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We explore nonequilibrium dynamics of inhomogeneous nonlinearly interacting scalar

fields in several cosmological settings. In particular, we explore the effects of (initially

small) asymmetric fluctuations around field configurations with a high degree of spatial

symmetry. These symmetric configurations include planar domain wall and SO(2,1)

vacuum bubble collisions, and oscillations of a homogeneous scalar field condensate after

inflation. In the last of these, it is well known that linear fluctuations may experience a

variety of dynamical instabilities — a process known as preheating.

By extending methods from the Floquet theory of ODEs to PDEs, we demonstrate

that linear fluctuations around the planar wall and vacuum bubble collisions also expe-

rience exponential growth. This effect has been ignored in the existing literature. We

use sophisticated numerical lattice techniques to study the full (3+1)-dimensional dy-

namics of the collisions. Once the fluctuations begin to interact nonlinearly, the original

spacetime symmetries of the collision are badly broken. In each model we study, this

symmetry breaking occurs through an inhomogeneous annihilation of the walls. As a

result of this annihilation, a collection of oscillons is produced in the collision region.

In our study of preheating, we focus on entropy generation as the field transitions from

a homogeneous, coherent state to an inhomogeneous, incoherent state. We introduce a

coarse-graining procedure based on maximizing the (differential) Shannon entropy sub-

ject to a collection of observational constraints. Using lattice simulations, we find a sharp

spike in the entropy production rate around the onset of strong nonlinearities amongst
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the fluctuations. Based on an analogy with a hydrodynamic shock as randomization

front, we dub this sudden increase in entropy as the “shock-in-time”.

In each of the systems considered, the new dynamics we discover suggest potential

observational signatures. Perhaps the most interesting new signatures are the production

of gravitational waves from individual vacuum bubble collisions and the production of

nonGaussian density perturbations during preheating. A novel aspect of these signatures

is that they are spatially (or temporally) intermittent. Although this thesis focusses on

the underlying dynamics responsible for these signatures, it suggests interesting future

work developing the necessary methods to observationally constrain them.
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Chapter 1

Introduction

Our current picture of cosmology has emerged from the tremendous wealth of informa-

tion extracted from measurements of the cosmic microwave background (CMB), big bang

nucleosynthesis (BBN), large-scale structure (LSS), weak gravitational lensing (WL),

Lyman-α forest (Ly-α) and supernovae (SN). These measurements have allowed us to

probe physics at energy scales beyond those currently accessible in terrestrial experi-

ments and provide a glimpse into the universe in its infancy over 13 billion years ago.

Measurements of the CMB, in particular, have allowed us to develop a well-tested and

consistent picture of the early universe, including information about its composition,

spatial curvature and the properties of the initial density fluctuations.

The current observational era began with the experimental discovery of the CMB by

Penzias and Wilson, which provided the first direct evidence for Big Bang cosmology. De-

tection of temperature anisotropies at the level δT
T
∼ 10−5 by COBE, and the subsequent

detection and confirmation of the acoustic peaks in the temperature-temperature (TT)

autocorrelation spectrum by balloon-borne missions such as BOOMERanG and MAX-

IMA and satellites such as WMAP established the adiabatic nature of the primoridial

perturbations and provided experimental support for the inflationary paradigm. Most

recently, the Planck satellite and ground based telescopes such as ACT and SPT have pro-

vided an exquisite picture of the TT power spectrum up to multipoles of order ` ∼ 10000.

Current experiments such as Planck, ACTPol, and BICEP as well as future experiments

such as Spider and CMBPol are searching for anisotropies in the B-mode polarization of

photons originating from primordial sources. If detected, these would provide our most

convincing test of inflation, including a direct measurement of the inflationary energy

scale.

To date, these experiments have revealed a remarkably simple picture of the universe,

whose bulk properties can be described with a handful of phenomenological parameters.

1



Chapter 1. Introduction 2

Regarding the very early universe, the most important findings are that the density

fluctuations in the primordial plasma are adiabatic and well-described by a homogeneous

and isotropic Gaussian random field with amplitude δρ
ρ
∼ 10−5 and nearly scale invariant

power spectrum. Inflationary cosmology predicts this form for the fluctuations, which

thus provide the strongest evidence for an early inflationary phase. With the basic

picture now established, the next goal in cosmological exploration is to either discover or

constrain subdominant features in the primordial fluctuations. Indeed, the robust nature

of the inflationary predictions creates huge degeneracies in the leading order inflationary

observables that standard parameterizations of the data are unable to break. Finding

new and novel signatures could help to break these degeneracies. Much effort currently

focusses on either detecting or improving constraints on primordial B-mode polarization

of the CMB photons. There are also several low-` anomalies in the currently available

CMB temperature data: the cold spot, hemispherical power asymmetry and an apparent

deficit of fluctuation power on large scales. While the anomalies may simply be statistical

flukes or some currently unappreciated systematic, they may also hint at something about

the inner workings of inflation. In particular, since the anomalies are intermittent, either

in spatial location or in scale, a breaking of the homogeneous and near scale invariant

nature of inflation is needed. An explanation for a single one of the anomalies may

not be convincing. However, a mechanism that could simultaneously produce several of

the anomalies, thus unifying them into a single theoretical framework, would be a far

more compelling argument. Much of the work undertaken in this thesis has an eye to

uncovering novel new observational signatures that have not been considered in detail

before.

1.1 A Brief History of the Universe

Despite the tremendous growth in our knowledge of the early universe there are still

many unknowns. Here we provide a brief non-technical account of the most widely held

current view of the history of universe, being careful to point out elements for which

there is theoretical or observational uncertainty.

During the earliest moments for which we have observational evidence the universe

was expanding at an accelerated rate. This epoch is known as inflation and is generally

believed to have been driven by the condensate of some scalar field, although the precise

microphysics is unknown. While the universe is inflating, subhorizon quantum fluctu-

ations in the scalar field and the metric are stretched to scales larger than the Hubble

radius where they freeze out. These fluctuations will eventually leave their imprint in
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the CMB and matter power spectrum, giving us an observational window into this early

evolution.

Eventually, inflation ends and the universe stops accelerating and begins to decelerate.

The energy in the inflaton condensate is transferred into a hot dense plasma of Standard

Model particles and possibly additional degrees of freedom such as supersymmetric part-

ners. The details of this transition are subject to great uncertainty, and even basic

details, such as the temperature at which the plasma first reaches local thermodynamic

equilibrium (LTE), are unknown. Baryogenesis may have occurred and dark matter may

have been generated prior to the establishment of LTE. However, these events may also

have occurred during the subsequent cooling of the plasma.

The universe continues to expand, with the hot plasma adiabatically cooling as it

dilutes. During this expansion, the universe may have undergone a series of phase transi-

tions, and baryogenesis may have produced the slight matter-antimatter asymmetry we

observe today. Dark matter may also have been produced by the thermal freezeout of a

weakly interacting massive particle (WIMP). Since the initial temperature of the plasma

and the microphysics above energy scales of order a TeV are unknown, no definitive

statement can be made about the exact sequence of events that occurred.

Once the plasma reaches a temperature T ∼ 10MeV we once again reach an epoch

which has been confirmed by observations. Unlike the inflationary phase, we have a

thorough understanding of the underlying microphysics. The plasma now consists of

photons, electrons, positrons, three species of neutrinos, protons and neutrons. The pro-

tons and neutrons begin to fall out of nuclear statistical equilibrium and the proton to

neutron ratio freezes in at T ∼ MeV . While this process is occurring, the electroweak

interactions become too weak to keep the neutrinos in equilbrium and they decouple at

T ∼MeV . Subsequently, the electrons and positrons annihilate, but since the neutrinos

have already decoupled the energy from the annihilations is transferred entirely to the

photons, resulting in the neutrino temperature being smaller than the photon temper-

ature. Finally, BBN completes at T ∼ 0.1MeV , with protons and neutrons combining

to form light elements. Most of the neutrons combine with protons to form helium, al-

though smaller amounts of other light elements such as deuterium, tritium and lithium

are also synthesized. The universe is now an ionized plasma of light nuclei, electrons and

photons, with additional energy in the decoupled neutrinos, dark matter and dark energy.

At T ∼ eV the energy density in the radiation (photons and neutrinos) drops below the

energy density in dark matter, the so called epoch of matter-radiation equality. From this

point, perturbations in the dark matter begin to grow with gravitational potential wells

remaining constant instead of damping on subhorizon scales. The baryons remain tightly



Chapter 1. Introduction 4

coupled to the photons and thus continue to experience acoustic oscillations rather than

collapse. When the temperature reaches T ∼ 3000K, the photons are no longer energetic

enough to ionize hydgrogen and the electrons and protons form hydrogen atoms. With

no charged particles to interact with, the photons then free stream and redshift for the

next 13 billion years, forming the CMB as detected in terrestrial experiments.

The baryons are now free to form structure and they fall into the potential wells

created by the dark matter. Baryonic matter begins to form collapsed structures, and

from these clouds of collapsed gas the earliest stars form and synthesize the first heavy

elements. The death of these stars often lead to violent supernovae explosions, creat-

ing more heavy elements and spreading them into the interstellar medium. The process

of structure formation continues, with successively larger structures collapsing and addi-

tional production of heavy elements from star formation. Planets form from gravitational

collapse of the heavy elements formed from previous generations of stars.

Quite recently, the final element in our modern cosmological picture comes into play.

The dark energy comes to dominate the energy density and the universe begins a new

phase of accelerated expansion. The origin and properties of the dark energy are still

mysterious. At present, observations are consistent with a constant contribution to the

energy density ρΛ ∼ 10−120M4
P currently comprising ∼ 70% of the cosmic energy budget.

Due to the accelerated expansion, large scale subhorizon gravitational potentials decrease

in size (rather than remaining constant as during the matter dominated phase) and

the epoch of large-scale structure formation ends. Previously collapsed structures that

decoupled from the cosmic expansion will persist, but no new clusters or superclusters

form.

Aside from the formation of structure from gravitational collapse, the above is a

description of the homogeneous universe. However, when the primordial plasma first

formed its density varied from location to location in the universe.1 While the wavelength

of these perturbations remained larger than sound horizon of the fluid, they remained

frozen. However, as the Hubble rate decreased, the modes began to move inside the

horizon one by one, leading to damped acoustic oscillations in the primordial plasma.

These oscillations continue until recombination, when the baryon-photon fluid decouples.

The oscillation phase of each mode is determined by the amount of time the mode spent

inside the horizon before recombination, leading to a characteristic pattern of acoustic

peaks in the CMB.

1We are making a particular choice of coordinate system with this statement.
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1.2 Mathematical Description of ΛCDM Cosmology

Now that we have given a brief nontechnical overview of the thermal history of our

observable universe, we present a brief review of the mathematical description of the ho-

mogeneous expanding universe. One of the fundamental postulates of modern cosmology,

confirmed to high accuracy by data, is that on large-scales the universe is homogeneous

and isotropic. This assumption might break on scales much larger than our current

Hubble volume, but is sufficient for describing current observations. The most general

homogeneous and isotropic metric can be written in the form

ds2 = −dt2 + a2(t)

(
1

1− kr2
dr2 + r2(dθ2 + sin2 θdφ2)

)
. (1.1)

The constant k determines the curvature of spatial three-slices, a is known as the scale

factor and the spatial coordinates are comoving. Positive, zero and negative k correspond

to a closed, flat or open universe respectively, with spatial three-slices having the geometry

of spheres, planes or hyperboloids. It is also convenient to define the conformal time

dτ = adt. The dynamics is governed by the Hubble constraint equation, also known as

the Friedman equation,

H2 ≡
(
ȧ

a

)2

=
ρ

3M2
P

− k

a2
(1.2)

where M−2
p = 8πGN is the reduced Planck mass, GN is Newton’s gravitational constant,

ρ is the total energy density of the universe and the Hubble constant is H = ȧ/a. The

energy density evolves according to

ρ̇+ 3H(ρ+ P ) = 0 (1.3)

which has solution

ρ = ρ0e
3
∫

(1+P/ρ)d ln a . (1.4)

For separate components interacting only gravitationally (ρ =
∑

i ρi) we have further

ρ̇i + 3H(ρi + Pi) = 0 . (1.5)

From this we see that for a component with a constant equation of state wi ≡ Pi/ρi

ρi = ρi,0a
3(1+wi) . (1.6)



Chapter 1. Introduction 6

For a given value of the Hubble constant, it is convenient to define the critical density

ρcrit = 3M2
PH

2 (1.7)

and the corresponding energy density fraction

Ωi ≡
ρi
ρcrit

(1.8)

as well as

Ωk ≡ −
k

a2H2
(1.9)

in terms of which the Friedman equation becomes

∑

i

Ωi + Ωk = 1 . (1.10)

In ΛCDM cosmology, the energy density in the universe consists of a cosmological con-

stant ΩΛ, cold dark matter Ωcdm, baryonic matter Ωb, radiation (photons) Ωγ, and neu-

trinos Ων .

1.3 Inflation’s Role in Cosmology

Inflation was originally introduced in an attempt to solve several problems associated with

the homogeneous universe: the horizon, curvature and monopole problems. However,

it was soon realized that inflation does something far more important. By stretching

subhorizon quantum mechanical fluctuations to superhorizon scales it is able to produce

density perturbations that seed subsequent structure formation in the universe. Here we

briefly review the generation of inflationary perturbations, more detailed accounts can

be found in [1, 2, 3, 4].

We write the perturbed metric in longitudinal gauge, assuming a spatially flat universe

ds2 = a2(τ)
(
−(1 + 2Φ)dτ 2 + ([1− 2Ψ]δij + hij)dx

idxj
)

(1.11)

where we have dropped the vector perturbations which are not produced in most infla-

tionary models. The tensor hij is traceless δijhij = 0 and transverse ∂ih
i
j with respect to

the flat spatial metric. Similarly the perturbed inflaton is

φ = φ̄(τ) + δφ . (1.12)
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Thus, on the surface we have 2 tensor and 3 scalar degrees of freedom. However, the con-

straints for general relativity remove two of the scalar degrees of freedom leaving us with

a single physical scalar mode. It is convenient to define a gauge invariant combination

of the scalars R, which does not transform under linear variable changes

R = Φ +
H
φ̄′
δφ . (1.13)

A convenient parameter describing the rate of change of the inflationary expansion is

εH = −d lnH

d ln a
= − Ḣ

H2
=

ρ+ P

2M2
PH

2
=

φ̇2

2H2
. (1.14)

After a straightforward, but tedious, expansion of the action to second-order we obtain

the following equations for the scalar and tensor degrees of freedom

(zR)′′ +

(
k2 − z′′

z

)
(zR) = 0 (1.15)

and

(ahα)′′ +

(
k2 − a′′

a

)
(ahα) = 0 (1.16)

respectively, where ′ = ∂τ is a derivative with respect to conformal time. hα represents

the amplitude of one of the tensor mode (graviton) polarization states appearing as

hij = h1e
1
ij + h2e

2
ij with eαij fixed transverse-traceless (TT) polarization tensors satisfying∑

ij e
α
ije

α′
ij = δαα

′
/2. We have defined z = aφ′

H =
√

2εHa. In spatially flat gauge the

inflaton perturbations have the standard form for a scalar field

δ̃φk|k�aH =
a−3/2

√
2k/aMP

(
αδφk e

−i
∫
k
a
dt + βδφk e

i
∫
k
a
dt
)
. (1.17)

However, in this gauge R = H
φ̄′ δφ, so

k3/2Rk|k�aH =
k/a

2
√
εHMP

(
αRk e

−iωSτ + βRk e
+iωSτ

)
. (1.18)

Meanwhile, the tensor modes are initially given by

k3/2h̃k =
2k/a

MP

(
αhke

−iωT τ + βhk e
+iωT τ

)
(1.19)

where |αk|2 − |βk|2 = 1 for pure states. Most often, the Bunch-Davies vacuum is se-
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lected, with βk = 0 and αk = 1. We assume this choice through the remainder of the

introduction.

During inflation, we have a(τ) ≈ τ 2 and to leading order in slow-roll z′′/z = 2/τ 2.

Therefore, at leading order both the scalars and tensors obey

f ′′ +

(
k2 − 2

τ 2

)
f = 0 (1.20)

which has the general solution

f = C1e
−ikτ

(
1− i

kτ

)
+ C2e

ikτ

(
1 +

i

kτ

)
. (1.21)

At leading order, we can approximate the amplitude of the mode functions once they

cross the horizon using the value of the Hubble constant at horizon crossing. Matching

and making use of H = aH = −τ−1 we have in the kτ � 1 limit

〈|R̃k|2〉 =
H2

4εM2
Pk

3

∣∣∣∣
aH=k

(1.22)

and

〈|h̃α|2〉 =
4H2

k3M2
P

∣∣∣∣
aH=k

. (1.23)

Observational constraints are usually expressed in terms of the scalar and tensor

power spectra

PS =
k3

2π2
〈|R̃k|2〉 =

H2

8π2M2
P ε

∣∣∣∣
aH=k

(1.24)

PT =
k3

2π2

∑

ij

〈|h̃ij,k|2〉 =
k3

2π2
〈|h̃2

k|〉 =
2H2

π2M2
P

∣∣∣∣
aH=k

(1.25)

Since the Hubble rate evolves slowly in standard slow-roll inflation, it is convenient

to expand the spectra in terms of the Hubble slow-roll parameters ε
(1)
H = −d lnH/d ln a

and ε
(i+1)
H = d ln ε

(i)
H /(d ln a). For convenience, we will define ηH = ε

(2)
H . At leading order,

we retain the first two of these parameters

εH =
−Ḣ
H2

ηH =
d ln ε

d ln a
≈ 4εV − 2ηV (1.26)

where we have also introduced the potential slow-roll parameters

εV =
M2

P

2

(
V ′

V

)2

≈ εH ηV = M2
P

V ′′

V
≈ 2εH −

ηH
2
. (1.27)
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For standard single-field slow-roll inflation, εH � 1 and ηH � 1. If more precise analytic

predictions are desired, higher order terms in the slow-roll expansion may be included.

Due to the smallness of εH and ηH , it is convenient to expand lnP as a power series

in ln k. Motivated by this, the primoridal power spectra are usually parameterized as

PS = AS

(
k

kpivot

)nS−1+ 1
2
nrun ln k/kpivot

PT = rAS

(
k

kpivot

)nT
(1.28)

when comparing with observations. Here kpivot is some pivot scale around which to

expand lnP and is often taken to be 0.05Mpc−1 of 0.002Mpc−1.

Four of these parameters arise at leading order in single-field slow-roll inflation: the

scalar amplitude

AS = PS(kpivot) =
V

24π2M2
P εH

, (1.29)

the tensor to scalar ratio

r =
PT
PS

∣∣∣∣
kpivot

= 16εH , (1.30)

the scalar tilt

nS − 1 =
d lnPS
d ln k

∣∣∣∣
kpivot

= −2εH − ηH , (1.31)

the tensor tilt

nT =
d lnPT
d ln k

∣∣∣∣
kpivot

= −2εH = −r
8
, (1.32)

and the running of the scalar spectral (nrun) first appears at the next order in the ex-

pansion. All of the slow-roll parameters are evaluated at the time that kpivot exited the

horizon during inflation. Constraints on inflationary models are usually expressed in the

(nS, r) plane, with the well-measured scalar amplitude used to determine the position

on the potential at which the slow-roll parameters are evaluated. The total number of

efolds since the end of inflation enters in order to relate the pivot scale kpivot to a given

comoving scale during inflation. Due to poor constraints from the data, it is common to

set nrun = 0 and nt = 0 or nt = −r/8. As well, since the initial Bunch-Davies fluctu-

ations are Gaussian, and the evolution equations are linear, the primordial fluctuations

themselves must be Gaussian to very high accuracy. One further property of the fluctu-

ations is that they are adiabatic, leading to the characteristic acoustic peaks seen in the

CMB TT-autocorrelation function. Our most convincing evidence for inflation is that

the parameterization (1.28) provides an excellent fit to the data on scales much larger
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than the causal horizon at the time of recombination (assuming a radiation dominated

universe back to the big bang), which are Gaussian and adiabatic.

1.4 Inflation in the Multiverse

Despite the confirmation of inflationary predictions by observations, we are still far from

a microphysical theory for the inflaton. Since an early era of accelerated expansion of the

universe was first introduced [5, 6, 7, 8, 9] there have been numerous proposals for the

microphysical description of the inflaton. These models have developed in conjunction

with ideas from theoretical particle physics. Recently, much of the top-down approach to

inflationary model building has focussed on embedding an inflationary phase into various

string theory constructions. Rather than producing a single possible inflationary phase,

this has lead to the discovery of many stringy inflationary models.

The four-dimensional effective theories derived from string theory generally have a

plethora of scalar fields. Common examples include moduli fields associated with the

sizes of holes in compactified extra dimensions and the overall size of the compactification.

Separations between extended objects, such as Dbranes, in the extra dimensions also lead

to additional scalar degrees of freedom. Further, in order to stabilize the compactification,

various fluxes must be introduced, leading to more model building freedom. By adjusting

these fluxes it is possible to obtain quasi-stable potential minima with positive vacuum

energy (so called deSitter minima), each with their own collection of low energy fields,

vacuum energy and fluxes [10]. Current wisdom suggests that string theory permits a

staggeringly large number of deSitter minima, with oft-quoted estimates of 10500 such

vacua.

The presence of many effective scalar degrees of freedom, metastable minima, and

possible inflationary solutions has lead to a picture of cosmology that we refer to as

the landscape paradigm [11, 12]. Although current theoretical motivation for this comes

from string theory, the only important ingredients for what follows are that at some high-

energy scale the universe is adequately described by General Relativity coupling to many

effective scalar degrees of freedom described by Quantum Field Theory with a mechanism

to seed random initial conditions. In this picture, the structure of the ultra-large scale

universe is determined by the evolution of an ensemble of initial values for the many

scalars, fluxes and other degrees of freedom that arise in the high energy theory describing

our universe. Different spatial locations have different randomly chosen initial conditions

and thus undergo a different cosmic evolution. Each of the self-consistent inflationary

mechanisms in the high energy theory (say string theory) is then realized somewhere
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in this landscape. In a simplified view where we only consider the scalar degrees of

freedom and ignore gradients, we can view this evolution as a collection of balls moving

on some high-dimensional potential surface. Each ball will move under the combined

influence of classical forces, quantum diffusion [13, 14], and quantum tunnelling events.

Under the assumption that probabilities should be weighted by physical (rather than

comoving) volume, balls along inflating trajectories would reproduce during the evolution.

In particular, regions undergoing eternal inflation (either stochastic or false vacuum)

would continue to reproduce indefinitely. A consequence of this is that our current

vacuum is randomly selected from one of the many possible deSitter minima, forming

the basis for anthropic approaches to the cosmological constant problem. However, this

picture is far richer than simply allowing for a dynamical (and stochastic) selection of

vacua. The trajectories of the balls as they move along the potential surface give possible

cosmological histories.

We have not specified how the initial conditions arise. Presumably this would require

a deep understanding of the full quantum mechanical properties of the high energy theory.

As one example, we could imagine that some portion of the wavefunction for the high

energy degrees of freedom leads to a description of general relativistic spacetime coupled

to fields described by quantum field theory. This portion of the wavefunction may then

decohere producing a set of stochastic initial conditions for the subsequent evolution of

the universe.

Given that our observations are restricted to our local Hubble volume, the possibility

of testing this scenario might seem hopeless. However, certain subensembles of trajecto-

ries may produce unique signals that we can look for. A detection of such a signal would

provide evidence for that subensemble of possible trajectories. One such class of trajec-

tories that has received considerable attention recently is what we will call false vacuum

eternal inflation on the landscape. In this scenario, a patch of the universe becomes stuck

in one of the many possible metastable deSitter minima. This may occur due to either

initial conditions or dynamical evolution. While it remains trapped in the minimum,

this patch of the universe will experience inflationary expansion. Since the minimum

is only metastable, decays are possible through, for example, Coleman-deLuccia (CdL)

tunnelling [15] or Hawking-Moss decay [16]. When CdL is the dominant mechanism,

this leads to the creation of bubbles nucleating within the ambient false vacuum. The

interior of each of these bubbles can be described with an open FRW cosmology, and our

observable universe is then contained within one of these bubbles.

In this scenario, our local cosmological history thus proceeds as follows. A bubble

nucleates from some ambient deSitter minima that we denote dSparent, leading to the
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creation of our observable universe. This nucleation leads to a short period of curvature

dominated evolution inside the bubble, followed by N & 60 efolds of slow-roll inflation

to seed the initial perturbations that eventually collapse to form structure and to dilute

the effects of spatial curvature Ωk. Inflation then ends as we approach a new deSitter

minima (dSlocal) with vacuum energy ρλ ∼ 10−120M4
P in accord with current observations.

Reheating occurs followed by the standard hot big bang cosmology.

Several key features of this scenario lead to claims that it can be observationally

tested: the spatial sections are hyperbolic and thus our observable universe has negative

curvature and Ωk > 0 [17, 18]. Since inflation is supposed to begin shortly after the

nucleation of the bubble claims have also been made that we may be able to see remnants

of the earliest stages of slow-roll inflation in the CMB [17, 19, 20, 21]. Perhaps the

most unique signature is the imprint of a collision between our bubble and another

one nucleating within dSparent. The standard estimate for the number of potentially

observable collisions given the assumption that we do indeed inhabit a bubble nucleated

within some parent deSitter false vacuum is [22, 23, 24]

Ncol ∼ γ
ρdSparent
ρinf

√
Ω0
k (1.33)

where γ = ΓH−4
dSparent

, Γ is the decay rate of dSparent per unit four-volume and ρdSparent

and ρinf are the energy densities in the parent deSitter minimum and during slow-roll

inflation respectively. The value of Ωk is measured today. For CdL tunnelling in the

semiclassical limit Γ ∼ B2
∣∣∣det′S′′(φbounce)

detS′′(φfv)

∣∣∣
−1/2

e−B with B = Sbounce − Sfv the difference

between the Euclidean actions of the corresponding CdL instanton and the field sitting at

the false vacuum minimum. The prefactor arises from the second variation of the action

around the bounce solution. This estimate does not account for the probability that False

Vacuum Eternal Inflation of the Landscape is itself the correct description of our universe.

Needless to say, detailed studies of this scenario are still mostly phenomenological.

The scenario outlined above is one of the primary motivations for the work in chapter

4, where we study collisions between vacuum bubbles, and indirectly for the companion

work in chapters 2 and 3, in which we study collisions between planar walls.

1.5 Preheating

If we accept that inflation happenned within our Hubble patch then we know with cer-

tainty that the homogeneous inflaton energy must be transferred to the dense primordial

plasma of Standard Model particles (quarks, gluons, leptons, photons, weak bosons) and
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possibly additional degrees of freedom described by some beyond the Standard Model

physics. At present, the only observational knowledge we have of this transition is that

the plasma must reach thermal equilibrium with a temperature T & 10MeV in order

for standard big bang nucleosynthesis to occur. Once the plasma reaches local thermal

equilibrium, it subsequently evolves adiabatically as the universe expands and cools. The

subsequent standard thermal history is then characterized by a constant entropy (possi-

bly with the exception of entropy release at a high-temperature phase transition or by

the decay of a thermally decoupled relic), at least until the universe becomes matter

dominated and the growth of structure via gravitational collapse begins.

The earliest attempts to describe this transition are now known as the perturbative

theory of reheating [25]. This approach is still widely used, and in its simplest form the

decay of the inflaton φ is described using a phenomenological decay parameter Γ

φ̈+ (3H + Γ)φ̇+ V ′(φ) = 0 (1.34)

ρ̇R + 4HρR = Γφ̇2 (1.35)

where ρR is the energy density of a radiation bath. In this approximation, neither the

inflaton condensate φ nor the radiation bath it decays into develop subhorizon inhomo-

geneities as a result of the reheating process.

It was later realized by Kofman, Linde and Starobinski [26] (and worked out in great

detail for a specific model in [27]) that this transition may instead occur in a very differ-

ent manner — the rapid nonperturbative production of inhomogeneous fluctuations (see

also [28, 29]. This process is known as preheating to distinguish it from (perturbative)

reheating. During the early stages of the instability fluctuations in fields coupled to the

inflaton obey

δχ̈i,k + 3Hδχ̇i,k +

(
k2

a2
δij + Vij(φ̄)

)
δχj,k = 0 (1.36)

¨̄φ+ 3H ˙̄φ+ ∂φV (φ̄) = 0 (1.37)

where we have assumed canonical kinetic terms for the field χi. After inflation the mean

field φ generally oscillates around the minimum of some potential, and as a result the

fluctuations δχi,k obey the equation for a harmonic oscillator with time-dependent mass.

For simplicity, the following discussion will assume that the eigenvectors of the Hessian

matrix of the potential Vij ≡ ∂i∂jV are time-independent. Thus, we can diagonalize

the equations of motion via a time-independent redefinition of the fluctuations. For a

wide range of models, the fluctuations δχ may experience instabilities. Roughly, these
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instabilities can be classified into three general categories depending on the evolution

of the effective frequency ω2
i,k ≡ k2

a2
+ ∂iiV (φ̄) ≡ k2

a2
+ m2

eff .
2 In the first case, we have

m2
eff < 0 shortly after inflation but with φ̄ far from its minimum [30, 31, 32]. This

occurs when inflation ends via a second-order phase transition (as in hybrid models) or

after small-field inflation. The modes with k2 . a2m2
eff experience a spinodal instability

and grow as e|meff |t. In the second, known as broad parametric resonance, we have

ω2
eff ≥ 0 but short periods of ω̇eff/ω

2
eff & 1 [33, 34, 27]. Typical examples include models

where the inflaton couples to the preheat field via g2φ2χ2. In this case, certain bands

of wavenumbers will undergo damped oscillations with nonadiabatic kicks during which

the amplitude experiences a rapid step-like increase. Finally, in tachyonic resonance

the effective frequency again oscillates but now there are intervals with ω2
eff < 0 [35,

36]. This occurs when the inflaton-preheat field coupling is of the form σφχ2. δχ then

alternates periods of damped oscillations with periods of exponential growth. Other

instabilities, such as weak parametric resonance, may also occur, but the expansion of

the universe often renders these instabilities inefficient in a cosmological setting [37].

Various combinations of these effects may be relevant in a given model. Cases also arise

in which none of them are effective and we obtain perturbative decay.

When fluctuations grow sufficiently large, rescattering effects become important and

the inflaton φ and preheat fields χi fracture into a highly inhomogeneous state. This

fracturing process is both strongly nonlinear and highly inhomogeneous and therefore re-

quires a numerical approach to investigate fully. The use of lattice numerics to investigate

this process is now a well-developed field. LATTICEEASY [38] was the first publically

available code designed to study dynamical evolution of scalar fields coupled to gravity.

This was followed by a clever high-order symplectic time-integrator and improved spa-

tial discretization in DEFROST [39]. HLATTICE [40] also used a symplectic integrator

and allowed for evolution of the second-order gravitational equations. Improvements to

the spatial discretization were made using pseudospectral methods in PSpectRe [41], al-

though with a significantly less accurate staggered-leapfrog or RK4 time-stepping method

compared to the symplectic schemes. Performance gains based on parallelization were

implemented in a port of LATTICEEASY called CLUSTEREASY [42], and through

GPGPU computing with PYCOOL [43]. Finally, GABE [44] uses a second-order explicit

Runge-Kutta time integration to evolve arbitrary non-canonical scalar fields.

Using these codes, many interesting possible dynamics for the preheating transition

have been discovered, including production of topological defects [45, 46], production of

superheavy particles, creation of a second inflationary stage, production of oscillons and

2For time-dependent Hessian eigenvectors, additional types of instabilities may also arise.
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Q-balls, baryogenesis [47, 48], and many more. Perhaps the most interesting of these

possible dynamics are the ones that lead to potential observational signatures, including

the production of gravitational waves [49, 50, 51, 52, 53, 54] and nongaussian density

perturbations [55, 56, 57, 58, 59, 60, 61]. However, despite much progress, there are still

many mysteries surrounding the process of reheating. In chapter 5 we will provide a

new characterization of the preheating process in terms of entropy production, and also

demonstrate a new mechanism for creating density perturbations from preheating.

The results in this thesis make extensive use of a new lattice code that attempts to

combine the best elements of previous approaches. Novel new features include a high-

order symplectic time integrator for arbitrary scalar field theories and options for either

finite-difference or pseudospectral discretization. Also included are a suite of analysis

routines previously unavailable to the preheating community such routines for calculation

of cross-power spectra, discrete wavelet transforms of the fields, smoothing routines, and

calculation of various fields not usually considered in the preheating literature. The code

also comes fully MPI and OpenMP parallelized out of the box. The numerical methods

are sufficiently general to allow for the study of DBI-type scalar field theories as well

as non-linear sigma models. Despite their importance in high-energy model building,

the preheating dynamics of these types of theories have largely been neglected in the

literature. As well, the numerical techniques should also allow for a full general relativistic

treatment of the problem. Work in this direction is currently underway.

1.6 Parametric Resonance and Floquet Theory

A common thread running through this thesis is the presence of resonant instabilities in

the fluctuations of scalar fields around dynamical but highly symmetric backgrounds. In

early universe cosmology, these instabilities are familiar from the theory of preheating

as outlined in section 1.5, where the homogeneous oscillating inflaton resonantly excites

inhomogeneous fluctuations in another field or itself. When preheating proceeds via

the resonant excitation of fluctuations via a homogeneous oscillating inflaton, the linear

dynamics are adequately described by Floquet theory. Chapter 2 will apply similar

techniques to the case of fluctuations around an inhomogeneous oscillating background.

The nonlinear dynamics explored in chapters 3,4 and 5 are also preceded by a stage of

linear instability that is well approximated by Floquet theory. Here we review the basics

of Floquet theory to set the stage for future chapters.
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Floquet theory applies to linear equations of the form

dy

dt
= L(t)y (1.38)

where y is a vector and the matrix L is periodic L(t + T ) = L(t). Here we will collect

some useful properties of solutions to these types of equations. The key result for this

thesis is that solutions to (1.38) of the form y(t) = eµtp(t) exist, with p(t+ T ) = p(t) a

periodic function and µ ∈ C.

Consider a fundamental matrix solution F (t) of (1.38), which is nonsingular and

satisfies Ḟ = LF , thus providing a complete set of solutions to (1.38). Defining the

Wronskian W (t) ≡ det(F (t)), we have W (t) = W (t0)e
∫ t
t0
L(s)ds

as can easily be seen by

differentiating Tr lnW . The complete dynamics of the system can be extracted from the

eigenvalues and eigenvectors of the monodromy matrix

M ≡ F−1(0)F (T ) (1.39)

which can easily be shown to satisfy F (t + T ) = F (t)M . Denote the eigenvalues of M

by Λi ≡ eµiT where we have defined the Floquet exponents µi ∈ C. The real parts of the

Floquet exponents R(µi) are often referred to as Lyapunov exponents. We have

∑

i

µiT = ln det(M) =

∫ T

0

dtTrL(t) Tr(M) =
∑

i

Λi (1.40)

Let b be an eigenvector of M with eigenvalue eµt. Consider x(t) = F (t)b, which is a

solution to (1.38) and satisfies x(t + T ) = F (t + T )b = F (t)Mb = eµTx(t). Defining

p(t) ≡ e−µtx(t), it is easy to show that p(t) is periodic. Therefore, for each eigenvector

of the monodromy matrix with eigenvalue µ, we have a solution x(t) = eµtp(t) with

p(t+ T ) = p(t).

1.7 Structure of Thesis

The theoretical ideas and analytic framework for the four papers comprising the body

of this work were developed through an intense collaborative process. In addition to

the people listed below, many of the ideas permeating the results presented here were

influenced by other projects and discussions with Lev Kofman, Andrei Frolov, Zhiqi

Huang and Neil Barnaby. In addition to being a major contributor in these collaborative

efforts, I performed all of the numerical calculations presented in this thesis including



Chapter 1. Introduction 17

the development of the required software.

Chapter 2 contains the first installment of a three-part study of colliding domain

walls and will appear as Cosmic Bubbles and Domain Walls I: Parametric Amplifica-

tion of Linear Fluctuations in collaboration with J. Richard Bond and Laura Mersini-

Houghton. We consider the evolution of linear fluctuations around planar and SO(2,1)

symmetric backgrounds appropriate for the case of planar domain wall and bubble col-

lisions respectively. A series of reasonable approximations for the evolution of the sym-

metric background allow the fluctuations to be studied through Floquet theory for a

system with many degrees of freedom. We find that fluctuations generically experience

strong exponential amplification during the collisions, indicating that the problem must

be treated using full lattice simulations if the walls bounce a few times.

Chapter 3 examines the full nonlinear dynamics of colliding parallel scalar field do-

main walls with near planar symmetry and will be submitted as Cosmic Bubbles and

Domain Walls II: Fracturing of Colliding Walls. Using lattice simulations, we find that

the exponential growth of fluctuations studied in chapter 2 completely changes the colli-

sion dynamics. The onset of nonlinearities leads to a complete breakdown of the planar

symmetry, and the walls undergo a highly inhomogeneous annihilation process. At the

end of this a collection of oscillons are formed from the energy stored in the domain walls.

Chapter 4 is the final installment in our study of the role instabilities play in the

dynamics of colliding domain walls and will be submitted as Cosmic Bubbles and Domain

Walls III: The Role of Oscillons on Three-Dimensional Bubble Collisions. We consider

collisions between bubbles of true vacuum using three-dimensional simulations. As in

the planar case, the assumption of symmetry (in this case SO(2,1)) breaks down shortly

after the collision due to the onset of nonlinearity amongst the fluctuations for collisions

in double-well potentials.

Chapter 5 studies the production of entropy from preheating instabilities at the

end of inflation and will appear as The Shock-in-Times of Post-Inflation Preheating in

collaboration with J. Richard Bond. We present a formalism to study entropy in systems

far from equilibrium and find that for preheating models based on broad-band parametric

resonance entropy production occurs during a short time interval around the onset of

nonlinearities amongst the fluctuations–the so called shock-in-time. An exploration of

the entropy generation under various measurement assumptions demonstrates that the

shock is a robust feature. We then use this observation to study the production of

nongaussian density perturbations from the modulation of coupling constants driving

the preheating instability.

Chapter 6 includes conclusions and possible directions for future work.



Chapter 2

Cosmic Bubble and Domain Wall

Instabilities: Parametric

Amplification of Linear Fluctuations

In this chapter we consider the behaviour of linearized fluctuations around colliding scalar

field domain walls in situations where the colliding walls possess a high degree of spatial

symmetry. Domain walls arise when discrete symmetries are spontaneously broken and

are familiar from the magnetic domains formed in ferromagnets. In the context of the

early universe they can form in high-temperature or vacuum phase transitions: either

through self-ordering dynamics following a rapid quench or as the walls of nucleated

bubbles during a first-order transition. However, observations place restrictions on the

stability of walls produced in this fashion. Domain walls and similar objects such as

Dbranes are also a common ingredient in early universe model building. Examples include

braneworld cosmologies in which our observable dimensions are confined to a lower-

dimensional brane or domain wall embedded in a higher dimensional space [62, 63, 64,

65, 66, 67], inflationary cosmologies including stacks of Dbranes [68, 69], and some cyclic

cosmologies [65].

In a complete theory the domain walls interact and posess their own dynamics, either

inherited from an underlying scalar field theory or intrinsically in the case of Dbranes.

When several such walls are present, the dynamical evolution may result in collisions. In

some cases, such as the self-ordering dynamics after a quench or a rapid percolating first-

order phase transition, the domain walls form a complicated network with interactions

and collisions occuring in a wide variety of orientations. However, in other scenarios

the collisions posess a large amount of symmetry, such as planar symmetry or SO(2,1)

symmetry. Such a highly symmetric configuration may arise from tuning of the initial

18
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conditions as in braneworld cosmologies. In other cases, the dynamics naturally leads to

symmetric collisions, although the underlying theory might still require tuning to realize

the appropriate dynamics. An example of this latter scenario is a first order phase

transition where the bubbles expand to several times their initial radius before colliding.

In this chapter we focus on the particular case of colliding parallel planar walls formed

by the condensate of some scalar field φ. The qualitative behaviour of the fluctuations

around the planar walls also carries over to the case of collisions with an SO(2,1) sym-

metry. These two symmetry assumptions—planar and SO(2,1)—are widely invoked to

study collisions in braneworld scenarios [70, 67, 71, 72] and false vacuum decay [73],

respectively. In both cases, assuming so much symmetry reduces the underlying field

equations to a one-dimensional nonlinear wave equation, which greatly simplifies the

problem and has been central to many past studies of domain wall collisions. We use

the solutions to these one-dimensional nonlinear wave equations as backgrounds, around

which we expand our fluctuations.

An important difference between the classical and quantum problems, which has been

neglected in previous work, is the extent to which the dynamical evolution preserves the

initially assumed symmetries. While the classical dynamics may possess exact planar

or SO(2,1) symmetry, the quantum fluctuations only respect these symmetries in a sta-

tistical sense. In particular, individual realizations of the quantum fluctuations will not

respect the spatial symmetry exactly, although this breaking may initially be very small.

These fluctuations possess their own dynamics, and it is important to test their stabil-

ity. Provided the fluctuations are initially small, we can describe the first stages of their

dynamics using linearized equations. If the fluctuations grow, they may have nonnegli-

gible backreaction and rescattering effects on the symmetric part of the field, which can

significantly modify the overall dynamics. A proper treatment of these effects requires

studying the nonlinear problem and is the subject of chapters 3 and 4 respectively.

We restrict our considerations to two different scalar field theories posessing domain

wall solutions. For simplicity, we only consider single-field models which we denote

by φ and will refer to as the symmetry breaking field. The background spacetime is

assumed to be Minkowski throughout. In addition to the choice of underlying theory,

the evolution of the fluctuations depends on the particular background around which we

expand. Therefore, we consider a variety of collisions in each potential. We will show

that nonplanar fluctuations in φ can experience exponential instabilities for a broad class

of collisions.

The analysis is performed using Floquet theory applied to a non-separable PDE. This

approach generalizes the techniques used in preheating, where Floquet theory is applied
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to ODEs in order to study fluctuations around a spatially homogeneous background. For

different choices of the background evolution, we find generalizations of broad parametric

resonance and narrow parametric resonance to the case of fluctuations around a spatially

inhomogeneous background.

Although we focus on two specific scalar field models, the dynamical mechanism that

leads to the rapid growth of fluctuations is much more general. As we will explicitly

demonstrate, the broad parametric resonance instability is essentially particle produc-

tion in the Bogoliubov sense for fluctuations bound to the walls. These fluctuations are

the transverse generalization of the Goldstone mode arising from the spontaneous break-

ing of translation invariance by the domain wall. Therefore, these modes exist for any

membrane-like structure appearing in a translation invariant theory. Such membrane-like

structures can include domain walls in other field theories, or Dbranes in string theory.

When the two “branes” are well separated, the fluctuations are trapped by an effective

potential well. As long as the shape of these wells are modified by the collision, then we

expect similar instabilities to arise regardless of the underlying theory.

The remainder of this chapter explores the rich dynamics of linear fluctuations around

colliding domain walls. We first introduce our two models in section 2.1 and present the

domain wall solutions that each potential supports. In section 2.2 we introduce our

decomposition of the field into a background and fluctuations, followed by a review of

the background dynamics. The central analysis in contained in section 2.3, where we use

Floquet theory to understand the dynamics of the fluctuations. We provide instability

charts for the fluctuations and study the mode functions in detail. We also comment

on the applicability of our results to a broader class of theories. Finally, in section 2.4

we briefly comment on the implications for SO(2,1) bubble collisions and conclude in

section 2.5. Some of the more technical details explaining the construction of approximate

background solutions are contained in appendix A. Details of our numerical methods and

convergence tests demonstrating their superb accuracy and convergence properties are in

appendix B.

2.1 Model Lagrangians and Domain Wall Solutions

We start by introducing the two potentials we will consider and reviewing the domain

wall solutions they support, as well as the types of perturbations that exist around these

solutions. Since we will ultimately be working in three spatial dimensions, we also discuss

the embedding of lower-dimensional domain wall solutions in three dimensions.
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Our first choice of potential is the sine-Gordon model

V (φ) = 1− cos(φ) . (2.1)

This potential supports a family of static inhomogeneous solutions — kinks — with

profiles given by

φSGkink(x) = 4 tan−1(ex−x0) + 2πn, n ∈ Z . (2.2)

These solutions interpolate between neighbouring minima of the potential (2.1) with

φ(∞) = φ(−∞) + 2π, and are the one dimensional version of domain walls. Here x0

determines the spatial position of the kink and n is an integer determining which minima

the kink interpolates between. There is also a corresponding antikink solution which is

obtained by the substitution (x− x0)→ −(x− x0). Kinks moving at a constant velocity

can be obtained by Lorentz boosting the static solution.

At linear order in one spatial dimension the only normalizable localized perturbation

of the kink is the zero mode corresponding to an infinitesimal translation of the center

of mass

δφtrans ∝ ∂xφkink ∝ sech(x− x0) . (2.3)

We will later consider planar kink solutions in 2 or more spatial dimensions, in which

case these localized perturbations give rise to a spectrum of bound state fluctuations

with dispersion relationship ω = k⊥, where k⊥ is the wavenumber along the directions

parallel to the wall.

As a second example of a potential supporting domain wall solutions we consider the

double-well

V (φ) =
λ

4

(
φ2 − φ2

0

)2 − δλφ3
0 (φ− φ0) + V0 (2.4)

depicted in figure 2.1, with δ an adjustable parameter controlling the difference between

the false and true vacuum energies and V0 a constant.1 As long as δ is not too large, this

potential supports spatially dependent field configurations in which the field is localized

near each of the minima in different regions of space, with the requisite domain-wall

structures interpolating between the different regions.

A well known example occurs for δ = 0 in one spatial dimension. In this case, the

1Unless explicitly indicated, for the remainder of the paper we measure all dimensionful quantities in
units of m ≡

√
λφ0, with the exception of the fields measured in units of φ0 and the potential in units

of m2φ20.
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Figure 2.1: Plots of the double-well potential for several choices of the parameter δ con-
trolling the difference in potential energies between the two wells. Domain wall solutions
interpolate between spatial regions where the field is near the false vacuum at φfalse ≈ −1
and regions where it is near the true vacuum φtrue ≈ 1.

kink solution located at x0 is given by

φDWkink(x) = φ0 tanh

(√
λφ0(x− xo)√

2

)
(2.5)

with a corresponding antikink solution again obtained by replacing (x−x0)→ −(x−x0).

Once again, moving kinks are obtained by Lorentz boosting the above solution. Unlike the

sine-Gordon model, which posesses a single bound state excitation, the one-dimensional

double-well kink has two localized normalizable linear perturbations δφ(x, t). There is

also a continuum of delocalized radiative modes with frequencies ω2 ≥ 2. The localized

perturbations are often referred to as the translation mode

δφ0 ∝ ∂xφkink ∝ sech2

(
x− xo√

2

)
(2.6)

and the shape mode

δφ1 ∝ cos(ωt) sinh

(
x− x0√

2

)
sech2

(
x− x0√

2

)
with ω2 =

3

2
. (2.7)

As before, the translation mode corresponds to a spatial translation of the center of the

kink and is thus analogous to the sine-Gordon zero mode. The shape mode is an internal

excitation which can be thought of as an oscillating wall width.

Kink-like solutions continue to exist as we deform the potential by increasing δ. How-
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ever, the potential energy difference between the two minima causes the “wall” to accel-

erate, so the kink solutions are no longer time-independent in inertial reference frames.

In three spatial dimensions domain walls become embedded two-dimensional hyper-

surfaces with some small but finite width. In this chapter we will consider two cases

that possess a high degree of spatial symmetry. The first case, which is our main focus,

is planar walls generated by extending the sine-Gordon and double well kink solutions

discussed above in the additional two spatial directions. Second, we will study bubbles of

“true vacuum” nucleating within the false vacuum in the double-well potential, restrict-

ing to choices of δ in the double-well potential for which these false vacuum bubbles are

well described by the Coleman-deLuccia (CdL) instanton [74, 75, 15]. In Minkowski space

at zero temperature, the most likely initial bubble profile possesses an SO(4) symmetry

in Euclidean signature [76] with profile determined by

∂2φ

∂r2
E

+
d

rE

∂φ

∂rE
− V ′(φ) = 0 (2.8)

where r2
E = r2 + τ 2, τ is the Euclidean time and d is the number of spatial dimensions.

The initial bubble profile is obtained by analytically continuing back to real time. In the

thin wall limit (valid if the initial radius of the bubble is much greater than the thickness

of the wall), the friction term in (2.8) is dropped and we are left with the same equation

as for a domain wall in the corresponding 1 + 1-dimensional theory. In this limit, the

initial bubble radius is given by

Rinit =
3σ

∆ρ
=

√
2

δ
, (2.9a)

σ =

∫
dr[∂rφ(t = 0)]2 = 2

√
2φ2

0m/3, (2.9b)

where ∆ρ is the difference in energy density between the true and false vacuum and σ

is the surface tension of the wall. In the final equalities on each line we made use of the

specific form of the potential (2.4).

Our choice of planar walls and vacuum bubbles is motivated in part by their preva-

lence in many cosmological scenarios. In particular, planar walls form the basis for

braneworld cosmological models [63, 62] and proposals for bouncing cosmologies [65]. As

well, stacks of parallel D-branes hidden in some extra dimensions are an integral part

of brane inflation models [69, 68]. Meanwhile, vacuum bubbles arise in open inflation-

ary models based on false vacuum decay [77, 78, 79, 80, 81]. Similarly, first-order high

temperature phase transitions proceed via the nucleation of bubbles (albeit without the
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boost symmetries of the vacuum case) [82, 83]. Thus, backgrounds with a high degree of

symmetry are relevant in a variety of contexts while also leading to a tractable analysis

for the fluctuations.

2.2 Dynamics of Planar Symmetric Collisions

We now study (nonplanar) fluctuations around colliding parallel planar domain walls.

We treat this case first because the scale associated with the overall radius of the bubbles

does not enter the problem, so parallel domain walls constitute a slightly simpler arena

in which to illustrate the underlying fluctuation dynamics. In the limit that the bubbles

have radii much larger than any other relevant scale in the problem we also expect

bubble collisions to be reasonably approximated by two colliding planar walls. However,

we should mention that our analysis will be restricted to mildly relativistic wall collisions,

while (vacuum) bubbles in the limit of large radii have walls that move at very nearly

the speed of light. Thus, a direct application of our results is not possible, although we

believe that all of the qualitative features we discuss will continue to hold.

2.2.1 General Formalism

Our setup consists of a kink starting at x = −xinit and moving to the right and an

antikink starting at x = xinit and moving to the left. For ease of nomenclature, we will

refer to this as a KK̄ pair. We take the collision axis to be the x direction and split the

field as

φ(x, y, z, t) = φbg(x, t) + δφ(x, y, z, t) (2.10)

where the fluctuations satisfy 〈δφ(x, y, z, t)〉 = 0. The planar symmetry allows us to

approximate ensemble averages with averages over the (y, z) plane. Before solving for

the fluctuation field we must find the background solution around which we will perturb.

If backreaction and rescattering effects are ignored the background field φbg undergoes

the same dynamic evolution as in 1+1-dimensions, namely

∂2φbg
∂t2

− ∂2φbg
∂x2

+ V ′(φbg) = 0 (2.11)

with initial conditions given by the KK̄ pair. Meanwhile, the linearized equation for the

fluctuations is
∂2δ̃φk⊥

∂t2
− ∂2δ̃φk⊥

∂x2
+
(
k2
⊥ + V ′′(φbg(x, t))

)
δ̃φk⊥ = 0 (2.12)
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where δ̃φk⊥ = 1
2π

∫
dydzei(kyy+kzz)δφ is the 2d Fourier transform of δφ in the directions

transverse to the collision axis and k2
⊥ ≡ k2

y+k2
z . For the remainder of the paper, we refer

to these planar symmetry breaking flucutations as transverse. At this level of approxi-

mation, fluctuations δφ behave as a free field with a time and x-dependent effective mass

(V ′′(φbg(x, t)) determined independently by the background evolution. For intuition, it is

perhaps easiest to discretize the x direction and view the system (for each choice of k⊥)

as a collection of coupled oscillators. In real space this coupling occurs via our choice of

discretization of the laplacian term, while in momentum space (along x) the oscillators

couple via the Fourier transform of V ′′(x, t). This line of thinking suggests that for a

given V ′′(x, t) the (time-dependent) ‘normal’ mode oscillations yield a simple description

of the system. After considering the typical behaviour of solutions to the background

equations, we will show that this approach can be carried out approximately and pro-

vides very useful insight into the behaviour of the fluctuations. Of course, the rate at

which our discretized system converges to the continuum result depends upon our choice

of spatial discretization. In this paper we use a Fourier pseudospectral approximation to

discretize ∂xx, thus obtaining exponential convergence as we increase the number of grid

sites for a fixed box size. Details about our precise numerical procedures as a well as a

demonstration of the superb convergence properties of our techniques can be found in

appendix B.

2.2.2 Dynamics of the Background

We now briefly review the background dynamics for colliding planar domain walls in

our two chosen potentials, and determine the typical form of V ′′(φbg(x, t)) to use as

input in the fluctuation equation (2.12). As noted above the assumed planar symmetry

allows us to reduce the background dynamics to the study of a KK̄ pair interacting in

1+1-dimensions. The sine-Gordon model is particularly useful because in one spatial

dimension it is integrable and the kink and antikink solutions are true solitons, which

interact with each other while preserving their shapes at early and late times. More

importantly, there exist analytically known periodic breather solutions

φbreather = 4 tan−1

(
cos(γvvt)

v cosh(γvx)

)
, (2.13)

where v > 0 is a free parameter determining the properties of the breather solution and we

have defined γv ≡ (1 + v2)−1/2 [84]. In the case v � 1 the kink and antikink pair are well

separated at t = 0 and have initial positions xinit ≈ ±
√

1 + v2 ln(0.5v). For larger values
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of v, the kink and antikink are much more tightly bound and the breather is instead a

localized oscillating blob of field with size rbreather =
√

1 + v2 cosh−1(1/v tan(φedge/4)) ∼
−
√

1 + v2 ln(φedgev/8), where we define the edge of the breather as the point where

φbreather(t = 0, rbreather) = φedge and assumed φedgev � 1 in the last approximate equality.

Some representative examples are shown in Fig. 2.2.
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Figure 2.2: Sample breather dynamics for three representative cases corresponding to
v = (

√
2 − 1)−1, 1, 0.01: initial φ profiles (top left), φbreather for v = (

√
2 − 1)−1 (top

right), v = 1 (bottom left) and v = 0.01 (bottom right).

Now we consider the more complicated case of the double well (2.4). Because we do

not have exact solutions to (2.11) we must resort to numerical simulations. We use a

Gauss-Legendre time-integration combined with a Fourier pseudospectral discretization,

allowing us to obtain machine precision results for both the spatial discretization and

time-evolution. Details can be found in appendix B. This problem has been studied

by many authors and leads to a rich phenomenology [85, 86, 87, 88, 89]. The kinks in

this model are solitary waves rather than true solitons, and thus they emit radiation

when they interact. Combined with excitation of the internal mode during collisions,

this means that the motion is no longer exactly periodic. We restrict our review to a

kink-antikink pair described by some initial separation and relative velocities, and cover

only a few salient features of the interaction. For more general setups a wide range

of interesting phenomenology arises; the interested reader should consult the previously
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cited works for more details.

To simplify the analysis, we work in the center of mass frame and take the initial

kink and antikink speeds v (not to be confused with the breather parameter above)

and separations as free parameters. Some illustrative examples of the dynamics are

shown in Fig. 2.3. In the symmetric well the attractive force between the kink and
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Figure 2.3: Some sample dynamics of kink-antikink collisions in the double-well potential.
We plot the value of the field φ as a function of time and position along the collision axis.
Red corresponds to field values on the true vacuum side of the potential, blue to values
on the false vacuum side, and white to values near the top of the potential. The spatial
coordinates are chosen so that the collision occurs at the origin. Three choices of initial
velocity in the symmetric well illustrate three different types of behaviour: for v = 0.05
(top left) the KK̄ pair capture each other and form a long-lived bound state rather than
immediately annihilating. For v = 0.2 the kinks are in an escape resonance (top right),
and a collision above the critical escape velocity (v = 0.3) appears in the bottom left. In
the bottom-right is the behaviour for an asymmetric double well with δ = 1/30 and the
KK̄ pair starting from rest at a separation mdsep = 16. In all cases, the oscillation of
the internal shape mode is visible as an oscillating wall width.

antikink decreases exponentially at large separations, and as a result unbound motions

with the kink escaping back to infinity are possible. For low initial velocities (v .

0.15), the KK̄ pair always capture each other after colliding and do not escape back to

infinity – see Fig. 2.3, top left, for an example with v = 0.05. Rather than immediately



Chapter 2. Parametric Amplification of Linear Fluctuations 28

annhilating into radiation, the kinks bounce off each other several times and then settle

into a long-lived oscillatory blob known as an oscillon (here living in one dimension).

During each oscillation, some energy is radiated away, so this localized state eventually

decays. However, the rate of energy loss is slow and the oscillons can persist for thousands

of oscillations (or more) before finally disappearing.

As the incident velocity increases, the kinks enter a “resonant escape” regime char-

acterized by bands of incident velocities in which the two kinks eventually escape back

to infinity separated by bands in which they trap each other, as in the low velocity

limit [88]. Within each escape band, the number of bounces the walls undergo before

escaping back to infinity is a very complicated function of the incident velocity. This

seemingly strange behaviour is usually attributed to the shape mode. At each collision,

nonlinear interactions transfer some of the kinks’ translational kinetic energy into a ho-

mogeneous excitation of the shape mode or vice versa. The direction of energy transfer

depends on the oscillation phases of the two shape modes (one on the kink and one on

the antikink). As a result, the kinetic energy of the kinks can decrease in one bounce as

the shape mode is excited causing the KK̄ pair to become temporarily trapped. In the

subsequent collision some of this stored energy can then be transferred back into overall

translational motion, giving the kink and antikink enough translational kinetic energy

to escape back to infinity. An example of this behaviour for v = 0.2 is illustrated in the

upper right panel of Fig. 2.3. The KK̄ pair collides, losing some energy to radiation and

exciting the internal shape mode. At the second bounce, energy is transferred from the

shape mode back into translational kinetic energy and the kinks escape each other.

Finally, there is a critical velocity above which the KK̄ pair will always interact

exactly once before escaping back to infinity. During the collision, some of the energy

escapes as radiation. The remaining energy flows between the shape and translational

modes of the kink. Provided that the shape modes are not initially excited, the outgoing

velocities of the two walls are thus always less than their incident velocities. This sort of

interaction appears in the bottom left panel of Fig. 2.3.

When we take δ > 0, i.e. make the double well asymmetric, the difference in vacuum

energies across the kink causes an acceleration toward the false vacuum side, and the kink

and antikink experience an approximately constant attractive force at large separations.

As a result, the kinks are no longer able to escape back to infinity and will always

undergo multiple collisions while slowly radiating energy. Eventually, an oscillon forms

at the location of the original collision. See the bottom right panel of Fig. 2.3 for an

example of kinks interacting in an asymmetric double well.

In all cases discussed above the shape mode is excited by the collisions. This is visible
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as an oscillating wall thickness, as seen in Fig. 2.3.

2.3 Dynamics of Linear Fluctuations

In the previous section we briefly reviewed the dynamics of the planar symmetric back-

ground field. The key feature for our analysis is the presence of oscillatory behaviour:

the walls typically bounce off each other many times or settle into a localized bound

state rather than immediately annihilating, and internal vibration modes of the walls are

excited in the collisions. We now study the transverse fluctuations described by (2.12)

in these types of oscillating backgrounds, focusing on whether small initial (transverse)

perturbations to the background dynamics illustrated in Fig. 2.2 and Fig. 2.3 can be am-

plified to the extent that they become important to the full field dynamics. The results

presented in this section are the main results of our analysis. We will present (in)stability

charts for linear fluctuations around various choices of planar collision backgrounds in

both the sine-Gordon and double-well potentials. In addition we study several represen-

tative choices of the unstable mode functions, which provides insight into the qualitative

structure of the instability charts. We find inhomogeneous generalizations of both broad

and narrow parametric resonance, demonstrating that the transverse fluctuations in φ

can indeed grow rapidly as a result of collisions.

Amplification can happen several ways. Radiative modes can be excited in the col-

lision region and then subsequently propagate into the bulk, which is the transverse

generalization of the outgoing radiation seen in the (1+1)-d simulations above. However,

these excitations carry energy away from the collision and cannot experience sustained

growth. More interesting is the pumping of fluctuations bound to the kinks (in cases

where the walls separate widely), or bound in the oscillating effective mass well created

by the late-time one-dimensional oscillons. A similar effect for fermionic degrees of free-

dom has been studied by several authors [90, 91, 92], and for an additional field coupled

to φ in [93]. We only consider fluctuations in the field φ itself, which is required in a

consistent quantum treatment, and we do not appeal to additional fields coupled to φ in

order to obtain growing fluctuations. As well, unlike the authors of [93] we include the

deformation of the spatial structure in V ′′ and couplings between the bound modes and

radiative modes.

Although strictly true only for the case of the breathers, we approximate the oscil-

latory evolution as periodic, allowing us to use Floquet theory to quantitatively study

instabilities in δφ. The resulting Floquet modes then provide a time-dependent normal

mode decomposition in which the evolution of the system is simple. The periodic ap-
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proximation is very accurate for the late-time bound states and excitations of the shape

mode in the planar background, so that the Floquet analysis is well justified for those

two cases. When the walls repeatedly bounce off of each other, we will show that the

amplification happens in a very short time interval around the time of collision. The

short bursts of growth in the fluctuations remain when the bouncing is not periodic, so

again the Floquet analysis provides an accurate account of the full evolution.

In early universe cosmology and nonequilibrium field theory, Floquet theory is famil-

iar from the theory of preheating [26, 29, 27, 94]. For these problems the background is

spatially homogeneous, which leads to two simplifications. First, the background evolu-

tion is described by a nonlinear ODE instead of a nonlinear PDE, and analytic solutions

are known in many interesting cases [33, 34, 35, 36]. Second, the equation for the fluctua-

tions is diagonalized by the 3D Fourier transform, so instead of involving a large number

of coupled oscillators the problem reduces to a collection of decoupled oscillators with

periodically changing masses ¨δφk + (k2 + m2
eff (t))δφk = 0 where m2

eff (t) = V ′′(φbg(t))

depends only on time and k2 = k2
x + k2

y + k2
z is now the full three-dimensional wavenum-

ber. Solutions to this equation have the well known form δφk(t) ∼ P (t)eµt with the

(possibly complex) exponent µ, known as a Floquet exponent, and P (t) a function sat-

isfying P (t + T ) = P (t), where T is the period of the oscillation in V ′′. The µ’s depend

parametrically on k as well as the functional form of m2
eff . Typically bands of stable

(max(Re(µk) = 0)) and unstable (max(Re(µk)) > 0) modes appear as we vary k while

holding the form of m2
eff fixed.2 There are a variety of underlying mechanisms that

can be responsible for the instability, such as tachyonic resonance, narrow resonance and

broad parametric resonance [29, 27, 35].

For a spatially dependent effective mass, which is the case we consider, the form

of the decoupled solutions generalizes to δφ = F (x, t)eµt, where the profile function

F (x, t) satisfies F (x, t + T ) = F (x, t). This is easily seen by discretizing the x direction

and placing the system in a finite box. The equations of motion then take the form

v̇ = M(t)v, with M(t) a periodic matrix and v = (δ~φT , δ~̇φT )T . Such equations fall

within the domain of Floquet theory and solutions of the form given above thus exist

(modulo issues of convergence on taking the continuum limit).

To treat the case of spatially inhomogeneous masses, we first discretize the fields

2This condition, rather than max(Re(µk) < 0, is true for the wave equations we study here. This

follows from the fact that the linear operator M(t) =

(
0 I

∂xx − V ′′ 0

)
describing the evolution of

(δφ, δφ̇)T has Tr(M) = 0. We must then have
∑
i µi = 0 so that the presence of a single negative

Lyapunov exponent necessarily creates a positive Lyapunov exponent. For the homogeneous case this
requirement becomes max(Re(µk) = 0.
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δ̃φk⊥ on a lattice of N points labelled by index i. We denote the field value at the ith

lattice site by φi and the corresponding field by the vector δ~φ. Next, we consider 2N

linearly independent solutions ( ~δφ
(j)

(t), ~δφ̇(j)(t)) to (2.12). Using this set of solutions, we

form a 2Nx2N fundamental matrix solution F (t). For simplicity, we choose our initial

conditions such that the jth row of F (t) is given by the solution with initial condition

δφ
(j)
i (0) =




δi,j for j ≤ N

0 for j > N
δφ̇

(j)
i (0) =





0 for j ≤ N

δi,j for j > N
. (2.14)

Of course, we can construct our fundamental matrix from any complete set of initial

states, and we verified that choosing an orthonormal basis in Fourier space reproduced

the results we present in the remainder of this chapter. Finally, the Floquet exponents

are related to the eigenvalues Λn of F (0)−1F (T ) via Λn = eµnT , with the initial conditions

for the mode functions given by F (0)b(n), where b(n) is an eigenvector of F (0)−1F (T )

with corresponding eigenvalue Λn. For each choice of k2
⊥ and effective mass there are 2N

such exponents, but we focus on the exponent with the largest real part (i.e. the largest

Lyapunov exponent). For notational simplicity we refer to this maximal real part of a

Floquet exponent as µmax ≡ maxRe(µ). This method allows us to find any exponentially

growing instabilities given some fixed background evolution, but it is completely blind

to other more slowly growing instabilities. In particular, power law growth results when

there are degenerate Floquet exponents, and we might expect this to be common in the

continuum limit given that we then have infinitely many oscillators. However, we are

ultimately interested in the quantum problem where we must integrate over all possible

modes, and therefore we expect the exponentially growing ones to be the most important

dynamically and thus most interesting for our purposes.

We first consider fluctuations in the sine-Gordon model, using the breather solution

as a background. We then consider the behaviour of fluctuations around various back-

grounds supported by the double well potential.

2.3.1 Sine-Gordon Potential

Using the planar symmetric sine-Gordon breather as the background circumvents the

problem of finding appropriate approximations to φbg. Furthermore, as bound states of a

kink-antikink pair, breathers resemble the states arising from collisions in the double well

and can be used to gain some qualitative insight into the dynamics of the fluctuations for



Chapter 2. Parametric Amplification of Linear Fluctuations 32

the double well as well. The exact equation for linear fluctuations around the breather is

∂2δ̃φk⊥

∂t2
− ∂2δ̃φk⊥

∂x2
+

[
k2
⊥ + cos

(
4 tan−1

(
cos(γvvt)

v cosh(γvx)

))]
δ̃φk⊥ = 0 . (2.15)

The initial profile of V ′′(x, t) for several representative choices of v can be found in the

right panel of Fig. 2.4, with the subsequent time evolution for these same three choices

in Fig. 2.5, Fig. 2.8 and Fig. 2.10.

The left panel of Fig. 2.4 is an instability chart in which µmaxTbreather appears as a

function of k2
⊥(1 + v2)/v2 as we vary v−1. There are several generic features of note.

First, µmax = 0 when k2
⊥ = 0 for all values of the parameter v considered. Since the

k⊥ = 0 modes are part of the planar symmetric system, this is a validation of our

numerical procedure since no exponentially growing modes exist in the sine-Gordon model

in 1+1-dimension.3 For v−1 ≤ 1, V ′′(x, t) has the form of a single well whose depth

oscillates with time. There is a single instability band, the width and strength of which

increase monotonically as v decreases, which corresponds to moving to the right on the

instability chart. Once v−1 > 1 the kink and antikink become less tightly bound and V ′′

develops a pair of local minima separated by a small bump. An additional instability

band then appears on the chart. As we continue to increase v−1 (decrease v), the kink

and antikink begin to separate from each other during the motion, and the two local

minima in V ′′ develop into two well separated wells as seen for v = 0.01 in the right

panel of Fig. 2.4. Additional instability bands being to appear. Each of these bands

grows quickly with increasing v−1 and approach a nearly constant width, although the

strength of the instability (per breather period) within each band continues to increase.

However, Tbreather is simultaneously increasing∼ v−1
√

1 + v2 and this results in a decrease

of the maximal floquet exponent if measured in units of t.

We now study the properties of the mode functions in various regimes of the instabil-

ity chart. This gives us insight into the qualitative features of the instability chart, and

also sheds light on the dynamical mechanism responsible for the amplification. First we

consider the v � 1 limit. The breather is effectively a weakly bound kink-antikink pair

which repeatedly approach and pass through each other. The resulting evolution of V ′′ is

illustrated in the left panel of Fig. 2.5 for the specific case of v = 0.01. Due to the reflec-

tion symmetry of the potential about any of its minima, the period TV ′′ = π
√

1 + v2/v of

the effective mass is half the period Tbreather = 2π
√

1 + v2/v of the breather. For most of

3Of course, weaker non-exponential instabilities or transient instabilities are still allowed. For
example, for a given v we could add a perturbation such that the new field configuration corre-
sponds to a breather with ṽ 6= v. Since the period of the breather depends on v, the perturbation
δφ = φbreather,ṽ − φbreather,v will grow initially but will not experience unchecked exponential growth.
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Figure 2.4: Left : The largest real part of a Floquet exponent per period of the breather

(µmaxTbreather) for f̈ − fxx +
[
k2
⊥ + cos

(
4 tan−1

(
cos(vt/

√
1+v2)

v cosh(x/
√

1+v2)

))]
f = 0 as a function of

k2
⊥(1 + v2)/v2 and v−1. The left portion of the chart (v−1 . 1) corresponds to the small

amplitude breathers while the right portion (v−1 & 1) corresponds to the large amplitude
breathers. Right : V ′′(φbreather(x, 0)) for three representative choices of v. For v ≥ 1, there
is a localized blob with a single minimum. We have plotted v = (

√
2 − 1)−1 and v = 1

corresponding to the cases when the middle of the breather just reaches V ′′(φ) = 0 and
V ′′(φ) = −1 respectively. For smaller v, the single blob instead develops a pair of minima,
with the formation of two distinct wells when v � 1 corresponding to the well-separated
kink and antikink.

the evolution, V ′′ has two distinct wells corresponding to the well separated kink and an-

tikink. In the 1d field theory, each of these wells has a zero mode (the translation mode)

associated with it. When we allow for the transverse fluctuations, the zero mode leads

to a continuum of bound excited states with dispersion relationship ωbound = k⊥ > 0.

As the breather evolves, the two wells in V ′′ periodically come together and “annihilate”

each other as seen in the left panel of Fig. 2.5. During these brief moments when the

two wells have disappeared, the bound states cease to be approximate eigenstates of the

system. This temporary annihilation of the wells allows for the rapid amplification of

bound fluctuations. Whether or not a particular k⊥ receives coherent contributions to

its amplitude at successive annihilations depends on the phase ωboundTV ′′ ∼ k⊥
√

1 + v2/v

accumulated between collisions. In the stability chart this dependence on the accumu-

lated phase manifests as the repeating structure in k2
⊥(1 +v2)/v2. Of course, this process

is very similar to the familiar case of broad parametric resonance [27], in which short

but large violations of adiabaticity (|Ω̇/Ω2| & 1) of a harmonic oscillator with a time-

dependent frequency Ω(t) lead to bursts of bound state “particle production” in the

Bogolyubov sense. For the familiar homogeneous case the nonadiabaticity is captured by

a time-dependent frequency alone, while for the inhomogeneous background we have the

additional effect of a strong deformation of the spatial properties of the effective mass.
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To illustrate this process with a specific example, we plot various aspects of the fastest

growing transverse Floquet mode for a breather with v = 0.01 and k2
⊥ = 0.05 in Fig. 2.5

and Fig. 2.6. As evident in the bottom panel of Fig. 2.5 the mode function is strongly

peaked around the locations of the kink and antikink. The mode function also experiences

large jumps around each collision, exactly as expected from our discussion in the previous

paragraph. To further illustrate the rapid amplification of bound fluctuations at the

collisions, the top left panel of Fig. 2.6 shows the value of δφ at the leftmost instaneous

minimum of V ′′ as a function of time, along with the value V ′′min at this minimum. During

the collision, V ′′min rapidly changes from−1 to 1 and δφ experiences a nearly instantaneous

increase in its amplitude. To quantify the growth of fluctuations, it is useful to introduce

the effective particle number

nωboundeff +
1

2
=

∫
dx

1

2k⊥
(k2
⊥δφ

2
k⊥ + δφ̇2

k⊥) (2.16)

which (modulo contributions from the bulk) gives the occupation number of massless

transverse fluctuations bound to either the kink or antikink. For a bound fluctuation on

an isolated kink with transverse wavenumber k⊥ this quantity is constant, so changes in its

value allow us to track the production of fluctuations. From the top right panel of Fig. 2.6,

we see that between collisions nωboundeff is constant and undergoes nearly discontinuous

jumps during the short collisions between the kink and antikink.

The above analysis confirms our intuitive explanation that the exponential growth

is associated with production of bound state fluctuations. However, several additional

questions remain that we will now address. First, the reflection symmetry of the mode

functions around the origin, as seen in the bottom panel of figure 2.5, somewhat obscures

the process by which the amplification is occurring. For example, we don’t know if

amplification occurs from a pumping of bound modes on both the kink and antikink at

the same time, from a pumping of only modes on the kink (or antikink) at all times, or

from a reflection and growth of the bound modes in only the left (or right) well, because

a symmetric mode function cannot distinguish between these processes.4 Second, it is

also unclear whether the stability bands arise primarily from dissipation of fluctuations

into the bulk, or primarily from phase interference between bound fluctuations. Finally,

a somewhat surprising feature of the the mode function is the long radiative tail that

4Actually, we can distinguish the first case from the other two by looking at the second largest
eigenvalue. If pumping only occurred on one kink at a time, then the appropriate linear combinations
of only pumping on the kink or only pumping on the antikink would result in two nearly degenerate
Floquet exponents. Although we don’t include the results here, we have done this for the sine-Gordon
model. Within the instability bands, the second largest Floquet exponent was always much smaller than
the largest one.
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Figure 2.5: Effective mass and mode functions for a large amplitude v = 0.01 breather
and k2

⊥ = 0.05. Top left: V ′′(φbreather) for the given breather background and the instan-

taneous location of the kink, xkink = − sign(cos(γvt))
γ

cosh−1
(
| cos(γvt)|

v

)
(red line). Bottom:

The corresponding mode function, illustrating the constant amplitude oscillations around
the kink and antkink while they are well-separated, and the rapid growth in the short
interval during which they collide. Radiation moving away from the collision is also visi-
ble. Top right : Initial conditions for the mode function, illustrating both the localization
near the kink and antikink, and the extended radiating tail.
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Figure 2.6: Two illustrations of the growth of bound state fluctuations around a v = 0.01
breather with k2

⊥ = 0.05. Left : Mode function evaluated at the instantaneous location
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include the value of V ′′ at the minimum. Right: The occupation number of bound state
fluctuations as measured by (2.16). Since we use unnormalized mode functions, we don’t
have neff = 0 initially.

extends far from the spatially localized breather into the bulk.

To gain further insight into these issues, we consider the evolution of the fluctuations

given an initial condition δφinit = sech(x − xK) with xK = −
√

1 + v2 log(v/2) corre-

sponding to a bound state fluctuation on the leftmost kink (or antikink) of the breather

solution. Fig. 2.7 shows the evolution of this initial state for several choices of k2
⊥, illus-

trating various aspects of the behaviour. For each run, we show the evolution of nωboundeff

defined in (2.16). Since our setup is no longer symmetric about the origin, we also plot

nlefteff and nrighteff , in which we perform the integral only over the left half and right half

of the domain respectively. For k2
⊥ = 0.83, a large amount of radiation is produced in

the collisions, so we have also calculated neff over the entire integration domain (which

had length L ≈ 1174) and also restricted to the interval |x| < 25 in order to separate

out the bound fluctuations from the radiation. To illustrate the growth of the bound

fluctuations, we also plot δφwall evaluated at the instantaneous left and right minima of

V ′′.5 Finally, we show the profile of δφ either for the entire simulation or else several

times around the first collision of the kink and antikink.

As can be seen, in each collision some radiation is released from the collision region.

As k⊥ is increased the fluctuations appear to be less tightly bound to the kink, and

the amplitude of radiation produced in the collisions tends to be larger. This is likely

the origin of the decreasing amplitude of µmax at the center of the instability bands as

5This provides a useful definition of the instantaneous location of the kink and antikink.
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we increase k⊥ while holding v constant. Incidentally, this emitted radiation clarifies

the origin of the long radiative tail we found for the mode function above. Since the

fluctuations obey a linear equation, the amount of radiation produced depends on both

the oscillation phase and the amplitude of the bound mode. As the mode function grows,

this leads to the production of radiation with an identical spatial profile to that produced

in the previous collision but a larger amplitude. These figures also suggest that whether

or not a particular value of k⊥ will experience an exponential instability is primarily

determined by the phase interference between the bound state fluctuations. This can

occur either because the fluctuations are not excited in any of the collisions (as in the

case k2
⊥ = 4.006x10−4), or because the fluctuations are excited in one collision, but then

de-excited due to phase interference in the subsequent collision (as in the case k2
⊥ = 0.83).

Finally, as expected from studying the second largest Floquet exponent (see footnote 4),

we also see that for the unstable modes the excitation tends to occur on both the kink

and antikink simultaneously. On the other hand, when the modes are drawn from a

stability band the fluctuations on the kink and antikink no longer experience the same

degree of excitation or deexcitation at each collision.

We now turn to the case of larger v’s, where we no longer have a well-defined kink and

antikink at any point in the breather’s motion. First take v = 1 and k2
⊥ = 0.35, which

is located near the center of the instability band. For this choice of v, the middle of the

breather just makes it to a maximum of the potential every half oscillation. Therefore,

V ′′(x, t) has the form of a single oscillating well whose middle oscillates between −1 and

1 and asymptotes to 1 at ∞, as illustrated in Fig. 2.8. The kink and antikink are now

so tightly bound that they never have separate identities and the notion of particles

bound to the kink and particles bound to the antikink is ill-defined. As a result, our

previous intuition based on the creation of fluctuations bound to the individual kink and

antikink no longer applies. Instead, we expect the pumping to occur more smoothly and

be localized in the region of the breather. As seen in the bottom panel of Fig. 2.8, this

is indeed the case. The mode function looks like a smoothly oscillating function whose

amplitude grows exponentially and satisfies δφ(x, t+TV ′′) = −δφ(x, t)eµTV ′′ , so the period

of the oscillation is the period of the breather not the period of the effective mass. One

way to see this is to consider the quantity

n
(ωbreather)
eff +

1

2
≡ 1

2ωbreather

∫
dx
(
δφ̇2 + ω2

breatherδφ
2
)

(2.17)

which is an effective particle number, like (2.16) for the v � 1 breathers, but modified to

account for the fact that in this case the oscillation frequency of the breather dominates
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Figure 2.7: Evolution of δφ for initial condition δφinit = sech(x − xk) with xk =√
1 + v2 log(v/2). We have taken v = 0.01 and four choices of k2

⊥, illustrating vari-
ous types of behaviour. For each case, we plot the effective particle number defined
in (2.16) (left), the value of the field at the instantaneous locations of the two minima
in V ′′ (middle), and a measure of the local “particle density” (δφ̇2 + k2

⊥δφ
2) for several

times around the first collision (right). In the top line we take k2
⊥ = 4.006x10−4 which is

located in the first stability band. The second line has k2
⊥ = 6x10−4, which is near the

maximum of the second instability band. In the third line we have k2
⊥ = 0.05 which is in

one of the higher order instability band. Finally, in the fourth line we take k2
⊥ = 0.83,

which is located in one of the higher order stability bands. For the purposes of plotting,
we have defined Tb = Tbreather in the right panels.
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the oscillation frequency of the mode function. The top right panel of Fig. 2.8 demon-

strates that n
(ωbreather)
eff increases as a smooth exponential, with some small subleading

oscillations. It is also useful to recall that the Floquet mode can be written in the form

−10 −5 0 5 10

x

0

2

4

6

8

10

12

γ
v
t

v =1

−1.0

−0.5

0.0

0.5

1.0

V
φ
φ
(φ

b
r
e
a
th

e
r
)

0 2 4 6 8 10

t/Tbreather

10-1
101
103
105
107
109

1011
1013
1015
1017
1019
1021

n
ω
br
ea
th
er

ef
f

x

10
5

0
5

10

t/
T b

0

1

2

δφ
2

1

0

1

2

0.5

0.0

0.5

1.0

Figure 2.8: In the top left panel we plot V ′′ for a breather with v = 1. In the bottom
panel we show the resulting fastest growing mode function for k2

⊥ = 0.35. The growth is
localized around the location of the breather and is much smoother than the v � 1 case.
In the top right panel, we illustrate this smooth growth by plotting n

(ωbreather)
eff .

δφ = eµtP (x, t) and to decompose the periodic function P (x, t) as

δφ(x, t)e−µt =
∑

ωm

|δφ̃ωm(x)| cos(ωmt+ θm(x)) ωm =
2πm

Tbreather
. (2.18)

The results of performing this decomposition are shown in Fig. 2.9. This clearly demon-

strates that the frequency content of the mode function is indeed dominated by the

frequency of the breather, with smaller subleading contributions from higher harmonics,

thus justifying our introduction of the quantity n
(ωbreather)
eff in (2.17). We now see that the

small oscillations around pure exponential growth arise from this subleading frequency
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content. As expected, the mode function is concentrated in the region around the well

created by the breather. Once we move further away from the breather, we see that the

spatial phase in each frequency varies linearly. This is consistent with the production of

radiation near the location of the breather which then travels off to infinity.
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Figure 2.9: Several aspects of the frequency content of the periodic factor δφe−µt of the
fastest growing Floquet mode for the v = 1 breather with k2

⊥ = 0.35. Left: The amplitude
of oscillation |δφ̃ωi(x)|. The overall normalization is arbitrary. Middle: The oscillation
phase (defined as θi(x) ≡ tan−1(Im(δφ̃ωi)/Re(δφ̃ωi)) for the same frequencies. Right: The
relative amplitudes of the three largest frequencies normalized to σ2

ω(x) ≡∑i |δφ̃ωi(x)|2.

Finally, we consider the case v = 1/(
√

2−1) and k2
⊥ = 0.2. As in the case v = 1, there

is now a single oscillating well. However, the maximum excursion of the field is ±π/2, so

that the effective mass for the fluctuations is positive semidefinite, as illustrated in the

top left panel of Fig. 2.10. We see that the resulting fastest growing Floquet mode is

qualitatively very similar to the v = 1 case. There is an isolated blob that oscillates with

a frequency determined by ωbreather whose amplitude grows smoothly as an exponential.

Looking at the frequency content in Fig. 2.11, we see that the mode function again

consists of a large amplitude part concentrated in the potential well of the breather and

what appears to be a much smaller radiative tail. The oscillation frequencies in the two

regions are even more monochromatic than the v = 1 cases, with the frequency of the

radiative part being different than the frequency of the bound part. In both of these

cases, the growth of mode functions is analogous to the case of narrow resonance for a

single oscillator.

2.3.2 Symmetric Double Well

We now consider the symmetric double well. As demonstrated earlier, for certain choices

of the initial kink speed the background solutions can undergo oscillatory motion. For the

case of the asymmetric well, this oscillatory motion is generic due to the attractive force

experienced by a well separated KK̄ pair resulting from the potential energy difference
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Figure 2.10: The effective mass (top left), mode function (bottom) and effective particle
number (2.17) (top right) for a small amplitude v = (

√
2− 1)−1 breather with k2

⊥ = 0.2.

between the two wells. We will not consider the asymmetric well explicitly, but the

behaviour of the fluctuations is qualitatively the same as the cases we study in the

symmetric well.

The oscillatory motion of the background solution comes in three forms: repeated

collisions of the walls, oscillations of the internal shape mode, and evolution of a late-

time oscillon. The first of these is analogous to the sine-Gordon breathers with v � 1,

while the last is qualitatively similar to the breathers with v ≥ 1. Compared to the

breathers, the only new feature here is that we can have V ′′(x = 0) > V ′′(x = ∞)

for a portion of the evolution. We will study each of these independently, although

there are several caveats to this approach that the reader should be aware of. First

of all, the repeated collisions and shape mode oscillations typically occur together in

actual background solutions. In the homogeneous case, interference effects mean that

the stability chart for a pair of oscillating masses with different frequencies is not the

same as a superposition of the charts for each individual oscillator [37]. Despite this,
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Figure 2.11: Frequency content of the fastest growing Floquet mode for v = (
√

2− 1)−1

and k2
⊥ = 0.2. In the left panel we show the oscillation amplitude for the three largest

harmonics, while the center panel shows the initial phase of oscillation. The full solution
takes the form δφe−µt =

∑ |δφ̃ωi(x)| cos(ωit+ θi(x)). In the right panel we instead show
the relative amplitudes, normalized to the total power at position x.

from the sine-Gordon analysis above we expect that the growth of fluctuations due to

the collision will occur in a very short time interval during the actual collision. The

collision also excites the (planar) shape mode in the background, which is then free to

pump excitations during the much longer intervals while the walls separate from each

other. As a result, we can gain very good qualitative understanding by considering these

processes in isolation. The resulting interference from the two mechanisms could then

be done using projections on the appropriate Floquet basis (either for the wall collisions

or the shape oscillations) just before and after each collision. Of course, since the exact

background is not exactly periodic, this destructive interference will tend to get smeared

out leading to a smoothing of the instability diagram, analogous to what happens in the

homogeneous case.

Keeping the above caveats in mind, we begin with the case where the KK̄ separate

widely from each other between collisions. Unlike the sine-Gordon breather, we have no

analytic solutions for this case. Also, due to the emission of radiation and the excitation

of the shape mode, the background motion is no longer periodic. In order to create a

periodic approximation that is amenable to our Floquet analysis, we now introduce our

most questionable approximation and take the background to have the following form

φbg = − tanh

(
γ√
2

(x− r(t))
)

+ tanh

(
γ√
2

(x+ r(t))

)
− 1 , (2.19)

where r(t) is taken to be our dynamical variable and γ = (1− ṙ2)−1/2. This ansatz ignores

the production of radiation, excitation of the planar shape mode and any additional

deformation of the kink profile due to interactions. After several further simplifying
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Figure 2.12: Real parts of Floquet exponents for several choices of initial separation rmax
of the kink and antikink in the double-well potential. In the left panel we show the largest
Floquet exponent µmaxTwalls, while in the right we show the second largest µmax,2Twalls.
Unlike the sine-Gordon model, here we have regions where there are two unstable modes
rather than just one. We see the expected banding structure with bands evenly spaced
in k⊥Twalls.

assumptions, we arrive at the following approximate solution for r(t)

r(t) = rmax +
1

2
√

2
log

(
cos2

(
πt

Twalls

)
+ e−2

√
2(rmax−rmin)

)
Twalls =

π

2
√

6
e2
√

2rmax

(2.20)

where rmin is the (minimum) solution to Veff (rmin) = Veff (rmax) with Veff (r) defined

in (A.7) of appendix A. Further details of this construction are provided in appendix

A. An alternative approach would have been to simply insert a periodic function for

r(t) and study the resulting fluctuation behaviour. However, (2.20) is perhaps better

justified than a completely adhoc choice for r(t) because it partially incorporates the full

field dynamics.6

Fig. 2.12 shows the resulting Floquet exponents for several choices of rmax. As ex-

pected, the bands are distributed evenly in the phase accumlated by bound fluctuations

in subsequent collisions k⊥Twalls. There is a very strong instability as k⊥ → 0, which

is not unexpected given that our approximation ignores the radiation and planar shape

mode that are excited during the collisions. One interesting new feature is the presence

of a second growing mode, which we illustrate by plotting the second largest real part of

a Floquet exponent in addition to the largest one.

Next consider the pumping of fluctuations by oscillations of the shape mode. This

is a new effect that is not present in the sine-Gordon model. Since the shape mode is

6As a check, we did insert several other parameterized choices for r(t) “by hand” and found banding
structure as we varied the parameters.
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generically excited (or de-excited) during collisions, this amplification will usually occur

in conjunction with the nonadiabatic production of fluctuations due to the colliding walls

described above. We parameterize this motion as

φbg = tanh (ζ) + Ashape cos(ω1t)
sinh(ζ)

cosh2(ζ)
(2.21)

where we have defined ζ = m(x − x0)/
√

2 and ω2
1 = 3m2/2. Plugging this into the

equation for fluctuations, we find

δφ̈−∂xxδφ+


k2
⊥ − 1 + 3

(
tanh

(
mx√

2

)
+ Ashape cos

(√
3mt√

2

)
sinh(mx/

√
2)

cosh2(mx/
√

2)

)2

 δφ = 0 .

(2.22)

The resulting Floquet chart is given in Fig. 2.13. As in the case of the repeated collisions

described above, we emphasize that this is not an exact solution of the 1-d field equa-

tions. Nonlinear couplings in the potential will modify the oscillation frequency of the

shape mode and also cause it to radiate. Hence the amplitude will gradually decrease

in time, leading to a slowly changing oscillation frequency. It is even possible to tune

the amplitude so that the subsequent evolution leads to the creation of a kink-antikink

pair in addition to the kink that was initially present [89]. However, provided the am-

plitude is not too large, the time-varying amplitude and frequency can be approximated

as an adiabatic tracing of modes on the instability chart. Hence the instability chart

and corresponding mode functions provide a heuristic understanding of the evolution of

the fluctuations. In the top left panel of Fig. 2.14 we plot V ′′(x, t) for Ashape = 0.5. As

expected from the interpretation of the shape mode as a perturbation to the width of the

kink, V ′′ looks like a well whose width oscillates in time. There is also some additional

oscillating side-lobe structure. The remaining panels in Fig. 2.14 show the fastest grow-

ing Floquet mode, the effective particle number and the various frequency components of

the solution as in the case of the small-amplitude breather. Because the mode function

completes only half an oscillation per period of the shape mode, the frequency used in

the definition of nωeff is ω = π/Tshape. The mode function displays more structure than

for the sine-Gordon breathers, in particular in the higher harmonics. This additional

structure is probably due to the additional sidelobe structure of V ′′. However, the so-

lution is still well described by a single oscillation frequency near the core of the kink,

with a different harmonic becoming important as we move towards the sidelobes of the

oscillations, and finally a third harmonic arising as we move into the radiating region.

Finally consider the late-time (1-dimensional) oscillon state that develops. In order to
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Figure 2.13: Instability chart for planar oscillations of the shape mode. Shown is

µmaxTshape for f̈ − fxx +
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2
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√
3) + Ashape cos(t) sinh(x/

√
3)
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√
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f = 0

and various choices of the parameters k⊥ and Ashape.

approximate this motion, we first expand the background solution about the true vacuum

minimum as φbg = φmin+φ̄(x, t). Up to a constant, the potential for φ̄ then takes the form

V (φ̄) = m̄2φ̄2

2
+ σ

3!
φ̄3 + λ̄

4!
φ̄4 with m̄2 = 2λφ2

0, σ = 6λφ0 and λ̄ = 6λ. In order to extract an

approximate background solution, we follow [95] and perform an asymptotic expansion

in some small parameter ε and define new time and space coordinates u =
√

1− ε2m̄t
and w = εm̄x. Expanding the solution as φ̄(u,w) =

∑∞
n=1 ε

nφn(u,w) and solving the

resulting equations order by order in ε, we find

φ̄osc = (P (x) + g(
√

2mx)) cos(
√

2
√

1− ε2mt) +
3

2φ0

P (x)2
(

cos(2
√

2
√

1− ε2mt)− 3)
)

+O(ε3)

(2.23)

P (x) =
4ε√
α

sech(
√

2εmx)

∂wwg − g + 3αg3 = 0

where we have defined α ≡ 5σ2

3m̄4− λ̄
m̄2 . For the particular form of the double well potential,

we have α = 12/φ2
0. In the literature, two choices for how to treat the function g have

been considered. Fodor et. al [95] assumed that no bounded solutions exist and set g = 0,

while Amin [96] instead demanded φ2(t = 0) = 0 to set g(x) = 3P (x)2/φ0. We make the

second of these two choices when we plot the second order oscillon instability chart. The
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Figure 2.14: The same series of plots are shown as for the Floquet modes of the v = 1
(Fig. 2.8, Fig. 2.9) and v = (

√
2−1)−1 (Fig. 2.10, Fig. 2.11) sine-Gordon breathers. In the

definition of nωeff , we used the frequency ω = π/Tshape. As for the sine-Gordon breathers,
the mode function consists of a well-defined core region near the location of the kink as
well as a much small radiative component. Due to the additional spatial complexity of
V ′′ in this case, the mode function displays more spatial and frequency structure than
for the breathers.
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Figure 2.15: Floquet chart for the small amplitude “breather”-like solution in the double-
well potential, eqn. (2.23). Left : Floquet chart is for the leading order in ε solutionMiddle:
Floquet chart for the second order in ε solution. Right: Instability of the k2

⊥ = 0 mode
as a function of ε for both the leading and second order background solutions.

resulting equation for the transverse fluctuations is

∂2δφ

∂t2
− ∂2δφ

∂x2
+
[
k2

2 − 1 + 3(1 + φ̄osc)
2
]
δφ = 0 . (2.24)

In Fig. 2.15 we show the corresponding stability chart for the fastest growing mode taking

both the leading order and second-order in ε approximations to the background.7 As can

be clearly seen, the detailed structure of the instability does display some sensitivity to

our choice of approximation for the background. For k⊥ = 0 and ε . 0.2, the higher

order approximation removes a weak instability that was present in the leading order

approximation, indicating that it is indeed a better approximation to the background at

small ε. However, for larger ε the higher-order background is actually more unstable than

the leading order approximation. This is merely a reminder that our approximation is

asymptotic rather than convergent. When we consider k⊥ 6= 0, we see that the additional

oscillating frequencies in the second-order background lead to several weak instability

bands at small epsilon. Meanwhile, for larger ε the main instability band extends for a

wider range of k⊥ and has larger Floquet exponents. Again, this is not surprising since

the oscillation amplitude is larger in this approximation and we would thus expect it to

drive stronger instabilities.

2.3.3 Comments on Collisions of other Membrane-like Objects

Although we have focussed on two specific scalar field models, the dynamical mechanism

that leads to rapid growth of the fluctuations is much more general. In particular, for

7The particular choice of oscillon profile is not essential. We also ran simulations using Gaussian
profiles φbg = A cos(ωt)e−x

2/w2

for various choices of ω and w taking A as a parameter and again found
a similar structure for the Floquet chart.
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the well-separated walls the explosive growth of fluctuations relied only on the presence

of bound fluctuations around each of the kinks and the periodic violation of adiabaticity

for these bound states. Recall that these fluctuations arise as the transverse generaliza-

tion of the Goldstone mode (i.e. the translation mode) resulting from the spontaneous

breaking of translation invariance by the kink. However, an equivalent Goldstone mode

will occur for kinks in any translation invariant theory, and thus these bound fluctuations

are ubiquitous. For kink-antikink type collisions such as those studied here, we typically

expect large deformations in the shape of V ′′ as well as adiabaticity during each collision

and thus the parametric amplification of wall-bound fluctuations we have found here

should be very common. It would be interesting to consider instead kink-kink collisions,

where the effective potential wells resulting from each of the kinks will not completely

annihilate during collision, but we leave this to future work.

As well as this rather direct extension to other scalar field theories, we believe our

results also have some relevance to collisions of other membrane-like objects such as

Dbranes. When the kink and antikink are wellseparated, the transverse translation modes

simply describe a spatially dependent location for the center of the kink, and are thus

well-described by an effective action for a membrane. If two such membranes are in

close proximity to each other, it is natural to expect them to interact. For the case of

Dbranes, this interaction is usually described in terms of the excitation and production

of string modes. Since string production is a local process from the viewpoint of a field

theory on the brane, we expect that the resulting fluctuations will be inhomogeneous

and analogous to the excitation of our transverse modes. We will show in chapters 3

and 4 that the inhomogeneity of the growing fluctuations dramatically changes the full

three-dimensional dynamics as compared to the case when the backreaction is assumed

to have planar symmetry. Although this is highly dependent on the details of the high-

energy theory (in our case a scalar field theory), we expect brane collisions to be strongly

affected by inhomogeneity and amplification of fluctuations for the same reasons that

gave rise to the rich phenomena from domain wall collisions presented in this work.

2.4 Comments on Fluctuations Around Colliding Bub-

bles

Having explored instabilities around colliding domain walls, we now briefly comment on

the case of two colliding vacuum bubbles. Beginning with the work of Hawking, Moss

and Stewart [73], this problem has been explored by many authors [97, 98, 99, 100, 22,
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101, 102, 103, 104]. A common feature of these analyses is the assumption of SO(2,1)

symmetry for the field profiles. This is motivated by the SO(4) symmetry of the minimum

action bounce solution for a single bubble [76], which translates into an SO(3,1) symmetry

for the nucleation and subsequent expansion of the bubble in real time. The nucleation of

a second such bubble destroys the boost symmetry along the axis connecting their centers,

leaving a residual SO(2,1) symmetry for the 2-bubble solution. Making this assumption

allows for the treatment of the problem as effectively 1 + 1-dimensional, which greatly

eases the numerical challenges and has even lead to a general relativistic treatment [105].

However, as in the case of the domain walls studied above, this is not the full story.

Quantum fluctuations are inevitably present; in fact it is these field fluctuations that

are responsible for the bubble nucleation in the first place. For a discussion of these

perturbations in the presence of a single bubble see [106, 107, 108]. Motivated by the

presence of these fluctuations, we now make some brief comments on the linear fluctuation

dynamics in the background of the pair of colliding bubbles. Results for the full dynamics

of bubble collisions are presented in chapter 4.

2.4.1 Background Dynamics of Highly Symmetric Collisions

As in the case of the planar walls, we first decompose our problem into a highly sym-

metric background field and a nonsymmetric fluctuation. This allows us to connect with

previous treatments as well as the foregoing sections of this chapter. A convenient set of

coordinates is given by

t = s coshχ

x = x (2.25)

y = s sinhχ cos θ

z = s sinhχ sin θ

where we align our coordinates such that the centers of the two bubbles both lie on the

x-axis. The SO(2,1) symmetry is now manifest as the background depends only on s and

x. As for the case of planar symmetry, we separate the field into a symmetric background

and symmetry breaking fluctuations φ = φbg(s, x) + δφ(s, x, χ, θ). Ignoring backreaction

of the fluctuations, the background solution obeys

∂2φbg
∂s2

+
2

s

∂φbg
∂s
− ∂2φbg

∂x2
+ V ′(φbg) = 0 (2.26)
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and the linearized fluctuations evolve according to

∂2(sA`)

∂s2
− ∂2(sA`)

∂x2
+

(
`2

s2
+ V ′′(φbg)

)
(sA`) = 0 . (2.27)

Here we have factored the perturbation as δφ =
∑

`,nA`(s, x)C`,n(χ)einθ, with C`,n obey-

ing
1

sinh(χ)

d

dχ

(
sinh(χ)

dC`,n
dχ

)
=

(
−`2 +

n2

sinh2(χ)

)
C`,n (2.28)

and n an integer.
∑

l,n represents an integral over the continuous part of ` and a sum

over n and any discrete normalizable modes C`,n. The curvature of the bubble walls

thus influences the fluctuation dynamics in three ways: damping the overall amplitude

as s−1, redshifting the effective transverse wavenumber squared as s−2 and modifying the

dynamics of φbg and by extension V ′′(φbg).

Treatments that assume SO(2,1) symmetry restrict themselves to studying (2.26)

with no consideration of the fluctuations which evolve (initially) according to (2.27). A

sample collision between two such bubbles is shown in Fig. 2.16. As in the case of the
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Figure 2.16: Collision of two thin-wall vacuum bubbles in the asymmetric well (2.4) with
δ = 0.1. The color coding indicates the value of the scalar field. Red indicates it is near
the true vacuum minimum, blue shows regions where it is near the false vacuum, and
the location of the bubble wall is white. At early times, the acceleration of the walls
and corresponding Lorentz contraction is visible. As in the planar symmetric case, the
two walls bounce off of each other multiple times rather than immediately annihilating.
During this process, scalar radiation is emitted from the collision region.

kink-antikink collisions, the bubble walls undergo multiple collisions, each time opening

up a pocket where the field is localized near the false vacuum minimum. The bouncing

behaviour we observe is characteristic of bubble collisions in double-well potentials, and
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was first noted by Hawking, Moss and Stewart [73].

Considering the implications of this behaviour for the full 3+1-dimensional evolution

suggests that two instabilities may occur. The first is the generalization of our previous

results to the SO(2, 1) symmetric rather than the planar symmetric case. Given the

background evolution depicted in Fig. 2.16, we see that (2.27) again describes a field

with an oscillating time and space-dependent mass. Further consideration of Fig. 2.16

reveals the presence of another possible instability. Due to the SO(2,1) symmetry, each

pocket with the field near the false vacuum corresponds to a torus with growing radius

centered on the initial collision in the full 3-dimensional evolution. Roughly, we can think

of this torus as containing false vacuum with a thin membrane separating it from the true

vacuum on the outside. The energy difference between the false and true vacuum leads to

a pressure acting normal to the local surface of the membrane. Since this pressure wants

to push the membrane into the false vacuum, this will tend to cause small initial ripples

on the surface of the torus to grow. Of course, the surface tension of the membrane and

the stretching of the torus as it expands will tend to counteract this effect, so that a

three-dimensional calculation is required to determine the ultimate fate of these ripples.

As we will see in chapter 4, both of these instabilities do indeed manifest themselves in

the fully 3+1-dimensional problem.

2.5 Conclusions

In this chapter we studied the dynamics of linear asymmetric fluctuations around highly

symmetric collisions between planar domain walls and vacuum bubbles. Parallel planar

walls are a common ingredient in cosmological model building based on braneworlds,

and SO(2,1) bubble collisions are generally believed to be an accurate description of

individual bubble collisions during false vacuum decay. Our results thus have potential

implications for these cosmological scenarios.

Fluctuations are generically present in the field that forms the domain wall and there-

fore must be included in a quantum treatment of the problem. However, nearly all past

studies of planar wall and vacuum bubble collisions dynamics have used symmetry to

reduce the problem to a 1+1-dimensional PDE, thus excluding the fluctuations a priori.

Assessing the validity of this drastic reduction in the effective number of dimensions re-

quires a more sophisticated treatment of the problem, and this chapter provides the first

step in such a treatment.

Once we have fixed the symmetric background dynamics for the collision, the fluctu-

ations behave as a free scalar field with a time and space dependent effective frequency.
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Using Floquet theory and extending well-developed methods for ODEs to PDEs, we were

able to show that the time-dependence of the effective frequency can lead to exponential

growth of the symmetry breaking fluctuations. We also studied the spatial structure of

the amplified modes to obtain an understanding of the mechanism responsible for the

amplification. We found generalizations of both broad parametric resonance and narrow

parametric resonance. Due to the spatial dependence of the effective frequency, the am-

plified modes are localized along the collision direction and have a spread of characteristic

wavelengths in the transverse directions. For collisions between well defined wall-antiwall

pairs, the resulting amplification can be conveniently interpreted as Bogoliubov particle

production for particles bound to the walls.

Although we focussed on two specific scalar field models, a detailed study of the

unstable modes revealed that the dynamical mechanism responsible for the rapid growth

of fluctuations is much more general. In particular, for collisions between a pair of well

defined walls, the most strongly amplified modes are the transverse generalization of the

Goldstone mode resulting from the spontaneous breaking of translation invariance by

the domain wall. These modes are present on any membrane-like object in a translation

invariant theory. The amplification only relied on a strong deformation of the effective

potential binding these fluctuations to the wall. Such deformations will be extremely

common in domain walls formed in scalar field theories, and should also arise in collisions

between other membrane-like objects such as Dbranes. Therefore, we expect qualitatively

similar results to be obtained in a wide variety of collisions involving membrane-like

objects.

The linearized approach taken here cannot tell us what the ultimate fate of the expo-

nentially growing modes will be. Since the modes have k⊥ 6= 0, they do not respect the

planar symmetry of the background, which suggests that this symmetry will be badly

broken once the fluctuations become large. The treatment of the full nonlinear field

evolution in the regime where the fluctuations become nonlinear will be the subject of

chapters 3 and 4. We will explore nearly planar symmetric domain wall and nearly

SO(2,1) symmetric bubble collisions using high resolution lattice simulations, thus al-

lowing us to explore the full three-dimensional field dynamics. These investigations will

demonstrate that the nonlinear evolution leads to a complete breakdown of the origi-

nal symmetry of the background, including a dissolution of the walls and production of

a population of oscillons in the collision region. This entire process is unique to more

than one spatial dimension and is a completely new effect that has not previously been

considered in either domain wall or bubble collisions.



Chapter 3

Cosmic Bubble and Domain Wall

Instabilities II: Fracturing of

Colliding Walls

3.1 Introduction

This chapter extends the study begun in chapter 2 of linear fluctuations around colliding

planar domain walls. While chapter 2 considered linearized fluctuations, in the present

chapter we include the full nonlinear dynamics using lattice simulations. The results for

SO(2,1) bubble collisions are presented in chapter 4.

When considering the fully nonlinear dynamics between extended objects, the high-

energy completion is needed rather than just the effective theory for small fluctuations

in the planar shape. We will focus on domain walls formed by the condensate of some

scalar field, and thus we take the high-energy completion of our theory to be a scalar

field theory with canonical kinetic terms and symmetry breaking potential. We will refer

to this field as the symmetry breaking scalar and denote it by φ.

The case of interacting parallel planar walls in this class of theories has been consid-

ered by many authors, usually under the assumption that the nonlinear dynamics can

be treated as planar thus reducing the system to one living in a single spatial dimension.

This assumption is tenable in a classical field theory. However, as noted in the previous

chapter, once the theory is quantized, individual realizations of quantum fluctuations will

break the planar symmetry, even though the statistics as a whole do not. These quan-

tum fluctuations can experience resonant instabilities when the domain walls are allowed

to collide with each other. These instabilities have important consequences, which we

53
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explore in this chapter.

Several authors have explored the amplification of additional fields coupled to the

symmetry breaking scalar, including the cases of additional fermionic fields [92, 90, 91]

and additional scalar fields [93]. However, these studies assumed the background main-

tained planar symmetry and did not investigate the onset of nonlinearities amongst the

fluctuations. We instead take a more minimal approach and study the amplification of

fluctuations in the symmetry breaking field φ. Since we require the field φ to exist in

order to have domain walls in the first place, these fluctuations must be present for a

consistent quantum treatment of the problem. As foreshadowed in the previous chapter

we find that accounting for the dynamics of these fluctuations can drastically change the

collision dynamics between the walls, in the process completely invalidating the original

assumption of planar symmetry. Throughout this chapter, we will refer to this situation

as a breaking of the symmetry by fluctuations.

The remainder of the chapter is organized as follows. In section 3.2 we present our

scalar field models and review the domain wall solutions they support. We also briefly

review how these solutions interact in the limit of exact planar symmetry. Section 3.3

constitutes our main results. We use lattice simulations to study the full collision dy-

namics between domain wall-antiwall pairs for two different potentials and several choices

of initial conditions. A generic outcome of these collisions is the rapid amplification of

nonplanar fluctuations, eventually leading to an inhomogeneous dissolution of the wall

and antiwall. While some of the energy is released into the bulk as radiation during the

dissolution, some of it remains trapped in the collision region in the form of localized

oscillating blobs of field called oscillons. Motivated by the creation of oscillons from do-

main wall collisions, section 3.4 looks at some of their properties. Finally, we provide a

brief qualitative summary of the full collision dynamics in section 3.5 and then conclude.

3.2 Review of (Early Time) Linear Fluctuation Dy-

namics

As in our study of linear fluctuations in chapter 2, we consider two potentials that support

kink solutions in one-dimension: the sine-Gordon model

V (φ) = Λ

[
1− cos

(
φ

φ0

)]
(3.1)
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and the double-well potential

V (φ) =
λ

4

(
φ2 − φ2

0

)2 − δλφ3
0 (φ− φ0) + V0 . (3.2)

For the double-well, δ controls the difference between the false and true vacuum energies

∆ρ ≈ 2δλφ4
0 and V0 is a constant. We restrict to Minkowski space, so V0 will not play any

role in the dynamics. Unless explicitly indicated, throughout the chapter we will express

the fields in units of φ0, spacetime coordinates in units of m−1
eff , and energy densities

in units of m2
effφ

2
0 where meff refers to the effective mass defined for the sine-Gordon

or double well potential as appropriate (see (3.3) and (3.4)). Both of these potentials

have solutions (known as kinks and antikinks in one-dimension) interpolating between

neighbouring minima of the potential. For the sine-Gordon model and degenerate double-

well (δ = 0), they are given by

φSGkink = 4φ0 tan−1
(
emSG(x−x0)

)
mSG =

√
Λφ−1

0 (3.3)

and

φDWkink = φ0 tanh

(
m(x− x0)√

2

)
m =

√
λφ0 (3.4)

respectively. The antikinks are obtained via the replacement (x− x0)→ −(x− x0). For

the slightly asymmetric well (δ � 1) stationary kink solutions no longer exist as the

pressure differential between the false and true vacuum causes the kinks to accelerate.

In this case, we will take the following as an approximate initial profile interpolating

between the two minima

φDWkink =
φtrue − φfalse

2
tanh

(
m(x− x0)√

2

)
+
φtrue + φfalse

2
(3.5)

where φfalse and φtrue are the locations of the false and true vacua repectively. In one-

dimension the energy of the sine-Gordon and double well kinks are ESG
k = 8mSGφ

2
0 and

EDW
k = 2

√
2

3

√
λφ3

0 respectively.

In this chapter our focus is collisions between a pair consisting of a single kink and a

single antikink, which together carry no net topological charge. Since we are interested

in the three-dimensional problem, we extend the kink and antikink in the additional

transverse spatial dimensions. We refer to this setup as a wall-antiwall pair to distinguish

it from the one-dimensional case.
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Under the approximation of exact planar symmetry, the field obeys

∂2φbg
∂t2

− ∂2φbg
∂x2

+ V ′(φbg) = 0 (3.6)

with the initial condition

φbg(t = 0) = φkink(x− x0) + φantikink(x+ x0) + φ∞ (3.7)

where we align our axes so that the kink and antikink move along the x direction and

collide at x = 0. The constant φ∞ is chosen so that the field is sitting at the desired

minimum of the potential at infinity. For our purposes, the important aspect of these

collisions is that they tend to produce oscillatory behaviour in the motion of the fields.

This oscillatory motion comes in three forms: repeated collisions between the kink and

antikink, formation of localized pseudostable nearly periodic blobs of field, and for the

double well the vibration of internal modes of excitation of the individual kink and

antikink. When we consider the extension of the one-dimensional kinks to planar walls

in higher spatial dimensions, small nonplanar fluctuations obey

∂ttδφ̃k⊥ − ∂xxδφ̃k⊥ +
(
k2
⊥ + V ′′(φbg(x, t))

)
δφ̃k⊥ = 0 (3.8)

where δφ̃k⊥ is the Fourier transform of the fluctuations in the additional orthogonal

directions and k⊥ is the transverse wavenumber. The time-dependence of the kink-

antikink solution in one-dimension leads to a space and time dependent effective mass

k2
⊥+V ′′(φbg(x, t)) for the fluctuations. In chapter 2 we performed a detailed analysis of the

fluctuations accounting for this time-dependent effective mass induced by the background

evolution. We found that the oscillations in the background drive resonant instabilities

in the fluctuations causing certain transverse wavenumbers k⊥ to grow exponentially.

Eventually these fluctuations become sufficiently large that the assumption of linearity

fails. At this stage we have to solve the full nonlinear three-dimensional problem and

waive any additional assumptions of symmetry. This full problem will be the focus of

the remainder of this chapter.



Chapter 3. Fracturing of Colliding Walls 57

3.3 Nonlinear Dynamics of Planar Domain Walls with

Non-Planar Fluctuations

In this section we present the results for the full three-dimensional nonlinear field dynam-

ics. We only consider choices of the couplings for which the fluctuations become highly

excited while still in the linear regime. Thus, the system transitions to the semiclassi-

cal wave limit before interactions between the fluctuations become important. Invoking

the standard assumption that the system remains in the semiclassical limit after the

onset of strong nonlinearities, we can then use classical statistical simulations as an ap-

proximation to the full quantum evolution. We use a high resolution numerical lattice

code, with second-order accurate and fourth-order isotropic finite-differencing stencils

and sixth-order accurate Yoshida integrators for the time-evolution. Since we are in-

terested in studying spatially localized objects, we also implement absorbing boundary

conditions [109] along the collision direction

[
∂tφ− ∂x‖φ

∣∣∣
x‖=0

= 0
[
∂tφ+ ∂x‖φ

∣∣∣
x‖=L‖

= 0 (3.9)

in order to remove energy released from the collision region. We have chosen coordinates

along the collision axis to range from 0 to L‖ and denoted the coordinate along this axis

x‖. Quantum effects are incorporated through the initial conditions

φinit(x, t = 0) = φbg(x, t = 0) + δφ(x) (3.10)

φ̇init(x, t = 0) = φ̇bg(x, t = 0) + δφ̇(x)

where φbg is the initial profile of the desired classical background field (here a pair of walls

as in (3.7)) and δφ and δφ̇ are realizations of a random field with the same statistics as the

quantum fluctuations around the walls. Although this approach cannot capture the final

thermalization of the modes to the Bose-Einstein distribution, it is capable of describing

all forms of nonlinear mode-mode coupling, including both mean-field like backreaction

(as is included in the Hartree approximation) as well as rescattering effects and the

development of nongaussian field statistics. Since we focus on the dynamical regime well

before the system reaches thermal equilibrium, the lack of proper thermalization on the

lattice is not a serious limitaion.

An important ingredient in this framework is the spectrum of the initial fluctuations.

Although we don’t engage in a full study of the initial fluctuations here, as long as the

exact initial state has a nonzero projection onto the linearly unstable Floquet modes
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we will obtain the same qualitative behaviour. For simplicity, we primarily consider two

choices for the fluctuations. The first is to take δφ to be a homogeneous Gaussian random

field with spectrum

〈|δφ̃k|2〉 ∼
1

2
√
k2 + V ′′(φtrue)

(3.11)

〈|δ ˙̃φk|2〉 ∼
√
k2 + V ′′(φtrue)

2

which corresponds to the correct fluctuations if the background were homogeneous and

sitting at its true vacuum minimum. For the second choice we initialize each individual

kink as

φinit(x, t = 0) = φkink(γ(x+ δx)) (3.12)

φ̇init(x, t = 0) = −γ(v + δv)φ′kink(γ(x+ δx))

with δx(y, z), δv(y, z) two dimensional Gaussian random fields with spectra 〈|δ̃xk⊥|2〉 ∼
1

2k⊥σkink
and 〈|δ̃vk⊥ |2〉 ∼ k⊥

2σkink
where k2

⊥ = k2
y +k2

z and σkink =
∫
dx‖(∂x‖φ)2 is the surface

tension of the stationary kink. The Lorentz contraction factor is given by (1 − v2)−1/2.

We only consider initial velocities with v � 1, so the inclusion of fluctuations does not

lead to any superluminal wall propagation speeds. In order to fix notation, we introduce

an amplitude parameter Ab and initialize the fluctuations as

δx(x⊥) =
Ab
L⊥

∑

k⊥

αk⊥√
2k⊥

eik⊥·x⊥ δv(x⊥) =
Ab
L⊥

∑

k⊥

βk⊥

√
k⊥
2
eik⊥·x⊥ (3.13)

with αk⊥ and βk⊥ complex Gaussian random deviates with 〈|αk⊥|2〉 = 1 = 〈|βk⊥|2〉 and

L⊥ the side length of the box in the directions orthogonal to the collision. This amounts

to including the fluctuations associated with local translations of the kinks, which are

a subset of the full fluctuation content around the kink background. In this case we

do not include the remaining bulk fluctuations (and transverse excitations of the shape

mode in the case of the double-well) as these require solving an additional eigenvalue

problem. From our linear analysis we know that for the case of well separated walls, this

second set of fluctuations are precisely the modes which are most strongly amplified by

the collision.1 As well, when absorbing boundary conditions are used, the use of these

localized initial conditions avoids an initial spurious loss of energy due to aborption of

1Although all of the results we present here used one of these two choices, we also tested a variety of
other initial conditions and obtained similar results.
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bulk fluctuations by the boundaries.

For each sample collision we provide several plots illustrating different aspects of the

dynamical evolution. First, we slice the field along two orthogonal planes. The first

slice is parallel to the collision axis, providing a view of the effective one-dimensional

dynamics at early times, the production of outgoing radiation and the rippling of the

walls as the transverse fluctuations are amplified. The second slice is orthogonal to the

collision axis and centered at either the collision point or the instantaneous location of one

of the planar walls. This slice provides a full two-dimensional view of the development

of the transverse instability. As illustrated in the examples that follow, this is especially

useful to study the nonlinear evolution of the fluctuations. The next set of figures are

contour plots of the energy density ρ ≡ −T 00 = φ̇2

2
+ (∇φ)2

2
+ V (φ). At early times these

clearly show the locations of the two walls as well as the bumps that develop due to the

linear fluctuations. During the nonlinear stages these plots provide a very clear picture of

how the system is evolving, including the localization of structures in three-dimensions.

Finally, to study the spectral content of the transverse fluctuations, we include the two-

dimensional angle averaged power spectrum of ρ for the transverse wavenumbers k⊥ as

a function of position along the collision axis. Explicitly, we compute

P2d
ρ (k⊥, x‖) ≡

L2
⊥k

2
⊥

N2
⊥

〈
|ρ̃2d
k⊥(x‖)|2

〉
⊥ (3.14)

where 〈·〉⊥ represents an averaging performed in the plane orthogonal to the collision

axis at position x‖ along the collision axis and N⊥ = NyNz is the number of lattice

sizes in each of these planes. Our discrete Fourier transform convention is ρ̃2d
k⊥(x‖) =∑

i e
ik⊥,n·x⊥,iρ(x⊥,i, x‖) with x⊥ = (y, z) the coordinates in the directions orthogonal to

the collision axis. This gives us a very clear view of the spatial localization (along x‖) of

the amplified fluctuations as well as their typical transverse wavenumber.

Before presenting the results of our simulations, we briefly summarize the outcome of

the collisions in order to orient the reader and unify the discussion to follow. While the

precise details depend on the choice of potential and planar symmetric background φbg we

perturb around, the qualitative details are essentially the same for every case we consider.

Initially, the two walls are well-described by the planar ansatz, and due to our choice of

initial setup undergo multiple collisions or else capture each other to form an oscillating

bound state. In either case, the initially small planar symmetry breaking fluctuations

experience exponential growth as described by the linear theory in chapter 2. Once

the fluctuations have grown large enough they begin to interact nonlinearly. In every

case involving the dynamics of a wall-antiwall pair, we found that the stage of nonlinear
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interactions leads to a complete breakdown of the original planar symmetry. This occurs

by an inhomogeneous annihilation between the wall and antiwall which results in the

production of a population of oscillating blobs of field known as oscillons. These oscillons

are distributed homogeneously in the transverse directions to the collision, but are highly

localized at the collision site in along the collision axis. Details and illustrations that will

clarify this picture are presented below.

3.3.1 Sine-Gordon Potential

We begin with the sine-Gordon model and consider two distinct classes of background

solutions. The first is the planar symmetric breathers indexed by the parameter v

φbreather = 4 tan−1

(
cos(γvvt)

v cosh(γvx)

)
γv ≡ (1 + v2)−1 . (3.15)

We restrict ourselves to v & 1 so that the background field configuration is a localized

oscillating blob. For the second case, we instead set the background solution to be a

kink-antikink pair approaching each other with nonzero initial velocity. Since the 1d sine-

Gordon kinks are true solitons they interact while preserving their shapes and velocities,

acquiring only an overall phase shift due to the interaction. Energy conservation then

dictates that after the collision this wall-antiwall pair will again move off to infinity, at

least in the absense of fluctuations. When the system lives on the infinite interval we can

use a Backlund-transformation to find a simple analytic form for this interaction

φkk̄ = 4 tan−1

(
sinh(γvt)

v cosh(γx)

)
γ ≡ (1− v2)−1/2 (3.16)

which describes the passage of the kink and antikink through each other during the

collision. In this case the parameter v represents the speed of the kink and antikink at

infinity. In order to allow for multiple collisions, we will take the collision direction to

be periodic with a linear size less than the transverse directions. As a result the wall

and antiwall will alternately collide in the middle of the simulation volume and at the

boundaries. Since the collision results in the passage of the wall and antiwall through

each other, it is easy to see that each of these collisions will have the same ordering of the

wall and antiwall relative to the collision site. Either we always have a kink approaching

the collision from the right and and antikink approaching the collision from the left, or

vice-versa.

The evolution of planar symmetric breathers with small fluctuations are shown in Fig. 3.1
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Figure 3.1: Evolution of a breather with v = (
√

2 − 1)−1 showing the development of the instability
in planar symmetry breaking fluctuations. Top row: The field sliced along a plane parallel to and
orthogonal to the collision direction. The orthogonal slice is taken through the center of the breather.
White shading corresponds to the field sitting at the origin. Middle row: Contours of the energy density

ρ = φ̇2

2 + (∇φ)2
2 + V (φ). Bottom row: The dimensionless 2d power spectrum P2d

ρ defined in (3.14). The
top panel shows the spectrum as a function of x‖ and k⊥, while the bottom panel plots the spectrum
along the slice through the center of the breather as indicated by the green line in the top panel. The
normalization of the power spectrum color scale differs between the left plot and the remaining three.
Animations of the field and energy density evolution can be found at www.cita.utoronto.ca/~jbraden/
Movies/sg_vsqrt2_field.aviand www.cita.utoronto.ca/~jbraden/Movies/sg_vsqrt2_rho.avi.

and Fig. 3.2 for the case v = (
√

2 − 1)−1 and v = 1 respectively. At early times, the

field is an oscillating blob localized along the collision axis with near planar symme-

try in the transverse directions. However, transverse fluctuations in a narrow band of

k⊥ are resonantly amplified by this oscillating background. The fluctuations appear as

ripples in the field profile and energy density contours, and as a growing peak in the

dimensionless power spectrum. Since the planar breather is an exact solution for the

one-dimensional sine-Gordon model, very little radiation is produced during this stage.

Of course, the growth of these fluctuations only continues until they begin to interact

nonlinearly. At this point the behaviour changes dramatically, and rescattering effects

www.cita.utoronto.ca/~jbraden/Movies/sg_vsqrt2_field.avi
www.cita.utoronto.ca/~jbraden/Movies/sg_vsqrt2_field.avi
www.cita.utoronto.ca/~jbraden/Movies/sg_vsqrt2_rho.avi
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destroy the clean separation between the planar background and the fluctuations. The

ripples in the breather from the transverse fluctuations become very large and pockets

of field appear. Outside of the pockets the field is near the origin, while in the interior it

is displaced towards one of the two neighbouring vacua. These pockets quickly condense

into localized oscillating pseudostable blobs known as oscillons. The oscillons are very

long-lived and are held together by a competition between attractive forces from the po-

tential and the dispersion induced by the laplacian. During this condensation, radiation

is released into the bulk, with the slow decay of the oscillons also emitting radiation into

the bulk after their formation. In these cases, the characteristic transverse scale of the

amplifed fluctuations is close the the final size of the oscillons, and the oscillons condense

almost instantaneously from the pockets of field formed by the linear instability.
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Figure 3.2: Evolution of the sine-Gordon breather with v = 1 including small fluctuations around
the planar symmetric solution. The choice of plots are the same as Fig. 3.1, although we have mod-
ified the color schemes slightly. Notice the color scale normalization for the power spectrum differs
in the leftmost plot compared to the other three. Corresponding animations for the field and energ
density evolution may be found at www.cita.utoronto.ca/~jbraden/Movies/sg_v1_field.aviand
www.cita.utoronto.ca/~jbraden/Movies/sg_v1_rho.avi.

Now let’s consider the case of a colliding kink-antikink pair as illustrated in Fig. 3.3.

www.cita.utoronto.ca/~jbraden/Movies/sg_v1_field.avi
www.cita.utoronto.ca/~jbraden/Movies/sg_v1_rho.avi
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The evolution is in many ways similar to the two breathers considered above. Initially the

field is well described by a colliding planar symmetric wall-antiwall pair. This time the

transverse fluctuations experience an inhomogeneous generalization of broad parametric

resonance, with the amplitude of fluctuations bound to the kink (and antikink) making

a large jump at each collision. The typical transverse wavelength of these fluctuations is

closely related to the period of the background via k⊥ ∼ T−1
collision where Tcollision is the

time between collisions of the kinks. Eventually the fluctuations become large enough

that the next collision between the kink and antikink does not occur at the same time

everywhere in space. For our sample run, this inhomogeneous collision occurs in the

middle of the domain. As a result, punctures form between the two walls that begin

to expand outwards. In this case, some segments of the walls pass through each other

and manage to collide one more time at the periodic boundary, rather than immediately

condensing into oscillons in the center of the domain. This leads to a very inhomogeneous

state with large blobs where the field makes large excursions. These blobs eventually

collapse into a collection of oscillons, just as in the case of breathers. For this study, we

have taken the sine-Gordon model to simply provide the potential for a single-field scalar

field model and have not imposed any additional identifications on the field. However, one

could imagine that the field φ is instead an angular degree of freedom in some two-field

model with the radial degree of freedom effectively trapped at the minimum. In this case,

we may expect the fracturing process to result in the excitation of the radial degree of

freedom and possibly the production of global strings. We do not explore this possibility

here, although it could provide potentially interesting phenomenology in models based

on small compactified extra dimensions.

3.3.2 Double-Well Potential

Thus far we have demonstrated that in the sine-Gordon model the inclusion of small initial

nonplanar fluctuations around colliding planar domain walls can have a drastic effect on

the dynamics, leading to a complete breakdown of the initial near planar symmetry of

the fields. However, the sine-Gordon model in 1 + 1-dimensions (ie. the planar limit) is

integrable and thus a rather special theory. We now demonstrate that similar conclusions

hold for the potential (3.2).

Low Incident Velocity Collision in Symmetric Double Well

As a first example, consider the case of low incident speed v = 0.05 in the symmetric

double-well potential. Initially, the fluctuations are small and the system is well described
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Figure 3.3: Evolution of repeated wall-antiwall collisions in the sine-Gordon model with periodic
boundary conditions φ(x‖ + L‖) = φ(x‖) along the collision direction. In the top row we show
slices of the field parallel to and orthogonal to the collision direction. In the middle row, we in-
stead show contours of the energy density. The bottom row shows the evolution of the 2d angle
averaged power spectrum P2d

ρ defined in (3.14). The top panel plots P2d
ρ as a function of trans-

verse wavenumber k⊥ and position along the collision axis x‖. The bottom panel plots the value
along the green-line indicated in the top panel. Note the pseudocolor scale is different in the left-
most plot. In all three rows, the data are taken at t = 0, 166, 192, and 280. Corresponding ani-
mations can be found at www.cita.utoronto.ca/~jbraden/Movies/cascade_field_wfluc.avi and
www.cita.utoronto.ca/~jbraden/Movies/cascade_contour_wfluc.avi.

by the background configuration of two planar walls as seen in the top panel of Fig. 3.4.

The walls then move towards each other and first collide at mt ≈ 110. After this

initial collision the walls never become well separated and they appear as a localized

oscillating blob that is very similar to the v ≥ 1 sine-Gordon breathers above. However,

when plotting energy density contours it still appears as though two individual walls

are present. A small amount of planar radiation is released during these interactions,

an effect which is properly captured by the symmetry reduced (1 + 1)-d dynamics. Far

more importantly, there is a range of transverse fluctuations which grow exponentially

in the background of this oscillating planar symmetric “blob”. As these fluctuations

www.cita.utoronto.ca/~jbraden/Movies/cascade_field_wfluc.avi
www.cita.utoronto.ca/~jbraden/Movies/cascade_contour_wfluc.avi
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Figure 3.4: Several snapshots demonstrating various aspects of the time evolution of two
colliding domain walls with initial speeds v = 0.05. From the top row to bottom: (a)
the field distribution taken on a slice through the center of the collision (mx‖ = 16),
(b) contours of the energy density, (c) the dimensionless 2-d angular averaged power
spectrum for the energy density as a function of position along the collision direction. We
align our coordinates so that the collision occurs along the x-direction. The simulation
parameters were mdx = 0.125, mL‖ = 64, mL⊥ = 256, mdt = 0.025. Absorbing
boundary conditions were used at mx‖ = 0, 64. For this initial speed, the energy density
at the center of the wall is ρ/λφ4

0 = 0.5/(1 − v2) ≈ 0.50125. A description of the
dynamics is given in the main text. An animation of the field is available at www.cita.

utoronto.ca/~jbraden/Movies/field_v0.05.mp4, the evolving energy density at www.
cita.utoronto.ca/~jbraden/Movies/econtour_v0.05.mp4 and the power spectrum at
www.cita.utoronto.ca/~jbraden/Movies/pspec_v0.05.mp4.

grow, they appear as bumps and ripples on the oscillating blob, which are evident in

the energy density contours. Eventually, these bumps become large enough that several

sections of the planar blob pinch off, forming punctures of true vacuum in the planar

symmetric blob. As a result of this, the region sandwiched by the colliding walls, where

the field is displaced from the minimum, is threaded by tubes where the field is near the

www.cita.utoronto.ca/~jbraden/Movies/field_v0.05.mp4
www.cita.utoronto.ca/~jbraden/Movies/field_v0.05.mp4
www.cita.utoronto.ca/~jbraden/Movies/econtour_v0.05.mp4
www.cita.utoronto.ca/~jbraden/Movies/econtour_v0.05.mp4
www.cita.utoronto.ca/~jbraden/Movies/pspec_v0.05.mp4
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true vacuum. These tubes then begin grow in radius and eventually coalesce, leading

to a network of fat filamets with the field near the false vacuum in the interior. This

network is contained within a planar region of width ∼ m−1 along the collision axis and

extends indefinitely in the directions orthogonal to collision (due to the original planar

symmetry). This process is illustrated in the second and third columns of Fig. 3.4. In

Fourier space, the developing network of filaments manifests itself as a rapidly growing

tail of fluctuation power that extends to k ∼ 15m. As the final step in the process, the

filaments fracture into localized blobs of field–the oscillons of the double-well potential.

Thus, exactly as in sine-Gordon model examples, a population of oscillons is produced

in the collision region as the endpoint of the dynamical amplification of the symmetry

breaking fluctuations.

An important quantity is the amount of energy that escapes from the collision region

as scalar radiation versus the amount that remains stored in oscillons, shown in Fig. 3.5.

In Fig. 3.5 we plot the energy density per unit transverse area

σ2 =
1

A⊥

∫
d2x⊥

∫ L/2

−L/2
dx‖ρ A⊥ =

∫
d2x⊥ (3.17)

remaining in the simulation box as a function of time. The production and longevity of

the oscillons prevents a complete release of the energy originally stored in the domain

walls into the bulk. However, relative to the case of exact planar symmetry, much more

of the energy is released as radiation (at least up until the end of our simulations). Of

course, this occurs because in the planar limit the wall and antiwall don’t immediately

annihilate each other, but instead form a long-lived bound state. The planar bound state

is the one-dimensional version of the oscillon for this potential, and since it is very long

lived the energy release in the planar case is slow.

Interactions in a resonant escape band

As an example of an even more dramatic effect induced by the breaking of planar sym-

metry, let’s now choose an incident velocity of v = 0.2. In the planar case, the walls

now bounce twice before escaping back to infinity, which is illustrated in the top right

panel of Fig. 2.3 of chapter 2. During the first collision the planar shape mode is excited,

draining energy from the kinetic motion of the (planar) walls. In the second collision, the

nonlinear field interactions cause energy to be transferred from the excited shape mode

back into translational energy of the (planar) walls. This process clearly requires a tuning

between the oscillation period of the shape mode and the time between collisions for the

two-walls. If this tuning is disrupted or energy is drained from the planar oscillations of
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Figure 3.5: Energy within a slab of width mLslab = 10 centered on the initial collision
of the two walls for v = 0.05. We have plotted the result for both bulk fluctuations and
transverse fluctuations in the wall’s location, as well as for a range of box sizes and grid
spacings. Also shown for comparison is the result if no fluctuations are included. Unless
indicated in the legend, we used mdx = 0.25, mL⊥ = 128 and mL‖ = 64. If a value of Ab
is listed in the legend we used initial conditions (3.12), while if λ is listed we used (3.11).
The oscillations in the planar solution are due to the slab being slightly small that the
size of the region occupied by the bouncing walls.

the shape mode, then rather than escape the walls will capture each other instead.

When we include the transverse fluctuations, they experience a nonadiabatic kick at

each collision. As well, since the (homogeneous) shape mode is excited during the first

collision, further pumping occurs while the walls are separated. The energy required to

amplify the fluctuations must be drained from the kinetic energy of the planar back-

ground and the oscillations of the planar shape mode. Since the amplification is a linear

effect, the size of this backreaction on the planar background increases with the initial

amplitude of the fluctuations at the start of the simulation. Therefore, for sufficiently

large initial fluctuation amplitudes, the resulting backreaction will prevent the walls from

escaping back to infinity. In this case the qualitative behaviour of the system changes;

instead of escaping back to infinity, the walls capture each other and fracture into os-

cillons. To illustrate this, Fig. 3.6 shows the energy per unit area (3.17) within a slab

of width m∆x‖ = 10 centered on the collision for a range of initial fluctuation ampli-

tudes. For an isolated kink moving at speed v with L = ∞ this is 2
√

2/3
√

1− v2. Two

distinct behaviours are visible: either ρ drops abruptly to zero by mt ∼ 200 correspond-

ing to the case when the two walls escape back to infinity, or else ρ slowly decays for

mt & 200 corresponding to the case when the walls capture and subsequently fracture

into oscillons. The transition between these two behaviours occurs as we increase the
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Figure 3.6: Energy density within a slab of width mLslab = 10 for initial speed v =
0.2 and various initial fluctuation amplitudes (mδx)2 for the 2-d gaussian random field
corresponding to the local translations in the wall position. For the simulations we used
a box of size L‖ = 64,L⊥ = 128 and dx = 0.25, and we used the initial fluctuations (3.12)
with δv = 0.

initial amplitude of the fluctuations. We only included fluctuations associated with the

translation mode of the walls (3.12) and also set δv = 0. Hence, this underestimates

the true amount of backreaction on the walls and is only an illustration of the dramatic

effect that amplified flucutations can have on the background. We have not carefully

explored the space of initial fluctuation amplitudes, so more complicated behaviour such

three bounces before escaping or annihilating may also be possible for finely tuned initial

fluctuations amplitudes.

3.3.3 Asymmetric Double-Well Potential

Finally, consider collisions in the asymmetric double well. As a concrete example, we

take δ = 1/30 and give the walls an initial separation 2mrinit = 16 and initial speeds

v = 0. The vacuum energy difference between the two wells causes the walls to ac-

celerate and they collide with an initial speed v2 = µ(µ+2)
(1+µ)2

∼ 0.6 where we’ve defined

µ = rinit∆ρ/Ekink ∼ 0.57 with ∆ρ ∼ 2δλφ4
0 and Ekink = 2

√
2
√
λφ3

0/3. Because their

relative velocity at collision is much larger than the cases considered above, they sepa-

rate much further from each other between collisions. However, the pressure induced by

the nondegeneracy of the two vacua eventually turns the two walls around and prevents

them from escaping back to infinity.

The resulting behaviour is illustrated in Fig. 3.7. Initially we have two well-separated

walls with small fluctuations. The walls accelerate towards each other due to the non-

degeneracy of the vacua, and then bounce off of each other multiple times. At each
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bounce, a band of transverse fluctuations are excited. As well, planar symmetric shape

modes are excited by the collision. Between the bounces, the two walls separate with the

shape mode further pumping transverse excitations of the field. By the time of the final

collision, these transverse fluctuations have become quite large. They are visible in the

second column of Fig. 3.7 as bumps in the energy density contours, bumps in the field

profile, and as peaks in the power spectrum. The nearly planar radiation emitted during

the early stages of the evolution is also visible in the field profile.

Aside from the pumping of fluctuations by the planar shape mode becoming a distinct

process, the biggest difference between this case and the v = 0.05 walls in the symmetric

well is the inhomogeneity of the final disintegration of the walls. In the case we have

illustrated, fluctuations with transverse wavelengths much larger than the typical size

of the bumps in the walls and the oscillons that eventually form were excited. As a

result, the final collision is inhomogeneous on scales much larger than the size of the

individual transverse ripples on the walls as seen in the third row. Once again the walls

become threaded by tubes where the field is near the true vacuum. These tubes then

expand producing a network of filaments with the field trapped near the false vacuum

in the interior, just as in the v = 0.05 case. Subsequently these filaments fracture and a

collection of oscillons is again formed.

For the case illustrated here, the walls collide five times with the fifth collision resulting

in the breakup of the walls and ultimately the production of oscillons. Whether or not

a long-wavelength mode was excited in an individual collision depends on the particular

realization of the initial fluctuations used in the simulation. An additional interesting

feature of this particular run was the ejection of a pair of oscillons into the bulk during

the breakup of the filamentary network. These are visible as two isolated peaks at

mx‖ ∼ 15, 50 in the transverse power spectrum in the right column of Fig. 3.7. These are

a pair of oscillons that scattered off of each other during the disintegration of the walls.

This ejection of oscillons into the bulk was sensitive to the particular realization of the

fluctuations.

3.3.4 Growth of fluctuations from shape mode

Thus far we have considered the three-dimensional dynamics of colliding wall-antiwall

pairs (the higher dimensional equivalent of a kink-antikink pair in one-dimension) includ-

ing small initial planar symmetry breaking fluctuations.2 Among the cases we considered

were the oscillations of tightly bound wall-antiwall pairs (such as the v > 1 sine-Gordon

2Statistically the fluctuations still respect the planar symmetry, but individual realizations do not.
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Figure 3.7: Collision dynamics in the asymmetric well with δ = 1
30

during several different
stages of evolution. The choice of illustrations match those in Fig. 3.1. From left to right,
we have snapshots of the initial setup (mt = 0), just prior to the final collision (mt = 108),
during the fracturing process (mt = 136) and showing the final population of oscillons
(mt = 250). The green line in the pseudocolor plot of the 2d power spectrum indicate
both position of the orthogonal slice of the field (top row) as well as the slice along which
the 2d spectrum is plotted (bottom panels, bottom row). Animations of the field evolu-
tion can be found at www.cita.utoronto.ca/~jbraden/Movies/field_nondegen.avi,
the energy density evolution at www.cita.utoronto.ca/~jbraden/Movies/econtour_

nondegen.mp4, and the power spectrum evolution at www.cita.utoronto.ca/~jbraden/
Movies/pspec_nondegen.mp4.

breathers) and repeated collisions between weakly bound pairs (such as the asymmetric

double well). In this latter case, the internal dynamics (specifically planar symmetric

excitations of the shape mode) of each individual wall plays an important role both in

the dynamics of the background planar solutions as well as the growth of fluctuations.

This is especially true for double-well potential at large collision velocities where the

walls either escape back to infinity (symmetric well) or become well separated from each

other between collisions (asymmetric well). In order to isolate the effects of the internal

www.cita.utoronto.ca/~jbraden/Movies/field_nondegen.avi
www.cita.utoronto.ca/~jbraden/Movies/econtour_nondegen.mp4
www.cita.utoronto.ca/~jbraden/Movies/econtour_nondegen.mp4
www.cita.utoronto.ca/~jbraden/Movies/pspec_nondegen.mp4
www.cita.utoronto.ca/~jbraden/Movies/pspec_nondegen.mp4
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wall dynamics, we study a single domain wall at rest in a symmetric double well with an

initial width different from that of the static kink solution

φinit = φ0 tanh

(
m(x− x0)

mw

)
+ δφfluc . (3.18)

where mw 6=
√

2 and δφfluc is again a realization of random field whose statistics are not

important for the qualitative effect we present here. This choice of initial background

mimics the excitation of a planar symmetric shape mode.

Just as for collisions, the presence of transverse fluctuations radically modifies the

behaviour of the field. A very explicit demonstration of this comes from studying the

energy contained within our simulation volume as shown in Fig. 3.8. Once again, initially

the energy decreases via emission of planar symmetric radiation that can be captured

via 1 + 1-dimensional simulation. However, as the shape mode is oscillating it pumps

transverse fluctuations, eventually leading to the onset of strong nonlinearities in the

symmetry breaking fluctuations. At this point energy is released much more rapidly and

approaches the energy of a single isolated domain wall. As expected, the timing of this

transition depends on the initial amplitude and spectrum of the fluctuations, but the

subsequent behaviour is rather insensitive to these details.
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Figure 3.8: Time dependence of the excess energy density within the simulation volume
for a box with length parallel and orthogonal to the collision given by mL‖ = 32 and
mL⊥ = 128. Absorbing boundary conditions were used in the collision direction and the
grid spacing was mdx = 0.25. In the left figure we show the result for several choices of
the initial wall width. Meanwhile, the right figure shows the result for several choices of
initial fluctuations and mw = 2. Also shown for comparison are the results if no initial
fluctuations are present. The effect of the fluctuations is clearly visible as a sharp change
in the rate of energy loss relative to the homogeneous case.

To shed further light on the field dynamics and the origin of the decay in excess energy
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Figure 3.9: Several snapshots of the growth of transverse fluctuations due to excitation
the planar shape mode of the wall. Top row: Slice of the field φ parallel to the colli-
sion axis and orthogonal to the collision axis and centered on the middle of the wall.
Bottom row: Two-dimensional power spectrum P2d

ρ defined in (3.14). An animation of
the field evolution can be found at www.cita.utoronto.ca/~jbraden/Movies/field_

shapemode.avi.

bound to the domain wall, Fig. 3.9 shows several snapshots illustrating the evolution of

the wall as it passes through the nonlinear phase. Initially the field is nearly homogeneous

and looks roughly like a tanh function with a vibrating width. This means that bound

fluctuations on the wall are bound in a well whose width (and shape) are oscillating in

time. These oscillations pump a narrow band of transverse fluctuations as expected from

linear perturbation theory. As these fluctuations grow, a speckled pattern emerges in

the field distribution taken along a slice through the middle of the wall. This pattern is

superimposed on the overall oscillation of the wall. Eventually, the transverse oscillations

enter the nonlinear regime, leading to a slight broadening of the peak in the spectrum

and the emission of radiation from the wall. The overall oscillation of the wall disappears

and instead bound transverse lumps of field appear along the wall as seen in the third and

fourth rows. These transverse lumps persist for times mt & 800. We can now understand

the residual energy relative to an unexcited domain wall seen in Fig. 3.8 as being due

to this population of “wall lumps”. Comparing the second column of Fig. 3.7 with the

second column of Fig. 3.9, we can see that the pumping of fluctuations by the shape

mode is indeed an important effect for collisions in the asymmetric well.

www.cita.utoronto.ca/~jbraden/Movies/field_shapemode.avi
www.cita.utoronto.ca/~jbraden/Movies/field_shapemode.avi
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3.4 Oscillons as a Long-Lived Intermediate State

By solving for the full nonlinear evolution of wall-antiwall collisions, we found that the

stage of rapid growth of linear fluctuations is followed by a very short stage during

which the walls dissolve. At the end of this stage, we are left with a population of

quasi-stable localized oscillating blobs of field distributed in a narrow plane around the

collision site. These field structures are known as oscillons and arise from a dynamical

balancing act between the dispersive effect of the laplacian and the attractive force from

the potential. Oscillons were first discovered by Bogolyubsky and Makhanov [110] and

then rediscovered by Gleiser [111]. There is a large literature devoted to their proper-

ties [112, 95, 113, 114, 115, 116, 117, 118, 119] and interactions [120, 121]. Several studies

of the classical [122, 123, 124, 125] and quantum [126, 127, 128] decay of these objects have

also been performed. A number of production methods have been studied: collapse of

subcritical bubbles nucleated during first-order phase transition [129], production from

collapsing domain wall networks [120], production from homogeneous field oscillations

around a false vacuum minimum as a method of facilitating the formation of true vac-

uum bubbles [130, 131, 132], amplification of thermal fluctuations during inflation [133],

and production as a result of preheating at the end of inflation [134, 135, 136, 137].

In our study oscillons appear in two forms. The first is as the localized blobs of

oscillating field in the planar background dynamics, which are the planar equivalent of

oscillons in the corresponding one-dimensional field theory. More interesting are the

three-dimensional oscillons that form at the end of the fracturing of the walls. The

production mechanisms listed above are based on the amplification of fluctuations around

a homogeneous field background; thus the resulting oscillons tend to be homogeneously

distributed throughout the bulk. In this sense, our mechanism is somewhat different since

we have a strong localization along the collision axis. Of course, the oscillons are still

distributed uniformly in the directions transverse to the collision axis, and an observer

restricted to the plane transverse to collision would indeed view their formation as a

homogeneous process.

We now consider some simple oscillon properites of relevance to our domain wall

collisions. For simplicity, we will only explicitly consider oscillons in the symmetric

double-well. First we demonstrate that an isolated localized blob of field displaced from

the minimum of the potential can indeed collapse to form an oscillon. This problem has

been studied using the assumption of exact spherical symmetry for the blob [129, 138],

and also for the case nonspherical blobs in two spatial dimension [139, 124].

As seen from our simulations, oscillons ultimately form from the fracturing of the wall
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Figure 3.10: Energy in a sphere of radius 12.5m as a function of time for several choices
of initial elliptical field profiles given by (3.19). We have parameterized the departure
from spherical symmetry by ε2 = 1 − R2

min/R
2
max where Rmin = min(a, b) and Rmax =

max(a, b). On the left we plot the results for cigar shapes with and on the right for
pancake shapes. For definitions of the pancake and cigar configurations see the main
text.

and subsequent collapse of either a network of tubes or densely packed blobs where the

field is displaced from the true vacuum minimum in the interior. As a very rudimentary

approximation to this, we consider initial field profiles given by

φinit = φtrue + (φfalse − φtrue) exp

(
−
(
x2

a2
+
y2

b2
+
z2

c2

))
(3.19)

with φ̇ = 0. While this initial profile and the choice φ̇ = 0 are simplifications of what

is seen in our simulations, whether or not an oscillon forms is not sensitive to the initial

field configuration or we would not see them form at all. In order to reduce the phase

space of initial configurations, we further impose that b2 = c2. By choosing a2 > b2 we

get cigar-like initial blobs and a2 < b2 gives us pancake like configurations.

In Fig. 3.10 we show the energy contained within a sphere of radius 12.5m−1 centered

on the initial blob for several choices of initial asymmetry in the blob. We see that

provided the blobs are not too asymmetrical the energy within the sphere reaches a long-

lived plateau indicating the presence of an oscillon. For all initial conditions that result

in an oscillon the plateau energy is the same, suggesting that the final oscillon states are

all very similar for this particular model.3

If the final population of oscillons do indeed have the same profile, then the 2d power

spectrum at the collision location in the oscillon dominated regime simplifies tremen-

3There exist models for which a range of different oscillons with different radii exist [119].
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dously. In particular, since unbound forms of energy such as radiation escape the collision

region, the power spectrum will be dominated by the contribution from the remaining

population of oscillons. We can approximate the field near the collision site as

φ ≈
∑

αi

φosc,i(x− xαi , t) (3.20)

where the oscillons are located at positions xαi and the profile of the ith oscillon is

given by φosc,i. Similar expressions hold for other derived fields such as the energy

density. The distribution of xα will be determined by the (random) realization of the

initial fluctuations, as well as the choice of initial planar background. In the special

case that φosc,i is independent of i (ie. all of the oscillons have the same shape) and the

final positions are uncorrelated with the oscillon shape, the resulting power spectrum

simplifies tremendously and we obtain

〈|φ̃k|2〉 =

〈
|
∑

αi

eik·xαi |2
〉〈
|φ̃osc(k)|2

〉
≡ Pform(k)Poscillon(k) (3.21)

In the general case, this expression becomes significantly more complicated, in particular

if there are many possible oscillon profiles and the positions and profiles are correlated.

Various properties such as the size and phase of oscillation of each of the oscillons will be

randomly drawn from some distribution, and there may be correlations between proper-

ties such as the size of an oscillon and its position relative to other oscillons.

However, given the potential to extract information about the distribution of oscillons

from measurements of two-point correlations, it is worthwhile to explore the possible

spectra of individual oscillons as well as a characterize the range oscillon properties

and time-dependence. For our semiclassical simulations, we could of course extract this

information directly in real space. However, in numerical methods based on evaluation

of a hierarchy of n-point correlation functions (such as the nPI formalism), this direct

approach is not available.

A complete characterization of all oscillon properties in an arbitrary field theory is

a rather daunting numerical task, so here we simply provide the spectra for a sample

oscillon in the double-well potential. The energy plateaus we show above provide some

preliminary evidence that the oscillons themselves have a very narrow range of properties

and hence studying only a small sample of them may be sufficient. Figure 3.11 shows the

energy density and 2d power spectrum for an oscillon formed from an initial Gaussian

field blob of radius mrinit = 3. After a short transient, the field quickly settles down
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Figure 3.11: A sequence of snapshots illustrating the time evolution of an oscillon formed
from an initially spherical gaussian field profile φinit = 1 − 2e(r/rinit)

2
with mrinit = 3

in the symmetric double well. In the top row are 2-dimensional slices of the energy
density taken along a slice through the middle of the blob. In the bottow row is the
dimensionless 2-dimensional power spectrum as a function of position along the slicing
axis (top panel, bottom row) and also along the line indicated by the green line in the
top panel (bottom panel,bottom row). An animation of the energy density is available at
www.cita.utoronto.ca/~jbraden/Movies/oscillon_rho.aviand the power spectrum
at www.cita.utoronto.ca/~jbraden/Movies/pspec_oscillon.avi.

into an oscillon configuration. The energy density oscillates in time and looks like a shell

of energy density that begins to expand outward before collapsing to form a sharp peak

and subsequently expanding outward again. Comparing the spectra with Fig. 3.7, we see

that the two isolated blobs of power away from the collision region in the asymmetric

double-well collision are indeed oscillons that were ejected from the collision region.

3.5 Summary of Mechanism

We have explored the full nonlinear three-dimensional evolution of colliding nearly planar

domain wall-antiwall pairs for various choices of background solutions in the sine-Gordon

and double-well potentials. We now highlight the features of the dynamics that are

most important in determining the qualitative outcomes of the collisions. Although

the evolution of the fields is complex and difficult to intuit without the aid of numerical

simulation, once the results are known the qualitative behaviour of the solutions is simple

www.cita.utoronto.ca/~jbraden/Movies/oscillon_rho.avi
www.cita.utoronto.ca/~jbraden/Movies/pspec_oscillon.avi
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to understand.

Initially, the system is accurately described by a planar symmetric background φbg(x, t)

and a collection of small nonplanar fluctuations δφ, which couple to the background

through an effective mass squared term V ′′(φbg). When the walls collide repeatedly or

form oscillating bound states, this coupling drives an instability in the fluctuations which

eventually pushes the entire system into the nonlinear regime. Since the amplified fluc-

tuations vary in the directions transverse to the collision, when they become large the

walls develop noticable bumps and ripples.

The details of the next stage of the evolution depend on the particular choice of planar

background and potential. In one scenario, which occurs for the sine-Gordon breathers

with v ≥ 1, the fluctuations “pinch off” to form an egg-carton like structure, leading to

a collection of densely packed pockets, with the field near the origin outside the pockets

and displaced from the minimum inside the pockets. In a second scenario, seen here

in the case where the wall and antiwall repeatedly collide with each other, this stage is

instead characterized by a final inhomogeneous collision between the wall/antiwall pair.

A heuristic illustration of this final collision is given in Fig. 3.12. During this collision,

punctures develop that thread the walls with a region of true vacuum. These punctures

then expand and eventually coalesce to leave behind an approximately two dimensional

network of tubes. Inside the tubes the field is near the false vacuum, while outside it

is near the true vacuum. To visualize this process, from the viewpoint of observations

restricted to an orthogonal slice of the field through the collision region it looks like the

nucleation, expansion and coalescence of a collection of bubbles in two dimensions.

In either of the two cases outlined above, the collision dynamics ultimately results in

the formation of a highly inhomogenous field configuration with many peaks where the

field is displaced from the true vacuum. These are distributed in the transverse plane,

but strongly localized to the collision center along the collision axis. As demonstrated

in 3.4, isolated peaks of the field can nonlinearly collapse to form oscillons. Thus, we

might expect that when we have a field configuration with many peaks, some of them

might also eventually form oscillons. Indeed, we find that this is the case. Of course,

nonlinear interactions between the various peaks as the collapse is occurring leads to a

more complicated scenario than the case of a single isolated peak, but the effects of these

interactions are insufficient to completely disrupt the production of oscillons.
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Figure 3.12: A heuristic view of the final collision between a wall-antiwall pair leading
to the population of peaks in the field that subsequently condense to form oscillons.
White corresponds to the regions in the true vacuum, the green angle hatched pattern
to regions near the false vacuum minimum and the red hatched pattern to regions which
have experienced a displacement due to the collision (initially described by free passage).
In the double well the field in the red region is initially displaced up the potential past
the true vacuum, while in the sine-Gordon potential the field will be sitting near another
minimum of the potential. The red regions subsequently form the tubes of “true vacuum”
that puncture the domain walls. Left: The two walls with just before the final collision
with large ripples due to the pumping of transverse fluctuations in previous collisions.
Center: The first moments of the final collision. Due to the large fluctuations in the
location of the wall, the collision occurs asynchronously at different locations. Right:
The production of pockets of false vacuum as a result of the inhomogeneous nature of
the final collision.

3.6 Conclusions

In this chapter we performed full nonlinear three-dimensional simulations of parallel pla-

nar domain wall collisions, including the effects of initially small quantum fluctuations.

This allowed us to probe nonlinear regimes not accessible to the linear analysis of the

fluctuations in chapter 2. As anticipated from the resonances found in the linear anal-

ysis, early in the evolution the fluctuations grow rapidly during collisions between the

walls. However, the most interesting phenomenology arises once the fluctuations begin

to nonlinearly interact with each other, causing a complete breakdown of the original

planar symmetry. For the collisions we considered, this symmetry breakdown results

in an extremely inhomogeneous dissolution of the walls and eventually the production

of oscillons distributed in the collision plane. This is a radical departure from the be-

haviour expected from studying symmetry reduced one-dimensional collisions. It is also

completely different than the result if the backreaction of the fluctuations on the domain

walls is treated as a homogeneous effect in the transverse plane, such as a Hartree-like

approximation would assume. Therefore, this is a completely new phenomenology which

can only be adequately studied using lattice simulations such as those employed in this
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chapter.

The dissolution of the walls is a consequence of our restriction to collisions between

wall-antiwall pairs, which means there is no topological conservation law preventing the

walls from eventually annihilating each other. If we were to consider collisions between

walls interpolating between different vacua as |x| → ∞, then the post-collision state

must contain domain wall like structures interpolating between the two different vacua

at infinity. Although the final dissolution of the walls will not occur in this case, our

general finding that the planar symmetry is broken should continue to hold. A specific

example of this was our study of the fluctuations about a single isolated domain wall

with an oscillating width. In more general collisions, we expect that any walls remaining

after the collision will not be produced with perfect planar symmetry, but instead will

be bumpy.

In the next chapter we consider the full nonlinear dynamics of SO(2,1) collisions

between vacuum bubbles. We will find that similar phenomenology arises when the full

nonlinear problem in that case is treated properly.



Chapter 4

Cosmic bubbles and domain walls

III: The role of oscillons in

three-dimensional bubble collisions

4.1 Introduction

In this chapter we use numerical simulations to study the full nonlinear three-dimensional

dynamics of collisions between pairs of true-vacuum bubbles nucleating in an ambient

false vacuum. This is the third and final installment in our investigation of collisions

between highly symmetric domain walls, which we began in chapter 2 with a linearized

analysis and continued in 3 with numerical simulations of colliding planar walls. The

collisions studied in this chapter are expected to occur in inflationary models based on

the false vacuum eternal inflation scenario [11, 12], which is outlined in section 1.4 of the

introductory chapter. If our observable universe underwent first-order phase transitions in

its infancy, they would similarly have resulted in bubble collisions. This latter case would

involve collisions between many bubbles, although individual collisions would contribute

to the dynamics.

In the context of false vacuum eternal inflation, we inhabit an open inflationary

universe. Many studies have considered the phenomenology of such open inflationary

models [77, 78, 79, 80, 81]. There have also been many studies of collisions between

vacuum bubbles, beginning with the work of Hawking, Moss and Stewart [73]. Early

studies were motivated by the dynamics of early phase transitions within our horizon,

with much of the focus on the production of gravitational waves [140, 97, 98, 141, 142,

143]. More recent studies are often motivated by false vacuum eternal inflation [100,

80
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22, 103, 144]. These investigations have culminated in a general relativistic treatment

of the bubble problem [105, 145]. However, all of these studies assume the dynamics

obeys an SO(2,1) symmetry, and no consideration is given to perturbations that do not

obey this symmetry. Even studies of fluctuations around the SO(2,1) collision restrict to

perturbations than can still be evolved using the approximation of 1+1-dimensional field

theory [104, 146, 147, 148, 99]. However, for the case of a single bubble, the evolution of

a more general set of fluctuations have been considered [106, 107, 108].

In an effort to observationally constrain this scenario, many recent studies have pro-

posed observational signatures from the collision between our vacuum bubble and an

external “collision” bubble. Several data searches have also been performed in conjunc-

tion with theoretical work, but thus far no signal has been seen [149, 150, 151, 152, 153,

154, 155].

Since observing a collision with another bubble universe would revolutionize our un-

derstanding of the cosmos, it is important to properly assess the possible outcomes of

collisions. In particular, the validity of the SO(2,1) symmetry assumption has never been

explicitly checked. We will demonstrate in this chapter that for a broad class of collisions,

the SO(2,1) symmetry is badly broken due to dynamical amplification of quantum fluctu-

ations. Since the SO(2,1) assumption severely constrains the form of the final observable

signals, it is possible that the searches performed thus far have been blind to other sig-

natures produced by the collision. The results presented in this chapter are a first step

towards a more complete understanding of vacuum bubble collisions. Although we will

focus on the dynamics of the collisions rather than the final observable signatures, our

results suggest several interesting new observational avenues for testing the false vacuum

eternal inflation paradigm.

The remainder of the chapter is organized as follows. In section 4.2 we present our

models and outline a pseudospectral approach to solve for the initial bubble profile and

evolve the system. Section 4.3 considers the evolution of individual bubbles, both in

the thin-wall and thick-wall regimes. A brief review of the collision dynamics under the

assumption of SO(2,1) symmetry is given in section 4.4. We demonstrate that our lattice

simulations reproduce the expected behaviour and test the sensitivity of the dynamics to

the accuracy of the initial bubble profile. Our main results are then given in section 4.5

where we study collisions between bubbles in a variety of single-field models, including

small initial fluctuations around the SO(2,1) profile. We extend these findings to a

simple two-field model that permits inflation inside the bubble in section 4.6. Some brief

comments on possible observable signatures and extensions to other scenarios are given

in sections 4.7 and 4.8. Finally we conclude in section 4.9
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Figure 4.1: Plots of the potential for several choices of δ. On the left we show the linear
symmetry breaking (4.1) and on the the right the cubic symmetry breaking (4.2). The
largest value of δ in the linear potential is that for which the second minimum disappears.

4.2 Single Field Models and Description of Initial

Conditions

To provide a concrete setting for our investigations, we focus on double well potentials. In

order for bounce solutions describing vacuum tunnelling to exist in Minkowski spacetime,

the false vacuum and true vacuum must not be degenerate. We make two choices for the

symmetry breaking

Vlinear(φ) =
λ

4

(
φ2 − φ2

0

)2 − δλφ3
0 (φ− φ0) + V0 (4.1)

and

Vcubic(φ) =
λ

4

(
φ2 − φ2

0

)2
+ δλφ4

0

(
φ3

3φ3
0

− φ

φ0

+
2

3

)
+ V0 (4.2)

which we refer to as the linear and cubic symmetry breaking potentials respectively. In

both cases δ controls the difference between the false and true vacuum energies and V0 can

be adjusted to give the desired true vacuum energy. Our investigations here are restricted

to Minkowski space, so V0 will not influence the dynamics.1 For the linear potential (4.1),

the second minimum disappears for |δ| ≥ 2/
√

3, while for the cubic potential (4.2) this

occurs when |δ| ≥ 1. In the linear potential, the locations of the two minima depend on δ,

while they are fixed at ±φ0 for the cubic potential. Unless explicitly stated, dimensionful

parameters are measured in units of m ≡
√
λφ0 with the exception of the field which is

measured in units of φ0 and the energy density ρ measured in units of λφ4
0.

1We also performed several runs with a homogeneous background Hubble and found no qualitative
change to our results.
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4.2.1 Solution of the Instanton Equation

In this subsection we present a new and extremely accurate numerical approach to de-

termine the shape of the nucleated bubbles. Throughout this paper we assume that the

most likely bubble to nucleate within a surrounding false vacuum possesses an SO(4)

symmetry and is described using the bounce formalism of Coleman [74, 75, 15]. For a

single scalar field in Minkowski space with potential satisfying some regularity condi-

tions, it has been shown that this is indeed the minimum action solution relevant to false

vacuum decay [76]. In Minkowski space, this profile satisfies the Euclidean signature

equation
∂2φ

∂r2
E

+
3

rE

∂φ

∂rE
− ∂V

∂φ
= 0 (4.3)

with the boundary conditions

φ(rE =∞) = φfalse
∂φ

∂rE
(rE = 0) = 0 . (4.4)

Here r2
E = dτ 2 + dx2 is the Euclidean radius and τ = it is the Euclidean time.

Before presenting our technique, we briefly review the most common analytic approach

(the thin-wall approximation) and numerical approach to solving (4.3). In the thin-wall

limit, valid if the initial radius of the bubble is much greater than the width of the wall,

we can obtain simple analytic estimates for the bounce profile. For the potentials (4.1)

and (4.2), this approximation will be appropriate when δ � 1. In the simplest form

of the approximation, we drop the friction term and the terms proportional to δ in

the equation of motion. This leaves the equation for a domain wall in the degenerate

double well λ
4

(φ2 − φ2
0). Performing the usual quadrature gives an expression for the

field profile, φwall = φ0 tanh((r − R0)/
√

2). We then adjust the multiplier on the tanh

and add a constant so that the field interpolates between the false and true vacuum.

Finally, conservation of energy gives the initial bubble radius as R0 = 3σ/∆ρ where

σ =
∫
dr(∂rφwall(t = 0))2 is the surface tension of the bubble wall and ∆ρ = V (φfalse)−

V (φtrue) is the difference in potential energy between the false and true vacuum. For the

linear potential (4.1) we have Rlinear
0 =

√
2δ−1 and for the cubic potential (4.2) we have

Rcubic
0 = 3√

2
δ−1. It should be clear that with some modifications this approximation can

be applied to other potentials. In particular, by replacing φtrue with the location where

the field tunnels out to φtunnel, we could apply this in situations where the field does not

tunnel out near the true vacuum. Of course, in this case it is necessary to either estimate

φtunnel or else determine it by solving the bounce equation (4.3) in order to obtain the

initial radius. If the latter approach is used, then the thin-wall approximation itself will
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provide little utility other than aiding intuition.

Although the simplicity of the final result makes this approach very attractive, there

are situations where the thin-wall approximation is either invalid or else insufficiently

accurate. When this happens we must turn to a numerical solution of (4.3). In the

literature, this equation is usually solved via a shooting method, which recasts the ODE

into a root finding problem ~φ(rE = ∞|~φ(rE = 0) = ~φ0) − ~φfalse = 0 for the initial field

value ~φ0. For the single-field case, the root finding is often done via besection and the

resulting algorithm is known as the overshoot-undershoot method. To extend this to the

multifield case one needs to use a root-finding method that works in multiple dimensions.

An obvious choice is a Newton-type method, with the required derivatives obtained by

solving for a collection of nearby trajectories and then doing a polynomial interpolation.

Of course, the desired solution is a saddle point and care must be taken to evaluate these

derivatives before the neighbouring trajectories diverge away from the target solution.

Rather than adopt this method, we instead use a pseudospectral approach and expand

the function in even rational Chebyshev functions on the interval (−∞,∞)

φbounce(rE) =
∑

i

ciB2i

(
y

(
rE√
r2
E + L2

))
(4.5)

y(x) =
1

π
tan−1

(
d−1 tan

(
π

[
x− 1

2

]))
+

1

2

where Bn are the Chebyshev polynomials. Since this is a global expansion method,

it displays excellent convergence properties as the number of lattice sites is increased

and machine-precision accuracy is easily obtained. Without the mapping y(x), this is

simply an expansion in the rational Chebyshev functions TBn(y) = Bn

(
y√
y2+L2

)
=

cos
(
n cot−1

(
y
L

))
on the doubly-infinite interval. L is an adjustable parameter that de-

termines where the oscillations in the rational Chebyshev functions (or equivalently the

collocation points) are clustered on the infinite interval. The even TB(x)’s form a com-

plete set for functions which asymptote to a constant at infinity and are symmetric about

the origin (such as the bounce), and thus they enforce the rE = 0 boundary condition

automatically. We also include an additional mapping y(x) which clusters (repels) points

around rE = L/
√

3 if d < 1 (d > 1) without simultaneously introducing new singularities

at the boundaries which would greatly reduce the convergence rate of the expansion. Via

a judicious choice of L and d, this allows us to properly resolve instantons to machine

precision even in the extremely thin-wall case. We illustrate the efficiency of this expan-

sion in Fig. 4.2, where we show instantons for four extremely thin-walled bubbles as well
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as the spectral coefficients in the above expansion. Numerically this is the most difficult

case if no finesse is used in the solution, so it is encouraging that we are able to tackle this

limit. In all cases the round-off plateau for the coefficients is clearly present at i ≈ 100,
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Figure 4.2: Some thin-walled bubbles. In each of the cases shown, the ratio of the wall
width (w =

√
2) to the initial bubble radius is w/R0 ∼ δ. In the left panel we show the

instanton profiles (zoomed into the region rE . R0), while in the right panel we show the
resulting spectral coefficients. For all cases, we took L =

√
3R0 with R0 =

√
2δ−1 for the

linear potential and R0 = 1.5
√

2δ−1 for the cubic potential. Meanwhile, the “stretching”
parameter d was d = 0.022, 0.0045 for δ = 0.005, 0.001 in the linear potential, and
d = 0.03, 0.014 for δ = 0.01, 0.005 in the cubic potential.

indicating we have hit the limits of double-precision arithmetic. Through the use of a

smart collocation grid, we have managed to achieve this accuracy using fewer modes than

the ratio of the bubble radius to its width Rinit/w. To demonstrate the utility of this

approach across a range of potential deformations, Fig. 4.3 shows the instanton profiles

in the linear (4.1) and cubic potential (4.2) for a range of δ. As an added bonus, our

outer collocation point is located at rE =∞ so there are no errors introduced by putting

the system in a finite box.

Of course, the bounce solution only describes the most likely profile for the field and

there are additional fluctuations which we include by taking the initial conditions for a

single bubble to be

φinit(x, 0) = φbounce(rE = |x|) + δφ φ̇init(x, 0) = δφ̇ (4.6)

where φbounce is a solution of (4.3) and δφ and δφ̇ are realizations of random fields. This

is generalized to multibubble initial conditions in the obvious way. The fluctuations δφ

encapsulate the effects of quantum fluctuations, including deviations of the nucleated

bubble from perfect SO(3,1) symmetry. Since we are taking the viewpoint that these
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Figure 4.3: In the top row we show instanton profiles for the linearly asymmetric double
well (4.1) for a range of δ values. The left panel shows the instanton profiles (zoomed
into the region where the field is varying). Meanwhile the right panel shows φ(rE = 0)
which becomes the initial field value at the center of the bubble. For comparison we also
include the location of the true vacuum minimum. The bottom row shows the same two
plots for the cubically broken symmetry (4.2). For δ & 0.25, 0.4 the location where the
field tunnels out to begins to deviate significantly from the false vacuum.
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bubbles have nucleated within some background, it is inconsistent to ignore the fluctu-

ations as it is rare coherent excursions of these fluctuations that allow for nucleation to

occur at all.

A proper determination of the initial conditions requires a calculation of how the

fluctuations in the original false vacuum are projected into the bubble spacetime by the

nucleation event (see e.g. [107, 108, 156]). This calculation is beyond the scope of this

paper and would only serve to obscure the essence of our result, so instead we simply

initialize the fluctuations as a realization of a homogeneous random field with spectrum

〈|δφ̃k|2〉 ∼
1

2
√
k2 + V ′′(φfv)

〈|δφ̃k|2〉 ∼
√
k2 + V ′′(φfv)

2
(4.7)

to mimic the fluctuations if the field were sitting at its false vacuum mimimum in

Minkowski space.2 The overall scale of the potential λ enters into the initial fluctua-

tion amplitude since δφ/φ0 ∝
√
λ. Since we choose to measure the fields in units of φ0

and time in units of
√
λφ0, the vev φ0 only appears in the equations of motion if we

consider coupling to gravity where it determines the strength of the gravitational inter-

action via φ0/MP . At a technical level, we use the same convolution based method as

DEFROST [39, 157] to initialize the fluctuations.

The remainder of the paper presents results obtained from a parallel lattice code

written by one of the authors. Hamilton’s equations for the discretized system were

evolved using a sixth-order symplectic Yoshida integrator [158, 40, 43] and (unless other-

wise indicated) a second-order accurate and fourth-order isotropic stencil for the Lapla-

cian [39, 159]. All production runs used lattices with 10243 points per side, although we

did perform some numerical checks using 20483 lattices. For all cases, the total energy

of the system (when running Minkowski simulations) was conserved to the 10−9 level or

better.

To provide a test of our lattice simulations and to facilitate comparison with previous

studies, we also present the results of dimensionally reduced 1+1-dimensional simula-

tions at several points in the subsequent sections. These simulations used a Fourier

pseudospectral lattice discretization and a 10th order Gauss-Legendre time integrator.

The basics of this approach are outlined in appendix B.

2As a check of this assumption, we also ran simulations with several other choices of initial fluctua-
tions. One set included homogeneous bulk fluctuations with different initial spectra than the Minkowski
vacuum. Another set involved initializing φinit = φbounce(rE = |x| + δr) with δr =

∑
`m a`mY`m a 2d

random field obtained by realizing a collection of a`m’s. Again, we used several different spectra for
our a`m’s to verify that our results were not sensitive to a particular choice. In every case we tried,
the outcome of a collision of two bubbles was qualitatively the same as the results we present in the
remainder of the paper.
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Figure 4.4: Time evolution of a thin-walled bubble with δ = 0.1 in the linear symmetry
breaking potential. In the left panel we show the field value as a function of mt and
position mx along a slice taken through the center of the bubble. This figure is from a
three-dimensional lattice simulation. For reference, the location of the wall in the thin-
wall approximation is included as a dashed black line. In the right panel, we show field
profiles at time mt = 0, 17.24, 34.48 on a slice through the center of the bubble. In order
to demonstrate the accuracy of our numerics, we compare our lattice results to higher-
resolution one-dimensional simulations. For comparison, we also include the evolution
of a bubble whose initial profile is given by the thin-wall approximation rather than an
exact numerical calculation.

4.3 Evolution of a Single Bubble

First we consider the evolution of individual bubbles. Fluctuations in the angular depen-

dence of the bubble radius for the case of individual bubbles in the thin-wall limit were

studied previously and found to be stable [106, 108]. Our results will demonstrate that

this is also true for the bulk fluctuations around single bubbles. We evolve a thin-wall

bubble with δ = 0.1 in the linear potential and a thick-wall bubble with δ = 0.99 in

the cubic potential. The corresponding instanton profiles can be found in the left panels

of Fig. 4.3. For the thin-walled bubble, the field tunnels out very close to the true vac-

uum. As a result, we can think of this as a bubble with true vacuum interior separated

from the false vacuum exterior by a domain wall of width m−1. For the single bubble, we

can to a good approximation take this wall to be infinitely thin. The pressure differential

between the interior and exterior of the bubble then causes the wall to accelerate and it

follows a hyperbolic curve given by rwall(t) =
√
rwall(t = 0)2 + t2 as shown in Fig. 4.4.

For the thick-walled bubble the evolution is somewhat different as seen in Fig. 4.5.

The field now tunnels out far from the true vacuum. In the bubble interior it begins to

oscillate around the minimum at φ = φ0. In the standard slicing of Minkowski space

used in the code, these oscillations appear as outward propagating spherical waves. The
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Figure 4.5: Time evolution of a single thick-walled bubble with δ = 0.99 in the cubic
symmetry breaking potential. In the left panel, we plot the field as a function of mt and
position mx along a slice through the center of the bubble. Regions where the field is
near the false vacuum are blue, while regions where the field is near the true vacuum are
red. In the middle panel, we plot the value of the field at the center of the bubble as
a function of time. As expected the field undergoes damped harmonic oscillations. As
a test of our numerical code, we have also included the result for two different choices
of lattice spacing dx and also for a one-dimensional simulation using a pseudospectral
discretization and 10th order Gauss-Legendre integrator. In the right panel we show the
field profile at times mt = 0, 22.98 and 41.37, again for the two different lattice grid
spacings and also the one-dimensional simulation.

leading edge of this spherical wave quickly develops into the bubble wall and propagates

outward with a speed asymptotically approaching the speed of light. This is easiest to

see by foliating the spacetime with hyperboloids centered on the nucleation center of the

bubble. We label each of these hyperboloids by a new time coordinate t̃ related to the

time coordinate used in our simulations via t = t̃ coshχ where χ is the radial coordinate

along the hyperboloids. The line element in the new slicing is ds2 = −dt̃2 + t̃2dH3 with

H3 the three-hyperboloid. For the exact instanton initial condition, the evolved field is

a function of t̃ only and satisfies

∂2φ

∂t̃2
+

3

t̃

∂φ

∂t̃
+ V ′(φ) = 0 . (4.8)

In this particular case the oscillating field in the interior of the bubble does not lead to a

strong preheating instability because the potential seen by the field as it oscillates in the

interior of the bubble is very nearly quadratic.3 To see this explicitly, define ψ = φ− φ0

and reexpand the potential to obtain

U(ψ) ≡ V (φ0 + ψ) = (λ+ δ)φ2
0ψ

2 +
(3λ+ δ)

3
φ0ψ

3 +
λ

4
ψ4 . (4.9)

3For different choices of potential or couplings to additional fields the interior of the bubble may
experience strong instabilities (see for e.g. [32]).
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Figure 4.6: Floquet chart for f̈ +
(
A+ 4B sin(t) + 1.5B2 sin2(t)

)
f = 0, corresponding to

oscillations about the true vacuum minimum for δ = 1. For oscillations in the interior of
the thick-walled bubble, we have A ≥ 2 and B . 0.5.

The equation for linear perturbations around ψ(t̃) is then

∂2(t̃3/2δψ)

∂(meff t̃)2
+

(
κ2

m2
eff t̃

2
+ (1 + δ) + (3 + δ)

ψ

φ0

+
3

2

ψ2

φ2
0

− 3

4t̃2

)
(t̃3/2δψ) = 0 . (4.10)

where m2
eff = ∂ψψU(ψ = 0) = 2λφ2

0 and κ2 is an eigenvalue of the Laplacian on the unit

three-hyperboloid. To gain some intuition about these instabilities, let’s approximate

the motion of ψ as it oscillates around the minimum by ψ = αφ0t
−3/2 sin(meff t̃ + θ0),

with α < 1 a numerical coefficient and θ0 a phase. At the center of the bubble, the time

coordinate t̃ coincides with the time parameter t used in our simulations, so we can see

from the middle panel of Fig. 4.5 that this is indeed a good approximation. Ignoring the

time-dependence of all coefficients, the fluctuations then obey an equation of the form

∂t̄t̄f +

(
A+ (3 + δ)B sin(t̄) +

3

2
B2 sin2(t̄)

)
f = 0 . (4.11)

For the continuum part of the spectrum, we have κ2 ≥ 1 so A ≥ (1+δ) and from Fig. 4.5

we see that B . 0.5 during the oscillations. In Fig. 4.6 we see that this puts us well

into the weak resonance regime. Since the oscillations damp with time, a given mode

will trace a line in the instability chart so that even in the long-time limit there is no

exponential growth and the decay is perturbative.
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4.4 3D Bubble Collisions Without Bulk Fluctuations

In this section we study collisions between pairs of nucleated vacuum bubbles working

under the assumption of SO(2,1) symmetry. This allows us to compare results with

previous treatments of this problem (where the SO(2,1) symmetry is assumed to hold

exactly and the dynamics are reduced to one spatial dimension), while also providing a

nontrivial test of our numerical approach. We consider both the case of the spectrally

accurate numerical profiles for the bubbles, as well as initial profiles given by the thin-

wall approximation. Since the thin-wall profile is not an exact solution to the bounce

equation, this latter choice is equivalent to a small breaking of the boost symmetry for the

single bubbles. As we demonstrate below, even this minimal breaking of the symmetries

of the bubble can have a dramatic effect of the full three-dimensional evolution, resulting

in a complete breakdown of the boost symmetry shortly after the collision. This breaking

of the boost symmetries is a new result that requires three-dimensional (more precisely

higher than one-dimensional) simulations.

4.4.1 Evolution of SO(2,1) Background and Linear Evolution

of Fluctuations

Before attacking the full problem, let’s first consider linear stability analysis around the

SO(2,1) symmetric solution. For the case of perturbations to a single bubble see [106,

107, 108]. Consider a pair of colliding bubbles posessing SO(2,1) symmetry. A convenient

set of coordinates is given by

t = s coshχ

x = x (4.12)

y = s sinhχ cos θ

z = s sinhχ sin θ .

The SO(2,1) symmetry is now manifest for field configurations that depend only on

s and x. Let’s separate our field into a symmetric background piece and fluctuations

φ = φbg(s, x) + δφ(s, x, χ, φ). For linearized fluctuations and ignoring backreaction we

obtain
∂2φbg
∂s2

+
2

s

∂φbg
∂s
− ∂2φbg

∂x2
+ V ′(φbg) = 0 (4.13)

and
∂2A`
∂s2

+
2

s

∂A`
∂s
− ∂2A`

∂x2
+

(
`2

s2
+ V ′′(φbg)

)
A` = 0 . (4.14)
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We have factored the perturbation into eigenmodes δφ =
∑

`,nA`(s, x)C`,n(χ)einθ with

n ∈ Z. The eigenfunctions C`,n and eigenvalues ` are determined by

1

sinh(χ)

d

dχ

(
sinh(χ)

dC

dχ

)
=

(
−`2 +

n2

sinh2(χ)

)
C . (4.15)

Past studies that assume exact SO(2,1) symmetry restrict the treatment to a study

of (4.13) with no consideration of the fluctuations described (initially) by (4.14). A

sample collision between two bubbles in the linear symmetry breaking potential with

δ = 0.1 and the SO(2,1) symmetry imposed is shown in Fig. 4.7. The bubble walls
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Figure 4.7: SO(2,1) symmetric collision between two bubbles in the linear symmetry
breaking potential with δ = 0.1. Red corresponds to regions where the field is near the
true vacuum minimum and blue to regions where it is near the false vacuum minimum.
The two bubble walls do not immediately annihilate each other in the collision, but
instead undergo multiple bounces while slowly releasing energy into the bulk as radiation.

undergo multiple collisions, each time opening up a pocket where the field is localized

near the false vacuum minimum. The bouncing behaviour we observe is characteristic of

thin-wall bubble collisions in double-well potentials. This was first noted by Hawking,

Moss and Stewart [73]. Due to the SO(2,1) symmetry, each pocket corresponds to an

expanding torus in the full 3-dimensional evolution, where the field inside the torus is

near the the false vacuum minimum. In chapter 3 we showed that long tubes with the

field near the false vacuum in the interior (formed from the breakup of colliding domain

walls) are unstable to collapse. Hence, we expect that when the cylindrical symmetry

is not perfect the torii will fracture into localized blobs of field. In addition, small

amplitude fluctuations localized near the axis connecting the bubble centers will see an

oscillating background field as the two bubble walls bounce off each other. As a result,

the fluctuations in these regions will be resonantly amplified, analogous to the situation
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with the planar domain walls. We will see in section 4.5 that both of these behaviours

do indeed manifest themselves in the fully 3+1-dimensional problem.

4.4.2 3D Simulation of SO(2,1) Bubble Collsions

Before proceeding to the case with bulk fluctuations around the pair of nucleated bubbles,

we first present results using initial conditions that preserve the SO(2,1) symmetry up

to errors induced by using a superposition of single-instanton solutions. In the absence

of numerical errors, the resulting time-evolution will preserve the full SO(2,1) symme-

try. Therefore, this is a highly nontrivial test of our numerics and also provides a nice

visualization of the three-dimensional field profile.

We consider our fiducial thin-walled instanton with δ = 0.1 in the linear potential.

The single-instanton profile can be seen in the top left panel of Fig. 4.3. In Fig. 4.8

we see that the lattice preserves both the rotational and boost symmetries quite well,

especially considering that spatial discretization and discrete time-steps explicitly break

both symmetries. For times mt & 80 the surfaces of constant field are deformed slightly

from being perfect hyperboloids near the edges of the collision, but they still exhibit the

correct qualitative form. A late-time three-dimensional view of the same collision can be

found in Fig. 4.9, where the preservation of the rotational symmetry about the collision

access is clear. The total energy of the system is conserved to the 10−9 level, and the

deviation from perfect boost symmetry persists when we halve the time step or change

the order of the integrator. This indicates that the mild breaking of the boost symmetry

is an artifact of the modified dispersion relationship of the finite-difference discretization

rather than the time-stepping.

4.4.3 Sensitivity of Boost Symmetry to Initial Conditions

We now consider the sensitivity of our results to initial perturbations by breaking the

boost symmetry while still preserving the rotational symmetry about the collision axis.

Specifically, we perturb the instanton solution used to set initial conditions while assum-

ing it is still only a function of rE. The resulting function no longer satisfies (4.3) and

therefore the resulting evolution of a single bubble will no longer be boost invariant, but

will preserve the three rotational symmetries. To see this, suppose that we choose a single

bubble initial field configuration φinit,sym(x, 0) such that the time-evolved field is a func-

tion of |x|2 − t2 alone (ie. it is SO(3,1) invariant). Upon Wick rotation into Euclidean

time, the SO(3,1) invariance translates into an SO(4) invariance so that the resulting

Euclidean profile is a function of rE alone. As well, since the time-evolved profile was
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Figure 4.8: The evolution of φ along the line x = 0 = y where we have chosen our
coordinates such that the two bubbles first collide at the origin and the collision occurs
along the x-axis. For reference, we also include several lines of constant s, demonstrating
that the boost symmetry is quite well preserved in the full three-dimensional simulation.

Figure 4.9: Left : Two slices of the field at mt = 92. The vertical slice is taken along
the collision axis and cuts through the centers of the bubbles, while the horizontal slice
is taken orthogonal to collision axis at the collision site. Right : Contours of the energy
density ρ/λφ4

0, showing the collection of expanding concentric torii whose interior are
near the false vacuum and whose walls interpolate between the false vacuum interior and
the true vacuum exterior. An animation for the evolving field profile can be found at www.
cita.utoronto.ca/~jbraden/Movies/linear_del0.1_exactprofile_field.avi.

www.cita.utoronto.ca/~jbraden/Movies/linear_del0.1_exactprofile_field.avi
www.cita.utoronto.ca/~jbraden/Movies/linear_del0.1_exactprofile_field.avi
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obtained by solving the Klein-Gordon equation in Lorentzian signature, the Euclidean

profile must satisfy the Euclidean version of the Klein-Gordon equation. However, for a

function of rE alone, the Euclidean Klein-Gordon equation is simply the equation for the

bounce (4.3).4 Since our perturbed initial condition does not satisfy (4.3), this means

that the resulting evolved bubble cannot respect SO(3,1) symmetry. By construction

the rotational symmetry is preserved, which means that this procedure must destroy the

boost symmetries. An example of exactly this type of procedure is to use a thin-wall ap-

proximation rather than the exact instanton solution. Since the thin-wall approximation

does not actually satisfy the instanton equation, this means it cannot respect the SO(3,1)

symmetry. When we extend this to the two bubble initial conditions, the evolved fields

will preserve the rotation symmetry about the collision axis, but break the two boost

symmetries.

Here we consider the effect of using the thin-wall approximation combined with an

approximate determination of φfalse and φtrue. Although this may seem somewhat con-

trived, this is the result if one writes the potential as Vsym+∆V and solves for the profile

of the wall by dropping the ∆V term (provided of course that the locations of the minima

are perturbed by ∆V ). Since we want the bubble profile to interpolate between the false

and true vacua, we take the initial condition for a bubble centered at x0

φinit =
(φf − φt)

2
tanh

( |x− x0| −Rinit)

w

)
+
φf + φt

2
(4.16)

with mRinit =
√

2δ−1 and mw =
√

2. The notation φf/t is meant to distinguish the

approximate locations of the false and true vacua from the exact values φfalse/true. We

further approximate the values of φf and φt to linear order in δ. We find φf = −1 +

δ/2 +O(δ3) and φt = 1 + δ/2 +O(δ3). At this level of approximation, we then have

φinit ≈ φ0 tanh

(
(|x− x0| −Rinit)

w

)
+
δ

2
. (4.17)

A comparison of approximation (4.17), the thin-wall approximation with an exact de-

termination of φfalse/true and the numerical result are shown in Fig. 4.10. Clearly, the

approximate solutions provide a very accurate description of the system initially, although

the perturbation to the initial bubble radius is visible in the figure. A consequence of us-

ing approximate vacua, is that the equation of motion is violated over the entire domain

of rE.

4This argument does not rely on the boundary conditions for the bounce solutions being met, only
that it satisfies the correct equation.
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Figure 4.10: A comparison of the exact instanton solution to various thin-wall approx-
imations for δ = 0.1 in the linear potential (4.1). On the left we show the numerically
generated instanton profile used to initialize the bubbles. For comparison, we also include
the thin-wall approximation, both in the case when we determine the false and true vacua
exactly (4.16), and also in the case when we approximate them to O(δ3) (4.17). In the
center panel, we show the coefficients ci appearing in front of each of our basis functions
for the numerical profile. The exponential decrease of the coefficients as well as the pres-
ence of the roundoff plateau resulting from numerical roundoff errors are both clearly
visible, again indicating that we have reached the limits of double precision arithmetic.
Finally, in the right panel we plot the violation of the instanton equation (4.3) for both
our numerical profile and the thin-wall approximations. When measured by the maximal
violation of the equation of motion, our solution is ten orders of magnitude more accurate
than the thin-wall result. The mapping parameters were d = 0.35 and L = 1.6R0.
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Figure 4.11: Field slice through the collision plane for a pair of colliding bubbles with
initial conditions given by (4.17). The rotational symmetry about the collision axis is
maintained to high-precision here, but one can now clearly see the loss of boost invariance
as the system evolves. This develops on constant s slices exactly as one would expect for
a resonantly amplified fluctuation with χ dependence.
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Figure 4.12: Left : The same view of the field as Fig. 4.8, except for an initial bubble
profile (4.17) rather than the numerical result. Right : Contours of energy density −T 0

0

for the same simulation. As can be seen, the collision results in the destruction of the
boost symmetry. An animation of the field evolution is available at www.cita.utoronto.
ca/~jbraden/Movies/linear_del0.1_thinwall_field.avi.

From Fig. 4.11, we see that the symmetry breaking fluctuations grow and become

nonlinear on fixed s slices, exactly as expected for perturbations associated with the χ

direction. As a check that this was not a numerical artifact, we ran the same simulation

using two different choices for the finite-difference stencil. In all cases the resulting

evolution was very similar as seen in Fig. 4.13. This, coupled with the preservation of

the symmetry for the exact instanton initial condition and the explanation of the linear

instability in terms of parametric resonance, strongly suggests that this is indeed a real

effect and not an artifact of the breaking of the boost symmetry by the discrete lattice

spacing and time steps. Note that the breaking of the boost symmetry is absent in

the solution to (4.13). Thus, this is an effect which is only captured by intrinsically

higher-dimensional simulations (in this case three-dimensional).

4.5 Bubble Collisions with Fluctuations

In section 4.4 we verified the accuracy of our lattice code and demonstrated the need

for a full three-dimensional treatment even in a simple case where we break the boost

symmetries but not the rotational symmetry. We now include a complete set of bulk

fluctuations, including those that break the rotational symmetry as well as the boost

www.cita.utoronto.ca/~jbraden/Movies/linear_del0.1_thinwall_field.avi
www.cita.utoronto.ca/~jbraden/Movies/linear_del0.1_thinwall_field.avi
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Figure 4.13: Direct comparison between our one-dimensional simulations using a 10th
order Gauss-Legendre integrator and Fourier pseudospectral approximation for spatial
derivates, and our full three-dimensional simulation. We plot the value of the field at
the initial point of collision between the two bubbles as a function of time. If we use the
correct initial instanton profile the two results agree extremely well, apart from a small
shift in the time of the initial collision. However, once we break the boost symmetry by
using approximate choices for the locations of the true and false vacuum large deviations
between the solutions appear. This effect is not captured by a one-dimensional lattice
that assumes SO(2,1) symmetry for the evolving field.
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symmetries. As will be seen shortly, the dynamical amplification of these fluctuations

can lead to a complete breakdown of all of the boost and rotational symmetries in the

system. These results constitute the main part of our analysis. In this section we consider

several classes of single-field potentials, finding that the extreme breaking of the spacetime

symmetries is restricted to double-well potentials with only mildly broken Z2 symmetry.

Section 4.6 extends these results to the two-field case.

Our experience with the boost breaking fluctuations above, as well as the linear

analysis performed in chapter 2 , makes it clear that these fluctuations will undergo

resonant amplification for certain types of bubble collisions. Eventually the amplified

fluctuations begin to interact nonlinearly. At this point the split between background

and fluctuations becomes blurred and we must study the full three-dimensional nonlinear

field theory. For a planar symmetric wall-antiwall pair, we demonstrated in chapter 3

that the amplification of fluctuations transverse to the collision axis eventually lead to the

dissolution of the walls and the creation of a population of oscillons distributed within

a narrow slab around the site of the collision. Since we are considering bubbles here,

the “transverse” wavenumbers can be split into a wavenumber associated with the radial

hyperbolic direction χ and one associated with rotation about the collision axis θ. For

definitions of χ and θ see (4.12). The fluctuations with χ dependence only were studied

in the previous section when we looked at boost symmetry breaking. In the remainder

of the paper we will explore the full evolution of three-dimensional bubble collisions

with small initial fluctuations around the instanton profiles for a variety of potentials,

including the final outcome of the nonlinear interactions of amplified linear fluctuations.

For cases where the bubble walls bounce many times off of each other, we will see that

the results match our intuition developed from the planar wall limit.

We take the initial bubble separation and the amplitude of the initial fluctuations to

be independent free parameters. However, if we wish to study collisions between typical

bubbles this will not be true. The action of the bounce, which determines the nucleation

rate and therefore the typical bubble separation, scales as λ−1. Meanwhile, the RMS

amplitude of the fluctuations scales as
√
λ. Therefore, increasing the amplitude of the

fluctuations has the effect of increasing the nucleation rate and thus decreasing the typical

bubble separation. Our primary motivation to treat these parameters independently was

numerical, as the finite simulation cube with periodic boundary conditions means that

we have a finite amount of time before the bubbles begin to interact with their images

and we can no longer trust our simulation. To study the effects of nonlinear interactions,

the exponential growth of the fluctuations must push them into the nonlinear regime

before this happens and we adjusted the initial amplitude to ensure this was the case.
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4.5.1 Thin-Wall Double Well Case

Our first case is the collision of two thin-walled bubbles in the linear symmetry breaking

potential with δ = 0.1. Aside from the new scale associated with the radius of the

bubbles, this case is qualitatively the same as the collision of a pair of planar walls

in the same potential. We saw above that perturbing the bounce solution slightly can

lead to a dramatic breaking of the two boost symmetries. From our previous study of

planar walls in chapter 3, we expect that the full nonlinear evolution ultimately results

in the dissolution of the bubble walls and the creation of a collection of oscillons in the

collision region. In Fig. 4.14 we demonstrate that this is indeed the case. Near the

center of the collision, the bouncing of the walls amplifies the initially small flucutations.

Around mt ∼ 40, these fluctuations become of similar amplitude to the oscillations of

the SO(2,1) background. Shortly after this, the distinction between background and

fluctuations in the collision regime breaks down and the field rapidly condenses into

a population of oscillons. In our choice of time coordinate, the condensation occurs

first near the center of the collision. Meanwhile, the outward propagating torii produced

during the first few collisions of the walls develop ripples that eventually pinch off leading

to the production of “rings” of oscillons near the outer edges of the collision region.

The two mechanisms described above correspond to the two production mechanisms we

anticipated in section 2.4: parametric amplification of fluctuations by the oscillating

background field near the collision center, and the growth of fluctuations on the outward

propagating torii.

4.5.2 Thin-Wall with Plateau

As our next example potential, we modify the region into which the field tunnels by

inserting a long-flat plateau rather than a second well. This new potential is given by

V (φ) =

{
1
4

(φ2 − 1)
2 − δφ+ Ṽ0 : φ < φtrue

V0 − ε(φ− φtrue) : φ > φtrue

where V0 = 1
4
(φ2

true−1)2−δφtrue+ Ṽ0 and (assuming δ > 0) φtrue is the largest solution to

φ3
true−φtrue−δ = 0. This is meant as a toy example where the field tunnels out onto a flat

inflationary plateau, with the slope determined by ε ≥ 0. The portion of the potential

traversed by the instanton as it tunnels is unchanged from the double well case (4.1)

and therefore the initial bubble profiles are the same. However, we expect the collision

dynamics between this case and the thin-walled double-well to be radically different. For
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Figure 4.14: Development of the instability for two colliding bubbles in Minkowski
space including bulk fluctuations corresponding to λ = 10−4 around the thin-wall ap-
proximation. In the top row we plot the field distribution on a 2-D slice through
the plane where the bubbles collide (horizontal projection) and on a slice parallel to
the collision axis through the centers of the bubbles (vertical projection). In the bot-
tom row we show contours of the energy density. Our lattice has N = 1024 points
per side with a box size of mL = 13R0 = 13

√
2δ−1 and a time step dt = dx/12.5.

The bubbles are nucleated with their centers separated by a distance mRsep = 26
5
R0.

Videos corresponding to both sets of figures can be found at www.cita.utoronto.

ca/~jbraden/Movies/linear_del0.1_wfluc_field.aviand www.cita.utoronto.ca/

~jbraden/Movies/linear_del0.1_rhocontours.mp4.

a sufficiently energetic collision, the free passage approximation [101, 102, 160, 161] will

hold shortly after collision. This tells us that the collision will displace the field a distance

∆φ ∼ 2φ0 down the plateau. Unlike the double-well, this does not result in a restoring

force pulling the field back towards the false vacuum. Therefore, there is no bouncing

of the walls or other oscillations of the background field. Thus, there is no mechanism

to pump fluctuations. Rather, the effect of the collision is to create a steep gradient

in the field interpolating between the field at the tunnel out location and its displaced

location down the plateau. This gradient then propagates away from the collision as

seen in Fig. 4.15. In front of this gradient, the field is at φ ≈ φtrue ≈ φ0 while behind

it the field has been displaced down the plateau to φ ≈ φtrue + 2φ0 ≈ 3φ0. Although

this behaviour is very similar to that of a propagating domain wall, this gradient does

not interpolate between local minima of the potential and thus there are no bound state

fluctuations associated with it because V ′′ is never negative. Somewhat suprisingly, the

www.cita.utoronto.ca/~jbraden/Movies/linear_del0.1_wfluc_field.avi
www.cita.utoronto.ca/~jbraden/Movies/linear_del0.1_wfluc_field.avi
www.cita.utoronto.ca/~jbraden/Movies/linear_del0.1_rhocontours.mp4
www.cita.utoronto.ca/~jbraden/Movies/linear_del0.1_rhocontours.mp4
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field at the collision site does not remain stationary on the plateau. Rather, it begins to

slowly retreat back to the tunnel out location, at least for the duration of our simulations.

From Fig. 4.17, we see that the field profiles both with and without initial fluctuations are

nearly the same, indicating that the fluctuations play a subdominant role in this case.

As a result, this is a situation in which the SO(2,1) assumption provides an accurate

description of the evolution.

Now consider the effect of adding a slope to the potential in the region where the

field tunnels out, so that the field begins to roll down the plateau once it tunnels. Again,

the collision effectively displaces the field further down the plateau and produces a steep

gradient which again propagates into the bulk at nearly the speed of light. This gradient

propagates on top of the previous evolution of the field down the potential. As with

the flat plateau, Fig. 4.17 shows that the resulting evolution is insensitive to the choice

of whether or not we include fluctuations, so that again we expect this situation to be

well-described by 1+1-dimensional simulations.

4.5.3 Thick-Wall Double Well Case

As our final potential we consider a collision between two of our thick-walled bubbles in

the cubic symmetry breaking potential with δ = 0.99. In this case, the final outcome of

the collision is somewhat unclear without running simulations. In Fig. 4.18 we show the

result of one such collision, where we have made the assumption of SO(2,1) symmetry in

order to run a very high resolution one-dimensional simulation. The collision still leads

to large oscillations of the field around the minimum, but the the field no longer becomes

temporarily trapped in the false vacuum minimum between collisions. Instead of having

repeated collisions between a pair of walls, we instead have oscillations of the field around

the true vacuum. Within a few oscillations, the amplitude damps to . 0.5φ0. We already

know from our study of single field bubbles that spatially homogeneous oscillations of

the field with this amplitude do not lead to a strong instability. Since the oscillations

here have additional spatial localization, it is thus clear that the fluctuations will not

experience significant amplification in this case either. We see this directly in Fig. 4.19,

where the rotational symmetry about the collision axis is preserved to a high degree

during the collision. As well, Fig. 4.20 further shows that the boost symmetry is extremely

well preserved.
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Figure 4.15: A collision of two single-field bubbles with a flat plateau onto which the
field tunnels rather than a second well. The horizontal panel shows the field on a slice
orthogonal to the collision axis and through the center of the collision region. For orien-
tation, the back panel is a slice parallel to the collision axis, illustrating the growth of
the two bubbles. Blue corresponds to regions where the field is near the false vacuum,
red regions where it is near the tunnel out point, and green regions down the plateau
away from the tunnel out point. A illustrative video of the process can be found at www.
cita.utoronto.ca/~jbraden/Movies/collision_plateau_del0.1_field.avi.

4.5.4 Bubble-Domain Wall Collision

Thus far we have only considered the collision of two bubbles in a reference frame in

which they nucleate at the same time. We will now address the opposite regime where

one of the bubbles is much larger than the other. To model this situation we will consider

www.cita.utoronto.ca/~jbraden/Movies/collision_plateau_del0.1_field.avi
www.cita.utoronto.ca/~jbraden/Movies/collision_plateau_del0.1_field.avi
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Figure 4.16: A collision of two single-field bubbles with a tilted plateau ε = 0.01. The
field slices are the same as in Fig. 4.15. Inside the bubble, the field now rolls down
the potential. However, the result of the collision is essentially the same as in the case
ε = 0. The field is displaced down the potential at the collision, and a steep field gradient
then propagates into the interior of the bubble. Aside from this, the field rolls down the
potential due to the constant force resulting from the slope.

the collision of a bubble with a planar domain wall, with the planar wall meant to be a

substitute for the large bubble. In an actual collision between false vacuum bubbles, this

would require the wall to have a very large Lorentz contraction factor γ � 1. This then

creates a very large hierarchy between the size of the bubble and the thickness of the

wall which we are unable to resolve with our fixed lattice. Thus, we will restrict ourselves

to mildly relativistic walls. A physical situation where this could occur would be phase



Chapter 4. Role of oscillons in three-dimensional bubble collisions 105

50 0 50

mx

1

0

1

2

3

4

φ
/φ

0

Fluctuations

No Fluctuations

50 0 50

mx

0

2

4

6

8

10

12

14

φ
/φ

0

Fluctuations

No Fluctuations

Figure 4.17: Comparison of bubble profiles orthogonal to the collision axis for a simulation
with initial fluctuations δφ 6= 0 (black line) and without initial fluctuations δφ = 0
(red triangles). The choice of potential and initial conditions are the same as Fig. 4.15
(left) and Fig. 4.16 (right). We have chosen four time times mt = 34.47, mt = 45.96,
mt = 57.45 andmt = 80.43. The two profiles match extremely well at all times, indicating
that the fluctuations are stable for this class of bubble collisions. The oscillations near
the edge of collision region are numerical artifacts. In the left panel we show the result
for a flat plateau ε = 0, while on the right we have ε = 0.01. For the purposes of plotting,
we have downsampled our output grid by a factor of 2.

transitions occurring at finite-temperature, where interactions between the bubble wall

and the surrounding medium lead to a maximal wall propagation speed. Of course the

initial spectrum of fluctuations is different in this case, so a direct comparison with our

results cannot be made, although the same qualitative behaviour should persist. As well,

we will consider only bubbles in the linear symmetry breaking potential (4.1), again with

δ = 0.1. From our results for the collision of two bubbles nucleated at rest at the same

time, it is clear that these types of collisions will again result in strong amplification

of the fluctuations and the eventual production of a population of oscillons. The only

new ingredient here is that the planar wall and bubble wall no longer carry an equal

and opposite amount of field momentum φ̇∇φ. Therefore, if we consider a small box

around any region where the planar wall and bubble are undergoing a collision, the

energy within that box will carry a nonzero momentum. As well, the collision no longer

occurs in a single spatial plane, but rather on a curved hypersurface defined by all of

the instantaneous intersections between the bubble and the planar wall. As a result, the

collision products will be produced along a nonplanar surface with a nonzero velocity

(both relative to our simulation coordinates). Since we are not properly boosting an

initial two-bubble field configuration to set our initial conditions, the above statement

will be true in any coordinate system.
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Figure 4.18: The evolution of a pair of colliding bubbles in the cubic potential with
δ = 0.99 under the assumption of exact SO(2,1) symmetry.

Figure 4.21 shows that this is indeed the case. As the wall accelerates into the false

vacuum it partially engulfs the expanding bubble. As with the two bubble case, the field

experiences a series of excursions back to the false vacuum. These drive an instability in

linear (non rotationally invariant) fluctuations analogous to the instability in the pair of

bubbles. The torii resulting from these excursions no longer distribute themselves in a

single plane, but rather move in the same direction as the wall. As a result, the oscillons

that are ultimately produced from the growth of these fluctuations are distributed in

some narrow curved hypersurface rather than a plane.

4.6 Extension to Two Fields

By considering the simple case of a single-field potential, we discovered that the dynamics

of bubble collisions can be considerably more intricate than expectations from assuming

SO(2, 1) or SO(2) symmetry for the field profile. In particular, we found that for single-

field double-well potentials with moderately broken Z2 symmetry the collision of a pair

of bubbles ultimately leads to the production of a population of oscillons. This type of

potential is often used to model first-order phase transitions, and thus our results may

have some relevance there. However, when the bubbles begin to coalesce the problem

will need to be treated as a many bubble problem, rather than just two, leading to a very

large and explicit breaking of the SO(2,1) symmetry.
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Figure 4.19: A collision of two-thick wall bubbles in the potential (4.2) with δ = 0.99.
The field slices and coloring are the same as in Fig. 4.14. A video of the field evolution is
available at www.cita.utoronto.ca/~jbraden/Movies/thick_wall_collision.avi.

A natural place in which to consider collisions between isolated pairs of bubbles is

in false-vacuum eternal inflation. Unfortunately, it seems exceedingly difficult to both

realize inflation and produce oscillons in bubble collisions using a single-field potential

with only two minima. The easiest way to have a viable open inflationary model produced

by the nucleation of a bubble is to have the field tunnel out onto a plateau that can

support ∆ ln a ∼ 50 efolds of inflation.5 Our mechanism for oscillon production relies on

oscillations of the field around the true vacuum within the collision region. However, if

5Another possibility is that collision displaces the field to a location where it begins to slow-roll, thus
starting inflation.

www.cita.utoronto.ca/~jbraden/Movies/thick_wall_collision.avi
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Figure 4.20: Evolution on line orthogonal to collision axis showing the preservation of
the boost symmetry. Fluctuations were taken to be those in the Minkowski false vacuum
with λ = 10−2.

the plateau is long enough to support a sufficient period of inflation, any rolling motion

of the field along the plateau must experience many efolds worth of Hubble damping.

Therefore, the requirement of an inflationary plateau makes it difficult for the field to

rebound off of a “wall” in the potential and return to the false vacuum side of the

barrier shortly after collision. Thus the basic mechanism by which initial fluctuations

are amplified disappears.

However, embedding inflationary models based on bubble nucleation into a realistic

high-energy theory will likely involve considering models with many scalar fields.6 With

this in mind, consider a simple two-field potential

V (σ, φ) =
λσ
4

(
σ2 − σ2

0

)2
+ λσδ

(
σ3σ0

3
− σσ3

0 +
2σ4

0

3

)
+ λσ

g2

2
(σ − σ0)2 φ2 + λσσ

3
0εφ+ V0 .

(4.18)

Schematically, the potential has the form Vtunnel(σ) + Vcoupling(σ, φ) + Vinflation(φ), where

we have chosen the particular form Vinflation(φ) = λσσ
3
0εφ + V0. Our choice Vinflation =

λσσ
3
0εφ+V0 can be viewed as a linarization of the potential around the tunnel out region.

However, by adjusting Vinflation, we can effectively reproduce any model of single-field

inflation we wish. There is a local minimum at σ ≈ −σ0 and φ ≈ 0, and a long trough

at σ ≈ σ0 along which σ is heavy and φ is light. Since we now have two mass scales at

our disposal, we can accomodate the production of oscillons by exciting the σ field while

6Even this statement is probably too simplistic, as the correct high-energy theory may not even be
describable in terms of a low-energy scalar field theory, but we will not concern ourselves with this.
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Figure 4.21: Field and density evolution for a collision between a planar domain wall and
a single vacuum bubble. In the top row we show two slices of the field configuration. The
first slice (projected vertically) is perpendicular to the planar wall and cuts through the
center of the bubble. The second slice (projected horizontally) is parallel to the domain
wall and displaced slightly from the center of the bubble towards the initial location of
the domain wall. As the wall sweeps past the bubble, the instantaneous collision location
moves along the collision axis, as do the tubes of false vacuum and oscillons produced
by the collision. In the bottom row, we instead show contours of energy density for the
same three time slices.

simultaneously permitting slow-roll inflation along the φ direction.

We only consider parameter choices such that the tunnelling dynamics is dominated

by σ, while the subsequent post-tunnelling evolution is dominated by φ. Although we

have not performed an exhaustive study for different choices of g2, for g2 = 1 this

behaviour is generic for the thin-walled case δ � 1. This is illustrated in Fig. 4.23,

where we explicitly see that during tunnelling the field first moves almost exclusively in

the σ direction, before making a sharp turn at the end so that it is moving along the

slow-roll plateau. Effectively, the behaviour of the tunnelling field σ is nailed down and

the inflaton field φ simply reacts to the presence of the domain wall in σ. In Fig. 4.24

we show the potential seen by the effective field dχ2
eff = dσ2 + dφ2 as it tunnels through

the barrier, as well as a comparison to an analogous single-field potential. The structure
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Figure 4.22: The two-field potential (4.18) for ε = −0.01,δ = 0.2,g2 = 1 and V0 = 0.
We have in mind a scenario where the field is initially trapped near the local minimum
at σ ≈ −σ0, φ ≈ 0 and subsequently tunnels into the nearly flat trough at σ = σ0. For
clarity we have clipped the potential for V > λσ4

0.

of the potential as seen by the field while it tunnels and subsequently slow-rolls is thus

very similar to the double-well with an appended slow-roll plateau above, with the only

difference being the explicit form of the tunnelling portion. As well, notice that there

is no steepening of the potential near the beginning of inflation as is often assumed in

single-field models of open inflation from bubble nucleation.

Figure 4.25 and Fig. 4.26 illustrate the dynamics resulting from a collision between

two of these bubbles. We do not perform an exhaustive study of possible behaviours

as a function of initial bubble separation of model parameters, but simply choose a set

of parameters and initial conditions to demonstrate that oscillons can be produced in

collisions between bubbles in this model. For our choice of parameters, the collision

causes a large excitation in σ and its subsequent evolution is very similar to the single-

field double well case. However, for a fixed σcur 6= σ0 the potential V (σcur, φ) has a

minimum at φ = −εσ3
0/(σ − σ0)2 ≈ 0. As a result, the oscillations of σ pull the field

φ back towards the origin, thus undoing the previous rolling down the plateau. The

evolution of the σ field amplifies fluctuations and leads to the creation of oscillons in

the σ direction. This is completely analogous to the single-field evolution. However, in

the cores of the oscillons, the σ field makes large excursions away from σ0. As a result,

within these cores φ remains trapped at the origin while the field outside of these cores

once again begins to roll down the plateau. In the inflationary setting, there will still be

a vacuum energy V0 sufficient to drive a period of slow-roll inflation, so as the oscillons
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Figure 4.23: The instanton solution used to set initial conditions for our numerical sim-
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Figure 4.24: The potential seen by the field as it tunnels in the Euclidean radial direction
(blue line). Here we have defined dχ2

eff = dσ2 + dφ2 as the path length in field space.
For comparison, we also include the potential V (0, χeff ) that would be seen by the field
if we had instead tunnelled a distance χeff with φ = 0 (red dots). In this latter case, the
potential is then the same as our single-field cubic symmetry breaking potential.
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Figure 4.25: Evolution of the “inflaton” field φ in our two-field model. The horizontal
projection is a slice along the collision axis through the center of the bubbles and the
vertical slice is orthogonal to the collision and centered on the collision site. Red corre-
sponds to the φ value in the false vacuum and where the field originally tunnels. The
pips where the field is pulled back up the potential are locations where the σ field is
fracturing into oscillons. An animation corresponding to this evolution is available at
www.cita.utoronto.ca/~jbraden/Movies/twofield_inflaton.avi.

dilute we expect inflation to eventually restart. A novel feature of this setup is that φ will

be quite inhomogeneous (within the collision region) at the start of this new inflationary

phase, and we expect this inhomogeneity to persist until the oscillons decay.

4.6.1 Model Building for Inflation

Let’s now consider the consistency of our approach and application of this type of model

to inflation. In our numerics, we have assumed that the instanton profile is well approx-

imated by taking the background to be Minkowki. As well, for our lattice simulations

we have further assumed that we can account for expansion of the universe by taking

a uniform fixed Hubble constant.7 Relaxing this latter assumption is a significant nu-

merical challenge and we therefore leave it to future work. This is required to obtain

accurate predictions for the observational signatures that remain after inflation has oc-

curred within the bubble. While this is certainly an interesting question, in this paper

we are primarily concerned with the dynamics of the collision itself. The relevant time

scale is then (λσσ
2
0)
−1/2

and this must be much shorter than a Hubble time.

First consider the restrictions imposed by our computation of the instanton profiles.

7The figures presented in this paper were taken from simulations using a Minkowski background.
However, we also did several runs with a fixed Hubble constant H over the entire simulation volume.
The main effect of this expansion was to delay the time that the bubbles first collide, while the collision
dynamics itself was unaffected.

www.cita.utoronto.ca/~jbraden/Movies/twofield_inflaton.avi
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Figure 4.26: Evolution of the “tunnelling” field σ in our two-field model with ε = −0.01
and δ = 0.2. As with previous figures, blue corresponds to σ ∼ −σ0 (ie. near the false
vacuum) and red to σ ∼ σ0 (ie. in the “inflationary” trough). The vertical slice is
parallel to the collision axis and the horizontal slice is orthogonal to the collision axis.
An animation corresponding to this evolution is available at www.cita.utoronto.ca/

~jbraden/Movies/twofield_tunnel.avi.

The least stringent requirement is that the CdL instanton exists. Roughly, this requires

that the bubble wall fit within a Hubble radius determined at the local maximum of the

potential Hmax. For our setup, the thickness of the wall is determined by Vσσ ∼ λσσ
2
0,

and therefore we require λσσ
2
0 � H2

max ∼ V0/3M
2
P +λσσ

4
0/12M2

P =⇒ 12
M2
P

σ2
0
� 1 + 4V0

λσσ4
0
.

A more stringent constraint comes from requiring that the initial radius of the bubble is

much less than the Hubble scale in the ambient spacetime Hfv. We have meffRinit ∼ δ−1

and H2
fvM

2
P ∼ 4δλσ4

0

9
+ V0

3
, so this gives

4σ2
0

3M2
P

(
1 + 3V0

4δλσσ4
0

)
� δ. In the limit that V0 �

δλσσ
4
0, this gives V0

λσσ2
0M

2
P
� δ2. For the opposite limit we instead get

σ2
0

M2
P
� δ.

Finally, consider the restriction imposed by assuming the approximation of a fixed

homogeneous background Hubble. This constraint only needs to be fulfilled if we want an

approximate description of the dynamics prior to the collision, or to track the long time

evolution after the collision. The average expansion rate inside and outside the bubble

must be much greater than the difference in expansion rates. As well, for the case when

the field slow-rolls inside of the bubble, our approximation will only be valid when the

difference between the Hubble parameter in the center of the bubble (where the field has

rolled furthest) and the edge is again much less than the average. This then requires

V0 � δλσσ
4
0, |λσσ3

0εφx=0(t)| where φx=0 is the value of φ at the center of the bubble at

time t.

www.cita.utoronto.ca/~jbraden/Movies/twofield_tunnel.avi
www.cita.utoronto.ca/~jbraden/Movies/twofield_tunnel.avi
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4.7 Observational Prospects

In the previous sections we demonstrated the presence of a previously ignored instability

in the fluctuations around colliding vacuum bubbles in certain types of potentials. As

a result of these instabilities, the near SO(2,1) symmetry of the initial configuration be-

comes badly broken during the course of the dynamical evolution, eventually resulting

in the production of a population of oscillons in the collision region. In this section we

briefly comment on some possible implications of these results, restricting ourselves to

potential signals that rely of the breakdown of the SO(2,1) symmetry. This means we

will not discuss possibilities such as a large scale modulation of coupling constants as

could result from the single-field collisions with a plateau if the vev of the field forming

the bubbles fixes an effective coupling constant in the theory. There are many scenarios

in which one could imagine embedding our mechanism, and we will distinguish between

two cases that we refer to as superhorizon and subhorizon collisions below. In the first

we assume that our observable universe fits within one of the nucleated bubbles which is

embedded within some parent false vacuum. The collision is then with a neighbouring

bubble which has also nucleated within the parent vacuum. This is of course the stan-

dard scenario for testing open inflation resulting from bubble nucleation in an ambient

false vacuum. Past studies of signatures from such collisions have been based on the as-

sumption of SO(2,1) symmetry, so in this case in particular we would like to address any

novel implications of the breakdown of the symmetry. One could also imagine scenarios

where our observable universe forms in the future light cone of the collision, although we

will not discuss this possibility here. In the second, we instead assume that the bubble

nucleations are occurring on subhorizon scales within our Hubble volume. These nucle-

ations could either have occurred in the past (such as an early first order phase transition

within our Hubble volume) or in the present. The reader should keep in mind that we

have not performed a detailed analysis for any of the possibilities listed in the section, so

the magnitude of many of these effects may prove to be undetectably small. We plan to

provide a more detailed study in a future publication, including the effects of gravitation

as required to obtain the present day signal.

4.7.1 Superhorizon Bubble Collisions

First consider the case where our universe is contained within one of the bubbles. Our

results demonstrate rather clearly that observational signatures of collisions do not nec-

essarily posess an azimuthal symmetry about the collision center as is assumed in the

existing literature. A remnant of the azimuthal symmetry will persist in that effects of
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the collision are confined to a circular disk of the sky, but the interior of this disk need

not posess any additional symmetries.

Perhaps the most interesting possibility is the production of gravitational waves by

the fracturing of the bubble walls at the onset of nonlinearity amongst the fluctuations.

This effect is absent in an exact SO(2,1) collision. Initially the gravitational waves will

be produced with subhorizon sized wavelengths, but as the oscillons dilute and inflation

restarts they will be stretched outside the horizon. The resulting signal will have a

characteristic wavelength as well as a directional dependence on the sky that may be

detectable in polarization data. As well, the directional dependence of this signal will

be highly correlated with other signatures such as a hot or cold spot produced by the

collision. Since the amplitude of the waves will damp until they are stretched outside of

the horizon, a detailed analysis is required in order to estimate the size of the signal.

Another effect is related to sign of the temperature perturbation induced by the

collision. In the single-field case, the collision simply displaces the field down the plateau

resulting in fewer efolds of inflation and thus δ ln(a) < 0 and we obtain a hot spot.

This was verified in [145] for a specific choice of inflationary model. However, when

considering our two-field inflationary model this simple intuituion no longer holds. In

particular, prior to collision φ within each bubble has already begun to roll down the

trough. The effect of the collision, at least for the parameters we used in this paper,

is to pull φ back up the potential, as well as to excite oscillations in σ and eventually

produce oscillons. If the effects of the oscillons and σ evolution were ignored, this would

simply prolong the inflationary epoch leading to a positive δ ln(a) and thus a cold spot.

However, the full dynamics creates additional contributions to the energy density (the

oscillons). This further perturb the expansion history and a detailed analysis is thus

required to obtain the final perturbation.

Finally, when considering the two-field model, the inflationary epoch within the col-

lision region will restart from a highly inhomogeneous state due to the population of

oscillons. As long as these oscillons persist, they trap the inflaton field at the origin in

regions of size m−1. Whether or not any remnant of this (non-vacuum) initial state per-

sists is a rather interesting question. In particular, one possibility is that that once the

oscillons decay, the pips of inflaton field that were held near the origin will be stretched

in physical size as the universe expands and could end up sourcing curvature fluctuations

ζ.

All of these effects will be rather strongly constrained by data, so a certain amount

of tuning will have to be applied in order to construct models that produce signatures at

the right level. As well, additional tuning is needed in order for the underlying theory to
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predict a nonnegligible number of potentially observable collisions for a typical observer.

Our purpose in this paper was simply to understand the dynamics of individual colli-

sions so we will not touch on these issues here, although they must be addressed when

performing a detailed study of the possible observational consequences of collisions.

4.7.2 Subhorizon Bubble Collisions

Now let’s consider the case when the bubble collisions occur in some first-order phase

transition within our horizon. Such a transition may have occurred in the past while the

universe was extremely hot. However, we could also imagine a scenario where the phase

transition is happenning around the present time. An interesting possibility would be

for the field responsible for the dark energy to undergo a first order phase transition. As

in the previous subsection, we restrict ourselves to signatures that result from collisions

and the breaking of SO(2,1) symmetry, although there are many additional possibilities.

The discussion here will in many ways mirror the discussion for the superhorizon colli-

sions, with the possible signals being spatially homogeneous counterparts to the spatially

localized effects discussed in the previous subsection.

First consider the production of gravitational waves during a first order phase tran-

sition. When the bubbles collide, gravitational waves are produced with wavelengths of

order the typical size of the bubbles at collision. This source of gravitational radiation is

well known and is often studied using the envelope approximation, which neglects all of

the field dynamics associated with the collisions and treats the bubbles as if they were

undergoing free expansion. However, if the phase transition is not too rapid (so that

the bubbles have a chance to grow before colliding) then we expect that the fracturing

process explored in this paper will occur in individual collisions. This will lead to an

additional peak in the gravitational wave spectrum with a smaller wavelength associated

with the size of the unstable modes produced during the collision. The two sources of

gravitational waves mentioned above are a direct result of scalar field dynamics and will

be present in vacuum. However, in a high temperature phase transition the subsequent

(turbulent) dynamics of the plasma may source additional gravitational waves. In this

case, the fracturing of the walls and long-lived oscillons may force turbulent motion and

thus indirectly produce additional gravitational waves.

The production of oscillons during the phase transition also perturbs the expansion

history of the universe by adding a component that behaves as collisionless dust to the

ambient cosmological constant (vacuum transition) or radiation bath (high temperature

transition). If the oscillons form a significant fraction of the post-transition energy den-
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sity, this could lead to a temporary stage of matter domination in the early universe.

4.8 Applications to Other Scenarios

We have restricted ourselves in this paper to some very simple toy potentials that permit

Coleman-deLuccia bubble nucleation. However, the basic mechanism–amplification of

non SO(2,1) symmetric fluctuations–likely plays a key role in many other scenarios. For

a small number of fields, the important feature of the potential appears to be the presence

of a slightly asymmetric double-well structure in one of the field directions.

A direct application would be to the bubble baryogenesis scenario of [162]. This

scenario takes a two-field model with slightly broken internal O(2) global symmetry.

Baryon number is generated by the nucleation and expansion of bubbles, and also during

their collisions. The collisions considered there very closely resemble our results for the

thin-walled bubbles, except that SO(2,1) symmetry was enforced during the collisions.

It would be interesting to see how the net baryon number production is influenced by

breaking of the SO(2,1) demonstrated above.

Another possible application of these results is to boom and bust inflation [163] and

other models of flux discharge cascades driven by bubble nucleation and expansion in

a compact extra dimension [164, 165]. However, there are several caveats to a direct

application of our results. First of all, the bubble walls in these models move at extremely

relativistic speeds and are thus extremely Lorentz contracted in the center of mass frame

for the collision. This means that the amount of time that the walls interact at each

collision will be very short. As a result, at each collision the walls may simply pass

through each other before the fracturing has time to occur as in our collisions. A second

caveat is that the bubble walls in the flux cascade picture are meant to be branes instead

of scalar field kinks. The nonlinear interactions that lead to the breakup of the walls are

sensitive to the details of the high energy theory, so the nonlinear fracturing stage of the

walls may be altered in this case.

A final scenario appearing in the literature where non-symmetric fluctuations are

likely to play a key role but were not considered is in [166]. Here, the author’s study late-

time volation of the free-passage approximation by displacing the field to very near local

maximum of the potential in the collision region. However, they make the assumption of

planar symmetry and work in 1 + 1 dimensions. The nonplanar fluctuation modes will in

this case experience a tachyonic instability [32, 31] that will quickly invalidate the planar

symmetry approximation. In fact, the seeds of this are already in the author’s work as

their effect relies on precisely this tachyonic instability for the k⊥ = 0 mode.
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Beyond these obvious applications of the ideas presented in this paper, there are

many other scenarios in which corrections to SO(2,1) symmetry may be expected. In

this paper, we only considered collisions between bubbles formed from the same instanton,

for which there is no topological constraint preventing the walls of the colliding bubbles

from eventually annihilating each other. A natural extension is to consider potentials

with additional minima, and collisions between bubbles formed from different instantons.

In this case, the field value in the bubble interiors will enforce topological constraints on

the resulting collision dynamics and domain walls will in general be formed in these

collisions. However, these domain walls can have their own internal dynamics which can

again lead to a breakdown of the SO(2,1) invariance. This is the generalization of the

oscillations of the shape mode in the double well potential studied in chapter 3 to the

case of bubble collisions. Since the internal dynamics generally emit radiation, and this

radiation will not in general respect the SO(2,1) symmetry, any signatures that may

result from it again differ from the results of an SO(2,1) simulation.

4.9 Conclusion

In this chapter we have performed full three-dimensional simulations of bubble collisions

in scalar field theories. Our treatment is novel because we include for the first time

the effects of quantum fluctuations (in the semiclassical wave limit) on the dynamics.

Recent interest in this topic has been driven largely by false vacuum eternal inflation, in

which the bubbles initially form through quantum nucleation. In this context, previous

studies have assumed the resulting collision between two such bubbles possesses an exact

SO(2,1) symmetry, which itself derives from the partial breaking of the SO(4) symmetry

of the instanton solution. However, it is important to keep in mind that the instanton

only describes the most likely bubble to nucleate. In reality, the actual shape of the

nucleated bubble will be slightly deformed from the perfect instanton profile due to

the quantum nature of the nucleation. Even ignoring these deformations to the initial

bubble shape, the bulk fluctuations in the ambient spacetime and inside the bubble are

present after the nucleation of a bubble. In other applications, such as high energy phase

transitions, the nucleation of individual bubbles is again driven by coherent structures

arising from random fluctuations. Hence in all these cases the exclusion of fluctuations,

which is implicit in assuming exact SO(2,1) invariance, is not consistent with the process

of nucleation. Since these fluctuations do not obey the assumed SO(2,1) symmetry

(or SO(2) symmetry in the case of thermal nucleation), it is important to test this
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assumption.8

We have studied collisions between pairs of nucleated bubbles in a variety of single-

field and two-field potentials using highly accurate nonlinear three-dimensional lattice

simulations. A novel aspect of this investigation was the development of a pseudospec-

tral approach for finding SO(4) symmetric instanton solutions, rather than the ubiquitous

overshoot-undershoot method. The accuracy of our instanton profiles are only limited

by the roundoff errors associated with machine precision, and the procedure easily gen-

eralizes to multifield potentials. Although we only considered the case of instantons in

Minkowski space, the method can be trivially generalized to the case of a fixed back-

ground geometry, and with a little extra effort to the case of a dynamical metric coupled

to the scalar fields.

We studied two types of single-field potentials: double-well potentials with a broken

Z2 symmetry, and potentials with a single local minimum and the second minimum re-

placed by a linear plateau with an adjustable slope. Under the assumption of SO(2,1)

symmetry, in double-well potentials with mildly broken Z2 symmetry the bubble walls

undergo repeat collisions, producing an outgoing pattern of toroidal waves centered on

location of the initial collision and expanding in the plane orthogonal to the collision

axis. Initially small symmetry breaking fluctuations experience a strong instability as a

result of this motion in the symmetric background. These fluctuations are quickly driven

into the nonlinear regime, at which point a split into an SO(2,1) symmetric background

and nonsymmetric fluctuations loses its utility. A fully three-dimensional nonlinear de-

scription is then required to describe the resulting evolution. The nonlinear dynamics

causes the bubble walls and expanding torii to fracture into a network of localized blobs

of field known as oscillons. At this point, the SO(2,1) symmetry has been spoiled com-

pletely and any dimensional reduction based on it will be a very poor approximation to

the collision dynamics. To the best of our knowledge, this is the first example where the

three-dimensional nature of the problem plays an important role in the field dynamics

for the collision between a pair of bubbles.9

Meanwhile, when we considered situations where the field tunnels out far away from

a minimum of our potentials (either because the Z2 is strongly broken or there is a

long plateau), we found no evidence that the SO(2,1) breaking fluctuations experienced

instabilities.10 As a result, these situations can be well-approximated by dimensionally

8As noted before, by this we mean that individual realization of the fluctuations do not preserve the
symmetry, even if they do preserve the symmetry in a statistical sense.

9Easther et. al also performed three-dimensional bubble simulations [101], but they did not include
fluctuations in their initial conditions and the effect that they discuss can be captured using 1+1-
dimensional simulations.

10For the badly broken Z2 double-well, this statement may be an artifact of our choice of potential,
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reduced simulations.

The single field potentials we studied do not permit a situation where the bubble

walls can fracture while the field inside the bubble simultaneously drives a period of

slow-roll inflation. This essentially follows from the fact that inflation requires a long

region of the potential whose characteristic mass scale is much less than the hubble

constant. In contrast, the bouncing of the walls and subsequent production of oscillons

only occur if the typical mass scale in the potential is instead much greater than the

hubble constant. For the case of identical bubbles, within the collision regions the field

explores a portion of the potential that is also supposed to be driving inflation. Since the

conditions for inflation and oscillon production are mutually exclusive, this suggests that

it is extremely difficult to both drive inflation and produce oscillons directly for a bubble

collision in a single field potential. However, it is important to keep in mind that within

the framework of inflation on a landscape there are many scalar degrees of freedom, not

just one. We therefore considered a very simple two-field model in which we allowed one

of the field directions to dominate the tunnelling and the other direction to drive slow-roll

inflation. During a collision between two such bubbles, the dynamics of the tunnelling

direction closely resembles that of the single-field collision in the double-well with mild Z2

breaking. As a result, oscillons are able to form in this direction. The coupling between

the tunnelling field and the inflaton direction then causes the “inflaton” field to be pulled

back up the potential. This entire process again badly breaks the SO(2,1) symmetry and

requires more than a one-dimensional simulation to capture.

Our simulations are not fully relativistic, so we are unable to track the subsequent

evolution of the fields through the complete phase of inflation inside the bubble. This is

certainly an interesting question, but it is also a very challenging numerical problem that

is likely to be much more difficult than the corresponding symmetry reduced gravitational

dynamics. However, since the relevant time scales for oscillon formation are much less

than the Hubble time, we can view our results as setting the initial conditions for the

subsequent inflationary epoch. Since the SO(2,1) symmetry is broken so strongly in

some cases, this question cannot be addressed within the framework of a symmetry

reduced 1+1-dimensional problem. In particular, previous signatures associated with

bubble collisions have assumed an azimuthal symmetry will hold, which results from the

assumption of SO(2,1) dynamics for the spacetime. To address this, one must determine

how quickly the nonsymmetric part of the initial perturbations damp relative to the

SO(2,1) preserving part. We plan to address these issues and use data to constrain the

possible observables mentioned here in future work.

but for the plateau in the tunnel out region it should be generic.



Chapter 5

A Shock-in-Time: Post-Inflation

Preheating

5.1 Introduction

Early inflation within our Hubble patch, if it occurred, was driven by the potential en-

ergy of an ultra-long wavelength coherent scalar effective field, which caused accelerated

expansion of the Universe. This bosonic condensate would have been accompanied by

shorter wavelength nearly Gaussian fluctuations of small amplitude. Such nearly Gaus-

sian fluctuations, some possibly correlated with the inflaton, would also have been present

in the graviton and any light scalar fields (which we refer to as isocons). Super-Hubble

fluctuations led to a condensate of the long wavelength modes, from which the complexity

of the Hubble patch that surrounds us must have arisen, ultimately producing a deceler-

ating plasma of standard model particles in local thermal equilibrium. The condensate

had low entropy associated with the sub-Hubble fluctuations, while the plasma had high

effective thermal entropy ultimately stored in the photon and neutrino relics within our

patch, with a comoving entropy density Sγ+ν ∼ 1088/(10 Gpc)3, normalized to 10 Gpc.

The transition regime connecting the end-of-inflation (when the acceleration/deceleration

boundary time-hypersurface was breached) to the hot primordial plasma in local thermal

equilibrium is commonly called preheating. During preheating fluctuations experience

strong instabilities as a result of the background motion of the long-wavelength conden-

sate. When these fluctuations begin to probe the nonlinear regime, strong backreaction

and rescattering effects cause the condensate to fracture leaving behind a highly inho-

mogeneous complex medium. Past studies have considered many interesting signatures

from preheating, including baryogenesis, gravitational waves, topological defect produc-
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tion, and nongaussianities. This chapter will focus on a new potential signature – spatial

and temporal variations in entropy production – with an eye to connecting them to

nongaussianities.

Preheating is usually explored by following the evolution of classical field equa-

tions [26, 27, 28, 29] which, because of the highly nonlinear nature of mode-mode coupling,

invariably requires simulations on a lattice [38, 39, 40, 41, 43]. Here we follow suit and

study entropy production during preheating using high-resolution and highly accurate

lattice simulations. During the nonlinear phases of preheating coherent inflaton oscilla-

tions must transform into a cascade of spatial modes. We will show using our simulations

that the cascade’s entropy tracks the transition from coherence to incoherence well.

Our simulations show that in a large class of models a sharp spike in entropy pro-

duction accompanies the onset of nonlinearities. In an ordinary gas, the passage from

supersonic to subsonic occurs through a spatial randomization front – a shock – where

the entropy jumps dominantly over a mediation scale, with jump conditions on conserved

variables holding. During preheating a coherent density (with small fluctuations) evolves

into an incoherent mix of spatial modes over a relatively narrow mediation time ∆ ln ts at

a sharply defined ln ts (and expansion factor ln as = ln a(x, ts)). Based on this similarity,

we call the phenomenon a shock-in-time. If ln as varies spatially, a curvature imprint may

remain. We apply this idea to a simple model of modulated preheating and find spatial

modulations in the shock time that could produce observationally interesting curvature

perturbations.

The entropy we use to track the cascade’s evolution only strictly applies for an inher-

ently stochastic system. The only randomness in our simulations comes from the choice

of a particular realization of the initial field fluctuations. Once this choice is made, the

subsequent evolution is unitary (up to numerical noise). If we had perfect knowlege of the

states of all the system variables we would conclude that no entropy had been generated

in any one realization. However, we do not have such perfect knowledge – from a coarse-

grained view of the full “universe-in-a-box” U , there is a system X whose variables we

are following and a reservoir R of unobserved variables we marginalize over. Although

the entropy of the universe SU may be zero or nearly so, classical entanglement of the X
and R variables leads to entropy generation as measured by SX .

We may define our field theory in terms of its n-point correlation functions (and

potentially some additional information escaping the correlation hierarchy). Our choice

of system variables is then a few low-order correlators, with the remaining higher-order

correlators comprising the reservoir variables. In a non-linear theory, the hierarchy of

evolution equations for the correlation functions couples the low-order correlators to
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higher order correlation functions. As a result, our system couples to the environmental

degrees of freedom, and this interaction leads to the development of system-reservoir and

reservoir-reservoir correlations. Therefore, information can be carried from the system

variables into the reservoir. From the viewpoint of an observer with access to only the

system variables, this will manifest as a change in the system entropy.

We formalize this intuition by defining our entropy via a maximization of the (differ-

ential) Shannon entropy subject to the constraints of a set of measurements made on the

system. Here we will assume that we have made measurements of the covariance matrix

for a collection of statistically homogeneous fields. For the case of single constrained

field, the corresponding entropy is

Smax =
1

2

∑

k

P (k) +
Nlat

2
ln 2π +

Nlat

2
(5.1)

where P (k) are the eigenvalues of the field’s covariance matrix (ie. the power spectrum).

Analogous expressions have appeared in several past studies [167, 168, 169, 170, 171, 172,

173, 174, 175]. However, in these works (5.1) was derived under the assumption that the

fields were multivariate Gaussians. As a result, they restricted themselves to linear

(or weakly nonlinear) field evolutions and generated entropy by discarding information

about cross-correlations between different fields. Our use of (5.1) is instead motivated

by restricted access to higher-point system correlation functions. As a result, it applies

even if the fields are not Gaussian distributed, even though we are motivated to find

approximately Gaussian variables. Therefore, we need not restrict ourselves to linear

field dynamics and can instead study the stongly nonlinear fluctuation regime. One past

study used a similar motivation of neglecting higher order correlations functions to study

decoherence as a result of nonlinear interactions in scalar field theory [176].

The presence of additional constraints will modify the above result for the entropy.

For example, in an inhomogeneous condensate – such as a collection of topological defects

– there are correlations between various Fourier modes, whose entropy is therefore not

properly determined by considering only the power spectrum. The condensate effectively

acts as a background around which the field is constrained to fluctuate. Despite this

qualification, the presence of a spike in the entropy production around the onset of

nonlinearities should be robust even if a condensate forms, and the above caveat thus

does not affect our main conclusions. In the particular examples considered here, the

dominant contribution to the entropy comes from the largest k-modes (which are not

part of some slowly varying condensate). More generally, if we were to consider a model

in which topological defects are produced there would still be a rapid production of
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entropy at the moment the defects form, followed by additional production of entropy as

the defects annihilate or decay.

The remainder of this chapter is organized as follows. In section 5.2 we discuss our

general framework for non-equilibrium entropy as well as our coarse-graining procedure,

and then introduce our models and numerical methods in section 5.3. Section 5.4 applies

this approach to the variables ln(ρ/ρ̄) and ∂t ln(ρ/ρ̄), where we demonstrate the existence

of the shock-in-time. We also provide new evidence for the Gaussianity of the low-order

statistics of these fields. In section 5.5 we extend the entropy and statistical calculations

to the fundamental field variables, demonstrating that the shock is robust to this vari-

able change but that the fields are noticably nongaussian. Section 5.6 reformulates the

Shannon entropy for noncanonical choices of fields variables, allowing us to connect our

results for (ln(ρ/ρ̄),∂t ln(ρ/ρ̄)) and the fundmental field variables. Explicit calculations

of this noncanonical entropy are presented in section 5.7. We apply the shock-in-time

concept to investigate the production of curvature fluctuations in section 5.8, then finally

conclude.

5.2 Non-equilibrium Entropies from Constrained Col-

lective Coordinates and Their Conjugate Forces

For a classical random field with N components q distributed according to a probability

density functional (PDF) ff [q], we adopt the Shannon information entropy

Sshannon[ff ] = −
∫
dNqff [q] ln ff [q] = −〈ln ff〉f (5.2)

as our definition of the nonequilibrium entropy [177, 178]. We are using the notation

〈·〉f to denote averaging with respect to ff [q]. When we move to the continuum limit,

we have N →∞ and the integration measure becomes a functional measure dNq → Dq.
In the quantum theory, the field components q become operators q̂ and the Shannon

entropy is replaced by the von Neumann entropy SvN = −Trf̂ [q̂] ln f̂ [q̂] involving the

trace of the full density matrix f̂ . A significant issue with the Shannon entropy (5.2) is

that for continuous variables it is not invariant under variables changes q → q̃(q). To

solve this problem, the Kullback-Leibler (KL) divergence [179, 178] (also known as the

relative entropy) is often introduced

SKL(ff ||fi) =

∫
dNqff [q] ln

(
ff
fi

)
(5.3)
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with the (normalized) reference probability distribution fi absorbing the effects of the

variable change. We do not explicitly consider the relative entropy in this paper, although

we will explore a very similar approach in section 5.6.

Calculation of either the Shannon or von Neumann entropy requires full knowledge

of the distribution of parameters, as encoded in either the PDF or density matrix. How-

ever, acquiring such detailed knowledge is overly ambitious. In a realistic scenario re-

duced information may come from empirical measurements of the probability distribu-

tions P (ϑ̄) = 〈δ(ϑ(q)− ϑ̄)〉 of a set of operators ϑA(q). Even more realistically, the

measurements will be of low order ensemble-averaged correlations, in particular their

means ϑ̄A ≡ 〈ϑA〉 and variances,

CAB
ϑϑ ≡ 〈CAB

op,ϑϑ〉 (5.4)

δϑA(q) ≡ ϑA − ϑ̄A, CAB
op,ϑϑ(q) ≡ δϑAδϑA.

Obtaining this set of reduced information about the full statistical properties provides a

coarse-grained description of the fields.

This coarse-graining leads to a natural definition of the entropy associated with our

limited knowledge of the system properties. We define the entropy to be equivalent to

that of a field with distribution fME that maximizes the Shannon entropy subject to

the constraints of various measurements. Our constraints are in the form of empirical

statistical averages for a collection of operators ϑA,
∫
fMEϑ

A = ϑ̄A and
∫
fME = 1,

with the associated Lagrange multipliers denoted by κA and F ≡ lnZ respectively.

Throughout we will refer to this as the maximum entropy (MaxEnt) approach. When

a solution to the maximization problem exists, the MaxEnt probability distribution is

given by

fME(q) =
eκAϑ

A(q)

Z (5.5)

where we have defined the partition function

Z = 〈eκAϑA〉 . (5.6)

The resulting entropy is

S[fME] = lnZ − κAϑ̄A (5.7)

with the lagrange multipliers κA chosen such that Z−1
∫
eκAO

A
ϑA = ϑ̄A for each A.

This is similar to the Jaynesian viewpoint of statistical mechanics [180, 181], where the

probability density (and entropy) of a system in statistical equilibrium are determined by
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maximizing the Shannon entropy (5.2) subject to the physical constraints on the system.

These constraints often come in the form of values for a collection of conserved charges

for the system in question. However, our viewpoint is slightly different as we are placing

constraints based on measurements rather than physical considerations, therefore the

importance of the observer making the measurements is explicit in our approach.

A familiar example occurs with just one operator, the total Hamiltonian energy of

the system, ϑ = H(q). The standard textbook result for the entropy gives the ther-

modynamic relation S = β〈H(q)〉 − βF , where F = −T lnZ = −T ln Tre−βH is the

free energy and β = T−1 is the inverse temperature, with the corresponding probability

of obtaining a state given by the canonical ensemble Pcan = Z−1e−βH . The inclusion

of additional conserved charges and the associated Lagrange multipliers similarly leads

to the grand canonical ensemble. More generally, in non-equilibrium thermodynamics

spatial variations in locally conserved charges (such as the energy density) drive flows

towards equilibrium. The charge operators therefore depend upon positions in the vol-

ume and are supplemented by additional operators describing the fluxes of these charges.

In a relativistic theory, it is convenient to combine the charge and flux operators into

4-currents.

In the standard thermodynamics of canonical and grand canonical ensembles the

mean of global variables such as energy and conserved charges are taken to be determined

exactly. However, it is more realistic that the mean is an estimate with an error matrix

associated with it. This error matrix is itself an estimate of Cop,ϑϑ; i.e.,
∫
ffϑ

A = ϑ̄A +

[C
1
2
ϑϑ]ABηB + . . . , with ηB a Gaussian random deviate (〈ηAηB〉 = δAB). Since the ”noise”

variance would itself only be an estimate, we could go to quartic order in ϑ correlators

for the error in it, and so on. A nice aspect of closing off at quadratic order is that the

exponential asymmetry associated with κAϑ
A is regulated, and the required Gaussian

integrals can be performed analytically. There is considerable interpretational elegance

to, in effect, complete the square of the collective operator driving terms by allowing for

the conjugate variable Gϑϑ,AB to the collective coordinate correlation function CAB
op,ϑϑ =

δϑAδϑB in addition to the κA conjugate to ϑ̄A – from which CAB
ϑϑ = 〈CAB

op,ϑϑ〉 and other

moments can be obtained by functional derivatives.

In this chapter we are interested in the special case of a set of collective operators ϑA

with constrained means ϑ̄A and covariance matrix CAB = 〈ϑAϑB〉. Denoting the lagrange

multipliers conjugate to ϑ̄A by λA and those conjugate to CAB by GAB, we find that the

MaxEnt distribution has the form fME ∝ e−
1
2
GABϑ

AϑB+λAϑ
A

. We can easily solve to find

GAB = [C−1]AB and λA = GABϑ̄
B = C−1

ABϑ̄
B. The resulting maximum entropy is given
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by the Gaussian Shannon entropy

SG
Nϑ

=
1

2Nϑ

ln detC +
1

2
ln 2π +

1

2
=

1

2Nϑ

∑

k

lnP (k) +
1

2
ln 2π +

1

2
(5.8)

where P (k) are the eigenvalues of the covariance matrix labelled by k (our motivation for

this notation will be clear shortly). Furthermore, we take our collective operators ϑA to

be a collection of statistically homogeneous fields (which we denote ϕSi ), with the index

S indicating the species and i denoting the lattice site. For this case, the index A on

the ϑ collective variables includes information about the field species and the lattice site

A = (S, i), and we have Nϑ = NfldNlat with Nfld the number of collective field species

and Nlat the number of lattice sites.

When we have a single (statistically homogeneous) collective field ϕ, the wavenumbers

k label the eigenmodes of the covariance matrix Cϕϕ. The corresponding eigenvectors

are given by the power spectrum Pϕϕ(k) of the the field ϕ, obtained via Fourier trans-

formation (with unitary normalization) of the covariance matrix in the relative spatial

separation between two points. This is closely related to the Wigner function W (X,k)

via

Wϕϕ(X,k) ∝
∫
d3reik·rCϕϕ(X + r/2, X − r/2) . (5.9)

Pϕϕ(k) =

∫
d3XW (X,k)∫

d3X
(5.10)

where W is independent of X for a statistically homogeneous field. In this case, the

Gaussian Shannon entropy becomes

SG
Nlat

=
1

Nlat

∑

k

lnPϕϕ(k) +
1

2
ln 2π +

1

2
. (5.11)

If the field is also isotropic, then Pϕϕ is a function of the wavenumber magnitude |k|
only. If we have Nfld species ϕS, S = 1, ..., Nfld, then the Fourier transform can be

used to block diagonalize the covariance matrix into NfldxNfld blocks labelled by k, with

components given by the auto- and cross-power spectra for that wavenumber. The power

spectra in (5.11) is then replaced by the determinants of these full cross-power matrices.

Given the complexities of the nonlinear regime, it is not clear there will be any col-

lective variables with a relatively simple distribution function. The hope is to find nearly

Gaussian random fields ϕS whose distributions can be characterized by their mean ϕ̄A

and covariance Cij
ϕϕ′ . In the linear perturbation regime, all fluctuation variable combina-

tions are related to a set of Gaussian random deviates describing normal modes of the
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fluctuations. These of course include the fundamental scalar fields φ and their momenta

Π. We do explore a maximum entropy Gaussian distribution function based upon our

measurements of the full correlation function of these primitive field variables, but even

at the visual level in simulations it is clear that these are not in fact nearly Gaussian in

the nonlinear regime.

A fundamental collective variable combination of the underlying fields is the phonon

associated with total comoving energy density fluctuations, a gauge and time hypersurface

invariant quantity that in fact fully characterizes the inflaton. One cannot tell at the

linear level whether it is the energy density or its logarithm which best characterizes

the inflaton. However in [13, 182] it was shown that in the long wavelength limit of

nonlinear stochastic inflation, ln a = 1
6
Tr ln g on uniform Hubble surfaces (essentially

uniform comoving energy density surfaces) is a nonlinear generalization of any one of

the gauge invariant variables that characterize curvature and are constant outside the

horizon for single-field inflation. This has been much used subsequently [183]. One of the

gauge invariant combinations is the relative comoving energy density fluctuation, which

suggests that the log of the comoving energy density ln ρcom might be of interest. By direct

measurements in our simulations, we find that the energy density requires higher point

correlations to characterize it, but the logarithm is found to be more nearly Gaussian.

We refer to the quanta associated with the collective variable ln ρcom as (energy) phonons.

Obviously in linear theory these are equivalent to the ordinary idea of phonons. A nice

aspect of the log is that the difference ln ρ/ρs is relatively insensitive to any smoothed

large scale structure ρs. This is also the reason ln a/as is more relevant that a directly.

We find below that our basic conclusions about entropy generation rate are robust

to variation in the specific choice of collective field variables. We even find the Gaussian

entropy associated with the primitive field variables work. However, it is better to use

a Gaussian entropy motived by our simulation measurements, involving the correlation

function of ϕ = ln ρ/ρs, where the reference ρs could have long wavelength structure in

it — although in practice we use the density averaged over the simulation box of volume

V , ρ̄ = E/V for ρs, where E is the total energy in the box.

5.3 Models and Numerical Methods

We consider two models for the preheating phase following inflation, both of which exhibit

broad band parametric resonance during the initial linear stages. First is a simple two-

field model with potential

V (φ, χ) =
m2

2
φ2 +

g2

2
φ2χ2 (5.12)
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where φ is the inflaton and χ is a field into which the inflaton will decay that we denote

as the preheat field. We assume that the inflationary phase was driven by a large con-

densate value for φ, with the inflationary phase ending at φ̄end ∼
√

2MP . After this φ

oscillates as a damped oscillator φ̄ ∼ cos(mt)/a3/2. We start our simulations at the point

when ε = −Ḣ/H2 = 1, as determined by an evolution of the homogeneous background

equations. The initial mean value of χ is 0. Both the linear and nonlinear dynamics of

this model with the initial conditions given above have been well-studied in the literature

(see e.g. [27, 184, 39, 185]). During the homogeneous oscillations of φ, fluctuations in χ

approximately satisfy the Mathieu equation resulting in the parametric amplification of

a band of wavenumbers. Once the χ fluctuations become sufficiently large, they begin to

excite fluctuations δφ leading to the creation of bubbly standing wave structures in the

fields. Shortly after this these bubbly structures become strongly nonlinear, leading to a

rapid cascade of fluctuation power to smaller scales, phase mixing and randomization of

the fields.

Our second model is a single-field preheating model with potential

V (φ) =
λφ4

4
(5.13)

with inflation ending at φ̄end ∼
√

8MP . The fluctuations in the field φ now experience

an instability which is accurately modelled by the Lame equation [33]. As a result of the

conformal nature of this model (at the classical level), this instability occurs at a fixed

comoving wavenumber and thus φ resonantly excites its own fluctuations. Once again,

nonlinear interactions lead to a cascade of fluctuation power to higher wavenumbers and

the emergence of a slowly evolving state which is claimed to be a combination of weak

wave turbulence and strong turbulence [186, 187, 185, 188, 189].

Due to the complexities of the scalar field dynamics as they enter the highly nonlin-

ear regime, it is necessary to employ lattice simulations in order to properly study the

dynamics. The necessary numerical techniques have been well-developed beginning with

LATTICEEASY [38], and subsequently using more accurate time-integrations in DE-

FROST and HLATTICE [39, 40], pseudospectral spatial discretizations in PSpectRe [41]

and even a GPU-enabled version PyCOOL [43]. We use the lessons from these previous

codes to develop a new MPI/OpenMP hybrid lattice code for the simulations in this chap-

ter. For the 2-field model (5.12) we assume a metric of the form ds2 = −dt2 + a(t)2dx2

and solve Hamilton’s equations for the fields φAi = φA(xi), ya = a3/2 and their canonical
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momenta ΠA
i ≡ a3φ̇A(xi),Πa ≡ −8Nlatẏa/3 = −4NlatHa

3/2

dφAi
dt

=
ΠA
i

y2
a

(5.14)

dΠA
i

dt
= −y2

a∂φAV + y2/3
a ∇2φAi (5.15)

dya
dt

= − 3Πa

8Nlat

(5.16)

dΠa

dt
=
∑

i

(
ΠT
i Πi

y3
a

− 2yaV − y−1/3
a

∇φTi · ∇φi
3

)
. (5.17)

For (5.13) it is instead convenient to work in conformal time τ with metric ds2 =

a2(τ) (−dτ 2 + dx2), Πi = a2∂τφi, and ya = a, Πa = −6Nlat∂τya = −6Nlata
2H with

resulting equations of motion

dφAi
dτ

=
ΠA
i

y2
a

(5.18)

dΠA
i

dτ
= −y4

a∂φAV + y2
a∇2φAi (5.19)

dya
dτ

= − Πa

6Nlat

(5.20)

dΠa

dτ
=
∑

i

(
ΠT
i Πi

y3
a

− 4y4
aV − ya∇φTi · ∇φi

)
(5.21)

In the above we have defined the total number of lattice sites Nlat.

To numerically evolve the system, we employ a sixth-order Yoshida splitting method

(c.f. [158, 40, 43]). For the spatial discretization we use a finite-difference stencil,

∇2φ(xi) =
∑

α

2dα(φi+α − φi) =
∑

α

2dαφi+α (5.22)

where we used
∑

α 6=(0,0,0) dα = −d(0,0,0). Self-consistency requires the following definitions

for the other relevant differential operators that will appear below

∇φA(xi) · ∇φB(xi) =
∑

α

dα
(
φAi+α − φAi

) (
φBi+α − φBi

)
. (5.23)

For notational simplicity, we have defined φi = φ(xi) with superscripts in capital Roman

letters indicating different field species and i labelling the grid sites. The coefficients

dα define the discretization scheme. We chose a second-order accurate and fourth-order

isotropic stencil which uses the neighbouring lattice sites α = (α1, α2, α3) with αi = 0,±1
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and dα dependent only on
∑ |αi|. The precise values of the coefficients are

dx2d(1,0,0) =
7

15
dx2d(1,1,0) =

1

10
dx2d(1,1,1) =

1

30
dx2d(0,0,0) =

−64

15
. (5.24)

To check for spatial convergence, in addition to varying the overall lattice size L and lat-

tice spacing dx, we also checked part of the analysis using a pseudospectral approximation

for the spatial derivatives.

For reference, the stress-energy tensor for the scalar fields is given by

T µν =
∑

i

∂µφi∂νφi + δµν

(
−
∑

i

∂αφi∂αφi
2

− V (φ)

)
. (5.25)

The local energy density measured observers comoving with the expansion is ρ = −T 0
0

and the local isotropic pressure is P ≡ T ii /3. Throughout 〈·〉 will denote ensemble

averages and ·̄ spatial averages. For a statistically homogeneous field, these two averaging

procedures may be interchanged, although it may take many realizations of the dynamics

in order to properly sample the longest wavelength modes in the box.

5.4 Application to Preheating: the Phonon Energy

Density Modes

5.4.1 Entropy in the Phonon Description

Now we apply the formalism developed in 5.2 to determine the production of entropy after

inflation in the preheating model (5.12). Since our restriction to the measurement of two-

point correlations results in an entropy that is the same as if the fields were multivariate

Gaussians, it is desirable to choose collective variables that are at least approximately

Gaussian.

Frolov [39] found that shortly after the onset of strong inhomogeneities in the fields,

the one-point probability density of ρ/ρ̄ quickly settled down into a nearly log-normal

form in a variety of two-field preheating models. Motivated by this, we will compute

the Gaussian Shannon entropy taking ln(ρ/ρ̄) as the underlying nearly Gaussian field.

As well, it is desirable to have a second variable describing the instantaneous dynamical

evolution. Thus, we introduce ∂t ln(ρ/ρ̄) as a variable of interest into the preheating
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literature. Using the equations of motion, we have

∂ln(ρ/ρ̄)

∂t
= −3H

(
P

ρ
− P̄

ρ̄

)
+
∂iT

i
0

ρ
(5.26)

where

∂iT
i
0 =

∑

I

φ̇I∇2φI
a2

+
∇φ̇I · ∇φI

a2
. (5.27)

Here we have defined the local energy density ρ ≡ −T 0
0 and isotropic pressure P ≡ T ii /3

measured by observers comoving with the expansion of the background. The first term on

the right hand side of (5.26) describes dilution of the energy density due to the expansion

of the background spacetime, while the second arises from the transport of energy (heat

currents) as measured by the comoving observers. Since we have multiple scalar fields, a

full description of the system also includes the difference in φ and χ energies and its time-

derivative. Due to the coupling between the fields in the potential, a priori it is not clear

what the simplest choice for the difference would be and we will restrict to consideration

of ln(ρ/ρ̄) and ∂t ln(ρ/ρ̄). There are two autocorrelations and one crosscorrelation that

we can measure from this pair of variables. We will look at two different entropies, one

assuming we have only measured the autocorrelations (equivalently power spectra) and

one assuming we have also measured the cross-correlation (equivalently cross power)

Sln ρ =
4π∆k

2

kcut∑

i

k2
i ln(Pln ρ ln ρP∂t ln ρ∂t ln ρ) (5.28)

Stotln ρ =
4π∆k

2

kcut∑

i

k2
i ln(Pln ρ ln ρP∂t ln ρ∂t ln ρ − |Pln ρ∂t ln ρ|2) ≡ 4π∆k

2

kcut∑

i

k2
i ln ∆2

ln ρ(k)

(5.29)

where we have defined Pαβ(kn) = 〈f̃αkn
f̃β−kn
〉 with f̃kn = 1

N
1/2
lat

∑
i e
ikn·xi the discrete

Fourier transform of either ln(ρ/ρ̄) or ∂t ln(ρ/ρ̄) with unitary normalization. With

this convention, the eigenvalues of the covariance matrix are equal to 〈|f̃k|2〉. Here

we will mostly be concerned with entropy differences, so we have dropped the con-

stant contribution Nlat ln 2π + Nlat. In order to regulate the effect of the poorly re-

solved modes beyond the Nyquist frequency, we introduce a spatial frequency cutoff

kcut < knyq = πN
1/3
lat L

−1 with respect to which we define an effective number of de-

grees Neff (k) = 4π∆k
∑kcut

i k2
i ≈ 4πk3

cut/3. We will provide further evidence that these

variables are approximately Gaussian in section 5.4.2.

Our main result is presented in Fig. 5.1 where we show the evolution of the entropy,
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the effective Mach number | ln(ρ/ρ̄)|−1 (see below) and an indicator of the production of

curvature perturbations 3(1 + 〈w〉t) ln a+ ln ρ. This final quantity is constant for epochs

when the equation of state w is a constant. Therefore, during these epochs we can easily

compare the difference in total expansion between different Hubble patches from the end

of inflation to a fixed energy density ρcomp. We’ve used 〈·〉t to denote a time-average over

a few oscillations of the background. As well, the rate of entropy production dS/dt (not

to scale) is included as a green line with the red band in the background indicating its

amplitude. We see that there is a short regime of rapid entropy production at ln a ∼ 2.9

(or mt = 120) which lasts for δ ln a ∼ 0.1. This is preceded by a stage of linear parametric

resonance during which the entropy decreases slowly (as −2 ln a) and succeeded by a state

of highly inhomogeneous nonlinear dynamics where the entropy production is very small.

The somewhat slow decrease before the onset of nonlinearities is due to the damping of
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Figure 5.1: Various illustrations of the shock in time. Top: Evolution of the entropy for
the energy phonons around the onset of strong nonlinearities amongst the fluctuations.
Middle: The effective Mach number | ln(ρ/ρ̄)|−1. Bottom: The quantity 3(1 + w) ln a +
ln ρ, which is useful for studying the production of adiabatic density perturbations. In all
cases, the time-derivative of the entropy dS/dt (with arbitrary normalization) is shown
as the green curve, with the red band indicating the location of the shock-in-time.
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the linear fluctuations from the expansion and can be accounted for using the methods

of section 5.6.

The transition regime therefore connects a highly coherent low entropy state at early

times to a much higher entropy incoherent state at late times. A similar phenomena

occurs at a hydrodynamic shock, which acts as a randomization front as it passes through

the medium, transforming an unstable supersonic coherent flow into a subsonic incoherent

flow. This randomization leads to a jump in the entropy ∆S as the shock passes, possibly

with an additional relaxation phase after the shock has passed in which additional entropy

is produced. In addition to the entropy, other hyperbolically conserved quantites also

undergo rapid changes as the shock passes, with the matching conditions in the limit

of an infinitely thin shock known as jump conditions. Given these similarities, we will

refer to the entropy production event at the onset of strong nonlinearity in the system

as the shock-in-time. In the hydrodynamic case, the production of entropy is mediated

by viscous effects and collisionless dynamics, while for preheating the mixing is due

to strong field gradients and nonlinearities. The Mach number provides a quantitative

measure of the unstable nature of the background, with an instability occuring whenever

the speed of the coherent bulk flow exceeds the sound speed of the medium, c2
bulk >

c2
sound. For our shock, it is the unstable nature of the coherent energy density (in the

context of the oscillating background fields) that leads to the instability, so that we

take | ln(ρ/ρ̄)|−1 as an analogue to the Mach number. When the inhomogeneities are

small, we have | ln(ρ/ρ̄)|−1 ≈ 〈δ2〉−1 � 1, while in fluctuation dominated case it becomes

of order one. From the center panel of Fig. 5.1, we see that the shock-in-time indeed

tracks the transition to inhomogeneity as measured by our analogue Mach number. The

hydrodnamic shock front is a spacelike hypersurface for any instant in time, so the jump

conditions relate the values of various quantities at two points in space on either side

of the shock at a fixed moment of time. The shock-in-time, on the other hand, occurs

at a fixed moment in time, possibly with some modulation in this time as a function of

spatial position. Therefore, conserved quantities such as T µ0 experience rapid changes

in time, leading to jump conditions connecting two moments in time rather than two

spatial positions.

Now that we have presented our main result, let’s consider the nature of the tran-

sition in more detail. Initially, Sln ρ and Stotln ρ oscillate in time with the overall evelope

of the amplitude decaying as −2 ln a. This corresponds to linear evolution of field in-

homogeneities, so we can approximate ln ρ and its time derivative to linear order in the
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fluctuations

ln(ρ/ρ̄) ≈ 1

ρ̄

(
Π̄φδΠφ

a6
+m2φ̄δφ

)
(5.30)

∂t ln(ρ/ρ̄) ≈ 3H

ρ̄

(
(w − 1)Π̄φ

a6
δΠφ + (1 + w)Vφ(φ̄)δφ

)
+

Π̄φ∇2δφ

a5ρ̄
(5.31)

where we have set χ̄ = 0 = ˙̄χ and defined w ≡ P̄ /ρ̄. The homogeneous background φ

oscillates in a quadratic potential, so φ̄, ˙̄φ ∼ a−3/2 and ρ̄ ∼ a−3. As for the fluctuations,

for k . ma the modes behave as a massive scalar with δφk, δφ̇k ∼ a−3/2. Meanwhile,

for k & ma the modes instead behave as a massless scalar with δφk ∼ a−1 and δφ̇k ∼
a−2. Outside of the resonant bands, similar considerations hold for the δχ modes with

the transition between massive and massless behaviour instead set by g〈|φ̄|〉t where 〈·〉t
indicates a time-average over a few oscillations of the background φ. This behaviour is

illustrated in Fig. 5.2 and Fig. 5.3. Using these scalings we see that ˜δ ln(ρ/ρ̄)k ∼ a0(a−1/2)

and ∂t ˜δ ln(ρ/ρ̄)k ∼ a−2(a−3/2) for k . ma (k & ma) as seen in Fig. 5.3. In either case√
Pln ρP∂t ln ρ ∼ a−4. We will return to the underlying origin of the oscillations in the

entropy in section 5.6.
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Figure 5.2: Evolution of individual spectral amplitudes for the fields φ (left), Πφ (center)
and χ (right). We have rescaled the amplitudes to remove the overall damping of the
modes with k � ma. Initially, only χ fluctuations with k . 10m grow from linear
parametric resonance. At a ∼ 10, second order effects lead to the growth of φ fluctuations
in the same wavenumbers. Finally, this growth saturates at the shock and there is a rapid
growth of modes outside the resonant band.

In Fig. 5.4 we show how the fluctuations distribute themselves in Fourier space.

During the early stages only χ fluctuations experience parametric resonance, and since

χ̄, ˙̄χ ≈ 0 no corresponding amplification occurs in the adiabatic energy phonons. At

a ∼ 10 or mt ∼ 60, the φ fluctuations begin to grow due to second-order effects resulting

in the growth of phonon fluctuations at k . 10m. Accompanying this growth in fluctua-

tion power of ln(ρ/ρ̄) and ∂t ln(ρ/ρ̄) individually, cross-correlations also develop between

the two fields as seen in Fig. 5.5. This continues until the shock-in-time, when the growth
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Figure 5.3: Evolution of individual spectral amplitudes for ln(ρ/ρ̄), ∂t ln(ρ/ρ̄) and ∆2
ln ρ,

rescaled to remove the overal damping of the modes with k � m. Fluctuations in
these degrees of freedom are oblivious to the initial linear resonance experienced by χ.
However, once the φ fluctuations begin to grow due to second order effects, fluctuations
in the energy density at k . 10m also begin to grow. These modes continue to grow
until saturating at the shock-in-time leading to the rapid growth of modes outside the
resonant band.

of fluctuations in the instability band saturates and nonlinearities lead to a rapid cascade

of power to higher k-modes. This is then followed by a much slower cascade of energy

with higher comoving wavenumbers becoming excited very gradually or not at all. Since

the box itself is expanding, this does not necessarily lead to a development of power at

smaller spatial scales as in the normal description of turbulence.

5.4.2 Statistics of the Density Phonons

We now justify our choice of ln(ρ/ρ̄) and ∂t ln(ρ/ρ̄) as appropriate variables for our Max-

Ent description by considering the one-point statistics of these fields both in real space

and in Fourier space. This is an important validation of our MaxEnt procedure, since

only including information about the two-point correlation function results in an inferred

multivariate Gaussian probability distribution functional. If the true field distribution is

highly nongaussian, then this approach will overestimate the entropy.

Let’s first consider the one-point PDF for our two phonon variables in real space.

For a Gaussian field, these PDFs must also be Gaussian, and thus provide a first (al-

beit weak) test of the field Gaussianity. In fact, given that we constrain our fields by

measured two-point statistics, it is entirely reasonable to assume that we should also in-

clude measurements of one-point PDF statistics when doing MaxEnt as well. In Fig. 5.6

and Fig. 5.7 we show the one-point PDFs of ln(ρ/ρ̄) and ∂t ln(ρ/ρ̄). Prior to the shock

the fluctuations evolve linearly, with the k & ma modes dominating the overall one-point

statistics. Therefore, RMS fluctuation amplitudes of ln(ρ/ρ̄) and ∂t ln(ρ/ρ̄) decay as a−1/2
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Figure 5.4: Left: Fluctuation determinants associated with various measurements of
two-point correlation functions of our phonon modes. In all cases, we have normalized
the determinants to the their values at the beginning of the simulation (when ε = 1).
Shown are curves at mt = 50, 75, 87.5, 100, 112.5, 125, 137.5, 150, 200, 300, 400, with solid
blue lines corresponding to measurements of only the diagonal of the covariance matrix
Pln ρ,ln ρP∂t ln ρ,∂t ln ρ and red dashed lines corresponding to meausrements of the full covari-
ance matrix ∆2

ln ρ ≡ Pln ρ,ln ρP∂t ln ρ∂t ln ρ − |Pln ρ∂t ln ρ|2. Right: Evolution of ln(∆2
ln ρ). At

early times the distribution undergoes large oscillations. This is due to the background
oscillations of the scalar field condensates and the noncanonical nature of the variables
being used here. We will explore this further in a later section.

and a−3/2 respectively. This results in an overall damping of the width of the one-point

PDF by the same factor of a. During the shock, the fluctuations interact nonlinearly and

modes are excited in a much broader range of wavenumbers, resulting in the creation

of large amplitude fluctuations and a rapid growth in the width of the one-point distri-

butions. After the shock, these distributions then evolve very slowly for the remaining

duration of our simulations.

In Fig. 5.7 we examine the shape of the PDFs in more detail by plotting them for

several different time-slices. For comparison, a Gaussian fit is also included. Although we

don’t include it here, the distribution of 3H
(
P
ρ
− P̄

ρ̄

)
is very narrow compared to that of

∂t ln(ρ/ρ̄). Therefore, ∂t ln(ρ/ρ̄) ≈ ∂iT
i
0

ρ
. In the rest frame of observers comoving with the

background, local changes to ln(ρ/ρ̄) are predominantly driven by the currents transport-

ing energy around the medium rather than dilution from the expansion. Throughout the

linear evolution prior to the shock, the distribution of ln(ρ/ρ̄) remains very nearly Gaus-

sian, as it is well-approximated by the contribution linear in the field fluctuations and

their derivatives. Since the (linear) field fluctuations are themselves Gaussian, ln(ρ/ρ̄)

inherits this property. The same holds true for ∂t ln(ρ/ρ̄) with one additional caveat.

When ¯̇φ2 . 〈δφ̇2〉, the nonlinear terms in ∂t ln(ρ/ρ̄) become as important as the linear
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Figure 5.5: Modulus of the normalized cross correlation |Cln ρ∂t ln ρ| =
|Pln ρ∂t ln ρ|/

√
Pln ρ ln ρP∂t ln ρ∂t ln ρ between ln(ρ/ρ̄) and ∂t ln(ρ/ρ̄). For mt . 60, it

undergoes oscillations induced by the oscillations of φ̄. Once second-order effects start
to build fluctuations in δφ correlations appear at k . 10. These then spread to larger
wavenumbers during the shock-in-time at mt ∼ 120 before rapidly dissipating in the
post-shock state.

terms resulting in a significantly nongaussian one-point distribution with extended tails.

From (5.27) we see that if the ¯̇φ∇2φ term dominates, then ∂t ln(ρ/ρ̄) will be linearly

related to the fields and thus nearly Gaussian.

We can obtain more information by further decomposing ∂iT
i0 into various compo-

nents. One possibility is to simply consider each of the individual pieces separately as

in Fig. 5.8. By themselves, each of the individual terms has a highly nongaussian one-

point PDF which is sharply spiked near the origin. However, at mt = 120 and mt = 122.5

the more Gaussian shape associated with Π̄φ∇2φ/a5ρ̄ is present. At mt = 110 this con-

tribution is clearly subdominant (since Π̄φ ≈ 0) resulting in the extended tails in the full

PDF of ∂iT
i0 seen in Fig. 5.7. By comparing with the remaining figures in Fig. 5.7 we

see that although each individual term has an extremely spiky structure with long tails,

when summed to obtain ∂t ln(ρ/ρ̄) they produce a distribution that is much closer to

Gaussian, albeit with somewhat extended tails.

An alternative decomposition is to split ∂iT
i0/ρ into a piece arising from the evolution

of the energy defined locally at each lattice site (the kinetic and potential energy) and

the piece arising from the energy due to couplings between lattice sites (the gradient
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Figure 5.6: Time-evolution of the 1-point probability density functions of ln(ρ/ρ̄) (left)
and ∂t ln(ρ/ρ̄) (right). Initially, only linear fluctuations are present due to our initial
conditions approximating vacuum fluctuations. Before the shock these fluctuations evolve
linearly and decay in amplitude as a−1/2 and a−3/2 respectively. At the shock there is a
rapid growth in the typical size of the fluctuations, with the PDFs quickly settling into
a nearly constant form shortly after.

energy). Denoting these two contributions ∂iT
i0
loc and ∂iT

i0
grad respectively, we have

∂iT
i0
loc = − φ̇∇

2φ+ χ̇∇2χ

a2
(5.32)

∂iT
i0
grad = −∇φ̇ · ∇φ+∇χ̇ · ∇χ

a2
. (5.33)

The results of this decomposion are shown in Fig. 5.9, where we also include ∂iT
i0
φ =

−∇(φ̇∇φ)/a2 with an analogous definition for χ. Both pre-shock and post-shock, the

distributions of the differences for either the φ/χ, or local/gradient split appear quite

Gaussian, especially compared to the individual components.

Although the simplicity of the one-point distributions given above is rather remark-

able, we can provide further evidence that the phonons are approximately Gaussian by

looking at Fourier mode statistics. Specifically, we consider the one-point distributions

of individual bands of Fourier modes for ln(ρ/ρ̄) and ∂t ln(ρ/ρ̄). One way to quantify

these distributions is to look at a few low order moments for the real and imaginary

parts of the modes. In Fig. 5.10 we plot the excess kurtosis κ4, which we define for a

homogeneous and isotropic field f(x) with Fourier transform f̃k as

κ4(k) ≡ 2〈Re(f̃k)4 + Im(f̃k)
4〉

〈Re(f̃k)2 + Im(f̃k)2〉2
− 3 . (5.34)
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Figure 5.7: 1-point probability distributions of ln(ρ/ρ̄) and ∂t ln(ρ/ρ̄) for several times
corresponding to the pre-shock state (mt = 110), during the shock (mt = 120, 122.5, 125)
and late-time post-shock state (mt = 150, 300). The circles are the numerically computed
values of the PDF, while the solid lines are fits of Gaussians to the distribution. Before

the shock, ln ρ has a nearly Gaussian distribution, while ∂t ln ρ does provided ¯̇φ is not too

small. At mt = 110, we have ˙̄φ ≈ 0 so that the nonlinear terms are important leading to
the extended tails relative to the Gaussian.
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Figure 5.8: Split of ∂iT
i0/ρ into components based on individual terms appearing in the

expansion. At all the times illustrated, the distributions are significantly nongaussian,
with long tails and a very peak structure. However, at mt = 120 and 122.5 the con-
tribution of the linear (and nearly Gaussian) Π̄φ∇2φ/a2ρ̄ term is visible in the PDF of
φ̇∇2φ/a2ρ.
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Figure 5.9: 1-point PDFs of the currents associated with each field φ,χ and with the
local ∂iT

i0
loc and gradient ∂iT

i0
grad energies (see (5.33) for a definition).

For a Gaussian distribution κ4 = 0, so this provides a measure of the nongaussianity of

the Fourier modes, as well as delivering information about localization in scale. At small

wavenumbers, we have fewer modes to sample so there is a correspondingly larger uncer-

tainty in the estimate of κ4. Aside from this scatter at low-k, the excess kurtosis remains

small at all wavenumbers throughout the pre-shock evolution, with a small nongaussian-

ity developing at values k ∼ 300m near the Nyquist. However, at the shock we see the
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rapid development of large nongaussianities at the scales associated with the linear in-

stabilities due to the onset of strong nonlinearities induced by the buildup of fluctuations

from parametric resonance. This nongaussianity then spreads to larger wavenumbers as

nonlinearities excite the higher k-modes, before dissipating in the post-shock state.

We can further probe the nongaussianity of the modes by considering the probability

density function for the real and imaginary parts of the Fourier modes. These are shown

in Fig. 5.11 and Fig. 5.12, where we plot the empirical PDF’s for l̃n ρk/

√
〈|l̃n ρk|2〉 and

∂t l̃n ρk/

√
〈|∂t l̃n ρk|2〉. The PDFs are obtained by first estimating the power spectrum

〈|f̃k|2〉 in bins of width ∆k ≡ 2πL−1. We then normalize each individual Fourier mode

by prewhitening f̃k/
√
〈|f̃k|2〉 and compute the resulting PDF in bins of width knyq/5.

We do not include the PDF for modes with wavenumbers near the Nyquist frequency

knyq = πN
1/3
lat L

−1, since these modes are sensitive to the effects of the lattice cutoff.

As with the kurtosis we combine the real and imaginary parts of the Fourier modes to

create a single PDF. From the top left and bottom right panels we see that prior to the

shock and after the shock, the distributions are very well approximated by a Gaussian.

Meanwhile, as we move through the shock, a large nongaussianity develops first in the

low-k modes then spreading to higher momenta as seen in the mt = 120, 122.5 and

125 panels respectively. Finally, shortly after the shock (at mt = 150) a small residual

nongaussianity remains in the third bin, in agreement with Fig. 5.10. By mt = 300

this has dissipated and there is no indication of deviations from Gaussianity in the sub-

Nyquist Fourier modes.

Through a suite of measurements taken from lattice simulations, we have demon-

strated the post-shock statistics of ln(ρ/ρ̄) and ∂t ln(ρ/ρ̄) are remarkably simple (ie.

Gaussian) provided we restrict ourselves to one-point distributions of individual Fourier

modes. Of course, the full-field statistics are probably quite nonGaussian with the full

phase space distribution wound into an extremely complicated pattern. However, this

information is stored in the higher n-point correlators and is inaccessible when making

coarse-grained measurements on the system. From the point of view of an observer with

restricted access to only two-point correlations and one-point PDFs, the fields are thus

effectively multivariate Gaussians. There still remains a question of the joint statistics

that we have not addressed, as well as issues of correlations between Fourier modes with

different wavenumbers. However given the inhomogeneous and complex nature of the

post-shock state, it is rather remarkable that such a simple description can be found

even at the level of one-point statistics.
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Figure 5.10: Excess kurtosis κ4 (defined in (5.34)) for l̃n ρk and ∂t l̃n ρk as a function of
comoving wavenumber k/m for several times mt before, during and after the shock. The
small sample sizes at small k lead to a large scatter in the measured value. During the
shock, a large postive excess kurtosis develops in the wavenumbers resonantly excited
by the oscillating background. The nongaussianity in the Fourier modes then rapidly
propagates to larger wavenumbers as higher k-modes are excited by nonlinear interac-
tions. Shortly after the shock, the kurtosis returns to 0, which is the expected value for
a Gaussian distribution, providing further evidence for the Gaussianity of the phonon
modes after the shock.



Chapter 5. A Shock-in-Time: Post-Inflation Preheating 145

3 2 1 0 1 2 3

lnρk /
√

2σ 2
k

P
(l
n
ρ
k
)

mt=110.0

0<km−1 <64

64<km−1 <129

129<km−1 <193

Gaussian

3 2 1 0 1 2 3

lnρk /
√

2σ 2
k

P
(l
n
ρ
k
)

mt=120.0

0<km−1 <64

64<km−1 <129

129<km−1 <193

Gaussian

3 2 1 0 1 2 3

lnρk /
√

2σ 2
k

P
(l
n
ρ
k
)

mt=122.5

0<km−1 <64

64<km−1 <129

129<km−1 <193

Gaussian

3 2 1 0 1 2 3

lnρk /
√

2σ 2
k

P
(l
n
ρ
k
)

mt=125.0

0<km−1 <64

64<km−1 <129

129<km−1 <193

Gaussian

3 2 1 0 1 2 3

lnρk /
√

2σ 2
k

P
(l
n
ρ
k
)

mt=150.0

0<km−1 <64

64<km−1 <129

129<km−1 <193

Gaussian

3 2 1 0 1 2 3

lnρk /
√

2σ 2
k

P
(l
n
ρ
k
)

mt=300.0

0<km−1 <64

64<km−1 <129

129<km−1 <193

Gaussian

Figure 5.11: PDFs of Fourier components l̃n ρk/〈|l̃n ρk|2〉 in various bins for the same
times as those in Fig. 5.10. We have combined the distributions for the real and imaginary
parts of the Fourier modes (which each have variance σ2

k = 〈|l̃n ρk|2〉/2).
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Figure 5.12: PDFs of Fourier components of ∂t l̃n ρk/

√
〈|∂t l̃n ρk|2〉 in various bins. The

notation and analysis procedure are the same as Fig. 5.11.

5.5 Application to Preheating: the Field Description

5.5.1 Entropy in the Field Description Constrained by a Mea-

sured Two-Point Correlation Function

In the previous section, we studied the Gaussian Shannon entropy of a collection of scalar

fields during preheating assuming a measured two-point correlation function. We argued
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that the energy density phonons ln(ρ/ρ̄) and ∂t ln(ρ/ρ̄) provide a set of collective excita-

tions whose statistics are well-approximated as Gaussian. A more conventional approach

would have been to instead treat the fundamental fields (φ, χ) and their canonical mo-

menta (Πφ,Πχ) = (a3φ̇, a3χ̇) as the variables being measured. Indeed, since the field

variables are a set of canonical coordinates while our energy phonon modes are not, we

may expect that the fields (along with any other set of canonical variables) to hold a

privileged position with respect to entropy. However, we will demonstrate shortly that

the field variables (in particular φ) display visible nongaussianity after the shock. There-

fore, the canonical nature of the field variables is somewhat offset by the nearly Gaussian

nature of the phonon variables, making ln(ρ/ρ̄) and ∂t ln(ρ/ρ̄) more natural with respect

to our MaxEnt procedure. We address these issues in section 5.6 where we derive the

connection between the two choices and show the special role taken by canonical vari-

ables. For now, we demonstrate that the shock-in-time also occurs in the field variables,

although the strength and duration vary in detail compared to the phonon description.

Since we have two field variables and two momenta, there are a total of ten two-point

correlation functions we can measure. Our inferred entropy will then depend on the exact

combination we assume we have measured. Once again, define Pαβ(k) ≡ 〈q̃αk q̃β−k〉, where

qα represents any one of the fields or their canonical momenta and we again take the

unitary normalization for the Fourier transform. This is simply the Fourier transform of

the full covariance matrix for the system, and at the level of two-point correlations gives

full information about the system. As well, we define the (normalized) cross-correlation

as Cαβ ≡ Pαβ/
√
PααPββ. We can now consider several different entropies, each defined

by the components of Pαβ that we assume we can access. In particular, we will consider

the following five entropies

Snφ ≡
4π∆k

2

∑

k

k2 ln(Pφφ, PΠφΠφ) (5.35)

Snχ ≡
4π∆k

2

∑

k

k2 ln(PχχPΠχΠχ) (5.36)

Sφ ≡
4π∆k

2

∑

k

k2 ln det〈(φ,Πφ)†(φ,Πφ)〉 ≡ 4π∆k

2

∑

k

k2 ln(∆2
φ) (5.37)

Sχ ≡
4π∆k

2

∑

k

k2 ln det〈(χ,Πχ)†(χ,Πχ)〉 ≡ 4π∆k

2

∑

k

k2 ln(∆2
χ) (5.38)

Stot ≡
4π∆k

2

∑

k

k2 ln det〈(φ,Πφ, χ,Πχ)†(φ,Πφ, χ,Πχ)〉 ≡ 4π∆k

2

∑

k

k2 ln(∆2
tot) (5.39)

where we have dropped the Nfld
Nlat

2
(ln 2π + 1) constant piece for notational simplic-
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ity. PφφPΠφΠφ corresponds to measurements of the spectrum of φ and its canonical

momentum Πφ with no additional cross-correlation information, and similarly for χ.

∆2
φ = PφφPΠφΠφ − |PφΠφ |2 includes information on the correlations between the field and

its canonical momentum. Finally ∆2
tot is the result assuming we have measured all 10

two-point correlation functions.

The determinants appearing in (5.35) and (5.36) are closely related to the notion of

particle number that usually appears in the preheating literature, where the φ particle

occupation number is defined as

nφk +
1

2
=

1

2ωφk

(
〈|φ̇k|2〉+ (ωφk )2〈|φk|2〉

)
(5.40)

and a similar definition holding for the number of χ particles. The effective frequency

is typically defined as (ωφk )2 = k2

a2
+ 〈Vφφ〉. More generally, this definition should allow

for mixing between the various fields and consider the (time-dependent) eigenvectors

of k2/a2 + 〈Vφi,φj〉 with the resulting effective frequencies defined by the corresponding

eigenvalues. To understand the relationship to our expression, note that this is simply

the expression for the occupation number of a simple harmonic oscillator with frequency

(or equivalently energy per mode) ωk. Therefore, in the limit that (5.40) is valid each

Fourier mode can be considered a harmonic oscillator and we have ω2
k = 〈|φ̇k|2〉/〈|φk|2〉.

When this holds we have nφik + 1
2

= a−3
√
PφiφiPΠφiΠφi

. We see that the factor a−3 has

appeared to produce the physical (rather than comoving) paricle density. Our definition

is somewhat more general as no explicit reference is made to the effective frequency ωk.

∆2
φ and ∆2

χ provide further generalization by including the correlations between the fields

and their momenta. Thus these two quantities can properly account for the squeezing

that occurs as the modes are excited by parametric resonance, which (5.40) is blind

to. Furthermore, ∆φ and ∆χ are invariant under canonical tranformations between only

(φ,Πφ) or (χ,Πχ) respectively. Finally, ∆2
tot accounts for all correlations in the system

and is invariant under arbitrary canonical transformations of the fields.

In Fig. 5.13 and Fig. 5.14 we show the fluctuation determinants associated with each

of these choices of measurements. We also show the evolution of the magnitude of each

of the cross-correlations in Fig. 5.15. During the linear evolution, fluctuations in χ ex-

perience broad band parametric resonance, leading to the production of fluctuations in

the χ determinants with no corresponding growth of the φ determinants. There is a sig-

nificant correlation between χ and Πχ during this stage and as a result PχχPΠχΠχ > ∆2
χ

in the resonant band. This is expected since no entropy is produced for a quadratic

field theory with an external time-dependent mass due to a complete cancellation be-
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tween the growing amplitudes and cross-spectra. However, in our simulations there are

(small) nonlinearities, numerical noise, and uncertainties associated with estimation of

the covariance matrix. The combination of these leads to a partial (rather than full)

cancellation during the early nearly linear stages of evolution. As we move towards the

shock, second-order effects lead to the growth of φ fluctuations, again with significant

cross-correlations between the various fields. Finally, at the shock nonlinearities lead to

the rapid growth of fluctuations in an extended region of momentum space along with

additional cross-correlations. This is followed by a much slower cascade of fluctuations

to larger (comoving) wavenumbers.

Now consider the effect of this dynamical evolution on entropy production as illus-

trated in Fig. 5.16. As with the case for the energy phonons, we cutoff the sum at some

wavenumber kcut less than the Nyquist frequency knyq = πN
1/3
lat L

−1 and define the effec-

tive number of degrees of freedom as Neff ≡ 4π∆k
∑kcut

k=0 k
2
i ≈ 4πk3

cut/3, where we have

sampled our spectra at the discrete frequencies ki spaced at intervals ∆k = 2πL−1. In

all cases we consider, the last approximate equality holds to better than the half-percent

level. This definition of Neff does not include the number of fields Nfld used to compute

the entropy. This factor is Nfld = 2 for Snφ , Snχ , Sφ, Sχ and Nfld = 4 for Stot. Note

that Nfld is closely related to the effective number of relativistic species g∗ familiar from

thermal field theory, with Nfld = 2g∗ for the scalar fields considered here. As with the

energy phonon modes, there is once again a sharp increase of the entropy at mt ∼ 120,

indicating that the shock is robust to our choice of variables. A nice feature of this set of

variables is that prior to the shock there are no visible oscillations in the entropy and no

overall damping as a multiple of ln a. However, the entropy does not saturate as quickly

post-shock and there is nonnegligible production right up to the end of our simulation.

This is further illustrated in the right panel of Fig. 5.16 where a long tail in the entropy

production rate dS/dt is visible well past the shock. As we will see shortly, the fields

remain nongaussian after the shock, so it is unclear if this increase in entropy could

be accounted for by including additional information about the distribution of Fourier

modes in our definition of the entropy.

To assess the impact of correlations between the various fields, it is useful to define

∆Sαβ =
4π∆k

2

∑

k

k2
i ln
(
1− |Cαβ|2

)
=

4π∆k

2

∑

k

k2
i ln

(
1− |Pαβ|

2

PααPββ

)
(5.41)

which measures the change in entropy if we assume that we have measured the diagonal

of the full covariance matrix (ie. all of the power spectra) and the one additional cross-

spectra Pαβ. The evolution of these six quantities appear in the right panel of Fig. 5.17,
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Figure 5.13: Determinants associated with measurements of various two-point correlation
functions of the fundamental field and their canonical momenta. The definitions of the
various quantities are given in the main text. In order to emphasize the changes induced
by the evolution of the system, we have normalized each determinant to its value at the
start of the simulation.

with the corresponding cross-correlations in Fig. 5.15. Prior to the shock, only correla-

tions between the fields and their own canonical momenta appear. This is due to the

squeezing nature of the parametric resonance process, which leads to the production of

standing wave-like patterns during the linear regime rather than an incoherent super-
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Figure 5.14: Contribution to entropy per k-bin ∆kk2 ln ∆2/∆2(t = 0) for ∆2
φ (top left),

∆2
χ (top right) and ∆2

tot (bottom). The oscillations present in the phonon degrees of
freedom are absent. However, once again the rapid production of entropy distributed
through a range of wavenumbers is evident at the shock-in-time.



Chapter 5. A Shock-in-Time: Post-Inflation Preheating 152

0.0

0.2

0.4

0.6

0.8

1.0

|C
α
β
|

mt=50.0 |Cφχ|
|Cφχ̇|
|Cφ̇χ|
|Cφ̇χ̇|

101 102

k/m

0.0

0.2

0.4

0.6

0.8

1.0

|C
α
β
|

|Cφφ̇|
|Cχχ̇|

0.0

0.2

0.4

0.6

0.8

1.0

|C
α
β
|

mt=75.0 |Cφχ|
|Cφχ̇|
|Cφ̇χ|
|Cφ̇χ̇|

101 102

k/m

0.0

0.2

0.4

0.6

0.8

1.0

|C
α
β
|

|Cφφ̇|
|Cχχ̇|

0.0

0.2

0.4

0.6

0.8

1.0

|C
α
β
|

mt=110.0 |Cφχ|
|Cφχ̇|
|Cφ̇χ|
|Cφ̇χ̇|

101 102

k/m

0.0

0.2

0.4

0.6

0.8

1.0

|C
α
β
|

|Cφφ̇|
|Cχχ̇|

0.0

0.2

0.4

0.6

0.8

1.0

|C
α
β
|

mt=112.5 |Cφχ|
|Cφχ̇|
|Cφ̇χ|
|Cφ̇χ̇|

101 102

k/m

0.0

0.2

0.4

0.6

0.8

1.0

|C
α
β
|

|Cφφ̇|
|Cχχ̇|

0.0

0.2

0.4

0.6

0.8

1.0

|C
α
β
|

mt=125.0 |Cφχ|
|Cφχ̇|
|Cφ̇χ|
|Cφ̇χ̇|

101 102

k/m

0.0

0.2

0.4

0.6

0.8

1.0

|C
α
β
|

|Cφφ̇|
|Cχχ̇|

0.0

0.2

0.4

0.6

0.8

1.0

|C
α
β
|

mt=300.0 |Cφχ|
|Cφχ̇|
|Cφ̇χ|
|Cφ̇χ̇|

101 102

k/m

0.0

0.2

0.4

0.6

0.8

1.0

|C
α
β
|

|Cφφ̇|
|Cχχ̇|

Figure 5.15: Cross-correlations between the various fundamental fields (φ, χ) and their
corresponding canonical momenta (Πφ,Πχ) for several times through the development of
the shock. The cross-corelations are defined as |Cαβ(k)| ≡ |Pαβ(k)|/

√
PααPββ.

position of travelling waves. During the shock, correlations develop between all of the

variables. After the shock these then damp away except for the correlations between

each field and its own canonical momenta.
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Figure 5.16: Left: Evolution of the entropy per effective degree of freedom for Sφ, Sχ
and Stot (see main text for definitions). The solid, dashed, dot-dashed and dotted lines
correspond to the choice of cutoff wavenumber kcut

m
= 320, 240, 160, 80 respectively. Right :

Time derivative for each of the five entropies definied in (5.35)- (5.39). The shock-in-time
is still a prominent feature in all five quantities, although the subsequent relaxation back
to zero entropy production is much slower than for the energy phonon description.

5.5.2 Statistics of the Field Variables

Now consider the validity of the assumption of Gaussian statistics for the fundamental

scalar fields, and by extension the accuracy of our MaxEnt prescription in determining

the actual entropy of the fields. Previously, we demonstrated that the one-point Fourier

statistics of ln(ρ/ρ̄) and ∂t ln(ρ/ρ̄) are remarkably Gaussian at all times except for a

short interval around the shock-in-time. We repeat the analysis of section 5.4.2 using

(φ, χ,Πφ,Πχ) as our collection of fields instead of (ln(ρ/ρ̄), ∂t ln(ρ/ρ̄)). For definitions of

the relevant quantities as well as the procedure used to obtain them, please see (5.34)

and the subsequent text.

As with the energy phonons, when the large inhomogeneities and nonlinear interac-

tions between the fluctuations develop at the shock, there is a corresponding broadening

of the PDFs in each of the field variables and their momenta as seen in Fig. 5.18. While

the system passes through the shock-in-time, the one-point PDFs are multimodal and

highly nonGaussian, just as with the ln(ρ/ρ̄) and ∂t ln(ρ/ρ̄). However, the post-shock

one-point distributions of φ and φ̇ remain nongaussian even long after the shock as seen

in Fig. 5.19. As well, the χ one-point distribution acquires extended nonGaussian tails.

Therefore, already at the level of spatial one-point distributions it is clear that the field

variables are less suitable for our MaxEnt prescription than the energy phonons.

As with the phonons, we again consider the Gaussianity of individual Fourier modes

of the fields through both the excess kurtosis in Fig. 5.20 and binned one-point PDFs
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in Fig. 5.21 and Fig. 5.22. Exactly as for the phonons, the nonlinear interactions between

the resonantly excited modes lead to a large buildup of kurtosis at k . 50m at the

beginning of the shock. In the individual Fourier amplitude PDFs, this manifests as a

peaking of the distribution relative to a Gaussian. As the cascade proceeds (both during

and after the shock), the nonGaussianity (as measured by the kurtosis) moves to larger

wavenumbers. However, unlike the phonon fields, the kurtosis of φ does not completely

dissipate after the shock, but instead a nonGaussian component persists for wavenumbers

k ∼ 150m well after the shock. The χ field does not maintain such a localized (in scale)

set of nonGaussian modes, but a slight excess kurtosis remains for the larger k-modes

near the Nyquist. This is (at least partially) due to the finite grid spacing. Thus, unlike

the one-point PDF, there are no obvious signs of nonGaussianity in the χ modes when

considering the distribution of Fourier modes. From our analysis, it is thus unclear

whether the nonGaussianity of the spatial 1-point PDF of χ arises from mode couplings

in Fourier space or from the nonGaussianity of poorly resolved superNyquist modes. We

intend to return to this question in the future by considering the evolution of the 1-point

field PDF as we apply various smoothing kernels to the field to remove the modes near

the Nyquist.

From the results of this subsection, it is clear that the fundamental field variables

remain significantly nonGaussian after the shock. This is in contrast to the phonon modes

(in particular ln(ρ/ρ̄)), whose one-point statistics are remarkably Gaussian shortly after

the shock-in-time has occurred. Thus, our MaxEnt prescription is less well motivated

when considering the field variables compared to the phonon variables, although the
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Figure 5.18: Evolution of the one-point probability density functions for each of the
fields and their time-derivatives over the course of the simulation. In order to counter
the damping due to the expansion, we plot a3/2δφ and a3/2δφ̇, with a similar scaling
applied to χ.

qualitative features of the entropy are insensitive to the particular choice.

5.6 Maximum Entropy for Noncanonical Variables

Thus far we have presented two entropies based on different choices for collective variables

that we have measured for a collection of scalar fields undergoing a resonant preheating

instability. In both cases, there is a short well-defined period of rapid entropy production

– the shock-in-time – connecting a regime of approximately linear fluctuation evolution

with a regime of complex nonlinear evolution of the fluctuations. Although the qualitative

behaviour is the same in both cases, they differ in quantitative details. This is not

unexpected, since after the shock (δφi, δΠi) and (δ ln(ρ), δ∂t ln(ρ)) are nonlinearly related

to each other so that knowledge of the two-point correlations of one set of variables is

inequivalent to knowledge of the two-point correlators of the other set of variables. Since

this was the basic assumption built into our construction of the entropy, in the post-shock
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Figure 5.19: Normalized PDFs of the fields and their time-derivatives at various times
during the evolution. The markers and dashed style lines are empirical measurements
taken from simulations. The solid lines are Gaussian fits to the data for a3/2φ and a3/2χ.

state we expect quantitative differences between the two definitions. Furthermore, the

phonon variables do not constitute a complete description of the system (except for the

case of a single-field system), and additional information can be stored in appropriate

energy differences which we did not account for.

However, during the preshock evolution the fields are well described by a set of homo-

geneous field condensates interacting with a collection of linear fluctuations. Similarly,
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Figure 5.20: Excess kurtosis κ4 of the field variables φ and χ.
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Figure 5.21: Probability density function of Fourier moments for the field φ normalized
to the power spectrum (ie. RMS fluctuation amplitude).

the fluctuations in the energy density are also linear to a good approximation. Therefore,

there is a linear transformation between the two variable sets (assuming we also include

Nfld − 1 energy differences and their time derivatives) and one might therefore expect

that knowledge of the correlators in either coordinate system should be equivalent. How-

ever, even at early times, we see that the two definitions used above are inequivalent.

In particular, the entropy in the phonon variables undergoes oscillations while also ex-
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Figure 5.22: Probability density function of Fourier moments for the field χ normalized
to the power spectrum (ie. RMS fluctuation amplitude).

periencing an overall damping. In contrast, prior to the shock the entropy in the field

variables is very nearly constant. Since the preshock dynamics of the fluctuations is lin-

ear, this property of the entropy in the field variable description is desirable. We will now

reconcile this apparent contradiction, which will also shed further light on the special role

that is played by the fundamental fields φi.

As we alluded to earlier, the origin of this discrepancy is that the field variables and

their canonical momenta constitute a set of canonical coordinates, while the (ln(ρ), ∂t ln(ρ))

variables do not. Let ϕA denote a collection of (possibly noncanonical) fields that we

are using to describe our system, with A labelling the particular field. In the lattice

case, the values of the fields at each lattice site ϕAi coordinatize the phase-space of the

system, so we will refer to them as coordinates. For notational simplicity, we suppress

the index A in the following discussion and define the functional measure Dϕ ≡ Πi,Adϕ
A
i

throughout. The entropy functional introduced earlier was based on averaging defined as

〈F (ϕ)〉c =
∫
DϕP [ϕ]F (ϕ) so S = −

∫
DϕP lnP = 〈− lnP 〉c. In the remaining discussion

we refer to this as canonical averaging. As is well known, this entropy is not invariant

under coordinate changes ϕ → ϕ̃ since the probability density in the new coordinates

acquires a factor of the Jacobian P̃ [ϕ̃]
∣∣∣∂ϕ̃∂ϕ
∣∣∣ = P [ϕ]. We propose to instead compute

entropy using a noncanonical definition of ensemble averaging

〈F (ϕ)〉nc ≡
∫
Dϕ
√
GQ[ϕ]F (ϕ) J ≡ G2 ≡

∣∣∣∣
∂ϕc
∂ϕ

∣∣∣∣ (5.42)
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with ϕc some collection of canonical field coordinates. Whenever ϕ are a canonical set

of fields, J = 1 and this definition reduces to our previous one.1 Generally, we have

J =
√
G where G is the determinant of a metric on field space. The invariant functional

measure Dncϕ =
√
GΠiϕi then takes the same form as the invariant measure familiar

from general relativity
√
|g|ddx. We thus define a noncanonical entropy functional

Snc ≡ −〈lnQ[ϕ]〉nc = −
∫
Dϕ
√
JQ lnQ . (5.43)

With ensemble averaging defined via (5.42), the PDFsQ[ϕ] are invariant under coordinate

changes, and thus so is the entropy. Equivalently, we can use the canonical averaging

procedure (where the PDFs do transform)

Snc = −〈ln(P/J )〉c = −
∫
DϕP [ϕ] ln

(
P [ϕ]

J

)
. (5.44)

The transformation of the PDF is now absorbed by the Jacobian, so in either case Snc is

invariant under arbitrary changes of the variables ϕ, and thus is a suitable generalization

of the differential entropy to the noncanonical case. We can move between the two

definitions (5.43) and (5.44) through the identification P [ϕ] = JQ[ϕ].

The alert read will undoubtedly notice that this last definition of the entropy is very

similar to the (negative of) the Kullback-Leibler (KL) divergence [179], if we were to

replace J with a reference probability distribution. Indeed, we are using J to absorb

the transformation properties of the PDF in exactly the same manner as the reference

distribution absorbs the transformation in the KL divergence. However, we do not require

that J be properly normalized so that the usual theorem about the positivity of the KL

divergence (which would imply Snc < 0) does not apply.

As an alternative derivation of the noncanonical entropy consider the relation of the

(continuous) differential Shannon entropy to the discrete version Sdiscrete = −∑i pi ln(pi),

where pi are the probabilities for a discrete set of outcomes labellel by i. For simplic-

ity, we will consider only a single variable, which we denote x, with probability den-

sity µ(x). The generalization to the case of many variables and discretized fields is

straightforward. From the probability density, form a discrete set of probabilities by

partitioning x into a collection of subintervals ∆xi centered on xi. We then associate a

probability Pi ≡ µ(x)∆xi with each of these intervals, resulting in the Shannon entropy

Sdiscrete = −∑i Pi logPi = −∑i µ(xi)∆xi log(µ(xi)) −
∑

i µ(xi)∆xi log(∆xi). Taking

1Equivalently, we could absorb J into a definition of the noncanonical functional measure.
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the length of the intervals ∆xi → 0 we obtain

Sdiscrete = −
∫
dxµ(x) log(µ(x))− lim

∆xi→0

∑

i

Pi log(∆xi) . (5.45)

The final term is an infinite constant dependent on the choice of discretization of the

interval that must be subtracted to obtain the differential entropy. Now instead sup-

pose we choose a new variable y = y(x) with corresponding probability density ν(y).

Let’s once again slice the interval up into segments ∆yi and demand that ∆yiν(yi) =

∆xiµ(xi) and yi = y(xi). Sdiscrete is the same in both cases and we have S[x] − S[y] =

− lim∆xi→0

∑
i Pi log(∆xi/∆yi)→ −〈log(|∂x/∂y|)〉.2 Letting x be our canonical variable,

this gives precisely the additional term in (5.44).

Given a set of constraints 〈Oi(z)〉nc = αi,
3 one can easily show that the maximum

entropy distribution (if it exists) is

QMaxEnt
nc [ϕ] =

e−
∑
i λiOi(ϕ)

Znc
. (5.46)

where we have explicitly solved for the Lagrange multiplier λnorm = lnZnc associated

with the overall normalization of the probability

Znc =

∫
DϕJ e−

∑
i λiOi(ϕ) . (5.47)

The remaining Lagrange multipliers λi are determined by the constraints

〈Oi〉nc =
1

Znc

∫
DϕJ e−

∑
i λiOiOi = αi (5.48)

with the corresponding constrained entropy

Snc = lnZnc +
∑

i

λiαi = lnZnc −
∑

i

∂ lnZnc
∂ lnλi

(5.49)

For the special case of a constant J and a measured covariance matric C, we find

SncG =
1

2
ln

(
detC

A2
eff

)
+
N

2
ln 2π +

1

2
TrI Aeff ≡ J −1 . (5.50)

2This of course assumes that ν(y) is absolutely continuous with respect to µ(x) so that no singularities
appear in the limit.

3All of the following results can equivalently be obtained using the canonical ensemble averaging
and (5.44).
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The final result (5.50) has a very simple interpretation.
√

det(C) is a measure of the

volume in phase space occupied by the fluctuations in the variables ϕ, while Aeff is a

measure of the phase space volume in the transformed variables ϕ occupied by a single

unit of phase space volume in the original canonical variables ϕC . Consideration of

the von Neumann entropy (see section 5.6.1) dictates that the canonical variables are

the correct choice in which to partition phase space. Therefore, the state-dependent

contribution to the entropy is simply ln(nPV ) where nPV is a measure of the number of

fundamental units of phase volume occupied by the fluctuations.

Before continuing, we also note the amusing fact that (in the semiclassical limit) the

Jacobian determinant is also stored in the two-point correlation function. To see this,

consider a collection of (possibly noncanonical) observables ẑα(q̂) labelled by α, where q̂

represent a set of canonical observables for the system. For the case of latticized fields,

α = (S, i) where S denotes the particular field and i the lattice site. The complete set of

two-point correlation information is then stored in

Wαβ = 〈ẑαẑβ〉 (5.51)

where 〈·〉 denotes a quantum expectation value. W naturally splits into a symmetric

piece and an antisymmetric piece

Wαβ =
1

2
〈{ẑα, ẑβ}〉+

1

2
〈[ẑα, ẑβ]〉 (5.52)

with {·, ·} the anticommutator and [·, ·] the commutator. The second term is the “quan-

tum” part of the two-point function that provides information on the discretization of

phase space. In the semiclassical limit this becomes clear since [·, ·]→ i~[·, ·]PB +O(~2)

with [F,G]PB = ∂F
∂xi

∂G
∂pi
− ∂F

∂pi

∂G
∂xi

the canonical Poisson bracket. Arranging our canonical

variables qT = (~x, ~p) so that the position coordinates appear first and the momentum

coordinates second,

[zi, zj]PB =
∂zi
∂qm

Jmn
∂zj
∂qn

(5.53)

with J =

[
0 I
−I 0

]
. From this we see that |det[ẑα, ẑβ]| = ~2

∣∣∣∂z∂q
∣∣∣
2

is simply the square of

the Jacobian determinant for the transformation from the canonical variables q to our new

coordinates z. This suggests a possible formulation in which the Jacobian factor can be

obtained by maximizing entropy with repect to the full quantum two-point information,

although we don’t pursue this here.
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5.6.1 Von Neumann Entropy of a Gaussian Theory

In this subsection we explicitly consider the connection between our (classical) Shannon

entropy and the corresponding (quantum) von Neumann entropy. This will establish

canonical variables as the fundamental description in which no additional Jacobian is

needed. It will also explicitly demonstrate the origin of the ln 2π contribution to the

entropy as a fundamental phase space volume.

There are many ways to establish the connection between the classical and quantum

entropies. We will proceed by interpreting the Gaussian probability density functional

for the fields P [φi,Πi] as the Wigner function corresponding to some density matrix ρ̂. In

order for our lattice simulations to accurately approximate the full quantum dynamics,

the fluctuations δφ and δΠ must initially be weakly coupled. Therefore, our initial density

matrix is Gaussian to a very good approximation.

For simplicity, consider the case of a single pair of canonical field variables (x, p) with

Wigner function

W (x, p) ∝ exp

(
−1

2

(
ax2 + bp2 + 2cxp

))
(5.54)

The corresponding density matrix (in the position basis) is

〈x|ρ̂|x′〉 = ρ(x, x′) =

∫
dpeip(x−x

′)W

(
x+ x′

2
, p

)
(5.55)

=

√
ab− c2

2πb
exp

(
−(ab− c2)

2b

(
x+ x′

2

)2

− (x− x′)2

2b
− ic(x

2 − x′2)

2b

)
.

(5.56)

We also have the relations

ab− c2

b
=

1

〈x2〉
1

b
=
〈x2〉〈p2〉 − 1

2
〈{x, p}〉2

〈x2〉
c

b
= −〈

1
2
{x, p}〉
〈x2〉 (5.57)

which allow us to reexpress the density matrix in terms of expectation values of com-

binations of the operators x̂ and p̂. The resulting (Gaussian) von Neumann entropy

is

SvN = −Tr(ρ̄ ln(ρ̄)) = (nPV + 1) ln(nPV + 1)− nPV lnnPV (5.58)

=

(
∆2 +

1

2

)
ln

(
∆2 +

1

2

)
−
(

∆2 − 1

2

)
ln

(
∆2 − 1

2

)
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where we have defined

∆2 ≡ nPV +
1

2
= 〈x̂2〉〈p̂2〉 − 1

4
|〈{x̂, p̂}〉|2 (5.59)

which is the analogue of our previously defined fluctuations determinants ∆2
ln ρ,∆

2
φ,∆

2
χ,etc.

Taking the limit ∆2 →∞, we then obtain

SvN ≈ ln ∆2 + 1 +O(∆−2) = Sshannon − ln 2π . (5.60)

5.7 Entropy Production in Single-Field λφ4 Preheat-

ing

Now that we have the relation between entropy in different choices of field coordinates,

we show that during the linear stages the field and energy phonon descriptions give the

same result, provided we use the noncanonical definition of the entropy. In order to avoid

unnecessary technical complications, in this section we will study a single-field preheating

model with potential V (φ) = λφ4/4. A brief synopsis of the preheating instability in this

model can be found in section 5.3. Choosing φ as our field variable, the corresponding

canonical momentum is then Π ≡ a2∂τφ = a3φ̇. There are no longer any entropy modes

associated with differences between two different fields and there are the same number

of energy phonon fields as fundamental scalar fields.

5.7.1 Canonical Entropy in λφ4

Fig. 5.23 shows the canonical entropy in both the field and the energy phonon description.

In both cases the shock is present, although it is much stronger for the phonons. Unlike

the m2φ2 + g2φ2χ2 model we studied above, the shock now has additional structure with

dS/dt possessing two peaks. However, despite this difference in the details, the shock is

still very well-localized in the time for the phonons, while possessing a much longer tail

for the field description. The qualitative behaviour of the one-point distributions and

breaking of nongaussianity is very similar to the m2φ2 + g2φ2χ2 model, as will be evident

from the following brief summary. Prior to the shock the flucutations evolve linearly,

leading to Gaussian distributions for both the fields and the energy phonons.4 During

the shock significant nongaussianity develops in all of the fields due to the nonlinear

4Once again, there is the additional caveat that in the short time intervals when ˙̄φ2 . 〈δφ̇2〉, nonlinear
terms in ∂t ln(ρ/ρ̄) are important and the one-point distribution becomes temporarily nongaussian.
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Figure 5.23: Left : The entropy per mode for λφ4 preheating using the energy phonon
(ln(ρ/ρ̄),∂t ln(ρ/ρ̄)) description as well as the field description. In order to remove the
short-time scale oscillations associated with evolution of the homogeneous components
of the fields, we have filtered the signal with a Kaiser filter. Middle: The effective Mach
number | ln(ρ/ρ̄)|−1 for λφ4 preheating, again showing a rapid decline around the shock-
in-time. Right : Entropy production rate per effective degree of freedom for the same
entropies as the left plot. Again, a Kaiser filter has been applied to remove the high
frequency oscillations. For all figures we used a box with N = 5123 lattice sites with
side length

√
λMPL = 20 when ε = 1 at the start of the simluation. The cutoff on the

Fourier modes to compute the entropy was kcut = knyq = πN
1/3
lat L

−1.

interactions of the fluctuations. At first the nongaussian contributions are confined to

k . 10m, corresponding to the modes experiencing parametric resonance. However, this

quickly spreads to higher wavenumbers as a rapid cascade transfers power to smaller

scales at the shock as illustrated by the excess kurtosis in Fig. 5.24 and Fig. 5.25.

5.7.2 Noncanonical Entropy in λφ4

Now consider the evolution of the noncanonical entropy for the energy phonons ln(ρ/ρ̄)

and ∂t ln(ρ/ρ̄). During the early stages of the evolution we expand to linear order in the

field fluctuations to obtain

δ ln ρ ≈ V ′(φ̄)

ρ̄
δφ+

Π̄

a6ρ̄
δΠ

δ∂t ln ρ ≈ 3H(w − 1)Π̄

a6ρ̄
δΠ +

(
3H(1 + w)V ′(φ̄)

ρ̄
+

Π̄

a5ρ̄
∇2

)
δφ . (5.61)

Since this is a linear transformation, the Jacobian is field independent and we can

use (5.50). By Fourier transforming we can simultaneously diagonalize both the co-

variance matrix and the Jacobian and perform the variable change for each Fourier mode
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Figure 5.24: Kurtosis κ4 as defined in (5.34) for the energy phonons ln(ρ/ρ̄) and ∂t ln(ρ/ρ̄)
in single-field λφ4 preheating.

independently. This gives the (linear) Jacobian

J −1 = ΠkJ −1
k J −1

k =

∣∣∣∣
∂(δ ln ρk, ∂tδ ln ρk)

∂(δφk, δΠk)

∣∣∣∣ =

∣∣∣∣∣
˙̄φ2k2

a5ρ̄2
− 6H

˙̄φV ′(φ̄)

a3ρ̄2

∣∣∣∣∣ . (5.62)

In (5.62), we have assumed that we can replace −∇2δφ→ k2δφ upon Fourier transform-

ing. However, our numerical simulations use a finite-difference stencil for the Laplacian

so that this relationship will be distorted for values of k too near the Nyquist frequency.

Specifically, the coupling of neighbouring lattice sites via the stencil produces off-diagonal

terms in the full Jacobian matrix. These then lead to trigonometric corrections to the

dispersion relationship.

After the shock the fluctuations interact nonlinearly and the required transforma-

tions between the variables become significantly more complicated. Unfortunately, the

resulting Jacobian is nondiagonal in both real space (due to the lattice couplings induced

by the derivative operators) and in Fourier space (due to the nonlinearity). This makes

computing the required determinant a rather nontrivial task, and once the Jacobian is

known the MaxEnt computation itself is much more involved than in the case of linear

transformations. Our primary purpose in this paper is to demonstrate the existence of

the shock-in-time, which exists for both the field and energy phonon variables. Since a

proper computation of the Jacobian and resulting noncanonical entropy will not change

this conclusion, we content ourselves here with the much simpler task of comparing the

two coordinate systems assuming that the transformation is linear throughout the evo-
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Figure 5.25: Excess kurtosis κ4 (5.34) for the field variables φ and ∂τφ in single field
λφ4 preheating. As the shock is approached, nongaussianities develop in the modes
k . 10

√
λMP corresponding to the linear resonant instability. As the fields move

through the shock, additional bands of nongaussianity appear which then spread to
higher wavenumbers. At late times a nonnegligible amount of nongaussianity persists
form k ∼ 60

√
λMP .

lution. This will be an accurate approximation prior to the shock, but will presumably

be quantitatively quite poor during the post-shock evolution.

In Fig. 5.26 we plot the fluctuation determinants for both the fields and the phonons

rescaled by the linear Jacobian. The distortion of the dispersion relationship for k near the

Nyquist frequency is visible for k & 30m. However, these modes remain unexcited during

the linear evolution so this simply contributes a constant offset between the entropies prior

to the shock. The resulting entropies are shown in Fig. 5.27. During the stages of linear

evolution of the fluctuations prior to the shock, we see that the noncanonical entropies

in either description match to very high accuracy, modulo an overall constant associated

with our use of a finite-difference stencil to approximate the derivatives. Meanwhile,

comparing the canonical entropies leads to large oscillating variations. After the shock

this equivalence breaks down as a result of our incorrect determination of the Jacobian

in this regime as well as the nongaussian nature of the field variables.

Despite the remarkable agreement throughout most of the preshock evolution, there

are short intervals of time when the cancellation between Sncln ρ and lnA2
eff is less precise

and blips appear between the two noncanonical entropies. This arises because the linear

transformation (5.61) is singular for k2 = 6a2Hλφ̄3/ ˙̄φ (if a solution exists). Furthermore,

whenever ˙̄φ = 0 the transformation is singular for all wavenumbers. Around these points,
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of noncanonical entropies in the field and energy phonon descriptions. In the left panel
we show slices at
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the two descriptions prior to the shock. In the right panel we instead show
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162.5, 175, ..., 237.5 demonstrating the breakdown of the equivalence between the phonon
and field description if we incorrectly use the linear Jacobian.
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Figure 5.27: Comparison of noncanonical entropies in the field (Sφnc) and energy phonon
(Sln ρ

nc ) descriptions. For comparision, we also include the phonon entropy computed using
the canonical prescription Sln ρ

c and the correction from the Jacobian SJ . By definition
Sln ρ
nc = Sln ρ

c + SJ . In the left panel we plot the preshock evolution to demonstrate the
excellent agreement between the two variable choices. In the right panel we show the
post-shock evolution as well, where we continue to (incorrectly) use the linear Jacobian
to estimate the noncanonical corrections to the energy phonons.
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Figure 5.28: A comparison of the phonon entropy determinant, the field entropy determi-
nant and the Jacobian for three times illustrating left : The excellent agreement between
the two descriptions when the linear transformation posesses no singularies, center : a
blip in the agreement due to a small band of wavenumbers where the linear transforma-
tion is singular and nonlinear terms and numerical noise becomes important and right : a
time with Π̄ ≈ 0 so that the entire linear transformation is nearly singular and nonlinear
effects are important in a wide range of wavenumbers.

additional nonlinear terms in the transformation must be taken into account. As well,

in the former case the Jacobian changes sign at the singular point. When numerically

estimating power spectral densities, we must bin wavenumbers into various bands leading

to a fuzziness in wavenumber space. This means that we cannot precisely resolve the

cross-over point leading additional errors. These phenomena are illustrated in Fig. 5.28,

where we give an example where the linear transformation has no singularities, an isolated

singularity at a single wavenumber k and a near singularity for a range of wavenumbers.

5.8 Modulated Preheating from the Shock-in-Time

We’ve demonstrated the existence of fairly sharply defined hypersurface (the shock-in-

time) on which the universe transitions from a state of high spatial coherence and low

entropy to an incoherent state with high entropy. Prior to the shock, the evolution of the

universe is well described by a scale factor coupled to a collection of homogeneous fields

oscillating in a potential. Post shock, the expansion is instead driven by a highly nonlinear

medium whose collective variables seem to be ln(ρ) and its time derivative. Except for

special choices of the field Lagrangian, the (time-averaged) equation of state w = P̄ /ρ̄ will

be different before and after the shock. In fact, for most examples of preheating that have

be considered in the literature, w(t) is a time-dependent quantity after the shock [190].

For our two-field preheating model (5.12) this can be seen in the bottom panel of Fig. 5.1.

If w = const we have e3(1+w) ln aρ = const, while we clearly see that the logarithm of this
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quantity is evolving. Therefore, given a physical mechanism to modulate the time that the

shock occurs between Hubble-sized patches at the end of inflation, we can create models

in which different regions of the observable universe underwent a different expansion

history.5 This allows for the generation of adiabatic density perturbations, which we call

modulated preheating (for an example of another mechanism by which preheating can

generate adiabatic perturbations see [55, 191, 57, 58]).

A specific example of such modulation occurs when the coupling between the inflaton

and preheat fields is itself a function of some other light isocurvature mode σ. For (5.12)

we would have g2 → g2(σ). This is similar in spirit to the usual mechanism of modulated

reheating [192, 193, 194, 195, 196]. In these studies, the decay rate is assumed to be

a simple function of g2(σ) and the universe is assumed to instantaneously transition

between matter and radiation domination. However, in our example the universe does

not immediately transition to a radiation bath and the timing of the transition can be

an extremely complicated function of the initial value of the modulating field.

As an explicit example of such a model we take g2(σ) = δ2σ2, so that during the

preheating dynamics we have

V (φ, χ, σ) =
m2

2
φ2 +

δ2

2
σ2φ2χ2 . (5.63)

We further assume that the inflationary dynamics has lead to the creation of large scale

inhomogeneities in σ but not χ. Indeed, if χ̄ = 0 then m2
eff,σ = 0 and σ will indeed

be light, although we have in mind a case where the effective potential (5.63) is only

valid near the end of inflation and the potential in the inflationary regime could be of

a much different form. If the dynamics of σ we frozen at a fixed value σ0, we then

have an effective coupling g2
eff = δ2σ2

0 between φ and χ of the form g2
effφ

2χ2/2. Other

theoretically well-motivated couplings include g2
eff ∼ eασ or g2

eff ∼ eβσ
2
.

In Fig. 5.29 we show dSln ρ/dt (normalized to it’s maximum value over the sampled

values of g2
eff and ln a) as we vary the effective coupling g2

eff . In the left panel we take

g2 to be a fixed external parameter. In the right panel we take g2
eff = δ2σ2

0 with σ a

dynamical field with nonzero vev at the beginning of the simulation and δM2
P/m = 100.

This choice does not provide a realistic model for the modulation, since σ must acquire

Planck scale fluctuations to scan the range of g2
eff values plotted in Fig. 5.29. Rather, this

model is meant as an illustration that the mechanism can continue to operate even with

dynamical modulating fields. For either case there is a strong modulation of the shock

5Here we are assuming that the preheating model is not one of the special cases where the pre- and
post-shock equations of state are the same.
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Figure 5.29: Dependence of shock hypersurface of coupling constant in the Lagrangian.
In the left panel we show the resulting taking g2 to be a fixed constant parameter in the
simulations. In the right panel we instead take the coupling to be a dynamical field with
potential (5.63) whose initial condition σ0 is varied between the simulations. In either
case, there is a strong modulation of the shock-in-time hypersurface as a function of the
effective coupling, and comparison of the two plots demonstrates that for this particular
model the approximation of a fixed coupling g2 gives and accurate estimate of the timing
of the shock.

hypersurface as geff is varied. Comparing the left and right figures (accounting for the

different linear scales), we see that the approximation of a fixed rather than dynamical

g2 reproduces the details of the hypersurface remarkably well.

The comoving curvature perturbation generated by this mechanism is determined

by the differences in the overall expansion histories between different Hubble patches

(simulation volumes) from the end of inflation (at ε = 1) to a fixed energy density ρ,

ζpreheat = δ ln a|ρ(σ0). Since the equation of state changes abruptly at the shock, the

modulation of ln(ashock) allows for the prodution of ζpreheat. These curvature perturba-

tions ζpreheat will then add to the perturbations generated by inflation ζinf . Since the

preheating process is local, ζpreheat is simply a pointwise mapping of some other (Gaus-

sian) random field σ. Thus, it should be considered a local form of nonGaussianity

which may be strongly nonGaussian. However, ζpreheat and ζinf are uncorrelated so this

form of nonGaussianity is very different from the typical local fNL parameterization

ζ = ζG + 3
5
fNL(ζ2

G − 〈ζ2
G〉) where ζG is a Gaussian random field. As a result, current

constraints on this model are much weaker than those on fNL, although ζpreheat must still

be subdominant to avoid spoiling the near Gaussianity of the CMB.

There are two different regimes in which this modulation could occur. In the first,

we could imagine that the spread of g2
eff within our observable patch is much smaller

than the typical scale of the structure in the shock, but the value of σ smoothed over our

present Hubble patch is drawn from some distribution. The statistics of the generated
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ζ can then be determined using standard methods based on Taylor expansion, but the

required derivatives will depend on the specific super-Hubble value of σ that is realized

in our observable Hubble patch. For the second case, g2 instead realizes values probing

some of the structure in the shock, leading to the generation of a strongly nonGaussian

component to the density perturbations that is uncorrelated with those produced by the

inflaton and poorly parameterized by a Taylor expansion. We then have a combined

curvature perturbation ζ(x) = ζinf (x) + FNL(σ(x)), exactly as found in the massless

preheating model [55].

5.9 Conclusion

In this chapter we studied the production of entropy during the preheating phase following

inflation. If we broadly define preheating as the cosmological epoch between the end

of inflation, when ε = 1, and the establishment of a dense plasma in local thermal

equilibrium with some temperature Trh then all of the entropy of the primordial plasma

must be generated during this transition. To explore this regime of tremendous entropy

production, we introduced the Shannon entropy as our definition of the system entropy.

A full calculation of the Shannon entropy would require full knowledge of the probability

density functional for the fields. Obtaining such a large amount of information about

the fields is unrealistic. Therefore, we obtained a coarse-grained entropy by assuming we

had access to only the two point-correlations of the fields and maximizing the Shannon

entropy subject to this constraint.

Based on this procedure, we found that for simple models of preheating based on

broad parametric resonance there is a rapid production of entropy over a short time-

interval around the onset of strong nonlinearity in the system. This rapid change in the

entropy is very similar to the jump in entropy across a hydrodynamic shock. For this

reason, we have coined the phrase shock-in-time for the transition from a state of coherent

oscillating scalars to a state of inhomogeneous nonlinearly interacting fluctuations. We

demonstrated that the existence of the shock was robust to our choice of coarse-grained

fields by explicitly computing the entropy in energy phonons (ln(ρ/ρ̄),∂t ln(ρ/ρ̄)) and in

the fundamental fields and momenta (φi,Πφi).

Further investigation into the evolution of the fields and the post-shock cascade re-

vealed that the low-order statistics of the energy phonons were remarkably Gaussian

except for a brief time interval around the shock-in-time. Meanwhile the fields remained

significantly nonGaussian well after the shock, with the (subNyquist) nonGaussianity

concentrated in comoving wavenumbers k ∼ 150m. We also investigated the develop-
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ment of cross-correlations between the various fields, including their impact on entropies

based on measurements of the full covariance matrix.

One disturbing feature of the Shannon entropy was that the entropy in the field and

energy phonon descriptions were not equal. While this is to be expected in the complex

post-shock state, prior to the shock the energy phonons can be expressed linearly in terms

of the field fluctuations. Therefore, there should be a linear transformation between the

two variable sets. Since no information is lost in making such a transformation, we would

like our definition of entropy to give the same result in either basis prior to the shock. To

address this we introduced a noncanonical version of the Shannon entropy and related it

to the von Neumann entropy. Using single-field massless preheating as an example, we

demonstrated that during the linear stages our noncanonical entropy was the same using

either the fundamental fields or the energy phonons as our collective coordinates.

Finally, as an application of the shock-in-time concept, we studied the production

of adiabatic curvature perturbations mediated by the large-scale variation of coupling

constants in the potential. The shock accurately tracks the transition from the low-

entropy coherent condensate to a high-entropy fluctuation dominated medium. Except

for very special models, the pre- and post-shock states will have different equations of

state. Therefore, modulations in the time of the shock between different Hubble patches

at the end of inflation produce a corresponding adiabatic curvature perturbation. These

perturbations are nonGaussian, but have a very different form than is usually assumed

for primordial nonGaussianities.



Chapter 6

Conclusions

In this thesis we studied the nonequilibrium nonlinear dynamics of inhomogeneous scalar

fields in several cosmological contexts. In particular, we included the semiclassical ef-

fects of initially small quantum fluctuations around initial configurations possessing a

high degree of spatial symmetry. This included consideration of domain wall collisions

possessing both planar and SO(2,1) symmetry (in the absence of fluctuations), as well

as the preheating dynamics at the end of inflation, when the background configuration

is spatially homogeneous. For all cases considered, the fluctuations – which have been

completely neglected in previous of the domain wall collisions – played a critical role in

the full system dynamics. In many cases, the resulting dynamics also displayed either

temporal or spatial intermittency.

We first studied collisions between planar symmetric domain walls and SO(2,1) sym-

metric vacuum bubbles. These types of collisions are common in braneworld cosmologies

and first order phase transitions. Our first step, presented in chapter 2, was to conduct

a linearised analysis of nonplanar fluctuations around planar symmetric collision back-

grounds. By extending well-known techniques from the Floquet theory of ODEs to the

case of PDEs, we were able to demonstrate the existence of exponential instabilities in the

fluctuations. This included generalizations of broad parameteric resonance and narrow

parametric resonance to the case of a wave equation with a time- and space-dependent

effective frequency. Through a study of the corresponding mode functions and simple

physical intuition, we also argued that these instabilities will be a generic feature in

collisions between extended membrane-like objects.

The presence of the linear instabilities motivated a full nonlinear study of both planar

wall and vacuum bubble collisions, presented in chapters 3 and 4 respectively. In contrast

to previous investigations, we included small initial fluctuations that did not respect the

symmetry of the background. To obtain the evolution of the initial field configuration we
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made use of high resolution parallel three-dimensional lattice simulations. This required

significantly more numerical sophistication than past investigations, where the assump-

tion of exact symmetries and exclusion of fluctuations meant the dynamics were captured

by 1+1 dimensional field equations. We found that the inclusion of fluctuations can rad-

ically alter the resulting field dynamics. Rescattering effects and nonlinear interactions

between the amplified fluctuations lead to a complete breakdown of the initial symmetry

assumption. This breakdown of the planar or SO(2,1) symmetry manifested itself as

an inhomogeneous dissolution of the walls. As a result of this, a collection of oscillons

were produced from the energy stored in the colliding walls. For the case of vacuum

bubble collisions, an interesting consequence of the symmetry breaking is the production

of gravitational waves during the collision. When considering potential observables in

the false vacuum eternal inflation scenario, these gravitational waves are one example of

a novel phenomenon that has been missed by past analyses based on SO(2,1) symmetry.

In light of this, it is worthwhile to re-evaluate how generic conclusions based on imposing

exact SO(2,1) symmetry really are.

Finally, we considered the process of preheating after inflation. Our focus was on

the dynamical production of entropy as the low-entropy coherent inflaton condensate

fractured into a high-entropy incoherent state characterized by strongly interacting inho-

mogeneous field fluctuations. We found that the entropy was generated predominantly

in a short time-interval around the onset of nonlinearities in the field fluctuations, which

we denoted a shock-in-time. In addition to this study of entropy, we also considered

the field statistics in some detail. Despite the complexity of the post-shock state, fluc-

tuations in ln ρ and its time derivative were found to highly Gaussian at the level of

one-point statistics. This was in contrast to the fundamental field variables, which dis-

played nonnegligible nongaussianity even long after the onset of strong inhomogeneities

in the system. Since the shock connects two phases with different equations of state,

a modulation of the timing of the shock between different Hubble patches will create

(nongaussian) adiabatic density perturbations. We identified one possible mechanism to

produce such a modulation – the variation of the coupling constant between the inflaton

and preheat fields in different Hubble patches.

In summary, we found that quantum fluctuations around highly symmetric but dy-

namical backgrounds can experience strong instabilities. The eventual nonlinear interac-

tions of these fluctuations can dramatically alter the behaviour of the system relative to

expectations derived under the assumption that the symmetry holds exactly. This means

that analysis of the scenarios considered in this thesis requires more sophisticated tools

than those usually employed in the literature. Treating these problems properly is espe-
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cially important because the additional complexity resulting from the full field dynamics

may provide a new observational handle on currently unconstrained cosmological scenar-

ios. For example, in this thesis we demonstrated that novel and previously unidentified

observational signatures may be produced by the collision with another universe in the

false vacuum eternal inflation scenario. We also provided a new mechanism by which pre-

heating may generate observable density perturbations. Since many of these signatures

rely on the nonlinear interactions in the underlying field theory, they are likely to also

display more sensitivity to model parameters and initial conditions. From the viewpoint

of differentiating models this lack of universality is a huge plus, even if it means the

required theoretical analysis is more difficult.

The work presented in this thesis naturally lends itself to several future research di-

rections, as well as interesting connections to other work in progress. Specifically, the

results in chapter 5 naturally tie in with current work in collaboration with J. Richard

Bond, Andrei Frolov and Zhiqi Huang on the production of density perturbations during

preheating from caustics in the ballistic motion of trajectories in the equivalent homo-

geneous field dynamics. The shock-in-time provides a natural separation between the

ballistic description and subsequent full field dynamics (i.e. including all gradient cou-

plings in the equation of motion) which must be treated on the lattice. The perturbations

produced by the caustic mechanism have the same structural form as those presented

in chapter 5, and we have results demonstrating that they can lead to observable pat-

terns on the sky. As mentioned previously in the thesis, the novel dynamics presented

here could also produce a variety of interesting observational signatures. These include,

but are not limited to: production of gravitational waves from collision with an external

bubble in false vacuum eternal inflation, and production of nonGaussian but spatially

intermittent density perturbations at preheating. An obvious avenue of investigation is

to develop theoretical tools to constrain such signals using observation, and then perform

the necessary analysis using publically available data. Among the interesting challenges

is the development of numerical simulations that include the effect of inhomogeneous

gravity on the lattice.



Appendices

176



Appendix A

Collective Coordinate

Approximation for Double Well

Collisions

In this appendix we will present a brief derivation of our collective coordinate approxima-

tion for the repeated collisions of two walls. The key step is to make a drastic reduction

in the number of degrees of freedom of the system. We will ignore all radiation as well

as the shape mode and assume that the field profile takes the form of an interacting

kink-antikink pair given by

φbg = tanh

(
γ
x+ r(t)√

2

)
− tanh

(
γ
x− r(t)√

2

)
− 1 (A.1)

with γ2 = (1− ṙ2)−1. Our goal is now to obtain an effective Lagrangian for the locations

of the kink and antikink r. The reader should note that this approximation is terribly

naive as we are ignoring the effects of the shape mode and the production of radiation,

as well as any distortion of the kink shapes while they are near each other. However, as

emphasized in the main text, we wish to separate out the effects of the actual collision

from the subsequent evolution and the approximation (A.1) does exactly this.

Before proceeding, it should be clear that our final Lagrangian should be that of

a pair of relativistic point particles interacting through a potential, along with some

corrections induced by the finite thickness of the kinks. For simplicity, we will assume

γ̇ = 0. These terms only arise from the kinetic term for the fields, and we are effectively

dropping a finite thickness correction for the individual kinks, as well as an interaction
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piece. Substituting this into the lagrangian for the field, we find

L = ωṙ2 [S2(0) + S2(ωr)] (A.2)

− ω [S2(0)− S2(ωr)]

− ω−1

[
sinh2(2ωr)S2(ωr)− sinh3(2ωr)S3(ωr) +

sinh4(2ωr)

4
S4(ωr)

]

where we have defined ω = γ/
√

2 and Sn(α) ≡
∫

sechn(x + α)sechn(x − α)dx. The

required integrals can be easily obtained by considering
∫
C f(z)dz with f(z) = zsechn(z+

r)sechn(z− r) and the contour C given by (−∞,∞)∪ [∞,∞+ iπ]∪ (∞+ iπ,−∞+ iπ)∪
[−∞+ iπ,−∞]. For completeness, the required results are

S2(α) =
4

sinh2(2α)

(
2α

tanh(2α)
− 1

)
(A.3)

S3(α) =
2

sinh5(2α)
[4α(2 + cosh(4α))− 3 sinh(4α)]

S4(α) =
−4

sinh4(2α)

[
α coth(2α)(12− 20 coth2(2α))− 8

3
+ 10 coth2(2α)

]
.

Notice that the interactions between the kink and antikink depend not only on their

separations, but also on their relative speeds. This is because these interactions are

generated by integrals of the overlap between the kink and antikink. As their speeds

increase, they Lorentz contract which changes the amount of overlap. When the kink

and antikink are far apart, this overlap is exponentially small. Therefore, we will make

the following additional approximation. When performing the integrals, we will keep

overall γ multipliers only on the overall constant pieces.

This gives us our final effective Lagrangian

L[r(t)] = −4
√

2

3

√
1− ṙ2 − Veff (r) + γK(r)

ṙ2

2
(A.4)

where we have defined the effective potential

−Veff ≡ ω

[
4
(
1 + γ−2

)
− 16ωrγ−2 + 8

(
−ωr − 3γ−2 + ωrγ−2

)
coth(2ωr) (A.5)

+ 4
(
−1 + +5γ−2 + 12ωrγ−2

)
coth2(2ωr) + 8ωr

(
1− 5γ−2

)
coth3(2ωr)

]

and

K(r) =
S2(ωr)

S2(0)
. (A.6)



Appendix A. Collective Coordinate Approximation for Double Well Collisions179

0.5 0.0 0.5 1.0 1.5 2.0

ωr

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

V
ef

f

Veff(r)

K(r)

Vpot(r)

Vgrad(r)

−8
√

2e−2
√

2r

Figure A.1: The effective potential Veff (r) and noncanonical contribution to the kinetic
term K(r) for our effective single-particle Lagrangian describing the separation of the
kink and antikink pair. Also included are the individual contributions from the gradient
energy (Vgrad) and potential energy (Vpot) in the original scalar field Lagrangian. For

comparison, we have also included the asymptotic potential −8
√

2e−2
√

2r for ωr � 1.

It is easy to see that this potential vanishes exponentially fast for ωr � 1. We only wish

to consider bound motions in this paper, so we must have E − 4
√

2
3

< 0. Therefore, at

large r the walls will move nonrelativistically and we can set γ ≈ 1. This is of course

incorrect for ωr . 1, but in this regime the kink and antikink are close to each other

and interacting strongly. In this regime, the kink profiles are likely to be deformed and

our ansatz will be a poor description of the full field configuration. Making this further

approximation we obtain our final form for the effective potential

2−1/2Veff ≡ −4 + 8ωr+ 12 coth(2ωr)− (24ωr+ 8) coth2(2ωr) + 16ωr coth3(2ωr) . (A.7)

In Fig. A.1 we show this effective potential as well as the noncanonical part of the kinetic

coupling.

Now that we have a rather simple effective action, we will construct an analytic

approximation to the background motion. During most of the motion the walls will

be well-separated with ωr � 1, so we can approximate the motion as occurring in the

potential Veff (r) ≈ −8
√

2e−2
√

2r. The noncanonical contribution to the kinetic term

vanishes exponentially in this limit as well, so we will set it to zero. Finally, for bound

motions we also have γ ≈ 1 so we can approximate the relativistic kinetic term by it’s

nonrelativistic limit.
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t =

√
M

2

∫ r

rmax

dr̃√
V (rmax)− V (r̃)

=⇒ T =
√

2M

∫ rmin

rmax

dr√
V (rmax)− V (r)

(A.8)

Approximating the full motion by the ωr � 1 potential, we find

r(t) = rmax +
1

2
√

2
log

(
cos2

(
πt

T

))
T =

π
√
M

2
√

∆V
=

π

2
√

6
e
√

2r (A.9)

A major problem with this result is that r → −∞, when in reality energy conservation

will enforce a minimum value of r. The easiest way to cure this is to simply cutoff the

logarithmic divergence as

r(t) = rmax +
1

2
√

2
log

(
cos2

(
πt

T

)
+ e−2

√
2(rmax−rmin)

)
. (A.10)

which enforces the condition r(T/2) = rmin where Veff (rmin) = Veff (rmax) and rmin < 0.

In Fig. A.2 we compare the accuracy of this analytic approximation to a full solution of the

equations for the Lagrangian (A.4). We have approximated γ = 1 in K(r) and Veff (r)

but have otherwise included both the noncanonical kinetic correction and relativistic

corrections. Our approximation (A.10) is very accurate for most of the evolution.

The above procedure can easily (but tediously) be generalized to the asymmetric

well. However, the main effect of this term is to break the Z2 symmetry so that the two

potential minima are no longer degenerate. Therefore, the main effect is to introduce

a contribution to the effective potential of the form [V (φf ) − V (φt)]r for ωr � 1. In

chapter 3 we will consider a full (3+1)-dimensional nonlinear solution of the field equa-

tions for a planar kink-antikink initial state with small initial fluctuations. There we will

explicitly see that the parametric pumping of fluctuations occurs thus confirming the

intuition developed in this paper.
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Figure A.2: Comparison of our analytic approximation to the evolution of r(t) to nu-
merical simulation of the effective equations for the background. The solid lines are our
analytic approximation (A.10) and the triangles are a numerical solution to the equa-
tions of motion for the Lagrangian (A.4). Aside from a small lengthening of the period
in the full solution, we see that our approximation is very accurate, with the accuracy
improving as we increase the initial separation.



Appendix B

Numerical Approach and

Convergence Tests

In this appendix we will briefly summarize the numerical techniques used in chapter 2.

First we describe our strategy for implementing time-evolution in our numerical codes.

We used different approaches when solving for the nonlinear background (2.11) and the

linear fluctuations (2.12). For the one-dimensional nonlinear wave equation (2.11), we

used a 10th order accurate Gauss-Legendre quadrature based method. Explicitly, this

amounts to a specific choice of implicit Runge-Kutta process. Given an initial condition

yt to dy/dt = H(y), the solution at time dt is obtained by solving

f (i) = H

(
yt + dt

ν∑

j=1

aijf
(j)

)
(B.1)

yt+dt = yt + dt
ν∑

i=1

bif
(i) (B.2)

where aij, bi and ci are numerical constants defining the process. For the Gauss-Legendre

methods, the ci’s are the roots of Pν(2c− 1) where Pν(x) is the Legendre polynomial of

degree ν. The aij’s and bi’s are then solutions to

ν∑

j=1

aijc
l−1
j =

cli
l

l = 1, . . . , ν (B.3)

ν∑

j=1

bjc
l−1
j = l−1 . (B.4)
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This amounts to approximating the integrals required to perform the time-evolution

using Gauss-Legendre quadrature. Due to the excellent convergence properties of these

quadrature approximations, the result is an order 2ν integrator.1 If the reader would

like explicit formulae for ν up to 5 please see Table 2 of Butcher [197], although it is far

easier in practice to simply solve (B.3) numerically.

As for the linear fluctuation equation (2.12), we instead employed Yoshida’s [158]

operator-splitting technique that was introduced into the preheating community by Frolov

and Huang. For further details on this method see for example [40, 43, 158]. For this set

of integrators, the solution to df/dt = H(f) is first written as f(t + dt) = eHdtf , where

H should now be interpreted as an operator acting on f . We decompose H =
∑

i Hi,

where the action of each individual Hi on f is simple to compute. Finally, we reexpress

the time evolution operator U ≡ eHdt as a product of exponentials for the individ-

ual Hi operators, eHdt = U(wM)U(wM−1) . . . U(w0)U(w1) . . . U(wM) + O(dtn+1), where

U(wi) ≡ ewiH1dt/2ewiH2dtewiH1dt/2 is a second-order accurate time-evolution operator for

time-step widt and we have specialized to the case of an operator split into only two parts.

Via clever choices of the number and value of the numerical coefficients wi, integrators

of various orders n may be constructed. For this paper, we have chosen coefficients that

produce an O(dt6) evolution given by

w1 = −1.17767998417887100694641568096431573

w2 = 0.235573213359358133684793182978534602 (B.5)

w3 = 0.784513610477557263819497633866349876

w0 = 1− 2(w1 + w2 + w3) = 1.31518632068391121888424972823886251 .

Both of these approaches have the added benefit that for Hamiltonian systems they

are symplectic integrators. For this reason, in this paper we have found it convenient

to use Hamilton’s form for the evolution equations. With the exception of the collective

coordinate location for the bouncing walls in the double well, all of our Hamiltonians can

be split into two exactly solvable pieces so that H = H1 +H2 and we will provide these

even for the nonlinear wave equations (even though the splitting is not required for the

Gauss-Legendre method). For the planar walls is (up to an overall normalization)

Hplanar,1 =
∑

i

π2
φ,i

2
Hplanar,2 =

∑

i

G[φi]

2dx2
+ V (φi) . (B.6)

1Here we take the order of the integrator (denoted by n) to be the highest power in dt for which the
approximate solution is exact. This means the leading order error term is ∼ dtn+1.
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Meanwhile, the linearized fluctuations evolve in the Hamiltonian

Hfluc,1 =
∑

i

π2
δφ,i

2
Hfluc,2 =

∑

i

G[δφi]

2dx2
+

1

2
V ′′(φbg(x, t))δφ

2
i . (B.7)

Finally, the Hamiltonian for the SO(2, 1) invariant bubbles is

Hbubbles,1 =
∑

i

π2
φ,i

2s2
Hbubbles,2 =

∑

i

s2

(
G[φi]

2
+ V (φi)

)
. (B.8)

In all three cases, πf,i represents the canonical momentum for field f at lattice site i.

The operator G[φi]/2 is a discrete approximation to (∂xφ(xi))
2/2.

Finally we describe our approach to the spatial discretization of the system. For all

production runs we used a Fourier pseudospectral approximation for the field derivatives.

The only derivative appearing in the various equations of motion is the one-dimensional

laplacian along the collision axis ∂xx. Therefore, in practice the system was evolved in

real space, with the Laplacian evaluated in Fourier space through the use of the FFT.

Although the resulting FFT and inverse FFT are numerically more expensive than a

finite-difference approximation, the continuum limit is approached much more rapidly as

seen in Fig. B.2. This is especially important when computing Floquet exponents, as

our approach requires solving 4N2 individual PDE’s in order to form the fundamental

matrix where N is the number of grid points. As well, in order to maintain a fixed

accuracy in the time-integration, the ratio dx/dt should be kept constant meaning that

the total work required scales as N3 for a finite-difference approximation and N3 log(N)

for a pseudospectral approach.2 As a result, the spectral approach ended up requiring

less CPU time than the finite-difference approach, while simultaneously being (orders of

magnitude) more accurate.

In order to provide independent verification of our results, we also performed several

runs using finite-difference discretizations of G[φi]. The Hamiltonian was discretized

directly, thus ensuring a consistent discretization of ∇2φ and (∇φ)2. We tested with

both a second-order accurate and fourth-order accurate stencil given by

(∇φ)2dx2 ≈ G[φi]2 =
1

2

[
(φi+1 − φi)2 + (φi−1 − φi)2

]
(B.9)

2When comparing run times, the reader should keep in mind that the limiting factor on modern
computing architecture is often the speed at which data can be obtained from memory, not necessarily
the number of floating point operations. However, for the problems we were concerned with, the spectral
approach proved to be much faster if an accuracy better than the tenth of a percent level was desired.
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and

(∇φ)2dx2 ≈ G[φi]4 =
−1

24

[
(φi+2 − φi)2 + (φi−2 − φi)2

]
+

2

3

[
(φi−1 − φi)2 + (φi+1 − φi)2

]

(B.10)

respectively, where dx is the lattice grid spacing. The corresponding laplacian stencils

L[φi]/dx
2 satisfying

∑
iG[φi] + φiL[φi] = 0 (on periodic grids) are then the familiar

second-order accurate

∂2φ

∂x2
dx2 ≈ L[φi]2 = (φi+1 − φi−1)− 2φi (B.11)

and fourth-order accurate centered difference

∂2φ

∂x2
dx2 ≈ L[φi]4 =

−1

12
(φi−2 + φi+2) +

4

3
(φi−1 + φi+1) +

−5

2
φi . (B.12)

B.0.1 Convergence Tests

Here we present several tests of the convergence properties of our numerical codes. The

combination of high-order time-integrations and spectrally accurate derivative approxi-

mations leads to a rapid convergence of both the nonlinear field evolution used to study

the background dynamics and the floquet exponents determined by solving the pertur-

bation equations.

Several measures of this convergence for the case of the nonlinear wave equation and

initial conditions the same as the bottom right panel of Fig. 2.3 are shown in Fig. B.1.

In the top row we show the pointwise convergence of the solution as we vary the number

of grid points N (or equivalently the grid spacing) and the time-step dt, thus indepen-

dently checking our Fourier spatial discretization and our Gauss-Legendre integrator. We

consider two closely related measures,

‖∆φ(p)‖L1 ≡ N−1
base

∑

{xi}
|φ(p+1)(xi)−φ(p)(xi)| and ‖∆φ(p)‖max ≡ max

{xi}
|φ(p+1)(xi)− φ(p)

i (xi)|

(B.13)

where φ(p) denotes the numerical solution for the pth approximation (here either the

number of grid points or the time step), and we take N (p+1)/N (p) = 2 = dt(p)/dt(p+1). In

order to properly compare solutions with different spatial resolutions, we took all sums

over the grid from the solution with N = 2048 points. From the top left panel, we see

that the solution very rapidly converges (to the level of machine precision) as we increase

the spatial resolution, exactly as we expect for a properly resolved spectral code. Looking

also at the top right panel, we see that the growing error at late times is due to errors
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in the time-stepping rather than the spatial discretization. One may worry about this

apparent issue with the time-stepping, but this is really just a demonstration that making

a pointwise comparison of the fields is not necessarily the best measure of convergence.

In particular, the apparent errors that accumulate at late time occur because we have an

oscillating localized blob of field. Small errors in the oscillation frequency then lead to

errors in the instanteous value of the field which manifest themselves as what appears to

be accumulating errors at late times. As a further test of our time-stepping procedure we

check the conservation of the energy density ρ = 〈T 00〉 and field momentum P x = 〈T 0x〉,
where T µν is the energy-momentum tensor of φ and 〈·〉 denotes a spatial average, for

a range of time steps dt. For all choices of time step, we see that the field momentum

is conserved to machine precision, while for dt ≥ dt/5, the energy is also conserved to

machine precision.

To understand the accuracy with which our Floquet exponents are computed (and

to demonstrate the great gains in accuracy obtained via a spectral approach), we now

provide some convergence plots for the largest Floquet exponent in Fig. B.2. Here we

can directly compare the the individual Floquet exponents, so we plot

∆µ(p) ≡ |µ(p+1)
max − µ(p)

max| . (B.14)

For orientation, the top left panel shows µmaxTbreather for the choice v = 0.5 and a

range of k⊥ values. The top right panel we show the rate of convergence as the time-

step is varied. As expected for a sixth-order accurate integrator, the error decreases

rapidly, although not quite as quickly as for the Gauss-Legendre integrator. Also of

note is that the error decreases uniformly for all values of k⊥ (except for those values

that are already at machine roundoff levels) indicating that important features such as

the locations of stability bands where µmax = 0 are not shifting around as the time-

step is varied. In the bottom row we show similar convergence plots as the number of

grid points are varied for the spectral approximation and for a second-order and fourth-

order accurate finite-difference scheme. As promised, the spectral method converges

very rapidly compared to the finite-differencing methods. However, equally important is

the fact that the convergence is again uniform for all k⊥, while it is not for the finite-

difference methods. Taking the far right 4th order chart as an example, there are several

extreme spikes in the region k2
⊥(1 + v−2) for which the difference between the N = 128

and N = 256 approximation is of order machine precision, but then rises to 10−3 level

when comparing to the N = 512 solution. The ultimate source of these appearing and

disappearing spikes is a slight shifting of the edges of the stability bands as the resolution
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Figure B.1: Convergence of our one-dimensional lattice code for the double-well potential
with δ = 1/30, mL = 1024 and various choices of grid spacing dx and time step dt. We
plot the two norms defined in (B.13). The apparent accumulating errors at late times are
due to small errors in the oscillation frequency and initial phase of the oscillon that has
formed at the origin. Decreasing the time step past dx/5 does not lead to a decrease in
this error, suggesting that it arises due to machine roundoff error. Finally, in the bottom
two we demonstrate the convergence of both energy and momentum of the system for the
same choices of dt as the top right plot, demonstrating that our time-stepping procedure
has indeed converged (to the extend that conserved quantities are conserved).

is varied.
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Figure B.2: Convergence plots for the largest Lyapanov exponent around a sine-Gordon
breather with v = 0.5 for a range of k2

⊥ values. The lattice was chosen to have length L =
58. For reference, the top left panel shows µmaxTbreather for the case N = 64, dt = dx/20,
corresponding to the parameters used in the instability chart in the main text. In the top
right panel, we show the difference in the numerically determined values of µmaxTbreather

holding the number of grid points fixed (at N = 64) while varying the discrete time step
dt using a spectral derivative approximation. Finally, in the bottom row we show the
convergence properties as the grid spacing is decreased, using a spectral (bottom left),
second-order finite-difference (bottom center) and fourth-order finite-difference (bottom
right) approximation for the Laplacian. In all three graphs, we took dx/dt = 20 and used
a sixth-order accurate Yoshida scheme. Because of the rapid convergence, the instability
charts (with the exception of the N = 32 case) are visually nearly identical to that
displayed in the left panel above.
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