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ABSTRACT
We propose a method to estimate non-Gaussian error bars on the matter power spectrum
from galaxy surveys in the presence of non-trivial survey selection functions. The estimators
are often obtained from formalisms like FKP and PKL, which rely on the assumption that
the underlying field is Gaussian. The Monte Carlo method is more accurate but involves the
tedious process of running and cross-correlating a large number of N-body simulations, in
which the survey volume is embedded. From 200 N-body simulations, we extract a non-linear
covariance matrix as a function of two scales and of the anglebetween two Fourier modes.
All the non-Gaussian features of that matrix are then simplyparameterized in terms of a few
fitting functions and Eigenvectors. We furthermore developa fast and accurate strategy that
combines our parameterization with a general galaxy surveyselection function, and incor-
porate non-Gaussian Poisson uncertainty. We describe how to incorporate these two distinct
non-Gaussian contributions into a typical analysis pipeline, and apply our method with the se-
lection function from the 2dFGRS. We find that the observed Fourier modes correlate at much
larger scales than that predicted by both FKP formalism or bypure N-body simulations in a
‘top hat’ selection function. In particular, the observed Fourier modes are already 50 per cent
correlated atk ∼ 0.1hMpc−1, and the non-Gaussian fractional variance on the power spectrum
(σ2

P/P
2(k)) is about a factor of 3.0 larger than the FKP prescription. Atk ∼ 0.4hMpc−1, the

deviations are an order of magnitude.
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1 INTRODUCTION

With new galaxy surveys probing a larger dynamical range of our
Universe, our ability to constrain cosmological parameters is im-
proving considerably. In particular, one of the most important goal
of modern cosmology is to understand the nature of dark energy
(Albrecht et al. 2006), a challenging task since there are currently
no avenues for direct observations. It is however possible to probe
its dynamics via its equation of stateω, which enters in the Fried-
mann equation that governs the expansion of the Universe. Among
different waysω can be measured, the detection of the baryonic
acoustic oscillations (BAO) dilation scale (Eisenstein etal. 2005;
Tegmark et al. 2006; Hütsi 2006; Percival et al. 2007; Blakeet al.
2011) is one of the favourite, both because of the low system-
atic uncertainty and the potentially high statistics one can achieve
with current (Huchra et al. 1990; York et al. 2000; Colless etal.
2003; Drinkwater et al. 2010) and future galaxy surveys (Peterson
et al. 2006; Acquaviva et al. 2008; Schlegel et al. 2009; LSSTSci-
ence Collaborations et al. 2009; Benı́tez et al. 2009; Beaulieu et al.
2010).
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The strength of the BAO technique relies on an accurate and
precise measurement of the matter power spectrum, whose uncer-
tainty propagates on to the dark energy parameters via a Fisher ma-
trix (Tegmark 1997). It is thus of the utmost importance to have
optimal estimators of both the mean and the uncertainty of the
power spectrum to start with. The prescription to constructan es-
timator for the power spectrum of a Gaussian random field, in a
given galaxy survey, was pioneered by Feldmann, Kaiser and Pea-
cock (Feldman et al. 1994) (FKP for short). It states that thesurvey
selection function effectively couples Fourier bands that are other-
wise independent, and that the underlying power should thenbe de-
convolved (Sato et al. 2011). This technique has been used inmany
power spectrum measurement (Feldman et al. 1994; Percival et al.
2001; Cole et al. 2005; Hütsi 2006; Blake et al. 2010). Although it
is fast, the error bars between the bands are correlated, plus it has
the undesired tendency to smear out the underlying power spec-
trum, which can effectively reduce the signal-to-noise ratio in a
BAO measurement. In that sense, the FKP power spectrum is said
to besuboptimal.

The band correlation induced by the FKP prescription can be
removed by an Eigenvector decomposition of the selection func-
tion, following the Pseudo Karhunen-Loève formalism (Vogeley &
Szalay 1996)(PKL). This was used in the analysis of the SDSS data
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(Tegmark et al. 2006) and is the most optimal (i.e. loss-less) esti-
mator for Gaussian random field, as understood from the informa-
tion theory point of view. It is nevertheless a well known fact that
this Gaussian assumption about the field is only valid in the lin-
ear regime, since the non-linear gravitational collapse ofthe den-
sity effectively couples different Fourier modes together (Meiksin
& White 1999; Rimes & Hamilton 2005), and the phases of the
modes are no longer random (Coles & Chiang 2000). Both the
FKP and PKL prescriptions, by their Gaussian treatment, do not
take into account the intrinsic non-linear coupling of the Fourier
modes. It follows from this that for both methods, the measured
power spectrum is suboptimal and the error bars are systematically
biased. Although the bias is usually small, it causes a problem when
estimating derived quantities that need to be measured withper cent
level accuracy.

For instance, the observed BAO signal sits right at the tran-
sition between the linear and the non-linear regime, therefore an
optimal estimator of the power spectrum must incorporate the
non-linear modes. In particular, constraints on dark energy from
BAO measurements require an accurate measurement of the mat-
ter power spectrum covariance matrix. Under the FKP and PKL
formalisms, the covariance matrix is biased as it tends to underes-
timate the uncertainty and the amount of correlation between the
power bands. Alternative ways of estimating the error, i.e.methods
that involve mock catalogues, do model these non-linear dynam-
ics, but it is not clear that the results are precise enough tomeasure
four-points statistics, and we rather rely on accurate N-body simu-
lations.

Even more relevant is the recent realization that an optimal,
i.e. non-Gaussian, estimate of the BAO dilation scale requires a pre-
cise measurement of theinverseof the matrix, which is challeng-
ing due the noisy nature of the forward matrix. It was nevertheless
shown that, by consistency, the error bars on a suboptimal mea-
surement of the power spectrum should be calculated in a manner
that incorporates some noise in the measurement of the mean (Ngan
et al. 2011). Only an optimal measurement of the mean power spec-
trum can be matched with the straightforward (i.e. noise-less) non-
linear covariance matrix, and it was shown in the same paper that
both estimators differ by a few percent.

When constructing an estimator of the covariance matrix that
corresponds to the sensitivity of a particular survey, the convolution
with the survey selection function is one of the most challenging
part. Whereas the convolution of the underlying power spectrum
can be operated with angle averaged quantities, the convolution of
the covariance matrix must be done in 6 dimensions, since theun-
derlying covariance is not isotropic: Fourier modes with smaller an-
gular separations are more correlated than those with larger angles
(Chiang et al. 2002; Bernardeau et al. 2002). The first challenge
is to measure accurately this angular correlation, which isalso
scale dependent. Neither second order perturbation theorynor log-
normal densities have been shown to calculate this quantityaccu-
rately, we must therefore rely on N-body simulations. This requires
a special approach, since a naive pair counting of all Fourier modes
in the four-point function, at a given angle, would take forever to
compute. The second challenge comes from the 6-dimensionalcon-
volution of the covariance matrix with the survey function.This is
a task that current computer clusters cannot solve by brute force, so
we must find a way to use symmetries of the system and reduce the
dimensionality of the integral. The fact is that the underlying co-
variance really depends only on three variables: two scalesand the
relative angles between the two Fourier modes. Moreover, itturns
out, as we describe in section 6, that it is possible to express this

matrix into a set of multipoles, each of which can further be decom-
posed into a product of Eigenvectors. This effectively factorizes the
three dimensions of the covariance, hence the convolution can be
broken down into smaller pieces. By doing so, the non-Gaussian
calculation is within reach, and we present in this paper thefirst at-
tempt at measuring deviations from Gaussian calculations,includ-
ing both Poisson noise and a survey selection function. In short, the
main ideas of this paper can be condensed as follow:

(i) The underlying non-linear covariance matrix of the matter
power spectrum exhibits many non-Gaussian features in the trans-
and non-linear regimes. First, the diagonal elements of theangle-
averaged covariance grow stronger, and correlation acrossdifferent
scales becomes important. Second, Fourier modes with similar (or
identical) magnitudes correlate more if the angle between them is
small.

(ii) It is possible to model all of the aboved mentioned non-
Gaussian aspects with a small number of simple functions.

(iii) With such a parameterization, it is possible, for the first
time, to solve the six-dimensional integral that enters theconvolu-
tion of the covariance of the power spectrum with the galaxy survey
selection function.

Concerning the second point, the parameters that best fit our
measurements are provided in section 7, but these are separately
testable, and could be verified by other groups and in other ways.
These are anyway expected to change when one uses haloes instead
of particles. The third point is, however, a straightforward recipe
that is robust under possible changes of best-fitting parameters, and
provides, assuming that the input parameters are correct, an unbi-
ased measurement of the non-Gaussian uncertainty of the matter
power spectrum.

Our first objective is thus to measure the covariance of the
power spectrum between various scales and angles, and organize
this information into a compact matrix,C(k, k′, θ). We describe how
we solve this problem in a fast way, which is based on a series of
fast Fourier transforms that can be run in parallel on a largenumber
of computers. We find that the angular dependence, at fixed scales
(k , k′), is rather smooth, it agrees with analytical predictions in
the linear regime, but deviates importantly from Gaussianity for
smaller scales. The dependence is somehow similar when the two
scales are identical, up to a delta function for vanishing angles. We
also found that, once projected on to a series of Legendre polyno-
mials, it takes very few multipoles to describe the completeoriginal
function. We perform this transform for all scale combinations and
group the results in terms of multipole moments.

Our second objective is to provide a general method to com-
bine this C(k, k′, θ) with a survey selection function and non-
Gaussian Poisson noise, and hence allow the extraction of non-
Gaussian error bars on the measured power spectrum. We test
our technique on the publicly available 2dFGRS selection func-
tions (Norberg et al. 2002) and find that there is a significant
departure between the Gaussian and non-Gaussian treatment. In
particular, the fractional error of the power spectrum (σ2

P/P
2(k))

at k ∼ 0.1hMpc−1 is about a factor of 3.0 higher in the non-
Gaussian analysis, and the departure reaches an order of magnitude
by k ∼ 0.4hMpc−1. The method proposed here can be also applied
to other kinds of BAO experiments, including intensity mapping
from the emission of the 21 cm line by neutral Hydrogen (Peterson
et al. 2006; Lazio 2008; Schlegel et al. 2009), or Lyman-α forests
surveys (McDonald & Eisenstein 2007; McQuinn & White 2011).
We did not, however, include the effect of redshift distortions, and
focused our efforts on dark matter density fields obtained from sim-
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ulated particles. An improved version of this work would include
both of these effects, however.

As indicated by the title, this paper is the first part of a gen-
eral strategy that aims at constructing unbiased, non-Gaussian esti-
mators of the uncertainty on the matter power spectrum measured
in galaxy surveys. The second part, which we hereafter referto as
HDP2 (in preparation), exploits the fact that the measurement of the
C(k, k′, θ) matrix provides a novel handle at measuringC(k, k′): the
two quantities are related by a straightforward integration overθ.
As shown in a later section of the current paper, it turns out that the
main contributions toC(k, k′) come from small angles, while larger
angles are noise dominated. It is thus possible to perform a noise
weighted integral, which results in a more optimal measurement of
C(k, k′) and of its error bars, compared to direct or bootstrap sam-
pling. We can then extract accurate non-Gaussian error barson the
power spectrum with fewer realizations, which opens the door for
an error estimate directly from the data (i.e. an internal estimate), a
significant step forward in the error analysis of galaxy surveys.

The current paper is organized as follow: in section 2, we
briefly review the FKP method, and describe how to estimate non-
Gaussian error bars in realistic surveys, given a previous knowledge
of C(k, k′, θ). We then lay down the mathematical formalism that
describes how we extract this quantity from simulated density fields
in section 3. Section 4 describes sanity checks, null tests,and our
N-body simulations. We present our measurements ofC(k, k′, θ) in
section 5, and describe the multipole decomposition in section 6. In
section 7, we further simplify the results by extracting theprincipal
Eigenvectors and provide fitting formulas to reconstruct easily the
full covariance matrix. Section 8 contains results of applying our
method for a set of simple selection functions. We finally discuss
some implications and extensions of our methods in section 9, and
conclude in section 10.

2 MATTER POWER SPECTRUM FROM GALAXY
SURVEYS

In this section, we quickly review the general FKP method, which
is commonly used in data analysis (Feldman et al. 1994; Percival
et al. 2001; Blake et al. 2010). We then point out some of the major
flaws of such techniques when measuring the uncertainty, andde-
scribe how non-Gaussian error bars could be estimated in principle.
Before moving on, though, we first lay down the conventions used
throughout the paper. The reader familiar with the FKP method
may skip to section 2.2.

A continuous density fieldδ(x) is related to its Fourier trans-
form δ(k) by

δ(k) =
∫

δ(x)eik·xd3x (1)

wherek is the wave number corresponding to a given Fourier mode.
The power spectrumP(k) of the field is defined as:

〈δ(k)δ∗(k′)〉 = (2π)3P(k)δD(k − k′) (2)

and is related to the mass auto-correlation function by :

ξ(x) =
1

(2π)3

∫

e−ik·xP(k)d3k (3)

In the above expressions, the angle brackets refer to a volume aver-
age in Fourier space, andδD(k) stands for the Dirac delta function.

2.1 The optimal estimator of the power spectrum

The power spectrum of the matter field contains a wealth of infor-
mation about the cosmic history and the principal constituents of
the Universe. Unfortunately, it is not directly detectable, since our
observations are subject to cosmic variance, detection noise, light
to mass bias, redshift distortions and incomplete sky surveys. The
FKP method provides an optimal estimator of the matter power
spectrumP(k) under the assumption that the density field is Gaus-
sian. It is formulated in terms of the survey selection function W(x),
the galaxy number densityn, the dimensions (nx,ny,nz) of the grid
where the Fourier transforms are performed, and the actual number
count per pixeln(x). All the following calculations can be found in
Feldman et al. (1994), and are included here for the sake of com-
pleteness.

The first step is to construct series of weightsw(x) as

w(x) =
1

1+W(x)NcnP0
=

1
1+ n̄P0

(4)

whereNc = nxnynz, n̄ is the mean galaxy density andP0 is a char-
acteristic amplitude of the power spectrum at the scale we want to
measure. Since the latter is not knowna priori, it is usually ob-
tained from a theoretical model, and sometimes updated iteratively.
The selection function is also normalized such that

∑

x W(x) = 1.
The optimal estimator of the power spectrum,Pest(k), is ob-

tained first by re-weighting each pixel by the weights in [Eq.4],
then by subtracting from the result a random catalogue with the
same selection function, weights and number of objectsN. After
taking the expectation value of the results, the 2-points statistics of
the pixel counts becomes

〈n(x)n(x′)〉 = n̄n̄′(1+ ξ(x − x′)) + n̄δD(x − x′) (5)

wheren̄ is the mean density in the patch over which the average is
performed. The Fourier transform is then given by

〈Pest(k)〉 =
|n(k) − NW(k)|2 − N

∑

x W(x)w2(x)
N2Nc

∑

x W2(x)w2(x)
(6)

where denominator is a convenient normalization. This measured
power is aliased by the grid mass assignment scheme, and should
be divided by the appropriate function (Jing 2005).

What this estimator measures is not the underlying power
spectrumP(k), but a convolution with the survey selection func-
tion:

〈Pest(k)〉 =
∑

k′ P(k′)|W(k − k′)|2

Nc
∑

x W2(x)w2(x)
(7)

It ideally needs to be deconvolved, an operation that is not always
possible.

For many survey geometries, the convolution effectively trans-
fer power across different bins which are uncoupled to start with
(Tegmark et al. 2006). As mentioned previously, the PKL prescrip-
tion also assumes that the density field is Gaussian, but rotates into
a basis in which the bins are decoupled. In that sense, the PKLtech-
nique is more optimal than the FKP, unless the selection function is
close to a “top hat”, in which case the induced mode coupling van-
ishes. Both case, however, rely on the fundamental assumption that
the underlying density field is Gaussian, which is known to beinac-
curate in the trans- and non-linear regime, where one still wants an
accurate measure of the power spectrum for a BAO analysis. Ob-
taining accurate error bars is a requirement for optimal analyses,
and we shall examine how these are usually obtained.
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2.2 The FKP covariance matrix

The covariance matrix of the angle averaged power spectrum is a
four point function that contains the information about theband
error bars, and possible correlation between them. As mentioned
earlier, it is required for many cosmological parameter studies. It is
generally obtained from the power spectrum as

C(k, k′) = 〈∆P(k)∆P(k′)〉 (8)

where∆P(k) refers to the fluctuations of the measured values about
the mean, which is ideally obtained from averaging over manyre-
alizations. In a typical galaxy survey, such independent realizations
are obtained by sampling well separated patches of the sky. Be-
cause of the cost of such an operation, the number of patches is
usually very small. The covariance matrix is thus not resolved from
the data, and the error bars are obtained with external techniques,
i.e. from mock catalogues1, or directly from Gaussian statistics (see
HDP2 for a prescription that overcomes this challenge). Fora uni-
form (top-hat) selection function, the Gaussian covariance matrix
is estimated as:

CGauss(k, k′) =
2

N(k)
(P(k) + Pshot)

2δkk′ (9)

wherePshot = 1/n and N(k) is the number of Fourier modes that
enters in the measurement ofP(k). In the ideal scenario of perfect

spherical symmetry and resolution,N(k) = 4πk2∆k
(

L
2π

)3
, with ∆k

being the width of thek-band. The Kronecker delta function en-
sures that there is no correlation between different modes, an inher-
ent property of Gaussian random fields. This equation can easily be
modified to deal with measurements without angle averaging.

The FKP prescription provides a generalization of [Eq. 9] for
the case where the selection function varies across the volume. It is
obtained from [Eq. 6] and given by

CFKP(k, k′) =
2

N(k)N(k′)

∑

k,k′
|PQ(k − k′) + S(k − k′)|2 (10)

where

Q(k) =
∑

x W2(x)w2(x)exp(ikx)
∑

x W2(x)w2(x)
(11)

S(k) =

(

1
nNc

) ∑

x W(x)w2(x)exp(ikx)
∑

x W2(x)w2(x)
(12)

In [Eq. 10], P is taken to be the mean of the power spectrum at
separationk − k′. Because the selection functions are usually quite
compact aboutk = 0, that approximation is reasonable for Gaus-
sian fields. Also, [Eq.9] can be recovered by settingW(x) = 1/Nc.

2.3 Non-Gaussian error bars

As mentioned in the last section, it is necessary to have access
to many realization of the matter field in order to measure a non-
Gaussian covariance matrix of power spectrum. This could inprin-
ciple be done from data across many different patches in the sky, but
even then, we have only one sky to resolve the largest modes, which
would therefore be dominated by cosmic variance. Not to mention
the cost and time involved in measuring many large but discon-
nected volumes. Fortunately, N-body simulations are now accurate
and fast enough to generate large numbers of measurements ofthe

1 We post-pone the discussion on mock catalogues until the next section

matter power spectrum. Since they model the non-linear dynam-
ics of structure growth, the density fields they generate arenon-
Gaussian. The covariance matrix constructed from a high number
of simulations indeed shows a correlation across different scales in
the non-linear regime (Meiksin & White 1999; Rimes & Hamilton
2005; Takahashi et al. 2009; Ngan et al. 2011).

Although much more representative of the underlying covari-
ance, such matrices are hard to incorporate in a data analysis, first
because they are based on a fixed set of cosmological parameters,
but also because the simulated volume is cubic and periodic.Each
survey group typically needs to run at least one N-Body simulation,
and measure the power spectrum with and without the measured
selection function, in order to quantify the bias of their measure-
ment. The complete approach would then be to run hundreds of
these to measure the covariance matrix, and that over a rangeof
cosmological parameters values. This whole procedure is expen-
sive, which explains why it is never done in practice. The alterna-
tive is to use mock galaxy catalogues, obtained, for example, from
log normalization of Gaussian densities, second order perturbation
theory (PT), haloPT, and so on. Unfortunately, the accuracyof such
techniques at modelling the four-point functions and angledepen-
dencies has not been fully quantified.

Another artefact of the simulations is that the number of par-
ticles can be arbitrarily adjusted such as to suppress the Poisson
noise down to a level where it is negligible. This is certainly not
true for many galaxy survey, in which the number density is often
much lower. We measure a non-Gaussian Poisson error by sam-
pling random fields with a selection threshold chosen as to mimic
the number density of a realistic survey, and incorporate the effect
manually in the analysis, as explained in section 8.

To measure non-Gaussian error bars on a realistic survey, the
most accurate procedure would be to convolve the best available
estimator of the covariance matrix with the selection function. Be-
cause the later is generally not spherically symmetric, it is the full
6-dimensional covariance matrix,C(k, k′), that needs to be inte-
grated over. Let us suppose, for a moment, that we successfully
measured that complete non-Gaussian covariance matrix. Itwould
first contain an element for each Fourier modesk (i.e. with no an-
gular averaging), and from [Eq. 7 and 8], we can write:

Cest(k, k′) =

∑

k′′ ,k′′′ 〈∆P(k′′)∆P(k′′′)〉|W(k − k′′)|2|W(k′ − k′′′)|2

(N2Nc
∑

x W2(x)w2(x))2

(13)

where the angled bracket is nothing else but that full covariance
matrixC(k′′, k′′′). We can then simplify the result since the covari-
ance between two Fourier modes depends only on the angleγ be-
tween them, and not on the absolute orientation of the pair inspace.
In other words, we make use of this symmetry argument to write
C(k′′, k′′′) = C(k′′, k′′′, γ) without lost of generality. This angle can
further be expressed in terms of the two angles made byk′′ andk′′′

as

cosγ = cosθ′′cosθ′′′ + sinθ′′sinθ′′′cos(φ′′ − φ′′′) (14)

We show in a later section of this paper that the true covariance
matrix can be decomposed into a sum of factorized terms, eachof
the form F1(k′′)F2(k′′′)G1(θ′′, φ′′)G2(θ′′′, φ′′′). Therefore the dou-
ble convolution of [Eq. 13] can actually be broken into a sum of
smaller pieces, with at most 3-dimensional integrals to perform.
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3 MEASURING THE ANGULAR DEPENDENCE: THE
METHOD

As mentioned above, our first objective is to extract the covariance
matrix of the power spectra from N-Body simulations, as a function
of two scales and one angle:C(k, k′, θ). In this section, we develop
a novel way to obtain covariances and cross-correlations and which
allows us to perform this measurement.

3.1 Cross-correlations from Fourier transforms

We begin by assuming we have measured the power spectrum from
a large number of simulations. We first compute the mean of the
angle averages:̃P(k) ≡ 〈P(k)〉N,Ω and the deviation from the mean
of each mode:

∆P(k) = P(k) − P̃(k) (15)

We then select two scales,ki andkj , that we want to cross-correlate.
We make two identical copies of three-dimensional power spectra
and multiply each one by a radial top hat function corresponding to
the particular scales:

∆Pi(k) ≡ ∆P(k)ui(|k |) (16)

whereui (k) = θ(k−ki)θ(−k+ki+δk) is the product of two Heaviside
functions. Also,δk is the shell thickness, taken to be very small. We
then cross-correlate the subsets and define:

Σi j (∆k) =
1

(2π)3

∫

∆Pi(k)∆Pj(k + ∆k)d3k (17)

We then express both∆Pi, j (k)’s in [Eq. 17] in terms of their mass
auto-correlation functions∆ξi, j (x). We first integrate over exp[ik ·
(x+x′)]d3k and obtain a delta function, which allows us to get rid of
one of the real space integral. After slightly rearranging the terms,
we obtain:

Σi j (∆k) =
∫

∆ξi(x)∆ξ∗j (x)e−i∆k·xd3x (18)

In the above equation,∆ξi can be expressed as:

∆ξi(x) =
1

(2π)3

∫

e−ik·x∆P(k)ui(|k |)d3k

=
1

(2π)3

∫ ki+δk

ki

k2dk
∫

e−ik·x∆P(k)dΩ (19)

Since the shells we select are very thin, we can safely approximate
that the power spectrum is constant over the infinitesimal range,
and thus perform thek integral:

∆ξi(x) =
1

(2π)3
k2

i δk
∫

e−ik i ·x∆Pi(k)dΩ (20)

We repeat the same procedure for the scalej, multiply both auto-
correlation functions together, and Fourier transform theproduct,
following [Eq. 18]. The result is the cross-correlationΣi j (∆k),
which becomes, after performing thex integral over the plane wave:

Σi j (∆k) =
1

(2π)3
k2

i k2
j δ

2k
∫

dΩ
∫

dΩ′ × (21)

∆Pi(k)∆Pj(k′)δD(k′j − k i − ∆k) (22)

The delta function enforces∆k to point fromk i to k′j . This geome-
try allows us to use the cosine law and relate|∆k | to the angleθ it
subtends, as seen in Fig. 1, such that:

θ = cos−1















k2
j + k2

i − |∆k |2

2kjki















(23)

Since many∆k subtend the same angleθ, we can perform an aver-
age over them and compute

Σi j (θ) ≡ 〈Σi j (∆k)〉∆k=∆k (24)

3.2 Normalization

The quantityΣi j (θ) is not exactly equal toC(ki , kj , θ), because there
is a subtle double counting effect which is purely geometrical, and
which needs to be cancelled. To see how this arises, we work
out a very simple scenario, in which the density field is perfectly
isotropic. In that case, we can write∆P(k) = ∆P(k), hence the an-
gular integration in [Eq.20] is straightforward and we get:

∆ξi(x) = ∆ξi(x) =
k2

i

πL
∆Pi(k) j0(ki x) (25)

with j0(x) being the zeroth order spherical Bessel function. We
have also assignedδk = 2π/L to the shell thickness, which cor-
responds to the resolution of a simulation of sideL. Then, [Eq.18]
becomes

Σi j (θ) =

(

kikj

πL

)2

∆P(ki)∆P(kj)F
i j (θ) (26)

where

F i j (θ) =
∫

j0(ki x) j0(kj x) j0(θx)x2dx (27)

The functionF(ki , kj , θ) is independent of the actual power spec-
trum; it is purely a geometrical artefact that corresponds to the
counting of the different combinations ofk i,j that produce a given
∆k. As the former increase, so does the surface of thek-shells,
hence there are more ways to fit∆k. In the case of an exactly
isotropic power spectrum, the results should have no angular de-
pendence. We thus define a normalizationΣi j

N(θ), as the output of
[Eq. 24] with∆P(ki, j ) = 1 everywhere on the shells. The final re-
sults are obtained by dividing off this normalization, which cancels
off the geometrical effect:

C(ki , kj , θ) ≡
Σi j (θ)

Σ
i j
N(θ)

= 〈∆P(ki)∆P(kj)〉 (28)

We stress again that this result is an average over all configurations
satisfyingk j = k i + ∆k.

To summarize, here is a condensed list of the steps taken to
measureC(k, k′, θ):

(i) Measure the mean angle averagedP̃(k) from an ensemble of
simulations,

(ii) Select a combination of shellski, j to cross-correlate,
(iii) For each simulation, computeP(k), duplicate and multiply

each replica by a top hatui, j (k), which effectively sets to zero every
off-shell grid cells,

(iv) SubtractP̃(k) from each cell in the shell,
(v) Fourier transform both grids, complex multiply them, and

Fourier transform back tok-space,
(vi) Loop over the∆k available, bin intoΣ(|∆k |2), and express

the results as a function ofθ,
(vii) Repeat steps (v-vi), but this time assigning the valueof

each cell in the shell to unity, and divideΣ(θ) by this normaliza-
tion. This is a measure ofC(ki , kj , θ) from one simulation,

(viii) Repeat for all simulations, then compute the mean,
(ix) Iterate over steps (ii-viii) for other shell combinations.

To achieve better results, we make use of the fact thatP(−k) =
P(k), hence, following [Eq.17], we can writeΣi j (−∆k) = Σi j (∆k).
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θ

~ki

~kj
~∆k

Figure 1. Geometry of the system. For a fixed pair of shells, the magni-
tudes of the Fourier modeski andkj are fixed, so the angle between them is
directly found from the separation vector∆k. Note that we use interchange-
ably numbers or roman letters to denote individual Fourier modes.

This translates into a theoretical symmetry aboutθ = π/2 in the
angular dependence of the covariance. That property turns out to be
very useful for reducing the numerical noise, since we can measure
the covariance over the full angular range, but fold the results on to
0 < θ < π/2. Also, to avoid interpolating error, we choose to bin in
(∆k)2 before transforming toθ.

3.3 Zero-lag point

It is important to note that for a given realization, the point atθ = 0,
which we refer to as thezero-lagpoint, must be treated with care.
When the two shells are identical, i.e.i = j, the zero-lag point of
each simulation first computes the square of the deviation the mean
P(k), then averages the result over the whole shell. It is equivalent
to calculating the variance over the shell, but using a mean which
is somewhat off from the actual mean onthat shell. That effec-
tively boosts the variance. When we average over all simulations,
the zero-lag points can be written as:

Σii (0) = 〈P2
i (k)〉N,Ω − 〈P(k i)〉2N,Ω (29)

where, in the first term, the angle average and mean over all real-
izations are computedaftersquaring each grid cell. By comparison,
the variance on angle averaged power spectra would be obtained by
performing, in the first term, the angle averaging first, thentaking
the square, then taking the mean.

When the two shells are different, the zero-lag point is now the
average over∆P(k)∆P(k′) on both shells. Since we are no longer
squaring each terms, it now includes negative values, henceis gen-
erally of much smaller amplitude.

4 VALIDATION OF THE METHOD

We describe in this section a series of tests that compare ournumer-
ical results to semi-analytical solutions. We apply our method on a
few simple situations in which we control either the densityfield

or the three-dimensional power spectrum. We first test our recipe
on a power spectrum that is set to the second Legendre polynomial.
The outcome can be compared to semi-analytical calculations and
gives a good grip on the precision we can achieve. We next mea-
sure the angular dependence of the covariance matrix of white noise
densities and present an estimate of the non-Gaussian Poisson er-
ror2. We finally measure the angular cross-correlation from Gaus-
sian random fields in order to better understand departures from
Gaussianity.

4.1 TestingC(k, k′, θ) with a Legendre polynomial

As a first test, we enforce thez-dependence of the power spectrum
to be equal to the second Legendre polynomial, and then compare
our results to semi-analytic predictions. We manually setP(k) = k2

z,
which is thus constant across thex − y plane. The mean and the
deviation from the mean on a shellki are given by〈P(k)〉Ω = k2/3
and∆P(k) = (2/3)k2P2(µ) respectively, wherePℓ(x) is the ℓ-th
Legendre polynomial andµ is the cosine of the inclination angle.
The mass auto-correlation function associated with this power is

∆ξi(x) =
−2k4

i

6πL
j2(ki x) (30)

The angular dependence of the covariance can be calculated semi-
analytically from [Eq. 18] and [Eq. 30]. The angular integration is
straightforward, and we obtain

Σi j (∆k) =
4k4

i k4
j

9πL

∫ ∞

0
j2(ki x) j2(kj x) j0(∆kx)x2dx (31)

We perform thex integral with ki= j = 1.0hMpc−1, repeat
the procedure forΣi j

N(∆k), and obtain a semi-analytical prediction:
C(k, k′, θ) ∼ P2(cosθ), up to numerical noise. This agrees well with
the numerical results produced by our technique, as shown inthe
top part of Fig. 2. We are plotting the angle dependence of theco-
variance matrix, normalized by the angle average of the covariance,
such that the curve represents the actual cross-correlation coeffi-
cient between the Fourier modes. We mention here that in the case
whereki , kj , which we encounter in the following sections, we
normalize to the square root of the product of the corresponding
matrix elements:

r(ki , kj , θ) =
C(ki , kj , θ)

√

C(ki , ki)C(kj , kj )
(32)

In the particular case under study in this section, the Fourier modes
separated by small angles are strongly correlated by construction.

4.2 TestingC(k, k′, θ) with Poisson-sampled random fields

To measure the response of our code to white noise, we produce
a set of 200 random density fields, each with the same comov-
ing volume of 200h−1Mpc. These are then Poisson sampled with
a fixed sensitivity threshold that is chosen such that∼ 8000 peaks
are counted on average. The standard deviation in the measured
P(k) decreases roughly ask−2, expected from the fact that the num-
ber of cells on ak-shell grows ask2.

Because of the random nature of Poisson densities, the vari-
ance on a given shell should be roughly constant across all di-
rections. Moreover, after averaging over many realization, Poisson

2 See Cohn (2006) for a discussion on different types of noise in a cosmo-
logical context.
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Figure 2. (top:) Angular dependence of the covariance of a power spectrum
set to the 2nd Legendre polynomial, calculated here atki= j = 1.0hMpc−1.
The solid line is the semi-analytical prediction. The curveis normalized
to the value of the zero-lag point, such that it represents the actual cross-
correlation coefficient between the Fourier modes. In this case, modes that
point in like-directions are strongly correlated. (middle :) Angular depen-
dence of the power spectrum cross-correlation coefficient measured from
200 Poisson sampled random fields. The error bars are obtained by 500
bootstrap resampling. We have selected twok-shellsi, j that are off by one
grid cell: kj = ki + δk, with δk = 0.0314hMpc−1 and ki ∼ 1.0hMpc−1.
The distribution fori = j is similar in shape, except for the zero-lag point,
which is much larger than any other points, and the plateau that is slightly
higher. The solid line in this figure is the predicted value, which is well
within the error bars. We have reproduced a similar plot for Poisson den-
sities with 8.0 million peaks, which is also flat, and find that the height of
the plateau scales roughly as 1/n3, wheren is the number of Poisson sam-
pled objects. (bottom:) Angular dependence of the power spectrum cross-
correlation coefficient, measured from 200 Gaussian random fields, this
time with kj = ki + 5δk , and againki ∼ 1.0hMpc−1. The theoretical pre-
diction is zero, whereas we measure a constant 6 per cent correlation bias
across all angles. We have verified that this bias is scale independent by
changingki, j .

densities are in principle statistically isotropic. We thus expect the
measured angular dependence of the covariance to be very close
to flat, and, from [Eq.28], we estimate it should plateau at a value
somewhat similar toC(k, k′):

CPoisson(k, k′, µ) ∼ CPoisson(k, k′) + Aδkk′δµ±1 (33)

where the two delta functions ensure that modes with different di-
rections or scales do not couple together. The constantA is much
larger thanCPoisson(k, k′), for reasons explained in section 3.3, but
the precise value is irrelevant to the current analysis. Fig. 3 shows
the cross-correlation coefficient matrix for non-Gaussian Poisson
noise. We observe that the angle-averaged modes are correlated by
more than 30 per cent between scales smaller thank = 1.0hMpc−1.
The reason for this feature is actually independent of cosmology,
even though the matrix has a look very similar to that measured
from simulations3 . The explanation lies in the fact that each of our
Poisson densities do not haveexactlythe same number of objects,

3 It is in fact arguable that such a matrix, constructed from a set of Pois-
son densities, could have better performances at modellingthe ‘true’ non-
Gaussian covariance matrix, compared to the naive Gaussianapproxima-
tion.
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Figure 3. Cross-correlation coefficient matrix, measured from the power
spectra of 200 Poisson sampled random density fields, selected to have 8000
peaks on average. The correlation in highk-modes is purely a counting
artefact, as explained in the text. This represents our estimate of the non-
Gaussian Poisson uncertainty.

hence the asymptotic value ofP(k) is not a perfect match for all
field. This slight scatter in power translates into a correlation be-
tween the highk−modes of agivendensity field. This is in good
agreement with the predictions of Cohn (2006), which calculated
that the Poisson sampling of Gaussian fields induce non-Gaussian
statistics, and that well separated scales can correlate significantly.

We then measure the angular dependence of the covariance for
these 200 Poisson distributions, also atk ∼ 1.0hMpc−1. We obtain
a distribution that is indeed close to flat, and consistent with a uni-
form 10 per cent correlation, as shown in the middle plot of Fig.
2. As before, we have normalized the plot such as to exhibit the
angular cross-correlation. Because the zero-lag point is typically a
few orders of magnitude above the other points, we quote its value
in the text or in the figures’ caption where relevant, and resolve the
structure of the other angles. The mean of the un-normalizeddis-
tribution is 133.3Mpc6h−6, a 10 per cent agreement with our rough
estimate. We have re-binned the distributions on to a set of points
that are optimal for the upcoming angular integration, as described
in section 6.

4.3 TestingC(k, k′, θ) with Gaussian random fields

The next test consists in measuring the angular dependence of the
covariance from of 200 Gaussian random fields. We use 200 power
spectra measured atz = 0.5, obtained from N-Body simulations
(section 5.1), to generate 200 fields. Similarly to the Poisson fields,
we expect the distribution to be overall flat, except for the zero-
lag point. Because we choose not to Poisson sample these Gaus-
sian densities, the randomness should be such that near to perfect
cancellation occurs between the different angles, and the plateau
should be at zero. In the continuous case, the Gaussian covariance
can be expressed as

CGauss(ki , kj , µ) =
2〈P(ki)〉2

N(ki)
δi jδµ,±1 (34)

whereN(k) is the number of Fourier modes in thek-shell. Forki =

kj , the zero-lag point contains perfectly correlated power, so we
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expect it to have a very large value. As explained in section 3.3, we
cannot directly compare its value to 2P2(k)/N(k), since the former
is bin dependent, while the latter is not. In the case wherei , j
however, the zero-lag point should drop down to numerical noise.

The measured angular dependence is presented in the bottom
part of Fig. 2, where we see that the distribution is flat and con-
sistent with 6 per cent correlation. This indicates that ourmethod
suffers from a small systematic bias and detects a small amount of
correlation, in a angle independent manner. We have repeated this
measurement for different scaleski, j and obtained the same bias.
We therefore conclude that any signal which is smaller than this
amount is bias dominated and not well resolved.

5 MEASURING THE ANGULAR DEPENDENCE

In this section, we present our measurements of the angular depen-
dence of the covariance in our 200 simulations. We explore differ-
ent scale combinations and attempt to compare the outcome toex-
pected results whenever possible. In all figures, the error bars were
obtained from 500 bootstrap resampling of our simulations,unless
otherwise specified.

5.1 N-body simulations

Since our Universe is not Gaussian at all scales relevant forBAO or
weak lensing analyses, a robust error analysis should be based on
non-Gaussian statistics, and, as mentioned earlier, N-body simula-
tions are well suited to measure covariance matrices. Our numerical
method is fast enough that, for fixedki andkj , we can compute the
angular dependence of the covariance matrix in about one minute.
The average over 200 realizations can be done in parallel, hence
producing all available combinations takes very little time.

The simulations are produced byCUBEP3M(Merz et al. 2005),
a public N-body code that is bothOPENMPandMPI parallel, which
makes it among the fastest on the market4. We generate 200 Gaus-
sian distributions of 200h−1Mpc per side, each with 2563 particles,
starting atzi = 40, and evolve them untilz = 0.5. The simula-
tions are run on the CITA Sunnyvale cluster, a Beowulf cluster of
200 Dell PE1950 compute nodes, each equipped with 2 quad cores
Intel(R) Xeon(R) E5310 @ 1.60GHz processors. Each node has
access to 4GB of RAM and 2 gigE network interfaces. The power
spectrum of these simulations is shown in Fig. 4, and shows a good
agreement with the non-linear predictions fromCAMB (Lewis et al.
2000), up tok ∼ 0.25hMpc−1. Beyond that scale, the structures are
underestimated due to the resolution limit of the simulations. For
the rest of this paper, we only consider well resolved scales, in oc-
currence those in the rangek ∈ [0.314, 2.34]hMpc−1, which we
organize into 75 linearly spaced bins.

5.2 Results

We present in Fig. 5 and 6 the angular dependence of the covariance
between the power spectrum of various scales. As explained in the
previous section, the distributions are normalized such asto repre-
sent the cross-correlation coefficient between modes separated by
an angleθ. In the first figure, both scales are selected to be identi-
cal, and vary progressively fromk = 0.17hMpc−1 to 2.34hMpc−1.
Modes separated by an angle larger than 30o are less correlated at

4 http://www.cita.utoronto.ca/mediawiki/index.php/CubePM
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Figure 4. (top:) Power spectrum of 200 simulations, produced by
CUBEP3M, compared to CAMB atz = 0.5 (solid line). The error bars
are the 1σ standard deviation on the 200 measuredP(k). We only include
modes withk 6 2.34hMpc−1 in this analysis, as indicated by the arrow
in the figure. (bottom:) Ratio between the simulated and predicted power
spectra.

all scales, and the correlation is even smaller for modes smaller
than 0.5hMpc−1. These latter modes are grouped in larger bins due
to the higher discretization of the shells, and ideally one would like
to run another set of simulation with larger volumes to have abet-
ter resolution on those scales. However, these larger scales have
very little impact on the non-Gaussian analysis we are carrying, we
therefore do not attempt to improve the situation. For highly non-
linear scales, the correlation between modes separated by angles
smaller than 10o increases up to 55 per cent.

In the second figure, one of the two scale is held constant,
at k = 0.61hMpc−1, while the other varies over the same range.
Modes separated by angles larger than 30o are less than 10 per cent
correlated, for all combinations of scales. When the two scales are
of comparable size, the correlation climbs up to values between 15
and 20 per cent for angles smaller than 15o.

This angular behaviour is enlightening, as it shows how the
error between Fourier modes separated only by a small angle tends
to correlate first. Qualitatively, this validates the fact that in non-
Gaussian densities, quasi-parallel Fourier modes are probing essen-
tially the same collapsed structures. When the angle is closer to 90o,
however, one mode could go along a filament and the other across
it, producing only weak correlations. It could thus be possible to
construct a highly clustered density in which we could observe an
anti-correlation at 90o, provided we are not noise dominated.

This coherent behaviour is a clear sign that the non-linear
structures underwent gravitational collapse, and the departure from
Gaussianity and white noise is obvious. Another signature of non-
Gaussianity is that even in the presence of a small offset between
the scales, the small angle correlation has a value higher than those
at larger angles, because of the coupling between those scales. Fig.
6 shows this effect.

5.3 From C(ki , kj , θ) to C(ki , kj )

It is possible to recover the covariance matrix one obtains from
the angle averagedP(k) by performing a weighted sum over the
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Figure 5. Angular dependence of the power spectrum cross-correlation,
measured from of 200 density fields, atki= j = 0.17, 0.46, 0.93 and
2.34hMpc−1. The distribution exhibits a correlation of less than 10 percent
for angles larger than about 30o. For scales smaller than 0.5hMpc−1, the
correlation increases up to 15 per cent for angles smaller than 10o, and to
more than 40 per cent for smaller angle.
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Figure 6. Angular dependence of the power spectrum cross-correlation,
measured from of 200 density fields, atki = 0.61, andkj = 0.14, 0.46, 0.93
and 2.34hMpc−1. The distribution exhibits a correlation of less than 10 per
cent for angles larger than about 30o. For scales of similar sizes, the corre-
lation increases up to 15− 20 per cent for angles smaller than 15o.

angular covariance5. Another test of the accuracy of our method is
thus to compare theC(ki , kj) measured in both ways. This is by far
the least convenient way of measuring this matrix, and we perform
this check solely for verification purposes.

We perform this weighted sum and constructC(ki , kj ), then
compute a similar matrix from our 200 angle averaged power spec-

5 The weights here are simply the number of contribution that enter each
angular bin, divided by the square of the total number of cells on thek-shell.
In other words, because the angular covariance is an averageover many
pairs of cells, that average must first be undone, then the different angles
are summed up, and we finally divide by the total number of contributions.
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Figure 7. Cross-correlation coefficient matrix, as measured from integrat-
ing the angular covariance. Each matrix elementi, j was obtained from a
reweighted sum overC(ki , kj , θ). This is consistent with matrices previously
measured in the literature (Rimes & Hamilton 2005; Takahashi et al. 2009;
Ngan et al. 2011)

tra. We present in Fig. 7 the cross-correlation coefficient matrix (see
[Eq. 32]) obtained in the first way, and show the fractional error be-
tween both methods in Fig. 8. We observe that they agree at thefew
percent level, so long as we are in the non-linear regime. At very
low k-modes, however, many matrix elements are noisy due to the
discretization of the shell; the (∆k, θ) mapping in this coarse grid
environment becomes unreliable, and the re-weighting hardto do
correctly. This results in high fractional errors, but at the same time,
this region is still in the regime where the analytic Gaussian predic-
tion is valid. In addition, this paper attempts to solve the bias caused
by the non-Gaussianities that lie in the trans-linear and non-linear
regime, in which discretization effects are much smaller. Finally,
we recall that these matrix elements have very little impacton most
parameter studies since such scales contain almost no Fisher infor-
mation (Rimes & Hamilton 2005; Ngan et al. 2011).

6 MULTIPOLE DECOMPOSITION

As shown in last section, we have extracted the power spectrum co-
variance matrixC(ki , kj , θ), cross-correlating the 75 different scales
selected. Since the final objective is to incorporate this massive ob-
ject into generic data analysis pipelines, it must be somehow sim-
plified or made more compact. A quick glance at the figures of sec-
tion 5 reveals that the angular dependence of the covariancecan be
decomposed into a series of Legendre polynomials, in which only
a few multipoles will bear a significant contribution. This allows us
to rank the multipoles by importance and to keep only the domi-
nant ones. These results are further simplified in section 7,where
we provide fitting formulas to reconstructC(ki , kj , θ).

In this section, we describe how we perform this spherical har-
monic decomposition, then we test our method on the control sam-
ples described in section 4, and we finally measure theCℓ(k, k′)
from the simulations.
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Figure 8. Fractional error between the covariance matrices obtainedwith
the two methods. We have suppressed the largest scales, which are noisy due
to low statistics, and present the per cent level agreement at smaller scales.
There is a systematic positive bias of about 1.0 per cent in the calculation
obtained from the angular integration, which was detected in the Gaussian
random field test. The 6.0 per cent correlation that was measured has an
even smaller impact after the addition of the zero-lag term.

6.1 From C(ki , kj , θ) to Cℓ(ki , kj )

Here we lay down the mathematical relation betweenC(ki , kj , θ)
and Cℓ(ki , kj ). Let us first recall that the spherical harmonics
Yℓm(θ, φ) can serve to project any functionF(θ, φ) on to a set of
aℓm as:

aℓm =
∫

Yℓm(θ, φ)F(θ, φ)dΩ (35)

We substituteF(Ω) → ∆Pi(k) = ∆Pi(k,Ω), which causes the coef-
ficients to be scale dependent, i.e.aℓm→ aℓm(k). The angular power
spectrum at a given angular sizeθ ∼ 1/ℓ is defined as

Cℓ(ki , kj) ≡
1

2ℓ + 1

ℓ
∑

m=−ℓ

|aℓm(ki)a∗ℓm(kj )| (36)

Combining both equations, and writingCi j
ℓ
≡ Cℓ(ki , kj ) to clarify

the notation, we get

Ci j
ℓ
=

1
2ℓ + 1

ℓ
∑

m=−ℓ

∫

Yℓm∗(Ω′)Yℓm(Ω)×

∆P(ki ,Ω)∆P∗(kj ,Ω
′)dΩdΩ′ (37)

We use the completion rule on spherical harmonics to performthe
sum:
ℓ

∑

m=−ℓ
Yℓm(Ω)Yℓm(Ω′) =

2ℓ + 1
4π

Pℓ(cosγ) (38)

whereγ is the angle between theΩ andΩ′ directions, and where
Pℓ(x) are the Legendre polynomials of degreeℓ. We then write

Ci j
ℓ
=

1
4π

∫

∆P(ki ,Ω)∆P∗(kj ,Ω
′)Pℓ(cosγ)dΩdΩ′ (39)

Since we know thatk i + ∆k = k j , we make a change of variable
and rotate the prime coordinate system such thatk always points
towards thez-axis. In this new frame, we havedΩ′′ = dcosθ′′dφ′′,
whereθ′′ is the angle subtended by∆k. θ′′ thus corresponds to the
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Figure 9. (top :) Angular power of the cross-correlation obtained from 200
Poisson densities, atki∼ j ∼ 1.0hMpc−1, with an offset of one grid cell be-
tween the two scales, corresponding toδk = 0.0314hMpc−1. The power at
ℓ , 0 is consistent with zero, as expected from [Eq. 42]. We recall that the
angular dependence of the covariance from Poisson densities is very weak,
hence it projects almost exclusively on theℓ = 0 term. (bottom:) Gaussian
equivalent atki ∼ 1.0hMpc−1, andkj = ki + 5δk. The analytical prediction
is zero at all multipole, while we measure aC0 term of about 80.5h−6Mpc6.
This is caused by the 6 percent bias we observed in Fig. 2.

angle between the two Fourier modesk andk′. It is also equal toγ
in [Eq. 38]. We perform the ‘unprime’ integral first, which gives

Ci j
ℓ
=

1
4π

∫

Pℓ(cosγ)
∫

∆Pi(k)∆Pj(k + ∆k)dΩdΩ′′ (40)

The inner integral isC(ki , kj , γ), we renameγ→ θ and obtain

Ci j
ℓ
=

∫

Pℓ(cosθ)C(ki , kj , θ)dΩ (41)

In practice we are dealing with a discretized grid, hence we
must convert the integral of [Eq.41] into a sum. To minimize the
error, we use a Legendre-Gauss weighted sum, the details of which
can be found in the Appendix. In order to validate our method,we
designed a few tests that are explained in the following sections.

6.2 TestingCℓ with a Legendre polynomial, with Poisson and
Gaussian distributions

We start our tests by measuring theCℓ(ki , kj) from the angular de-
pendence of the covariance of power spectra, which is explicitly set
to the second Legendre polynomial on the selectedk-shells, as de-
scribed in section 4.1. We expect the projection to produce adelta
function atℓ = 2, up to numerical precision, since the Legendre
polynomials are mutually orthogonal. We observe from this simple
test a sharp peak atℓ = 2, which is about two orders of magnitude
higher than any other points.

We next measure theCℓ from the covariance matrix of Pois-
son densities, whose angular dependence, we recall, is close to flat
(see section 4.2), except for the zero-lag point when the twoshells
are identical. From the orthogonality of the Legendre polynomi-
als, a flat distribution is projected exclusively on the firstmultipole,
we thus expectCPoisson

ℓ
(k , k′) to peak atℓ = 0, and to vanish

otherwise. Moreover, we expect theCPoisson
ℓ

(k = k′) to exhibit, in
addition, a vertical shift caused by the integration over the zero-lag
point. The analytical expression can be obtained from [Eq. 33,41].
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The azimuthal integration gives a factor of 2π, theµ delta function
gets rid of the last integral, and we get:

CPoisson
ℓ (k, k′) = 2πCPoisson

2
2ℓ+1δℓ0 , k , k′

= 2πCPoisson
2

2ℓ+1δℓ0 + 4πAδkk′ , k = k′ (42)

The only scale dependence comes from the surface of thek-shell,
and drops ask−2, as explained in section 4.2.

In the k , k′ case, we find that in the non-linear regime, the
ℓ = 0 point is at least two orders of magnitude above the other even
ℓ, and 18 orders above the odd multipoles. The results are presented
in the top part of Fig. 9 forki∼ j ∼ 1.0hMpc−1. The error bars are
obtained from a bootstrap resampling. Whenk = k′, we find that
the zero-lag point effectively shifts the whole distribution upwards
by an amount equivalent to 4πCPoisson(k, k, 0).

Finally, we compare theCℓ distribution measured from Gaus-
sian fields to the analytical prediction, obtained from [Eq.41,34]:

CGauss
ℓ (k, k′) = 2π

2〈P(k)〉2

N(k)
(1+ (−1)ℓ)δkk′ (43)

We measureCGauss
ℓ

from the covariance matrix of 200 Gaus-
sian random fields, as outlined in section 4.3. We show the results
in the bottom part of Fig. 9 for the case where there is a slightoffset
between the two scales. Our results are consistent with zerofor all
multipoles exceptℓ = 0, which receives an undesired contribution
from the constant 6 per cent bias described in section 4.3 andob-
served in Fig. 2. It turns out that thisC0 contribution is very small
(i.e. less than one per cent) compared to the values obtainedfrom
simulated density fields, hence we do not attempt to correct for it.
In the case where the two shells are identical, we observe similar
results, up to an upward shift caused by the zero-lag point, which
propagates to all multipoles.

6.3 MeasuringCℓ(ki , kj ) from simulations

We present in this section the multipole decomposition of the
C(ki , kj , θ) matrix measured from our simulations. We show in
Fig. 10 the first few non-vanishing multipole moments (i.e.ℓ =
0,2, 4,6), in the case where both scales are exactly equal. All the
error bars in this section were obtained from bootstrap resampling.
We observe that higher multipoles become closer to the Gaussian
prediction given by [Eq. 43], and in fact only the first three dif-
fer enough to have a non-negligible impact. As we progress deeper
in the non-linear regime, we expect to encounter a mixture ofthe
following two effects: an increase in the number ofℓ required to
specify theCℓ distribution, or in the departure from the Gaussian
predictions of a given multipole. As seen from Fig. 10, the depar-
ture between the multipoles and the Gaussian power increases for
higherk-modes, an effect prominent in the first multipole. The de-
parture becomes more modest for higher multipoles, and eventually
we cannot distinguish between Gaussian and non-Gaussian. This
suggests that the non-Gaussianities are encapsulated in the second
of the effect above mentioned.

We then show in Fig. 11 the same multipole moments, this
time for the case where one scale is fixed atk = 0.61hMpc−1, while
the other is allowed to vary. Once again, higher multipoles have
smaller amplitudes, and approach the null Gaussian prediction. On
the diagonal, the relative difference between the multipoles in the
linear regime becomes smaller and converge to the predictedvalue,
as expected. In addition, in the linear regime, the angular power of
the off-diagonal elements (i.e.ki , kj ) is one to two orders of mag-
nitude smaller than the diagonal counter part. As we progress to the
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Figure 10. Angular power of 200 densities, whereki= j . The dashed line
is the Gaussian prediction, obtained from [Eq. 43]. From this figure, we
observe that the diagonals of multipoles higher thanℓ = 4 converge to the
Gaussian predictions.
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Figure 11. Same as Fig. 10, but withki = 0.61hMpc−1 being held. The
Gaussian prediction is zero in this case. The measurements are normalized
by the square root of their diagonal contributions, such as to show the rela-
tive importance of each multipole. Asℓ increases, the off-diagonal contribu-
tion becomes smaller, even for combinations of scales similar in amplitudes.
The fourth point starting from the left is identical to unityfor all multipoles,
as it corresponds to a diagonal matrix element.

non-linear regime however, the off-diagonal elements decrease less
rapidly.

6.4 Cℓ(k, k′) matrices

In this section, we organize the results intoCℓ(k, k′), and look for
the multipole beyond which the off-diagonal elements become neg-
ligible. The whole purpose behind this is to model the full covari-
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Figure 12.C0 matrix, normalized such that the diagonal elements are equal
to unity. This matrix is completely equivalent to the cross-correlation coef-
ficient matrix of angle averagedP(k). It represents the correlation between
different scales, and shows that scales smaller thank ∼ 1.0hMpc−1 are cor-
related by more than 80 per cent.

ance matrix as:

C(k, k′, θ) =
1
4π

∞
∑

ℓ=0

(2ℓ + 1)Cℓ(k, k
′)Pℓ(cosθ) (44)

where the lowerℓ terms are measured from our simulations, and the
others obtained from the Gaussian analytical prediction ([Eq.43]).

In the figures of this section, we present these ‘Cℓ ’ matrices,
normalized to unity on the diagonal. These are thus in some sense
equivalent to cross-correlation coefficient matrices. Fig. 12 presents
the normalizedC0 matrix, which shows a structure similar to that
of Fig. 7. The resemblance is not surprising, sinceC0 = 4πC(k, k′).
This matrix thus contains the information about the error bars of
angle averaged power spectra, as well as their correlation.

By looking at the fractional error between theC0 matrix and
the actual covariance matrix of angle averaged power spectra, we
find that our method provides a very good agreement in the trans-
and non-linear regimes, down to the few percent level (see Fig. 13).
We do not show the largest scales, in which our method is more
noisy, for reasons already explained. We recall that an extra contri-
bution toC0(k, k′), not included here, comes from the non-Gaussian
Poisson uncertainty, as discussed in section 4.2, and needsto be
added in the final analysis.

We now present the next few multipole matrices, and find
that beyondℓ = 4, very little information is contained in the off-
diagonal elements. Fig. 14 shows theC2 matrix, again normalized
to the diagonal for visual purposes. We observe that the smallest
scales are correlated up to 60 per cent.

Fig. 15 shows that the correlation in theC4 matrix is still of the
order 50 per cent for a good portion of the non-linear regime.The
new feature here is that the strength of the correlation of strongly
non-linear modes among themselves starts to decrease as we move
away from the diagonal. Fig. 16 shows thatC6 is mostly diago-
nal. As we progress through higher multipole moments, the off-
diagonals become even dimmer, hence do not contain significant
amount of new information. From this perspective, a multipole ex-
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Figure 13.Fractional error between theC0 matrix and that obtained directly
from the angle averagedP(k). We do not show the largest scales, which are
noisy due to low statistics and grid discretization. We havealso divided the
C0 matrix by (4π) for the two objects to match exactly. We recover the 1.0
per cent bias that is seen in Fig. 8.
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Figure 14.C2 matrix, normalized such that the diagonal elements are equal
to unity. The off-diagonal elements are still correlated at least at 40 per cent
for scales smaller thank = 1.0hMpc−1.

pansion up toℓ = 4 is as far as one needs to push in order to model
correctly the non-Gaussian features on the off-diagonal elements.

Following [Eq.44], we thus propose to reconstruct the full
C(k, k′, θ) from a combination of a) fully non-linearCℓ(k, k′) ma-
trices (for ℓ 6 4), presented above, b) analytical terms given by
[Eq. 43] (which we scale up by 30 per cent as mentioned in sec-
tion 6.3), and c) non-Gaussian Poisson error, which dependssolely
on the number density of the sampled fields. In the next section,
we decompose and simplify theseCℓ matrices into a handfull of
fitting functions, and show how one can easily reconstruct the full
C(k, k′, θ) at the per cent level precision.

We next present in Fig. 17 the ratio of the diagonal of these
matrices to the Gaussian prediction. We observe that all of them are
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Figure 15.C4 matrix, normalized such that the diagonal elements are equal
to unity. The off-diagonal elements close to the diagonal are correlated at
the 30 per cent level in the non-linear regime.
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Figure 16.C6 matrix, normalized such that the diagonal elements are equal
to unity. We observe that the matrix is mostly diagonal, and thus decide to
treatC6 and all higher multipoles as purely Gaussian.

consistent with the prediction in the linear regime. As we progress
towards the non-linear regime, the largest departure comesfrom
the C0 matrix, by a factor of about 40 neark = 1.0hMpc−1. We
observe a turn over at smaller scales, which is caused by our res-
olution limit. We opted not to model it in our fitting formula.C2

andC4 mildly break away from Gaussianity by factors of 4 and 2
at the same scale. All the higherℓ’s are consistent with Gaussian
statistics. Over-plotted on the figure are fitting formulas,which are
summarized in Table 1.

7 FACTORIZATION OF THE Cℓ MATRICES

In this section, we simplify even further our results with anEigen-
value decomposition of the normalizedCℓ(k, k′) matrices, as shown

Table 1.Fitting formulas for the ratio between the diagonals of theCℓ(k, k′)
and the Gaussian prediction. For allℓ’s, the function is modelled byV(x) =
1.0+ (x/α)β .

ℓ α β

0 0.2095 1.9980

2 0.5481 0.7224

4 1.6025 1.0674
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Figure 17. Ratio of the diagonal elements of a fewCℓ matrices, compared
to the Gaussian prediction. The error bars were obtained from bootstrap
resampling. Over-plotted are the fitting functions summarized in Table 1.

in the figures of section 6.4. We perform an iterative processto fac-
torize each matrix into a purely diagonal component and a sym-
metric, relatively smooth off-diagonal part. The later can be further
decomposed into a small set of EigenvectorsUλ(k), correspond-
ing to the largest Eigenvaluesλ. These are then fitted with simple
formulas. Combined with Gaussian predictions and fitting formu-
las for the diagonal, one can fully reconstruct each of theCℓ(k, k′)
matrix, and thus recoverC(k, k′, θ) as well.

We start off the iteration by assigning the identity matrix to the
diagonal component, which we subtract from the original matrix.
We then extract from the remainder the principal Eigenvectors and
recompose a new matrix as

rℓ(k, k
′) ≡

Cℓ(k, k′)√
Cℓ(k, k)Cℓ(k′, k′)

= δkk′ +
∑

λ

λUλ(k)Uλ(k
′) (45)

For the next iterations, we model the diagonal asδkk′ −
∑

λ λU
2
λ(k),

and decompose the remainder once again. We iterate until there-
sults converge, which takes about 4 steps. We vary the numberof
Eigenvalues in our iterations, and keep the minimal number for
which the reconstruction converges. In the end, therℓ(k, k′) matrix
is modelled as:

rℓ(k, k
′) = δkk′

[

1− λU2
λ(k)

]

+
∑

λ

λUλ(k)Uλ(k
′) (46)

We show in Fig. 18 the fractional error between the original matrix
and the factorized one. The factorization of theC0 matrix with one
Eigenvector reproduces the original matrix at the few percent level.
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Figure 18. Fractional error between the originalC0 matrix and that pro-
duced with the principal Eigenvector. We do not plot the largest scales,
which are noisy due to low statistics and grid discretization.

The same procedure is also applied for the higher multipoles, in
which we have included the first four Eigenmodes, and we find
that the fractional error between the reconstructed and theoriginal
matrices are also of the order of a few per cent.

We next fit these Eigenvectors with simple functions: for all

ℓ’s, the first Eigenvector is parameterized asU(k) = α
(

β

k + γ
)−δ

,
and all the other vectors asU(k) = αkβsin(γkδ). The values of
(α, β, γ, δ) for the lowest threeℓ’s are presented in Table 2. We re-
quire that all these formulas vanish ask → 0, since theCℓ matri-
ces become diagonal in the linear regime. The Eigenvectors of the
C4 matrix are presented in Fig. 20; over-plotted are the fittingfor-
mulas. The pixel-by-pixel agreement between the original matrices
and those obtained from the fitted formulas is within less than 10
per cent fork > 0.5.

Larger scales fluctuate much more as they are less accu-
rately measured, hence the pixel-by-pixel agreement is notex-
pected there. In addition, the matrices withℓ > 6 are much harder
to express with a small set of Eigenvectors, since the Eigenvalues
are not decreasing fast enough. In any case, the first three harmon-
ics we provide here contain most likely all the information one will
ever use in realistic surveys and forecasts.

7.1 Non-Gaussian Poisson noise

The non-Gaussian Poisson uncertainty, whose constructionwas
presented in section 4.2, can conveniently be incorporatedin an
analysis by finding the principal Eigenvalue and Eigenvector of
CPoisson

0 (k, k′). Higher multipoles are not relevant as the angular dis-
tribution is flat, as shown in the middle plot of Fig. 2. We testthree
number densities, corresponding ton = 5.0× 10−5,1.52× 10−4 and
1.0× 10−2h3Mpc−3. In all cases, we decompose the covariance ma-
trix into a diagonal component and a cross-correlation coefficient
matrix, find the matrix’s principal Eigenvalue and Eigenvector, then

fit the latter with:UPoisson
f it (k) = α

(

β

k + γ
)−δ

. The diagonal is also fit-
ted with a simple power law of the form

VPoisson(k) ≡ CPoisson(k, k)

CPoisson
Gauss (k, k)

= eǫkσ (47)
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Figure 19. Fractional error between the originalC0 matrix and that pro-
duced with the fitting formulas. We do not show the largest scales, which
are noisy due to low statistics. The per cent level bias that was seen previ-
ously in Fig. 8 is no longer obvious, as the main source of error now comes
from fitting the Eigenvector.
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Figure 20. Four principal Eigenvectors of the normalizedC4 matrix (solid
lines), and corresponding fitting formulas (dotted lines).

where CPoisson
Gauss (k, k) ≡ P2

Poisson(k)

N(k) . The best-fitting parameters are
summarized in Table 3, and the performance of the Eigenvector
fit can be found in the Appendix.

7.2 Recipe

Here we summarize our method to generate accurate non-Gaussian
covariance matrices. The fullC(k, k′, θ) matrix is then given by [Eq.
44], where theℓ 6 4 terms are obtained from the fitting functions,
and the higher multipole moments are obtained directly from[Eq.
43]. The sum over these Gaussian terms can be evaluated analyti-
cally as
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Table 2. Fitting parameters for the Eigenvectors of theCℓ matrices, with
their corresponding Eigenvalues. For allℓ’s, the first Eigenvector is pa-

rameterized asU(k) = α
(

β

k + γ
)−δ

, and all the other vectors asU(k) =

αkβsin(γkδ). These parameters were obtained from dark matter N-body sim-
ulations, but the method is general, and a different prescription of galaxy
population may result in slightly different values.

ℓ λ α β γ δ

0 61.9058 0.0501 0.0207 0.6614 2.3045

2 35.7400 0.273 0.8266 1.962 0.816
4.4144 0.15772 2.4207 0.79153 0.032207
1.7198 0.14426 4.0613 0.76611 -0.26272
0.9997 0.14414 5.422 0.84826 0.31324

4 22.0881 0.060399 0.10344 0.64008 2.2584
4.5984 0.1553 2.3370 0.9307 -0.1154
2.2025 0.1569 3.6937 0.92304 0.04006
1.4062 0.15233 5.1617 0.8899 -0.14503

Table 3. Fitting parameters for the diagonal of theCPoisson
0 (k, k′) matrix,

and for the principal Eigenvector of the cross-correlationcoefficient matrix.
For all three number densities (i.e.n1,2,3 = 5.0 × 10−5, 1.52 × 10−4 and
1.0× 10−2 respectively), the Eigenvector is parameterized asUPoisson

f it (k) =

α
(

β

k + γ
)−δ

, and the ratio of the diagonal to the Gaussian prediction is fit-

ted with VPoisson(k) = eǫkσ. Top to bottom rows correspond to increasing
density.

λ α β γ δ ǫ σ

52.02 1.0193 0.0947 2.1021 2.5861 2.6936 2.1347

45.09 0.9987 0.2034 2.1553 2.3407 1.6533 2.1965

24.41 0.2966 3.3736 0.6099 0.6255 -0.4321 2.0347

1
2

∞
∑

ℓ=6

(2ℓ + 1)(1+ (−1)ℓ)Pℓ(µ) = δD(1+ µ) + δD(1− µ)−

1− 5P2(µ) − 9P4(µ) (48)

For the non-Gaussian terms, we proceed as follow: each of the
normalizedCℓ(k, k′) can be constructed from the first set of fit func-
tions Uλ(k) provided in Table 2, and following [Eq. 46]. The ‘un-
normalized’Cℓ(k, k′) terms are then constructed by inverting [Eq.
32], where the diagonal elements are obtained from the product of
theVℓ(k), also summarized in Table 2. The Gaussian prediction is
obtained from [Eq. 43]. In other words:

Cℓ(k, k
′) =

(

δkk′

(

1−
∑

λ

λU2
λ,ℓ(k)

)

+
∑

λ

λUλ,ℓ(k)Uλ,ℓ(k
′)
)

×

√

Vℓ(k)Vℓ(k′)CGauss
ℓ

(k)CGauss
ℓ

(k′) (49)

The complete covariance matrix is given by:

C(k, k′, µ) =
1
4π

3
∑

ℓ=0

(2ℓ + 1)Cℓ(k, k
′)Pℓ(µ)+

2P(k)2

N(k)

(

δD(1+ µ) + δD(1− µ) − 1− 5P2(µ) − 9P4(µ)
)

(50)

with µ = cos(θ). This can be written in a more compact form as

C(k, k′, µ) = CGauss(k)δ(k − k′) +
3

∑

ℓ=0

(2ℓ + 1)
(

Gℓ(k)δ(k− k′) + Hℓ(k, k
′)Pℓ(µ)

)

(51)

with

Gℓ(k) = CGauss(k)(Vℓ(k) − 1) (52)

Hℓ(k) =
∑

λ

(

Fλ,ℓ(k)Fλ,ℓ(k′) − F2
λ,ℓ(k)δ(k− k′)

)

(53)

and

Fλ,ℓ(k) = Uλ,ℓ(k)
√

λVℓ(k)CGauss(k) (54)

We conclude this section with a word of caution when us-
ing the fitting formulas provided here, in the sense that the range
of validity of the fit has not been tested on other cosmological
volumes. Consequently, we advice that one should limits itself to
k 6 2.0hMpc−1.

8 MEASURING THE IMPACT WITH SELECTION
FUNCTIONS

This section serves as a toy model for a realistic non-Gaussian er-
ror analysis, as it incorporates the non-Gaussian covariance ma-
trix measured from N-body simulations with the 2dFGRS selec-
tion function (Norberg et al. 2002). We compare the estimated error
bars onP(k) between the naive, purely diagonal, Gaussian covari-
ance matrix, the effect of the one-dimensional window function as
prescribed by the FKP formalism, the unconvolved non-Gaussian
covariance as measured from our 200 N-body simulations, andthe
convolved non-Gaussian matrix6.

We recall that in a periodic volume, a top hat selection func-
tion makes the observed and underlying covariance matricesiden-
tical. That only occurs in simulated volumes, and in that case, no
convolution is necessary. Non-periodicity is dealt with byzero-
padding the observed survey, and already results in some coupling
between different power spectrum bands. The coupling becomes
more important as the selection function departs from a top hat, and
in that case, the best estimator of the observed covariance matrix is
a convolution of the 6-dimensional covariance over both vectors
(k, k′), given by:

Cobs(k, k′) =

∑

k′′ ,k′′′ Ctrue(k′′, k′′′)|W(k − k′′)|2|W(k′ − k′′′)|2

(N2Nc
∑

x W2(x)w2(x))2
(55)

The denominator is straightforward to calculate, while thenumer-
ator is a 6-dimensional integral, which must be calculated at all of
the 6-dimensional coordinates, a task computationally impossible
to perform. For example, withn3 cells on the grid, we have to sum
overn6 terms for each (k, k′) pair. There aren6 such pairs, and each
term takes about 3flop of computation time. Forn = 100, this
process would take 3∗ 1024 flop, and current supercomputers are
in the regime of resolving 1012 flop per seconds. The above cal-
culation would therefore take about 3000 years to complete.With
the factorization proposed in this work however, we break down
the computation into smaller pieces and reduce the dimensions to
seven at most.

6 The code that was used to perform these calculations is made available
on www.cita.utoronto.ca/∼jharno/AngularCovariance/, and ad-
ditional explanations can be provided upon request.
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Table 4. List of weightsw(θ, φ) needed for the angular integrals over the
selection function. These can be precomputed to speed up theconvolution.
All integrals are in the form of [Eq. 57].

cos2(θ) sin2(θ) cos2(θ)e±2iφ sin2(2θ)e±iφ

cos4(θ) sin4(θ) sin4(θ)e±2iφ sin4(2θ)e±4iφ

sin2(2θ) sin2(2θ)e±2iφ sin(θ)cos3(θ)e±iφ cos(θ)sin3(θ)e±iφ

8.1 Factorization of the 6-dimensional covariance matrix

We break down the true covariance matrixC(k′′, k′′′) into a prod-
uct of simple functions of the formHℓ(k′′), Gℓ(k′′) andPℓ(µ), where
the angular components come exclusively from the Legendre poly-
nomials. Again,µ is the (cosine of the ) angle betweenk′′ andk′′′,
and must first be expressed in terms of (θ′′, φ′′, θ′′′, φ′′′), follow-
ing [Eq. 14]7. The only multipoles that appear in our equations are
ℓ = 0, 2,4, soµ is to be expanded at most up to the fourth power.
For a full factorization, the terms including cos(φ′′ − φ′′′) must fur-
ther be re-casted in their exponential form with Euler’s identities.

When computing the convolution, the first term on the right
hand side of [Eq. 51] is spherically symmetric, hence it mustbe
convolved with the selection function as:

Cobs
Gauss(k, k

′) =
∑

k′′
CGauss(k

′′)|W(k′′ − k)|2|W(k′′ − k′)|2 (56)

which is pretty much the FKP prescription, namely that the selec-
tion function is the only cause of mode coupling.

For the other (i.e. non-Gaussian) terms of [Eq. 51], we use the
fact that the only coupling between thek′′ andk′′′ vectors comes
from the delta function, which couples solely their radial compo-
nents. This means that all the angular integrations can be precom-
puted and stored in memory. For example, the only angular depen-
dence in theℓ = 0 multipole comes from the selection function
itself, hence we can precompute

X(k, k′′) =
∑

θ′′ ,φ′′
|W(k − k′′)|2sin(θ′′)w(θ′′, φ′′) (57)

and the convolution is now four dimension smaller. The weight
functionw(θ′′, φ′′) is equal to unity for theC0 term, and the sin(θ′′)
comes in from the Jacobian in angular integration. For the other
multipoles, more terms must be precomputed as well, whose weight
functions are summarized in Table 4.

8.2 The 2dFGRS selection function

The 2dFGRS(Colless et al. 2003) is comprised of two major re-
gions, the NGP and the SGP, each of which takes the overall form
of a fan of 75× 5 degrees, extending fromz = 0.02 to 0.22. The
selection function is constructed by first integrating the luminosity
function dΦ(L)/dL over all the observed luminosity range, which
is both redshift and angle dependent. The results need to be mul-
tiplied by the redshift completion functionR(θ, φ). The parameters
that enter this calculations (Φ⋆, α andM⋆ − 5log10h) are obtained
from the 2dFGRS as−1.21, 1.61× 10−2h3Mpc−3 and−19.66 re-
spectively. The two angular maps (R(θ, φ) andbJ(θ, φ)) required are

7 In this section, we useµ instead of cos(θ) to denoted the (cosine of the)
angle between the two Fourier modes, to avoid confusion withθ′ andθ′′′,
which corresponds to the angle of (k′′, k′′′) with respect to thex-axis.
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Figure 21.The angle average of the 2dFGRS selection function, compared
to an approximate fit provided by Percival et al. (2001). The fit is not perfect
as it was obtained with an earlier estimate of the selection function. We also
note that our method differs in details with that used in Cole et al. (2005)
by the fact that we imposed a cut at redshift ofz= 0.22, and that we used a
somewhat lower resolution.

publicly available on the 2dFGRS website8. It is possible to obtain
an even more accurate selection function by taking into account the
redshift dependence of the magnitude sensitivity, howeverwe do
not need such an accuracy for the current work. Finally, our selec-
tion function is normalized such that
∫

|W(k)|2d3k = 1 (58)

To understand the impact of the non-Gaussian Poisson un-
certainty on the measured uncertainty, we test various templates,
keeping the 2dFGRS selection function fixed. We follow the pro-
cedure of section 4.2, with an average number density ofngal =

1.52 × 10−4h3Mpc−3, which corresponds to an early data release
of the 2dFGRS data. The final release contains more objects, and
has a density of aboutn = 5.0 × 10−2h3Mpc−3. By comparison,
the Poisson uncertainty corresponding to the number count of the
Wiggle-Z survey could be modelled withn = 5.0 × 10−5h3Mpc−3

for partial data and about 2.0 × 10−4h3Mpc−3 for the final data re-
lease. We thus opt for two more number densities:n = 1.52× 10−4

andn = 1.0× 10−2.

8.3 Results

We assign the selection function on to a 256x256x128 grid, where
the lower resolution is along the direction perpendicular from the
NGP. We precompute the Fourier transform,W(k) and square each
terms. Fig. 21 shows a comparison between the angle average of
|W(k)|2 and a fitting function provided by the 2dFGRS group.

We then define a second set of bins in spherical coordinates,
over which we perform the convolution. For that purpose, we divide
the original volume of the survey into 64 radial bins, 48 polar bins
and 32 azimuthal bins. The selection function is assigned onthe
grid by averaging over the 27 closest cells in the original grid. We
have included a sin(θ) terms in each integrals over the polar angle,

8 www.mso.anu.edu.au/2dFGRS/
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and ak2 in each radial integral to properly account for the Jacobian
matrix in spherical coordinates.

Fig. 22 shows the diagonal of the convolved covariance ma-
trix, divided by P2(k), for the FKP prescription and for the pro-
gressive inclusion ofℓ = 0,2 and 4 multipoles. Also overploted is
the non-Gaussian results without the convolution. We see that al-
ready atk ∼ 0.1hMpc−1, the non-Gaussian fractional error, after
the convolution, deviates from the FKP prescription by a factor of
about 3.0, while the unconvolvedC0 still traces quite well the FKP
curve. This means that the mode mixing caused by the convolution
with the survey selection function increases significantlythe vari-
ance of the observed power spectrum. The departure gets amplified
as one progresses towards higherk−modes, and, byk ∼ 1.0hMpc,
the unconvolvedC0 departs from the FKP prescription by almost
two orders of magnitudes. Interestingly, the convolvedC0 merges
with the unconvolved counterpart atk ∼ 0.5, where the BAO scale
is usually cut off. Inclusion of higher multipole increases the vari-
ance by a factor of about 2.0. We have overplotted a simple smooth
fitting function of the form :

C f it (k) = Cg(k)
(

1+
2.3

(0.08/k)3.7 + (0.08/k)1.1
+ 0.0007

)

(59)

which approximates the contribution from the three lower multi-
poles.

Fig. 23 shows the convolved cross-correlation coefficient ma-
trix, where the angle average has been taken after the convolution.
It is also possible to factorize this matrix, hence we proceed to an
Eigenvalue decomposition, following the same iterative procedure
as in section 7, solving for the first Eigenvector only. The Eigen-
value was found to beλ = 19.7833, and we used the sum of a
quadratic and a Gaussian function to model the Eigenvector:

Uobs
λ (k) = Aexp[−

1
σ2

log2
(

k/kp

)

]+

(alog2 (k/ko) + blog(k/ko) + c)

(60)

with A = 0.1233, σ = 1.299, a = 0.0049, b = 0.0042, c = 0.0052
and (kp, ko) = (0.17, 0.008)hMpc−1 respectively. A comparison of
the fit and the actual vector is presented in Fig. 24. The noisere-
duced cross-correlation coefficient matrix is presented in Fig. 25.
We observe that the Fourier modes are already more than 50 per
cent correlated atk = 0.1hMpc−1, a significant enhancement com-
pared to the unconvolvedC0 matrix, in which the equivalent cou-
pling occurs roughly towardsk = 0.22hMpc−1. This would most
likely have an impact on a non-Gaussian BAO analysis.

9 DISCUSSION

Generally speaking, the departures from Gaussianity will be sen-
sitive to the survey parameters. The quantitative results presented
here apply only to the 2dFGRS, however similar calculationscould
be carried for other surveys. We have found that even for modes
of k ∼ 0.1hMpc−1, the non-Gaussian error bars are higher than
those prescribed by the FKP method by a factor of a few, due to
mode coupling caused by the convolution of the selection func-
tion. This has to be put in contrast with results from pure N-
body simulations, which show that the departure from Gaussian-
ity reaches this sort of amplitudes at higherk-modes, as seen from
Fig. 22. We also observe that with the 2dFGRS, the non-Gaussian
Poisson noise plays an important role if the number density is
smaller than 0.01h3Mpc−3, but is not enough to characterize all
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Figure 22.Diagonal of the convolved covariance matrix, first with no mul-
tipole, i.e. following FKP prescription (thick dashed line), then with the
progressive inclusion of theC0 (open circles), theC2 (solid points) and the
C4 multipoles (stars). Also shown is the diagonal of the unconvolved C0

terms directly measured from N-body simulations (thick solid line), and a
fitting function for the total covariance (thin solid line).Finally, the inclu-
sion of the non-Gaussian Poisson noise is represented by three dotted lines,
representing the three number density detailed in Table 3. The 2dFGRS final
data release has a number density of the order 5.0 × 10−2h3Mpc−3, which
thus lies betweenn2 andn3.
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Figure 23. Normalized convoluted covariance matrix with all three multi-
pole.

of the non-Gaussian features of the density field. TheC0 term is
the leading contribution of the enhancement observed in therange
k = 0.06− 0.4hMpc−1, but for largerk-modes,C2 andC4 both play
an important role.

In the absence of a survey selection function, significant
changes in the covariance matrix do not necessarily translate into
noticeable changes in the BAO constraints. For instance, assum-
ing that the BAO mean measurement was performed with a non-
Gaussian estimator, the propagation of the non-Gaussian error on to
the dilation scale produces constraints that are hardly distinguish-
able from the naive Gaussian treatment (Takahashi et al. 2011). In
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Figure 24.Principal Eigenvector of the convolvedC0 matrix, compared to a
simple fitting formula. The fractional error of the fitting function is at most
13 per cent.
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Figure 25. Normalized convoluted covariance matrix with all three multi-
pole, reconstructed from a fit of the principal Eigenvector.

the data analyses however, the estimators of the mean are usually
Gaussian, while the power spectrum covariance matrices that enter
the calculations are either Gaussian or obtained with mock cata-
logues. As pointed out previously (Ngan et al. 2011), the estimators
constructed in such a way are inconsistent and should be recalcu-
lated to include noise in the measured mean. It was found thatthe
corrected – i.e. consistent – error bars are about 10 per centhigher.

It is worth mentioning again that the angle integration of
C(k, k′, θ) provides an alternative way to extract the covariance ma-
trix of the angle average power spectraC(k, k′). Although the mean
value of both methods is identical, i.e. unbiased, the second gives
us a better handle on the error on each matrix element, hence pro-
vides an optimal measurement of their uncertainty. We have shown
in this paper that each matrix element receives its dominantcontri-
bution from small angles, while larger angles are noisier. It is thus
possible to re-weight the angular integration by taking this new in-
formation into account, and obtain more accurate error barson each

matrix element, compared to the current bootstrap method. As men-
tioned in the introduction, our next objective in HDP2 is to achieve
a similar accuracy with a much lower number of simulations. This
would revolutionize the field of observational cosmology asthe co-
variance matrix could be measured internally, i.e. directly from the
data.

The techniques presented in this paper call for extensions,
as we did not include redshift distortions in our analysis. Also,
shot noise will become important when repeating this procedure
on haloes, motivated by recent finding that the Fisher informa-
tion in haloes is also departing from Gaussianity (Neyrincket al.
2006). It is straightforward to perform a similar analysis with a
quadratic halo model, where the halo density is parameterized by
δhalo(x) = Aδ(x) + Bδ2(x). This involves an extra cross-correlation
between the linear and quadratic term, and leaves some room for
the choice ofA and B, and ultimately, one should work straight
from a halo catalogue. The optimal estimator should also be based
on a model that is cosmology independent, hence one should com-
pute how the fitting functions scale withΩm, ω andz.

As mentioned earlier, the effect of the selection function is
enhanced for survey geometries that are different from top-hats,
and it would be interesting to repeat some of the BAO data anal-
yses that were performed on such surveys, like the 2dFGRS or
Wiggle-Z. The current method also applies to surveys with irreg-
ular geometries like those obtained from the Lyman-α forest (Mc-
Donald & Eisenstein 2007; McQuinn & White 2011), and we are
hoping it will be considered in the elaboration of these future analy-
sis pipelines. In addition, the extraction of non-Gaussianerror bars
from two-dimensional angular clustering could also be performed
with techniques similar to those employed here. We leave it for fu-
ture work to match our results with predictions from higher order
perturbation theory. We would like to verify that the angular depen-
dence we observe in the covariance matrix is predicted by a com-
plete 4-points function analysis, at least in the trans-linear regime.

The results presented in section 6.4 and the recipe presented
in the one preceeding can find useful applications in the fieldof
weak lensing. Convergence maps, for instance, are constructed
from a redshift integral over a past line cone filled with darkmatter,
weighted by a geometric kernel. Because of the projection nature of
this process, the survey maps are sensitive to both large andsmall
scales, where non-Gaussianities have been observed in the conver-
gence power spectrum (Doré et al. 2009).

The lensing fields are quadratic functions of smoothed temper-
ature fields, and the optimal smoothing window function depends
not only on the parameter under study, but also on the statistical na-
ture of the sources and lenses (Lu & Pen 2008). Optimal quadratic
estimators of lensing fields were first obtained under the Gaussian
assumption (Hu & Okamoto 2002; Zahn & Zaldarriaga 2006), then
from N-body simulations (Lu et al. 2010), where it was found that
the optimal smoothing window function for dark energy involves
the first two multipoles of the dark matter power spectrum covari-
ance matrix,C0(k, k′) andC2(k, k′) (see [Eq. 23− 24] in (Lu et al.
2010)), even in absence of survey selection function. The tools de-
veloped in the present paper thus allow one to construct, forthe first
time and from simple fitting functions, optimal non-Gaussian esti-
mators of dark energy parameters from 21 cm temperature maps.

10 CONCLUSION

Estimating accurately the non-linear covariance matrix ofthe mat-
ter power spectrum is essential when constraining cosmological pa-
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rameters including, but not restricted to, the dark energy equation
of stateω. So far, many BAO analyses from galaxy surveys were
performed under the assumption that the underlying densityfield
is Gaussian, which yields asuboptimalmeasurement of the mean
power spectrum and thus of the BAO dilation scale. In addition,
and at least as important, the estimated error bars are biased.

To estimate unbiased error bars on the dilation scale is a chal-
lenging task, but can now be done. In the simple case of periodic
volume, it was shown recently (Ngan et al. 2011) that, first, an un-
biased error bar on a suboptimal measurement of the mean could be
obtained from the knowledge of the underlying covariance matrix.
Second, if one did measure optimally the mean BAO dilation scale,
then the optimal measurement of the error requires an estimate of
the inverseof the power spectrum covariance matrix. This is much
more challenging due to the presence of noise, even when dealing
with simulations embedded in periodic volumes, but improves the
constraining performance by a significant amount.

When estimating the power spectrum and its uncertainty from
data, the calculations are more involving since all observed quanti-
ties are actually convolved with the survey selection function. The
covariance matrix is not isotropic, as it depends on the relative an-
gle between two Fourier modes, hence the convolution cannotbe
simply factored into two radial components. We are left witha chal-
lenging six-dimensional integral to perform, which so far has been
an unresolved problem.

In this paper, we present a method to perform this convolution
for an arbitrary galaxy survey selection function, and thusallows
one to measure unbiased error bars on the matter power spectrum.
The estimate is still suboptimal, unless one combines our tools with
the PKL formalism. From an ensemble of 200 N-body simulations,
we have measured the angular dependence of the covariance ofthe
matter density power spectrum. We have found that on large scales,
there is only a weak dependence, consistent with the Gaussian na-
ture of the fields in that regime. On smaller scales, however,we
have detected a strong signal coming from Fourier modes sepa-
rated by small angles. This comes from the fact that the complex
phases of these modes are similar, hence they tend to couple first.
We next expanded the covarianceC(k, k′, θ) into a multipole series,
and found that only the first three even poles were significantly
different from the Gaussian calculations. We further decomposed
theseCℓ(k, k′) matrices into diagonal terms and cross-correlation
coefficient matrices, from which we extracted the principal Eigen-
vectors. This allowed us to break down the underlying covariance
into a set of Eigenvectors, Eigenvalues plus three diagonalterms.
We provided simple fitting formulas for each of these quantities,
and thus enable one to construct a full six-dimensional covariance
matrix with an accuracy at the few per cent level.

Intrinsically, non-Gaussianities introduceN2 matrix elements
to be measured from N-body simulations, as opposed toN for
Gaussian fields. With the proposed method, the number of param-
eters to measure is reduced to a handful, even if the survey selec-
tion function is non-trivial. This factorization is necessary in order
to estimate unbiased non-Gaussian error bars on a realisticgalaxy
survey. We found that in the case of the 2dFGRS selection function,
the non-Gaussian fractional variance atk ∼ 0.1hMpc−1 is larger by
a factor of three compared to the estimate from the FKP prescrip-
tion, and by more than an order of magnitude atk ∼ 0.4hMpc−1.
With similar techniques, we were able to propagate a few templates
of non-Gaussian Poisson error matrices into the convolution and
estimate the impact on the measured power spectrum. We showed
that with the 2dFGRS selection function, the non-Gaussian Pois-
son noise corresponding to a number density significantly lower

than 0.1h3Mpc−3 has a large effect on the fractional variance at
scales relevant for BAO analyses and should be incorporatedin an
unbiased analysis.

The cross-correlation coefficient matrix of the convolved
power spectrum shows that the correlation propagates to larger
scales in the convolution process, and should have a larger impact
on BAO analyses for instance. We conclude by emphasizing on
the fact that constraints on cosmological parameters obtained from
BAO analyses of galaxy surveys are currently significantly biased
and suboptimal, but that both of these effects can now be dealt with.
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APPENDIX A: LEGENDRE-GAUSS WEIGHTED
SUMMATION

The conversion of the integral into a sum is performed using a
Legendre-Gauss weighted sum (Abbott 2005), in whichℓ ‘collo-
cation’ knots, labeledµk with k = 1, 2, . . . ℓ, are placed at the zeros
of the Legendre polynomialPℓ(µ). We chooseℓ = 101, and we
exclude the end points atµ = ±1 in order to isolate the zero-lag
contribution. The weightswk are given by:

wk =
2

(1− µ2
k)(dPℓ=101/dµ(µk))2

(A1)

This Gaussian quadrature gives an exact representation of the in-
tegral for polynomials of degree 201 or less, and provides a pretty
good fit to most of ourC(ki , kj , θ). In the linear regime, the dis-
cretization effect becomes important, and the number of angles one
can make between the grid cells drops down ask2. In the case were
fewer points are available, we chooseℓ = 51, 21, 11 or 5, depending
on the number of available angular bins. Once we have specified the
knots, then, for each scale combination, we interpolate theangular
covariance on to these knots, and then perform the weighted sum.
As mentioned above, we always treat the zero-lag point separately
in order to avoid interpolating its value to the nearest neighbours.
We thus break the summation in two pieces:

Ci j
ℓ
= 2π

∑

µk,±1

Pℓ(µk)C(ki , kj , µk)wk + 2πC(ki , kj , µ = 1)∆µ(1+ (−1)ℓ)

(A2)

The factor of 2π comes from the integral over theφ angle, and∆µ
is half the distance to the first knot.

APPENDIX B: EIGENVECTOR OF THE POISSON NOISE

This Appendix presents the Eigenvector that best describesthe non-
Gaussian Poisson noise, as discussed in section 7.1. We restrict our-
selves to the case where the number density is the highest, even
though similar analyses can be carried for other values ofn stud-
ied in this paper. We present in Fig. B1 the Eigenvector itself, along
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Figure B1. Principal Eigenvector of the cross-correlation coefficient matrix
associated with the non-Gaussian Poisson noise, compare toour best-fitting
formula.
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modes since these are very noisy.

with the best-fitting formula provided. We next compare the covari-
ance matrix constructed from the fitting functions with the original,
and present the fractional error in Fig. B2, which shows an agree-
ment at the per cent level. When compared with the predictions
from Cohn (2006), we observe that the overall trends are consistent:
first, the Gaussian contribution to the error decreases as one probes
smaller scales. Second, densities with lowern see their Gaussian
contribution being reduced in the trans-linear regime, where the
non-Gaussian Poisson counting becomes more important. Third,
densities with lowern produce larger cross-correlation coefficients
between trans-linear scales.
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