(k + AK)dk (17)

I(AK) = f A& (X)AE; (x)e " *dx (18)
In the above equatio\&; can be expressed as:
. _ 1 —ik-x ' 3
20 = g [ € APIIUKK
1 ki +5k ) i
= ij: kdkfe AP(k)dQ (19)

Since the shells we select are very thin, we can safely appedz
that the power spectrum is constant over the infinitesimadgea
and thus perform thk integral:

(20)

A&(X) = 5k f e kX AP;(k)dQ

1 2
@
We repeat the same procedure for the sg¢akaultiply both auto-
correlation functions together, and Fourier transform gheduct,
following [Eq. 18]. The result is the cross-correlatiaf (Ak),
which becomes, after performing tRéntegral over the plane wave:

1 ’
(2”)3|q2kj252k f dQ f dqY’ x
APi(K)AP; (K)o (k] — ki — AK)

Ti(Ak) = (21)

(22)

The delta function enforcesk to point fromk; to k!. This geome-

try allows us to use the cosine law and relgtk| to the angle it

subtends, as seen in Fig. 1, such that:
K2 + K2 — |AK[?

6 = cos* (—J K )

o (23)

2
M) = A5 = S AR K)ok

with jo(X) being the zeroth order spherical Bessel function. We
have also assignetk = 2r/L to the shell thickness, which cor-
responds to the resolution of a simulation of sidéhen, [Eq.18]
becomes

(25)

A . 2
Y(g) = (%) AP(k)AP(k;)F' () (26)
where
Fil(6) = f jo(k X ok ¥ jo(6X)x2dx (27)

The functionF(k;, kj, 6) is independent of the actual power spec-
trum; it is purely a geometrical artefact that correspormshe
counting of the dferent combinations df;; that produce a given
Ak. As the former increase, so does the surface ofktiskells,
hence there are more ways to Aik. In the case of an exactly
isotropic power spectrum, the results should have no angiga
pendence. We thus define a normalizaty(6), as the output of
[Eq. 24] with AP(ki ;) = 1 everywhere on the shells. The final re-
sults are obtained by dividingitthis normalization, which cancels
off the geometrical féect:

£(6)
Z4(6)
We stress again that this result is an average over all caafigns
satisfyingk; = k; + Ak.

To summarize, here is a condensed list of the steps taken to
measureC(k, k', 6):

C(ki.k;,0) = = (AP(K)AP(K;)) (28)

() Measure the mean angle averad&#) from an ensemble of
simulations,

(if) Selecta combination of shellg; to cross-correlate,

(iii) For each simulation, compute(k), duplicate and multiply
each replica by a top hat;(k), which efectively sets to zero every
off-shell grid cells,

(iv) SubtractB(k) from each cell in the shell,

(v) Fourier transform both grids, complex multiply themdan
Fourier transform back th-space,

(vi) Loop over theAk available, bin intaz(|Ak|?), and express
the results as a function éf

(vii) Repeat steps (v-vi), but this time assigning the vatfe
each cell in the shell to unity, and divid€6) by this normaliza-
tion. This is a measure @(k;, k;, 6) from one simulation,

(viii) Repeat for all simulations, then compute the mean,

(ix) Iterate over steps (ii-viii) for other shell combinattis.

To achieve better results, we make use of the factRfiak) =
P(k), hence, following [Eq.17], we can writgl (~Ak) = X (AK).
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Figure 1. Geometry of the system. For a fixed pair of shells, the magni-
tudes of the Fourier modég andk; are fixed, so the angle between them is
directly found from the separation vectdk. Note that we use interchange-
ably numbers or roman letters to denote individual Fouriedes.

This translates into a theoretical symmetry ab®ut n/2 in the
angular dependence of the covariance. That property tuiirte be
very useful for reducing the numerical noise, since we caasue
the covariance over the full angular range, but fold theltesun to
0< 6 < n/2. Also, to avoid interpolating error, we choose to bin in
(AK)? before transforming te.

3.3 Zero-lag point

Itis important to note that for a given realization, the paitd = 0,
which we refer to as theero-lagpoint, must be treated with care.
When the two shells are identical, iie= j, the zero-lag point of
each simulation first computes the square of the deviatiemtban
P(k), then averages the result over the whole shell. It is etpriva
to calculating the variance over the shell, but using a melichw
is somewhat fi from the actual mean othat shell. That &ec-
tively boosts the variance. When we average over all sinaulat
the zero-lag points can be written as:

21(0) = (P(K))na — (P(ki)Y2q

where, in the first term, the angle average and mean overaMl re
izations are computeaftersquaring each grid cell. By comparison,
the variance on angle averaged power spectra would be etthin
performing, in the first term, the angle averaging first, thaing
the square, then taking the mean.

When the two shells areftigrent, the zero-lag point is now the
average ovenP(k)AP(k’) on both shells. Since we are no longer
squaring each terms, it now includes negative values, hisrgen-
erally of much smaller amplitude.

(29)

4 VALIDATION OF THE METHOD

We describe in this section a series of tests that companeusoer-
ical results to semi-analytical solutions. We apply ourmoeton a
few simple situations in which we control either the densigjd

or the three-dimensional power spectrum. We first test ocipee

on a power spectrum that is set to the second Legendre polghom
The outcome can be compared to semi-analytical calcukatod
gives a good grip on the precision we can achieve. We next mea-
sure the angular dependence of the covariance matrix ofwhbise
densities and present an estimate of the non-GaussiaroRa@ss
ror?. We finally measure the angular cross-correlation from Gaus
sian random fields in order to better understand departuoes f
Gaussianity.

4.1 TestingC(k, k', 8) with a Legendre polynomial

As a first test, we enforce treedependence of the power spectrum
to be equal to the second Legendre polynomial, and then aempa
our results to semi-analytic predictions. We manuallyP{&) = k2,
which is thus constant across tiRe- y plane. The mean and the
deviation from the mean on a shéllare given by(P(k))q = k?/3
and AP(k) = (2/3)k?P,(u) respectively, wherd®,(x) is the ¢-th
Legendre polynomial and is the cosine of the inclination angle.
The mass auto-correlation function associated with thiggoas

-2k
AG() = 67f j2()
The angular dependence of the covariance can be calcukaiged s
analytically from [Eq. 18] and [Eq. 30]. The angular intetipa is
straightforward, and we obtain

ACKE o
ol Jo

(30)

TV (AK) = j2(kiX) j2(k; X) jo(Akx)x*dx (1)

We perform thex integral withk_; = 1.0hMpc™?, repeat
the procedure foE,(Ak), and obtain a semi-analytical prediction:
C(k, K, 8) ~ Po(co9), up to numerical noise. This agrees well with
the numerical results produced by our technique, as showimein
top part of Fig. 2. We are plotting the angle dependence ofthe
variance matrix, normalized by the angle average of thercvee,
such that the curve represents the actual cross-correletiefi-
cient between the Fourier modes. We mention here that inabe c
wherek; # kj, which we encounter in the following sections, we
normalize to the square root of the product of the corresimond
matrix elements:

C(k., kj, 6)
r(k, ki, 0) = —tee—
VC(ki, k)C(kj, k)
In the particular case under study in this section, the Eouniodes
separated by small angles are strongly correlated by catigin.

(32

4.2 TestingC(k, k', 8) with Poisson-sampled random fields

To measure the response of our code to white noise, we produce
a set of 200 random density fields, each with the same comov-
ing volume of 200~*Mpc. These are then Poisson sampled with
a fixed sensitivity threshold that is chosen such th&000 peaks
are counted on average. The standard deviation in the neghsur
P(K) decreases roughly &s?, expected from the fact that the num-
ber of cells on &-shell grows a%?.

Because of the random nature of Poisson densities, the vari-
ance on a given shell should be roughly constant across -all di
rections. Moreover, after averaging over many realizatRwisson

2 See Cohn (2006) for a discussion oiffelient types of noise in a cosmo-
logical context.
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Figure 2. (top:) Angular dependence of the covariance of a power spectrum
set to the 24 Legendre polynomial, calculated herekat; = 1.0hMpc L.

The solid line is the semi-analytical prediction. The cuiwenormalized

to the value of the zero-lag point, such that it represergsatitual cross-
correlation cofficient between the Fourier modes. In this case, modes that
point in like-directions are strongly correlatedni@idle:) Angular depen-
dence of the power spectrum cross-correlationffament measured from
200 Poisson sampled random fields. The error bars are obthiné&00
bootstrap resampling. We have selected kaghellsi, j that are & by one
grid cell: k; = k + ok, with 6k = 0.0314Mpct andk ~ 1.0hMpc™t.

The distribution fori = j is similar in shape, except for the zero-lag point,
which is much larger than any other points, and the plateatistslightly
higher. The solid line in this figure is the predicted valudich is well
within the error bars. We have reproduced a similar plot foisfon den-
sities with 80 million peaks, which is also flat, and find that the height of
the plateau scales roughly agnd, wheren is the number of Poisson sam-
pled objects. lfottom) Angular dependence of the power spectrum cross-
correlation cofficient, measured from 200 Gaussian random fields, this
time withk; = ki + 56k , and agairk; ~ 1.0hMpcL. The theoretical pre-
diction is zero, whereas we measure a constant 6 per cemat@n bias
across all angles. We have verified that this bias is scalepinbent by
changingk; .

densities are in principle statistically isotropic. We ghexpect the
measured angular dependence of the covariance to be vesy clo
to flat, and, from [Eq.28], we estimate it should plateau aalae
somewhat similar t&€(k, k'):

CPoissor(ks k,,ll) ~ CPoissor(kv k,) + A6kk’6,uil (33)

where the two delta functions ensure that modes wiffeint di-
rections or scales do not couple together. The congtaatmuch
larger thanCpqissod K, K'), for reasons explained in section 3.3, but
the precise value is irrelevant to the current analysis. Fighows
the cross-correlation céiicient matrix for non-Gaussian Poisson
noise. We observe that the angle-averaged modes are tedrbla
more than 30 per cent between scales smaller khad.OhMpc2.
The reason for this feature is actually independent of césgyp
even though the matrix has a look very similar to that measure
from simulationg . The explanation lies in the fact that each of our
Poisson densities do not hagractlythe same number of objects,

8 Itis in fact arguable that such a matrix, constructed fronetao$ Pois-
son densities, could have better performances at modélimgrue’ non-
Gaussian covariance matrix, compared to the naive Gauapjaroxima-
tion.
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Figure 3. Cross-correlation cdicient matrix, measured from the power
spectra of 200 Poisson sampled random density fields, edlachave 8000
peaks on average. The correlation in higmodes is purely a counting
artefact, as explained in the text. This represents oumagi of the non-
Gaussian Poisson uncertainty.

hence the asymptotic value &{k) is not a perfect match for all
field. This slight scatter in power translates into a cotretabe-
tween the higtkk—modes of agivendensity field. This is in good
agreement with the predictions of Cohn (2006), which calizd
that the Poisson sampling of Gaussian fields induce nong&aus
statistics, and that well separated scales can corretgtdisantly.
We then measure the angular dependence of the covariance for
these 200 Poisson distributions, alsdkat 1.OhMpc‘1. We obtain
a distribution that is indeed close to flat, and consistett wiuni-
form 10 per cent correlation, as shown in the middle plot @f. Fi
2. As before, we have normalized the plot such as to exhikit th
angular cross-correlation. Because the zero-lag poiypisdlly a
few orders of magnitude above the other points, we quotaltseyv
in the text or in the figures’ caption where relevant, and Ixesthe
structure of the other angles. The mean of the un-normatired
tribution is 1333Mpch®, a 10 per cent agreement with our rough
estimate. We have re-binned the distributions on to a sebioitp
that are optimal for the upcoming angular integration, asdbed
in section 6.

4.3 TestingC(k, k', 8) with Gaussian random fields

The next test consists in measuring the angular dependéitce o
covariance from of 200 Gaussian random fields. We use 200mpowe
spectra measured at= 0.5, obtained from N-Body simulations
(section 5.1), to generate 200 fields. Similarly to the Rwid&lds,

we expect the distribution to be overall flat, except for tieeoz

lag point. Because we choose not to Poisson sample these Gaus
sian densities, the randomness should be such that nearféatpe
cancellation occurs between thefdient angles, and the plateau
should be at zero. In the continuous case, the Gaussianiaovar

can be expressed as

2(P(k))*
N(k)
whereN(K) is the number of Fourier modes in tkeshell. Fork; =
ki, the zero-lag point contains perfectly correlated powerwe

CGausiki 5 kj 5 /1) = 5ij 5;:,:1 (34)
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expect it to have a very large value. As explained in secti8nvge
cannot directly compare its value t®Z4k)/N(K), since the former
is bin dependent, while the latter is not. In the case whete|
however, the zero-lag point should drop down to numericaeo

The measured angular dependence is presented in the bottom

part of Fig. 2, where we see that the distribution is flat and-co
sistent with 6 per cent correlation. This indicates that method

sufers from a small systematic bias and detects a small amount of

correlation, in a angle independent manner. We have repéaite
measurement for ffierent scales;; and obtained the same bias.
We therefore conclude that any signal which is smaller tngs t
amount is bias dominated and not well resolved.

5 MEASURING THE ANGULAR DEPENDENCE

In this section, we present our measurements of the angegemd
dence of the covariance in our 200 simulations. We expldierdi
ent scale combinations and attempt to compare the outcome to
pected results whenever possible. In all figures, the eas Wwere
obtained from 500 bootstrap resampling of our simulationgess
otherwise specified.

5.1 N-body simulations

Since our Universe is not Gaussian at all scales releva®4@r or
weak lensing analyses, a robust error analysis should hea loas
non-Gaussian statistics, and, as mentioned earlier, \-binoula-
tions are well suited to measure covariance matrices. Queniaal
method is fast enough that, for fixédandk;, we can compute the
angular dependence of the covariance matrix in about onatein
The average over 200 realizations can be done in paralletehe
producing all available combinations takes very littled¢im

The simulations are produced BYBEP3M(Merz et al. 2005),
a public N-body code that is bottPENMPandMPI parallel, which
makes it among the fastest on the matkede generate 200 Gaus-
sian distributions of 208-*Mpc per side, each with 25@articles,
starting atz = 40, and evolve them untié = 0.5. The simula-
tions are run on the CITA Sunnyvale cluster, a Beowulf clusfe

I
= @
—
——
—
-
L

k[h/Mpc]

Figure 4. (top:) Power spectrum of 200 simulations, produced by
CUBEP3M, compared to CAMB a = 0.5 (solid line). The error bars
are the & standard deviation on the 200 measuR¢H). We only include
modes withk < 2.34hMpct in this analysis, as indicated by the arrow
in the figure. bottom) Ratio between the simulated and predicted power
spectra.

all scales, and the correlation is even smaller for modedlema
than 05hMpc™t. These latter modes are grouped in larger bins due
to the higher discretization of the shells, and ideally ooeilg like

to run another set of simulation with larger volumes to habeta

ter resolution on those scales. However, these larger stalee
very little impact on the non-Gaussian analysis we are aagryve
therefore do not attempt to improve the situation. For higtdn-
linear scales, the correlation between modes separateddigsa
smaller than 1Qincreases up to 55 per cent.

In the second figure, one of the two scale is held constant,
atk = 0.61hMpc™t, while the other varies over the same range.
Modes separated by angles larger thah&@ less than 10 per cent
correlated, for all combinations of scales. When the twdescare
of comparable size, the correlation climbs up to values betwl5

200 Dell PE1950 compute nodes, each equipped with 2 quad core and 20 per cent for angles smaller thafd.15

Intel(R) Xeon(R) E5310 @ 1.60GHz processors. Each node has

This angular behaviour is enlightening, as it shows how the

access to 4GB of RAM and 2 gigE network interfaces. The power error petween Fourier modes separated only by a small aswis t

spectrum of these simulations is shown in Fig. 4, and shove®d g
agreement with the non-linear predictions framvB (Lewis et al.
2000), up tck ~ 0.25hMpc~2. Beyond that scale, the structures are
underestimated due to the resolution limit of the simutaio~or
the rest of this paper, we only consider well resolved sc¢atesc-
currence those in the rangee [0.314 2.34]nMpct, which we
organize into 75 linearly spaced bins.

5.2 Results

We present in Fig. 5 and 6 the angular dependence of the aoeari
between the power spectrum of various scales. As explamtuei
previous section, the distributions are normalized sudo aspre-
sent the cross-correlation dfieient between modes separated by

an angle. In the first figure, both scales are selected to be identi-

cal, and vary progressively frobn= 0.17hMpc! to 234nMpct.
Modes separated by an angle larger thah&@ less correlated at

4 httpy/www.cita.utoronto.ganediawikjindex.phpCubePM

to correlate first. Qualitatively, this validates the fdeat in non-
Gaussian densities, quasi-parallel Fourier modes arénurelssen-
tially the same collapsed structures. When the angle iecto90,
however, one mode could go along a filament and the othersacros
it, producing only weak correlations. It could thus be pblsio
construct a highly clustered density in which we could obsemn
anti-correlation at 99 provided we are not noise dominated.

This coherent behaviour is a clear sign that the non-linear
structures underwent gravitational collapse, and thertiggefrom
Gaussianity and white noise is obvious. Another signatéireon-
Gaussianity is that even in the presence of a snféded between
the scales, the small angle correlation has a value highartttose
at larger angles, because of the coupling between thosess&ad).

6 shows this ffect.

5.3 FromC(k;k;j, 6) to C(ki, kj)

It is possible to recover the covariance matrix one obtaiomf
the angle averageB(k) by performing a weighted sum over the
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Figure 5. Angular dependence of the power spectrum cross-correjatio
measured from of 200 density fields, kt; = 0.17,0.46,0.93 and
2.34hMpc1. The distribution exhibits a correlation of less than 10 gt
for angles larger than about ®0For scales smaller than3hMpc2, the
correlation increases up to 15 per cent for angles smalter 1@, and to
more than 40 per cent for smaller angle.

T
0.14 h/Mpc| |
0.46 h/Mpc
0.93 h/Mpc
2.34 h/Mpc ||

« %<0

0.04 I I I I I I I I
10 20 30 40 50 60 70 80 90

O[deg.]

Figure 6. Angular dependence of the power spectrum cross-correlatio
measured from of 200 density fields kat= 0.61, andk; = 0.14,0.46,0.93
and 234hMpc2. The distribution exhibits a correlation of less than 10 per
cent for angles larger than about’3@or scales of similar sizes, the corre-
lation increases up to 1520 per cent for angles smaller tharf15

angular covarian®e Another test of the accuracy of our method is
thus to compare th€(k;, kj) measured in both ways. This is by far
the least convenient way of measuring this matrix, and wéopar
this check solely for verification purposes.

We perform this weighted sum and constr@tk;, k;), then
compute a similar matrix from our 200 angle averaged powec-sp

5 The weights here are simply the number of contribution tinéreeach
angular bin, divided by the square of the total number osaafi thek-shell.
In other words, because the angular covariance is an averagemany
pairs of cells, that average must first be undone, then tfiereint angles
are summed up, and we finally divide by the total number ofrdmurtions.
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Figure 7. Cross-correlation cdicient matrix, as measured from integrat-
ing the angular covariance. Each matrix elemiefptwas obtained from a
reweighted sum oveZ(k;, k;, 6). This is consistent with matrices previously
measured in the literature (Rimes & Hamilton 2005; Takahesél. 2009;
Ngan et al. 2011)

tra. We presentin Fig. 7 the cross-correlationfiornt matrix (see
[Eqg. 32]) obtained in the first way, and show the fractionabebe-
tween both methods in Fig. 8. We observe that they agree &the
percent level, so long as we are in the non-linear regime.efy v
low k-modes, however, many matrix elements are noisy due to the
discretization of the shell; theAk, §) mapping in this coarse grid
environment becomes unreliable, and the re-weighting teadb
correctly. This results in high fractional errors, but & #ame time,
this region is still in the regime where the analytic Gausgieedic-
tion is valid. In addition, this paper attempts to solve tlesizaused
by the non-Gaussianities that lie in the trans-linear anulivear
regime, in which discretizationfiects are much smaller. Finally,
we recall that these matrix elements have very little impaatost
parameter studies since such scales contain almost na kisbre
mation (Rimes & Hamilton 2005; Ngan et al. 2011).

6 MULTIPOLE DECOMPOSITION

As shown in last section, we have extracted the power spactod
variance matribxC(k;, k;, 8), cross-correlating the 75ftierent scales
selected. Since the final objective is to incorporate thissive ob-
ject into generic data analysis pipelines, it must be sometio-
plified or made more compact. A quick glance at the figuresof se
tion 5 reveals that the angular dependence of the covariztbe
decomposed into a series of Legendre polynomials, in whidj o
a few multipoles will bear a significant contribution. Thias us

to rank the multipoles by importance and to keep only the domi
nant ones. These results are further simplified in sectiomhére
we provide fitting formulas to reconstructk;, kj, 6).

In this section, we describe how we perform this spherical ha
monic decomposition, then we test our method on the cordiral s
ples described in section 4, and we finally measureGHg, k)
from the simulations.
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Figure 8. Fractional error between the covariance matrices obtaiittd

the two methods. We have suppressed the largest scale$, avhinoisy due
to low statistics, and present the per cent level agreememhaller scales.
There is a systematic positive bias of aboult fier cent in the calculation
obtained from the angular integration, which was deteatetthé Gaussian

random field test. The.B per cent correlation that was measured has an

even smaller impact after the addition of the zero-lag term.

6.1 FromC(k;,kj,6) to Cc(ki, k;)

Here we lay down the mathematical relation betw€¥k, k;, 6)
and C(ki,k;). Let us first recall that the spherical harmonics
Y‘M(g, $) can serve to project any functidi(, ¢) on to a set of
aym as:

aum = f Y0, §)F (6. 6)d02

We substitutd=(Q) — AP;(k) = AP;(k, Q), which causes the coef-
ficients to be scale dependent, bg, — am(K). The angular power
spectrum at a given angular size- 1/¢ is defined as

(35)

t
Clk k) = 571 > lam(K)ain(ky) (36)
-

Combining both equations, and writin@i} = Ce(ki, k;) to clarify
the notation, we get

-~ 1 <

1] — M ()7 Y\ EM
cl = 2€+1;[fv (Q)Y™(Q)x

AP(ki, Q)AP*(kj, Q")dQdQY’ (37)

We use the completion rule on spherical harmonics to perfbem
sum:

4
> ¥m@v @) = ZE2p (cos) (39
m=—{

wherey is the angle between the and()’ directions, and where
P,(x) are the Legendre polynomials of degie&\Ve then write

ci-L f AP(k., Q)AP* (K, Q') P,(cosy)dQdQY (39)

4
Since we know thak; + Ak = kj, we make a change of variable
and rotate the prime coordinate system such khalways points
towards thez-axis. In this new frame, we haw€)” = dco9”d¢”,
whered” is the angle subtended Iak. §” thus corresponds to the
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Figure 9. (top:) Angular power of the cross-correlation obtained from 200
Poisson densities, &t.j ~ 1.0hMpc~1, with an dfset of one grid cell be-
tween the two scales, correspondingsko= 0.031Mpc~1. The power at

¢ + 0 is consistent with zero, as expected from [Eq. 42]. We f¢lcat the
angular dependence of the covariance from Poisson densitiery weak,
hence it projects almost exclusively on the 0 term. pottom:) Gaussian
equivalent at; ~ 1.0hMpc™2, andk; = ki + 56k. The analytical prediction

is zero at all multipole, while we measur€a term of about 8h~5Mpc®.
This is caused by the 6 percent bias we observed in Fig. 2.

angle between the two Fourier modeandk’. It is also equal to
in [Eq. 38]. We perform the ‘unprime’ integral first, whichves

c) = % f P/(cosy) f AP, (K)AP;(k + Ak)dQdQ” (40)
The inner integral i€(k, k;, y), we renames — 6 and obtain
c) = f P,(co)C(ki, kj, 6)dQ (41)

In practice we are dealing with a discretized grid, hence we
must convert the integral of [Eq.41] into a sum. To minimike t
error, we use a Legendre-Gauss weighted sum, the detailsiofiw
can be found in the Appendix. In order to validate our methesl,
designed a few tests that are explained in the followingcest

6.2 TestingC, with a Legendre polynomial, with Poisson and
Gaussian distributions

We start our tests by measuring tGgki, k;) from the angular de-
pendence of the covariance of power spectra, which is attpléet

to the second Legendre polynomial on the selektstlells, as de-
scribed in section 4.1. We expect the projection to produdelia
function at¢ = 2, up to numerical precision, since the Legendre
polynomials are mutually orthogonal. We observe from thigpse
test a sharp peak &t= 2, which is about two orders of magnitude
higher than any other points.

We next measure thg, from the covariance matrix of Pois-
son densities, whose angular dependence, we recall, s tdkat
(see section 4.2), except for the zero-lag point when thestvedis
are identical. From the orthogonality of the Legendre potyit
als, a flat distribution is projected exclusively on the finstltipole,
we thus expecClos°Tk # k') to peak at¢ = 0, and to vanish
otherwise. Moreover, we expect tﬁ§°‘ss°r(k = k') to exhibit, in
addition, a vertical shift caused by the integration overzaro-lag
point. The analytical expression can be obtained from [B# B.



Non-Gaussian Error Bars in Galaxy Surveys (Part 1)11

The azimuthal integration gives a factor of, 2heu delta function
gets rid of the last integral, and we get:

Clz’oissor(k’ k’)

Jk#K
k=K

2
27rCPoisson_2[+15€0
2
27nCpoissonzg 00 + 4T AdKK

(42)

The only scale dependence comes from the surface dé-gell,
and drops ak 2, as explained in section 4.2.

In thek # k' case, we find that in the non-linear regime, the
¢ = 0 point is at least two orders of magnitude above the othar eve
¢, and 18 orders above the odd multipoles. The results aremqexs
in the top part of Fig. 9 fok..; ~ 1.0hMpc™. The error bars are
obtained from a bootstrap resampling. Wher k', we find that
the zero-lag pointféectively shifts the whole distribution upwards
by an amount equivalent tar@P°'ssk, k, 0).

Finally, we compare th€, distribution measured from Gaus-
sian fields to the analytical prediction, obtained from [Ef,34]:

2(P(K))?
N(K)

We measur€g2'ssfrom the covariance matrix of 200 Gaus-
sian random fields, as outlined in section 4.3. We show thdtses
in the bottom part of Fig. 9 for the case where there is a stffket
between the two scales. Our results are consistent withfaesdl
multipoles except = 0, which receives an undesired contribution
from the constant 6 per cent bias described in section 4.3bnd
served in Fig. 2. It turns out that thi% contribution is very small
(i.e. less than one per cent) compared to the values obté&ioed
simulated density fields, hence we do not attempt to corgedt.f
In the case where the two shells are identical, we observiasim
results, up to an upward shift caused by the zero-lag poinigtw
propagates to all multipoles.

C?ausik’ k/) =2 (1 4 (_1)[)5“( (43)

6.3 MeasuringC,(k;, k;) from simulations

We present in this section the multipole decomposition & th
C(ki, kj, 6) matrix measured from our simulations. We show in
Fig. 10 the first few non-vanishing multipole moments (fe=
0,2,4,6), in the case where both scales are exactly equal. All the
error bars in this section were obtained from bootstrapme$iag.
We observe that higher multipoles become closer to the Gauss
prediction given by [Eq. 43], and in fact only the first threié d
fer enough to have a non-negligible impact. As we progrespéeie
in the non-linear regime, we expect to encounter a mixturtef
following two effects: an increase in the number ffequired to
specify theC, distribution, or in the departure from the Gaussian
predictions of a given multipole. As seen from Fig. 10, thpate
ture between the multipoles and the Gaussian power ingdase
higherk-modes, anfect prominent in the first multipole. The de-
parture becomes more modest for higher multipoles, andestiyn
we cannot distinguish between Gaussian and non-Gaussigs. T
suggests that the non-Gaussianities are encapsulatee setond
of the éfect above mentioned.

We then show in Fig. 11 the same multipole moments, this
time for the case where one scale is fixel atO.GJhMpc‘l, while
the other is allowed to vary. Once again, higher multipolageh
smaller amplitudes, and approach the null Gaussian predicOn
the diagonal, the relative flierence between the multipoles in the
linear regime becomes smaller and converge to the prediatad,
as expected. In addition, in the linear regime, the angudarep of
the df-diagonal elements (i.& # k;) is one to two orders of mag-
nitude smaller than the diagonal counter part. As we pregethe
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Figure 10. Angular power of 200 densities, whekg.j. The dashed line
is the Gaussian prediction, obtained from [Eq. 43]. Frors figure, we
observe that the diagonals of multipoles higher thian4 converge to the
Gaussian predictions.
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Figure 11. Same as Fig. 10, but witk = 0.61hMpc! being held. The
Gaussian prediction is zero in this case. The measurementoemalized
by the square root of their diagonal contributions, suctoahow the rela-
tive importance of each multipole. Adncreases, theffydiagonal contribu-
tion becomes smaller, even for combinations of scalesairmlamplitudes.
The fourth point starting from the left is identical to unftyr all multipoles,
as it corresponds to a diagonal matrix element.

non-linear regime however, th&aliagonal elements decrease less
rapidly.

6.4 C,(k k') matrices

In this section, we organize the results i@gk, k'), and look for
the multipole beyond which theffladiagonal elements become neg-
ligible. The whole purpose behind this is to model the fula-
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Figure 12.Co matrix, normalized such that the diagonal elements arel equa
to unity. This matrix is completely equivalent to the cressrelation coef-
ficient matrix of angle averagd@(k). It represents the correlation between
different scales, and shows that scales smallerkhad.0OhMpc™? are cor-
related by more than 80 per cent.

ance matrix as:

CkK,6) = 4—171 i(% + 1)Cu(k, K)P(co) (44)
€=0

where the lowef terms are measured from our simulations, and the
others obtained from the Gaussian analytical predictiBn.43]).

In the figures of this section, we present theSg matrices,
normalized to unity on the diagonal. These are thus in somsese
equivalent to cross-correlation deient matrices. Fig. 12 presents
the normalizedCy matrix, which shows a structure similar to that
of Fig. 7. The resemblance is not surprising, siGge= 47C(k, k').
This matrix thus contains the information about the erras b
angle averaged power spectra, as well as their correlation.

By looking at the fractional error between tfig matrix and
the actual covariance matrix of angle averaged power spestr
find that our method provides a very good agreement in thetran
and non-linear regimes, down to the few percent level (sgelf3).

We do not show the largest scales, in which our method is more

noisy, for reasons already explained. We recall that araexintri-
bution toCy(k, k'), not included here, comes from the non-Gaussian
Poisson uncertainty, as discussed in section 4.2, and rteduts
added in the final analysis.

We now present the next few multipole matrices, and find
that beyondf = 4, very little information is contained in thefe
diagonal elements. Fig. 14 shows thg matrix, again hormalized
to the diagonal for visual purposes. We observe that thelsstal
scales are correlated up to 60 per cent.

Fig. 15 shows that the correlation in t@g matrix is still of the
order 50 per cent for a good portion of the non-linear reginte
new feature here is that the strength of the correlationrohgty
non-linear modes among themselves starts to decrease aeswee m
away from the diagonal. Fig. 16 shows th@g is mostly diago-
nal. As we progress through higher multipole moments, tffie o
diagonals become even dimmer, hence do not contain sigmifica
amount of new information. From this perspective, a mulépex-
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Figure 13.Fractional error between ti& matrix and that obtained directly
from the angle averagd@(k). We do not show the largest scales, which are
noisy due to low statistics and grid discretization. We haige divided the
Cp matrix by (4r) for the two objects to match exactly. We recover the 1
per cent bias that is seen in Fig. 8.
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Figure 14.C; matrix, normalized such that the diagonal elements arelequa
to unity. The d@t-diagonal elements are still correlated at least at 40 pdr ce
for scales smaller thakn= 1.0hMpc2.

pansion up t& = 4 is as far as one needs to push in order to model
correctly the non-Gaussian features on tifediagonal elements.
Following [Eq.44], we thus propose to reconstruct the full
C(k, k', 8) from a combination of a) fully non-lineat,(k, k') ma-
trices (for¢ < 4), presented above, b) analytical terms given by
[Eq. 43] (which we scale up by 30 per cent as mentioned in sec-
tion 6.3), and ¢) non-Gaussian Poisson error, which depsoidsy
on the number density of the sampled fields. In the next sectio
we decompose and simplify the€g matrices into a handfull of
fitting functions, and show how one can easily reconstruetfdii
C(k, K, 0) at the per cent level precision.
We next present in Fig. 17 the ratio of the diagonal of these
matrices to the Gaussian prediction. We observe that dileshtare
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Figure 15.C4 matrix, normalized such that the diagonal elements arel equa
to unity. The df-diagonal elements close to the diagonal are correlated at
the 30 per cent level in the non-linear regime.
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Figure 16.Cg matrix, normalized such that the diagonal elements arel equa
to unity. We observe that the matrix is mostly diagonal, dangstdecide to
treatCg and all higher multipoles as purely Gaussian.

consistent with the prediction in the linear regime. As wegoess
towards the non-linear regime, the largest departure cdroes
the Cy matrix, by a factor of about 40 ne&r= 1.0hMpc. We
observe a turn over at smaller scales, which is caused byesur r
olution limit. We opted not to model it in our fitting formul&;,
andC, mildly break away from Gaussianity by factors of 4 and 2
at the same scale. All the highé€s are consistent with Gaussian
statistics. Over-plotted on the figure are fitting formulakich are
summarized in Table 1.

7 FACTORIZATION OF THE C, MATRICES

In this section, we simplify even further our results withEigen-
value decomposition of the normaliz€d(k, k') matrices, as shown

Table 1.Fitting formulas for the ratio between the diagonals of@ék, k')
and the Gaussian prediction. For &4, the function is modelled by(x) =
1.0+ (x/a)’.

l a B
0 0.2095 1.9980
2 05481 0.7224
4 16025 1.0674
10°
N
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Figure 17. Ratio of the diagonal elements of a f&@y matrices, compared
to the Gaussian prediction. The error bars were obtainen fsootstrap
resampling. Over-plotted are the fitting functions sumeeatiin Table 1.

in the figures of section 6.4. We perform an iterative protesac-
torize each matrix into a purely diagonal component and a sym
metric, relatively smoothfé-diagonal part. The later can be further
decomposed into a small set of Eigenvectorgk), correspond-
ing to the largest Eigenvalues These are then fitted with simple
formulas. Combined with Gaussian predictions and fittingrio-

las for the diagonal, one can fully reconstruct each ofGHg, k')
matrix, and thus recoveZ(k, k', 8) as well.

We start df the iteration by assigning the identity matrix to the
diagonal component, which we subtract from the originalrinat
We then extract from the remainder the principal Eigenvscand
recompose a new matrix as

Ce(k. k)
Ce(k, KICi(k', k)

For the next iterations, we model the diagonabas— 3, 1U(k),
and decompose the remainder once again. We iterate untiethe
sults converge, which takes about 4 steps. We vary the nuafber
Eigenvalues in our iterations, and keep the minimal number f
which the reconstruction converges. In the end,rtkle k') matrix

is modelled as:

re(k K) = die[1 — AUF(K)] + Z AU (KU, (K)
A

re(k K) = = O + ) AU UK)  (45)
a1

(46)

We show in Fig. 18 the fractional error between the originatn
and the factorized one. The factorization of @gmatrix with one
Eigenvector reproduces the original matrix at the few pariael.
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Figure 18. Fractional error between the origin@p matrix and that pro-
duced with the principal Eigenvector. We do not plot the datgscales,
which are noisy due to low statistics and grid discretizatio

The same procedure is also applied for the higher multipates
which we have included the first four Eigenmodes, and we find
that the fractional error between the reconstructed andrigéeal
matrices are also of the order of a few per cent.

We next fit these Eigenvectors with simple functions: for all
r’s, the first Eigenvector is parameterizedd&) = a(ﬁ + y)_d,
and all the other vectors dd(k) = akfsin(yk’). The values of
(a,B,7v,0) for the lowest threé’s are presented in Table 2. We re-
quire that all these formulas vanish las» 0, since theC, matri-
ces become diagonal in the linear regime. The Eigenvecfdheo
C, matrix are presented in Fig. 20; over-plotted are the fitforg
mulas. The pixel-by-pixel agreement between the origiratrives
and those obtained from the fitted formulas is within less th@
per cent fork > 0.5.

Larger scales fluctuate much more as they are less accu-
rately measured, hence the pixel-by-pixel agreement isexret
pected there. In addition, the matrices witk: 6 are much harder
to express with a small set of Eigenvectors, since the Eajaas
are not decreasing fast enough. In any case, the first thre@mha
ics we provide here contain most likely all the informatioreawill
ever use in realistic surveys and forecasts.

7.1 Non-Gaussian Poisson noise

The non-Gaussian Poisson uncertainty, whose construetam
presented in section 4.2, can conveniently be incorporateth
analysis by finding the principal Eigenvalue and Eigenveato
Cheissonk, k'). Higher multipoles are not relevant as the angular dis-
tribution is flat, as shown in the middle plot of Fig. 2. We téste
number densities, correspondingte 5.0x 10°°,1.52x 10 and
1.0x 102n®Mpc3. In all cases, we decompose the covariance ma-
trix into a diagonal component and a cross-correlatiorfiment
matrix, find the matrix’s principal Eigenvalue and Eigertegcthen

fit the latter with:U0soTk) = o (£ + 7)_6. The diagonal is also fit-
ted with a simple power law of the form

CPoissor(k k)

Poisso — —
\ r(k) - CPoissor(K k) ek (47)

Gauss

Figure 19. Fractional error between the origin@p matrix and that pro-
duced with the fitting formulas. We do not show the largestescavhich

are noisy due to low statistics. The per cent level bias ttzst seen previ-
ously in Fig. 8 is no longer obvious, as the main source ofrerov comes
from fitting the Eigenvector.
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Figure 20. Four principal Eigenvectors of the normaliz€d matrix (solid
lines), and corresponding fitting formulas (dotted lines).

ok, K) = w. The best-fitting parameters are
summarized in Table 3, and the performance of the Eigenvecto
fit can be found in the Appendix.

where CPoisso

7.2 Recipe

Here we summarize our method to generate accurate noni&auss
covariance matrices. The f@i(k, k', 8) matrix is then given by [Eq.
44], where the < 4 terms are obtained from the fitting functions,
and the higher multipole moments are obtained directly ffm

43]. The sum over these Gaussian terms can be evaluatedianaly
cally as
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Table 2. Fitting parameters for the Eigenvectors of tBe matrices, with
their corresponding Eigenvalues. For &8, the first Eigenvector is pa-
rameterized adJ(k) = a(é +y)7é, and all the other vectors ds$(k) =
aklsinfyk®). These parameters were obtained from dark matter N-baaly si
ulations, but the method is general, and fiedent prescription of galaxy
population may result in slightly fferent values.

¢ A a B b% 0

0 61.9058 0.0501 0.0207 0.6614 2.3045

2 35.7400 0.273 0.8266 1.962 0.816
4.4144 0.15772 2.4207  0.79153 0.032207
1.7198 0.14426 4.0613 0.76611 -0.26272
0.9997 0.14414 5.422 0.84826  0.31324

4 22.0881 0.060399 0.10344 0.64008 2.2584
4.5984 0.1553 2.3370 0.9307 -0.1154
2.2025 0.1569 3.6937 0.92304  0.04006
1.4062 0.15233 5.1617 0.8899 -0.14503

Table 3. Fitting parameters for the diagonal of tﬁ%"’iss"’tk, k’) matrix,
and for the principal Eigenvector of the cross-correlatiodticient matrix.
For all three number densities (i.By23 = 5.0 x 10%,1.52 x 10 and
1.0 x 1072 respectively), the Eigenvector is parameterizewagss"'(k) =

a(/—; + y)_é, and the ratio of the diagonal to the Gaussian predictiort-is fi

ted with VPOIssONk) = ek, Top to bottom rows correspond to increasing
density.

A a B y 0 € o
52,02 1.0193 0.0947 21021 25861 2.6936 2.1347
45.09 0.9987 0.2034 2.1553 2.3407 1.6533 2.1965
2441 02966 3.3736 0.6099 0.6255 -0.4321 2.0347
1< ’
52+ DA+ C1)P) = Go(L+p) +6o(l - p)-

(=6

1-5P(s) - 9Pa()  (48)

For the non-Gaussian terms, we proceed as follow: each ofthec_ (k k') =

normalizedC,(k, k') can be constructed from the first set of fit func-
tions U, (k) provided in Table 2, and following [Eq. 46]. The ‘un-
normalized’'C,(k, k') terms are then constructed by inverting [Eq.
32], where the diagonal elements are obtained from the ptaafu
the V,(k), also summarized in Table 2. The Gaussian prediction is
obtained from [Eqg. 43]. In other words:

(80 (1= D2 AUZ) + D AULUK)

Ce(k, k)

\/Vc(k)Vc(k/)C?a”SS(k)C?a“”(k/) (49)

The complete covariance matrix is given by:
1 3

Clk K, p) = 2= (20 + 1)Co(k K)Pe(u)+
47 o

2P(K)?
N(K)

(6002 + 1)+ Go(L— ) ~ 1~ 5Pa(u) ~ 9Pu()  (50)

with u = cos@). This can be written in a more compact form as

C(k, k/,,u) = CGauss(k)6(k - k,) +
3

Z(Zé’ + 1)(Gg(k)6(k =K+ He(k, k')Pf(u)) (51)

=0
with
Ge(k) = CoausdK)(Ve(K) — 1) (52)
HA) = 3 (Fac09Fack) - F2, (900 = ) (53)
and
Fac(K) = Uae(K) VAV (K CoausdK) (54)

We conclude this section with a word of caution when us-
ing the fitting formulas provided here, in the sense that #mge
of validity of the fit has not been tested on other cosmoldgica
volumes. Consequently, we advice that one should limigdfits
k < 2.0hMpc™.

8 MEASURING THE IMPACT WITH SELECTION
FUNCTIONS

This section serves as a toy model for a realistic non-Ganssi-
ror analysis, as it incorporates the non-Gaussian co\Ggiama-
trix measured from N-body simulations with the 2dFGRS selec
tion function (Norberg et al. 2002). We compare the estiohateor
bars onP(k) between the naive, purely diagonal, Gaussian covari-
ance matrix, the féect of the one-dimensional window function as
prescribed by the FKP formalism, the unconvolved non-Gaunss
covariance as measured from our 200 N-body simulationstrend
convolved non-Gaussian mattix

We recall that in a periodic volume, a top hat selection func-
tion makes the observed and underlying covariance matidess
tical. That only occurs in simulated volumes, and in thaeca®
convolution is necessary. Non-periodicity is dealt with dsro-
padding the observed survey, and already results in sonpicgu
between dierent power spectrum bands. The coupling becomes
more important as the selection function departs from a &pamnd
in that case, the best estimator of the observed covariantexis
a convolution of the 6-dimensional covariance over bothtarsc
(k, k"), given by:
Y s Crrue(K”, K”)IW(K — k”)PIW(K’ — k™)

(N?Nc 2, WA(X)W2(x))>

The denominator is straightforward to calculate, while tihener-
ator is a 6-dimensional integral, which must be calculatesllaf
the 6-dimensional coordinates, a task computationallyossjble
to perform. For example, with® cells on the grid, we have to sum
overn® terms for eachk, k’) pair. There are@® such pairs, and each
term takes about lop of computation time. Fon = 100, this
process would take 810?* flop, and current supercomputers are
in the regime of resolving 18 flop per seconds. The above cal-
culation would therefore take about 3000 years to compWfith
the factorization proposed in this work however, we breakro
the computation into smaller pieces and reduce the dimess®m
seven at most.

(55)

6 The code that was used to perform these calculations is meadlatde
on www.cita.utoronto.ca/~jharno/AngularCovariance/, and ad-
ditional explanations can be provided upon request.
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Table 4. List of weightsw(9, ¢) needed for the angular integrals over the
selection function. These can be precomputed to speed uiivelution.
All integrals are in the form of [Eq. 57].

co(6) Sir(6) cog(g)erd¢ sir?(20)eti?
cod(6) sin*(6) sin*(6)e=2¢ sin*(20)et4¢
sir?(20)  sir?(20)e*2¢  sin@)coS(0)et'¢  cosp)sind(h)et?

8.1 Factorization of the 6-dimensional covariance matrix

We break down the true covariance matigk”, k’”) into a prod-
uct of simple functions of the forml,(k”), G,(k”) andP,(u), where
the angular components come exclusively from the Legenalse p
nomials. Againu is the (cosine of the ) angle betwektandk’”’,
and must first be expressed in terms @f,¢”,0”,¢"), follow-
ing [Eq. 14]. The only multipoles that appear in our equations are
¢ =0,2,4, sou is to be expanded at most up to the fourth power.
For a full factorization, the terms including c@$(— ¢”’) must fur-
ther be re-casted in their exponential form with Euler'sniitées.
When computing the convolution, the first term on the right
hand side of [Eq. 51] is spherically symmetric, hence it mhest
convolved with the selection function as:

CLeadk K) = " CoausdK WK = KWK — K2

Kk’

(56)

which is pretty much the FKP prescription, namely that tHecse
tion function is the only cause of mode coupling.

For the other (i.e. non-Gaussian) terms of [Eq. 51], we use th
fact that the only coupling between tk& andk’” vectors comes
from the delta function, which couples solely their radiaipo-
nents. This means that all the angular integrations can dxopr-
puted and stored in memory. For example, the only angulagrdep
dence in theZ = 0 multipole comes from the selection function
itself, hence we can precompute

X(kK) = " IW(k ~ K")Psin@")w(e”. ¢")

0" 4"

(57)

and the convolution is now four dimension smaller. The weigh
functionw(8”, ¢”) is equal to unity for th€, term, and the sim(’)
comes in from the Jacobian in angular integration. For timerot
multipoles, more terms must be precomputed as well, whogghive
functions are summarized in Table 4.

8.2 The 2dFGRS selection function

The 2dFGRS(Colless et al. 2003) is comprised of two major re-
gions, the NGP and the SGP, each of which takes the overatl for
of a fan of 75x 5 degrees, extending from= 0.02 to 022. The
selection function is constructed by first integrating tivinosity
function d®(L)/dL over all the observed luminosity range, which
is both redshift and angle dependent. The results need toube m
tiplied by the redshift completion functidR(d, ¢). The parameters
that enter this calculation®(, « and M, — 5log;gh) are obtained
from the 2dFGRS as1.21, 161 x 102h*Mpc™2 and —19.66 re-
spectively. The two angular mapR(0, ¢) andb; (6, ¢)) required are

7 In this section, we usg instead of cos{) to denoted the (cosine of the)
angle between the two Fourier modes, to avoid confusion &itmdo””,
which corresponds to the angle &'( k’””) with respect to the-axis.

T
2dFGRS Selection Function
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Figure 21. The angle average of the 2dFGRS selection function, cordpare
to an approximate fit provided by Percival et al. (2001). This fiot perfect

as it was obtained with an earlier estimate of the selectiontfon. We also
note that our method fiers in details with that used in Cole et al. (2005)
by the fact that we imposed a cut at redshifzef 0.22, and that we used a
somewhat lower resolution.

publicly available on the 2dFGRS webSitéd is possible to obtain
an even more accurate selection function by taking intoatcthe
redshift dependence of the magnitude sensitivity, howexeido
not need such an accuracy for the current work. Finally, elecs
tion function is normalized such that

f IW(K)Pd®k = 1

To understand the impact of the non-Gaussian Poisson un-
certainty on the measured uncertainty, we test various ey
keeping the 2dFGRS selection function fixed. We follow the-pr
cedure of section 4.2, with an average number density,gf=
1.52 x 10*h3Mpc~3, which corresponds to an early data release
of the 2dFGRS data. The final release contains more objeuds, a
has a density of about = 5.0 x 10-2h*Mpc 3. By comparison,
the Poisson uncertainty corresponding to the number cduthieo
Wiggle-Z survey could be modelled with= 5.0 x 10°h®Mpc~3
for partial data and about@x 10-*h3*Mpc™2 for the final data re-
lease. We thus opt for two more number densities: 1.52 x 104
andn=1.0x 102

(58)

8.3 Reslults

We assign the selection function on to a 256x256x128 gricgrerh
the lower resolution is along the direction perpendicutant the
NGP. We precompute the Fourier transfol(k) and square each
terms. Fig. 21 shows a comparison between the angle avefage o
[W(Kk)[? and a fitting function provided by the 2dFGRS group.

We then define a second set of bins in spherical coordinates,
over which we perform the convolution. For that purpose, wigld
the original volume of the survey into 64 radial bins, 48 pdies
and 32 azimuthal bins. The selection function is assignethen
grid by averaging over the 27 closest cells in the origina.giVe
have included a siflf terms in each integrals over the polar angle,

8 www.mso.anu.edu.#Z2dFGR$
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and ak? in each radial integral to properly account for the Jacobian 10°
matrix in spherical coordinates. ny
Fig. 22 shows the diagonal of the convolved covariance ma- 107 E

trix, divided by P?(K), for the FKP prescription and for the pro-
gressive inclusion of = 0,2 and 4 multipoles. Also overploted is
the non-Gaussian results without the convolution. We satah
ready atk ~ 0.1hMpc‘1, the non-Gaussian fractional error, after
the convolution, deviates from the FKP prescription by adaof
about 3.0, while the unconvolveg}, still traces quite well the FKP
curve. This means that the mode mixing caused by the comolut
with the survey selection function increases significattily vari-
ance of the observed power spectrum. The departure getgfiadhpl

as one progresses towards higkemodes, and, bk ~ 1.0hMpc, 10°4 ;ggﬁsivowed co Gauss \\\ E
the unconvolvedC, departs from the FKP prescription by almost co+c2 Se.

two orders of magnitudes. Interestingly, the convol@dmerges 107g +§f+°2+°‘7 ‘ "*.\—
with the unconvolved counterpartlat- 0.5, where the BAO scale 10" 10°

is usually cut @. Inclusion of higher multipole increases the vari- k[h/Mpc]

ance by a factor of about 2.0. We have overplotted a simpl@gmo

fitting function of the form : Figure 22. Diagonal of the convolved covariance matrix, first with nolmu

tipole, i.e. following FKP prescription (thick dashed Ijnehen with the
2.3 progressive inclusion of th&g (open circles), th€, (solid points) and the

Cri(k) = Cg(k)(l + (0.08/k)37 + (0.08/k)11 +0.0007) (59) C4 multipoles (stars). Also shown is the diagonal of the unobred Cy
. . _— . terms directly measured from N-body simulations (thickdsbhe), and a
which approximates the contribution from the three lowertmu fitting function for the total covariance (thin solid lindjinally, the inclu-
poles. sion of the non-Gaussian Poisson noise is representeddsy dotted lines,
Fig. 23 shows the convolved cross-correlationfioent ma- representing the three number density detailed in Tabla@28FGRS final
trix, where the angle average has been taken after the egioml data release has a number density of the ordex30-2h*Mpc3, which
It is also possible to factorize this matrix, hence we prdceean thus lies between; andns.

Eigenvalue decomposition, following the same iterativecpdure
as in section 7, solving for the first Eigenvector only. Thgei-
value was found to ba = 19.7833, and we used the sum of a
guadratic and a Gaussian function to model the Eigenvector:

1
U%skk) = Aexp[—;logz(k/kp)h

(alog? (k/k,) + blog (k/ko) + c)
(60)

with A = 0.1233 0 = 1.299 a = 0.0049b = 0.0042 c = 0.0052

and Ky, ko) = (0.17,0.008hMpc™ respectively. A comparison of
the fit and the actual vector is presented in Fig. 24. The maise -~
duced cross-correlation ceient matrix is presented in Fig. 25. -~ 03
We observe that the Fourier modes are already more than 50 per -
cent correlated &t = 0.1hMpc™2, a significant enhancement com- 10° -__.".

pared to the unconvolve@, matrix, in which the equivalent cou- -~ 01
pling occurs roughly towardk = 0.22hMpct. This would most
likely have an impact on a non-Gaussian BAO analysis. 107
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Figure 23. Normalized convoluted covariance matrix with all three tiaul
9 DISCUSSION pole.

Generally speaking, the departures from Gaussianity wilsén-

sitive to the survey parameters. The quantitative resuésgmted

here apply only to the 2dFGRS, however similar calculatmmdd of the non-Gaussian features of the density field. Tpeerm is

be carried for other surveys. We have found that even for smode the leading contribution of the enhancement observed imahge

of k ~ 0.1hMpc™?, the non-Gaussian error bars are higher than k = 0.06 - 0.4hMpc™?, but for largetk-modesC, andC, both play
those prescribed by the FKP method by a factor of a few, due to an important role.

mode coupling caused by the convolution of the selectiorc-fun In the absence of a survey selection function, significant
tion. This has to be put in contrast with results from pure N- changes in the covariance matrix do not necessarily trensito
body simulations, which show that the departure from Gamssi  noticeable changes in the BAO constraints. For instancejnas

ity reaches this sort of amplitudes at higtkemodes, as seen from  ing that the BAO mean measurement was performed with a non-
Fig. 22. We also observe that with the 2dFGRS, the non-Gaissi  Gaussian estimator, the propagation of the non-Gaussiamncer to
Poisson noise plays an important role if the number density i the dilation scale produces constraints that are hardtjndisish-
smaller than M1h®Mpc~3, but is not enough to characterize all  able from the naive Gaussian treatment (Takahashi et al)201
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Eigenvector
Fit

Uo (k)

k[h/Mpd

Figure 24.Principal Eigenvector of the convolvézy matrix, compared to a
simple fitting formula. The fractional error of the fittingrfation is at most
13 per cent.
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Figure 25. Normalized convoluted covariance matrix with all three tiaul
pole, reconstructed from a fit of the principal Eigenvector.

the data analyses however, the estimators of the mean aalyusu
Gaussian, while the power spectrum covariance matriceégttar
the calculations are either Gaussian or obtained with mat#-c
logues. As pointed out previously (Ngan et al. 2011), thienegtbrs
constructed in such a way are inconsistent and should bé&ueca
lated to include noise in the measured mean. It was foundthileat
corrected — i.e. consistent — error bars are about 10 pehagmdr.

It is worth mentioning again that the angle integration of
C(k, K, 0) provides an alternative way to extract the covariance ma-
trix of the angle average power spedfk, k'). Although the mean
value of both methods is identical, i.e. unbiased, the sggives
us a better handle on the error on each matrix element, henee p
vides an optimal measurement of their uncertainty. We haoe/s
in this paper that each matrix element receives its domicamiri-
bution from small angles, while larger angles are noistds thus
possible to re-weight the angular integration by taking tiéw in-
formation into account, and obtain more accurate error@r@esach

matrix element, compared to the current bootstrap methsdén-
tioned in the introduction, our next objective in HDP2 is thieve
a similar accuracy with a much lower number of simulationtssT
would revolutionize the field of observational cosmologyresco-
variance matrix could be measured internally, i.e. digettm the
data.

The techniques presented in this paper call for extensions,
as we did not include redshift distortions in our analysitsoA
shot noise will become important when repeating this proced
on haloes, motivated by recent finding that the Fisher inferm
tion in haloes is also departing from Gaussianity (Neyrietlal.
2006). It is straightforward to perform a similar analysighna
guadratic halo model, where the halo density is parameitig/
Shaio(X) = AS(X) + Bo?(X). This involves an extra cross-correlation
between the linear and quadratic term, and leaves some room f
the choice ofA and B, and ultimately, one should work straight
from a halo catalogue. The optimal estimator should alsodsedb
on a model that is cosmology independent, hence one shoniéd co
pute how the fitting functions scale wifb,, w andz

As mentioned earlier, theffiect of the selection function is
enhanced for survey geometries that anedent from top-hats,
and it would be interesting to repeat some of the BAO data-anal
yses that were performed on such surveys, like the 2dFGRS or
Wiggle-Z. The current method also applies to surveys witbgi
ular geometries like those obtained from the Lymaforest (Mc-
Donald & Eisenstein 2007; McQuinn & White 2011), and we are
hoping it will be considered in the elaboration of these fetanaly-
sis pipelines. In addition, the extraction of non-Gaussiaor bars
from two-dimensional angular clustering could also be qanked
with techniques similar to those employed here. We leavar ifuf-
ture work to match our results with predictions from highedey
perturbation theory. We would like to verify that the anguapen-
dence we observe in the covariance matrix is predicted byra co
plete 4-points function analysis, at least in the transdiregime.

The results presented in section 6.4 and the recipe presente
in the one preceeding can find useful applications in the fi¢ld
weak lensing. Convergence maps, for instance, are cotetruc
from a redshift integral over a past line cone filled with dar&tter,
weighted by a geometric kernel. Because of the projectitureaf
this process, the survey maps are sensitive to both largsraat
scales, where non-Gaussianities have been observed inriliere
gence power spectrum (Doré et al. 2009).

The lensing fields are quadratic functions of smoothed tempe
ature fields, and the optimal smoothing window function aejse
not only on the parameter under study, but also on the staflisa-
ture of the sources and lenses (Lu & Pen 2008). Optimal gtiadra
estimators of lensing fields were first obtained under thesSian
assumption (Hu & Okamoto 2002; Zahn & Zaldarriaga 2006y the
from N-body simulations (Lu et al. 2010), where it was fouhdtt
the optimal smoothing window function for dark energy irnes
the first two multipoles of the dark matter power spectrumaciev
ance matrixCo(k, k') andC,(k, k') (see [Eq. 23- 24] in (Lu et al.
2010)), even in absence of survey selection function. Toks te-
veloped in the present paper thus allow one to constructhédiirst
time and from simple fitting functions, optimal non-Gaussésti-
mators of dark energy parameters from 21 cm temperature.maps

10 CONCLUSION

Estimating accurately the non-linear covariance matrithefmat-
ter power spectrum is essential when constraining cosrtalbga-
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rameters including, but not restricted to, the dark energyagon

of statew. So far, many BAO analyses from galaxy surveys were
performed under the assumption that the underlying deffisity

is Gaussian, which yields suboptimalmeasurement of the mean
power spectrum and thus of the BAO dilation scale. In addlijtio
and at least as important, the estimated error bars aredbiase

To estimate unbiased error bars on the dilation scale isla cha
lenging task, but can now be done. In the simple case of geriod
volume, it was shown recently (Ngan et al. 2011) that, finstua-
biased error bar on a suboptimal measurement of the meashiceul
obtained from the knowledge of the underlying covariancérima
Second, if one did measure optimally the mean BAO dilati@iesc
then the optimal measurement of the error requires an dstiaia
theinverseof the power spectrum covariance matrix. This is much
more challenging due to the presence of noise, even wheimdeal
with simulations embedded in periodic volumes, but impsothe
constraining performance by a significant amount.

When estimating the power spectrum and its uncertainty from
data, the calculations are more involving since all obsbrueanti-
ties are actually convolved with the survey selection fiomctThe
covariance matrix is not isotropic, as it depends on thivelan-
gle between two Fourier modes, hence the convolution cammot
simply factored into two radial components. We are left witthal-
lenging six-dimensional integral to perform, which so fastbeen
an unresolved problem.

In this paper, we present a method to perform this convaiutio
for an arbitrary galaxy survey selection function, and thlisws
one to measure unbiased error bars on the matter power pectr
The estimate is still suboptimal, unless one combines als twith
the PKL formalism. From an ensemble of 200 N-body simulatjon
we have measured the angular dependence of the covariatiee of
matter density power spectrum. We have found that on la@esc
there is only a weak dependence, consistent with the Gawsaia
ture of the fields in that regime. On smaller scales, howewer,

have detected a strong signal coming from Fourier modes- sepa

rated by small angles. This comes from the fact that the cexnpl
phases of these modes are similar, hence they tend to corstle fi
We next expanded the covariarték, k', 8) into a multipole series,
and found that only the first three even poles were signifigant
different from the Gaussian calculations. We further decontpose
theseC,(k, k') matrices into diagonal terms and cross-correlation
codficient matrices, from which we extracted the principal Eigen
vectors. This allowed us to break down the underlying ceveré
into a set of Eigenvectors, Eigenvalues plus three diag@mais.
We provided simple fitting formulas for each of these quaetit
and thus enable one to construct a full six-dimensional iawee
matrix with an accuracy at the few per cent level.

Intrinsically, non-Gaussianities introdud& matrix elements
to be measured from N-body simulations, as opposedl tior
Gaussian fields. With the proposed method, the number ofrpara
eters to measure is reduced to a handful, even if the surleg-se
tion function is non-trivial. This factorization is necesg in order
to estimate unbiased non-Gaussian error bars on a regjatgy
survey. We found that in the case of the 2dFGRS selectioriimc
the non-Gaussian fractional variancekat 0.1hMpc™ is larger by
a factor of three compared to the estimate from the FKP ppescr
tion, and by more than an order of magnitudekat 0.4hMpc™t.
With similar technigques, we were able to propagate a few latep
of non-Gaussian Poisson error matrices into the convaliugiod

than 01h®Mpc2 has a large féect on the fractional variance at
scales relevant for BAO analyses and should be incorpomtad
unbiased analysis.

The cross-correlation cfiecient matrix of the convolved
power spectrum shows that the correlation propagates ¢eerar
scales in the convolution process, and should have a largeaat
on BAO analyses for instance. We conclude by emphasizing on
the fact that constraints on cosmological parameters rodafrom
BAO analyses of galaxy surveys are currently significanihsed
and suboptimal, but that both of thedeets can now be dealt with.
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APPENDIX A: LEGENDRE-GAUSS WEIGHTED
SUMMATION

The conversion of the integral into a sum is performed using a
Legendre-Gauss weighted sum (Abbott 2005), in wHicbollo-
cation’ knots, labeledy withk =1, 2,...¢, are placed at the zeros
of the Legendre polynomidP,(u). We choosef = 101, and we
exclude the end points at = +1 in order to isolate the zero-lag
contribution. The weightay are given by:

2
(- pB)(dPro101/du(k))?

This Gaussian quadrature gives an exact representatidre on+t
tegral for polynomials of degree 201 or less, and providesetyp
good fit to most of ouiC(k, k;,6). In the linear regime, the dis-
cretization &ect becomes important, and the number of angles one
can make between the grid cells drops dowk?asn the case were
fewer points are available, we chodse 51, 21, 11 or 5, depending
on the number of available angular bins. Once we have spetifee
knots, then, for each scale combination, we interpolatatiggilar
covariance on to these knots, and then perform the weighted s
As mentioned above, we always treat the zero-lag point aegigr
in order to avoid interpolating its value to the nearest hegirs.
We thus break the summation in two pieces:

Cl =2 Y Pe()Ck, Ky, Wi+ 2rC(K, by, = D)Au(L + (~1))

pEEL

Wik

(A1)

(A2)

The factor of 2 comes from the integral over tigeangle, and\u
is half the distance to the first knot.

APPENDIX B: EIGENVECTOR OF THE POISSON NOISE

This Appendix presents the Eigenvector that best desdtiieason-
Gaussian Poisson noise, as discussed in section 7.1. Wetrest-

estimate the impact on the measured power spectrum. We dhowe selves to the case where the number density is the highest, ev

that with the 2dFGRS selection function, the non-Gaussiais-P
son noise corresponding to a number density significantieto

though similar analyses can be carried for other valuas sifid-
ied in this paper. We present in Fig. B1 the Eigenvectorfitatdng
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Figure B1. Principal Eigenvector of the cross-correlation €méent matrix
associated with the non-Gaussian Poisson noise, compaue best-fitting
formula.
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Figure B2. Fractional error between the original cross-correlatiogffc:
cient matrix associated with the non-Gaussian Poissorenaigl that con-
structed with our best-fitting functions. We have not shota fowestk-
modes since these are very noisy.

with the best-fitting formula provided. We next compare thesaci-
ance matrix constructed from the fitting functions with thigimal,
and present the fractional error in Fig. B2, which shows aeeg
ment at the per cent level. When compared with the predistion
from Cohn (2006), we observe that the overall trends areistams:
first, the Gaussian contribution to the error decreasesagpmibes
smaller scales. Second, densities with lowesee their Gaussian
contribution being reduced in the trans-linear regime, nettbe
non-Gaussian Poisson counting becomes more importantd, Thi
densities with lowen produce larger cross-correlation goeents
between trans-linear scales.
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