Starting the Hot Big Bang Entropy Generation and Simplicity from Complexity in Nonequilibrium Field Theory

Jonathan Braden

University College London

University of St. Andrews, June 20, 2016

with Dick Bond, Andrei Frolov and Zhiqi Huang (in preparation)

Observational Evidence for Inflation

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Observational Evidence for Inflation

◆□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

A Theorist's Description of the Universe Perturbed FRW Metric + Scalar Fields

$$ds^{2} = -e^{2\nu(x,t)}dt^{2} + a^{2}(t)e^{2\zeta(x,t)}\left(\delta_{ij} + h_{ij}\right)dx^{i}dx^{j}$$
$$\mathcal{L} = \sqrt{|g|}\left(-\frac{G_{IJ}(\phi)}{2}\partial_{\mu}\phi^{I}\partial^{\mu}\phi^{J} - V(\phi) + \frac{M_{P}^{2}}{2}R\right)$$

Leading Order: Homogeneous Evolution

$$ds^2 = -dt^2 + a^2(t)dx^2$$
$$\ddot{\phi}_i + 3H\dot{\phi} + \frac{\partial V}{\partial \phi_i} = 0 \qquad H^2 \equiv \left(\frac{\dot{a}}{a}\right)^2 = \frac{1}{3M_P^2} \left(\frac{\dot{\phi}^2}{2} + V(\phi)\right)$$

 $\ddot{a} > 0 \implies \text{inflation}$

What About Inhomogeneity? Long-Short Split

$$\phi_i = \phi_i^{\text{long}} + \delta\phi_i$$

What About Inhomogeneity? Long-Short Split

$$\phi_i = \phi_i^{\text{long}} + \delta\phi_i$$

$$\phi_i^{\text{long}} = \int d^d x' W(x - x') \phi_i(x')$$

$$\phi_i^{\text{long}}: k \lesssim H \text{ modes}$$

 $\phi_i^{\rm long}$ coherent "classical" condensate

What About Inhomogeneity? Long-Short Split

$$\phi_i = \phi_i^{\text{long}} + \delta\phi_i$$

$$\phi_i^{\text{long}} = \int d^d x' W(x - x') \phi_i(x')$$

 $\phi_i^{ ext{long}}: k \lesssim H ext{ modes} \ \delta \phi: k \gtrsim H ext{ modes}$

 ϕ_i^{long} coherent "classical" condensate $\delta\phi$ incoherent "quantum" noise

Evolution of Length Scales

Modes exiting horizon act as a noise term on the long-wavelength condensate

Multiresolution View of the Universe

The Takeaway Message From Inflation

Post-Inflation Universe is Nearly Homogeneous

- Subhorizon Homogeneity
- (Small) Superhorizon Inhomogeneity

End of Inflation

$$\begin{split} & \left[\delta\phi,\delta\dot{\phi}\right]\neq 0\\ \Longrightarrow \ \langle |\delta\tilde{\phi}_k|^2\rangle, \langle |\delta\tilde{\phi}_k|^2\rangle > 0 \end{split}$$

► Variety of instabilities

Starting the Hot Big Bang

Hot Big Bang

Inflation

- Cold $(T \sim 0)$, $\frac{S}{V} \approx 0$
- Few active d.o.f.

- Hot (T > MeV), $\frac{S}{V} \propto g_{eff}(T)T^3$
- Many active d.o.f.

Huge entropy production (information processing)

But how does it happen?

The Cosmic Recipe?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Why Is This Regime Interesting

Theoretical Consistency

Inflationary cosmology is incomplete without this transition

Understand nonequilibrium quantum field theory

More practical concerns

- ▶ $N \equiv \ln(a_0/a_{end})$ needed to match observations to inflationary models
- Production of
 - nonGaussian density perturbations
 - $[{\sf Bond}, {\sf Frolov}, {\sf Huang}, {\sf Kofman}], [{\sf Rajantie}, {\sf Chambers}]$
 - tensors [Easter,Giblin,Lim],[Figueroa,Garcia-Bellido],[Dufaux,Felder,Kofman,Huang]
- Linear structure growth depends on background expansion
- Nonequilibrium baryogenesis?, nonthermal DM production?

Linear Instability Analysis: Preheating

 $\phi(x,t) = \bar{\phi}(t) + \delta\hat{\phi}(x,t)$ $\delta\ddot{\phi}_k + 3H(t)\delta\dot{\phi}_k + m_{\text{eff}}^2(\bar{\phi}(t))_{ij}\delta\phi_j = 0$

 $m_{\rm eff}^2(t)$ oscillatory

Linear Instability Analysis: Preheating

Floquet Theory for $m_{\rm eff}^2$ approximately periodic

 $\dot{\vec{y}} = \mathbb{M}(t)\vec{y}$ $\mathbb{M}(t+T) = \mathbb{M}(t)$

 $\vec{y}(t) = e^{\mu t} \mathbb{P}(t) \vec{y}_0$

The Many Realms of Nonequilibrium Field Theory

Preheating: A Zoo of Interesting Phenomena

Numerical Approach is Essential [JB, in preparation]

Hybrid MPI/OpenMP Lattice Code

► Solve field equation (e.g.)

$$\ddot{\phi}_i + 3\frac{\dot{a}}{a}\dot{\phi}_i - \frac{\nabla^2\phi_i}{a^2} + V'(\vec{\phi}) = 0$$

- 10th order Gauss-Legendre integration (general) or 8th order Yoshida (nonlinear sigma models)
- Finite-difference (fully parallel) or Pseudospectral (OpenMP)
- Optional absorbing boundaries
- ► Quantum fluctuations → realization of random field

• Energy conservation $\mathcal{O}(10^{-9} - 10^{-14})$

Numerical Approach is Essential [JB, in preparation]

Hybrid MPI/OpenMP Lattice Code

► Solve field equation (e.g.)

$$\ddot{\phi}_i + 3\frac{\dot{a}}{a}\dot{\phi}_i - \frac{\nabla^2\phi_i}{a^2} + V'(\vec{\phi}) = 0$$

- 10th order Gauss-Legendre integration (general) or 8th order Yoshida (nonlinear sigma models)
- Finite-difference (fully parallel) or Pseudospectral (OpenMP)
- Optional absorbing boundaries
- ► Quantum fluctuations → realization of random field

• Energy conservation $\mathcal{O}(10^{-9} - 10^{-14})$

Developing Complexity of $\ln(\rho/\bar{\rho})$

Developing Complexity of $\ln(\rho/\bar{\rho})$

Evolution of Power Spectra of Fluctuations

- ◆ □ ▶ ◆ 🗇 ▶ ◆ 差 ▶ ▲ 差 → りへぐ

Evolution of One-Point PDFs

How Do We Characterize This Transition?

▶ ▲□ ▶ ▲ 三 ▶ ▲ 三 → りへの

Shannon Entropy $S_{shannon} \equiv -\int \mathcal{D} arphi f[arphi] \ln f[arphi]$

Shannon (or von Neumann) Entropy

$$S_{shannon} \equiv -\int \mathcal{D}\varphi f[\varphi] \ln f[\varphi] \qquad S_{vN} = -\text{Tr}\hat{\rho}(\hat{\varphi}) \ln \hat{\rho}(\hat{\varphi})$$

Entropy : Expectation Value of Information

 $S=-\langle \ln f\rangle_f=-\langle \ln \hat{\rho}\rangle$

Entropy : Expectation Value of Information

$$S = -\langle \ln f \rangle_f = -\langle \ln \hat{\rho} \rangle$$

Relative Entropy (KL-Divergence) - Continuum Variables

$$S_{KL} \equiv \int \mathcal{D}\varphi f[\varphi] \ln\left(rac{f[\varphi]}{Q[\varphi]}
ight) = \left\langle \ln\left(rac{f}{Q}
ight)
ight
angle_{f}$$

Entropy : Expectation Value of Information

$$S = -\langle \ln f \rangle_f = -\langle \ln \hat{\rho} \rangle$$

Relative Entropy (KL-Divergence) - Continuum Variables

$$S_{KL} \equiv \int \mathcal{D}\varphi f[\varphi] \ln\left(rac{f[\varphi]}{Q[\varphi]}
ight) = \left\langle \ln\left(rac{f}{Q}
ight)
ight
angle_{f}$$

1. What is $f[\varphi]$?

Entropy : Expectation Value of Information

$$S = -\langle \ln f \rangle_f = -\langle \ln \hat{\rho} \rangle$$

Relative Entropy (KL-Divergence) - Continuum Variables

$$S_{KL} \equiv \int \mathcal{D}\varphi f[\varphi] \ln\left(\frac{f[\varphi]}{Q[\varphi]}\right) = \left\langle \ln\left(\frac{f}{Q}\right) \right\rangle_{f}$$

- 1. What is $f[\varphi]$?
- 2. What fields φ should we use?

Entropy : Expectation Value of Information

$$S = -\langle \ln f \rangle_f = -\langle \ln \hat{\rho} \rangle$$

Relative Entropy (KL-Divergence) - Continuum Variables

$$S_{KL} \equiv \int \mathcal{D}\varphi f[\varphi] \ln \left(\frac{f[\varphi]}{Q[\varphi]}\right) = \left\langle \ln \left(\frac{f}{Q}\right) \right\rangle_f$$

- 1. What is $f[\varphi]$?
- 2. What fields φ should we use?
- 3. What is Q?

Approximating $f[\varphi]$: Maximum Entropy Coarse Graining Maximise S Subject to Measured $C_{\varphi\vartheta}(x,y) = \langle \varphi(x)\vartheta(y) \rangle$

$$S_{ME} = \frac{1}{2}\ln\det(\mathcal{C}) + \frac{N_{\text{dof}}}{2} + \frac{N_{\text{dof}}}{2}\ln 2\pi$$

Same as entropy of a Gaussian Random Field with same covariance

$$\det \mathcal{C} \sim V_{\rm fluc}^2 \qquad \mathcal{J}^2 = \left| \frac{\partial \varphi}{\partial \varphi_{\rm can}} \right|^2 \sim V_{\rm quantum}^2$$

 $\frac{dS}{dt} = 0 \text{ for linear fluctuation evolution of canonical fields}$
Approximating $f[\varphi]$: Maximum Entropy Coarse Graining Maximise S Subject to Measured $C_{\varphi\vartheta}(x,y) = \langle \varphi(x)\vartheta(y) \rangle$

$$S_{ME} = \frac{1}{2}\ln\det(\mathcal{C}) + \frac{N_{\text{dof}}}{2} + \frac{N_{\text{dof}}}{2}\ln 2\pi$$

Homogeneous Field

$$S_{ME} = \frac{1}{2} \sum_{k} \ln \det \tilde{\mathcal{C}}_{k} + \frac{N_{\text{dof}}}{2} + \frac{N_{\text{dof}}}{2} \ln 2\pi$$

Same as entropy of a Gaussian Random Field with same covariance

det
$$\mathcal{C} \sim V_{\text{fluc}}^2$$
 $\mathcal{J}^2 = \left| \frac{\partial \varphi}{\partial \varphi_{\text{can}}} \right|^2 \sim V_{\text{quantum}}^2$

 $\frac{dS}{dt} = 0 \text{ for linear fluctuation evolution of canonical fields}$

Evolution of Determinants: Fundamental Fields

(□ ▶ ▲@ ▶ ▲ 볼 ▶ ▲ 볼 ▶ ~ 볼 ~ ∽) Q (~)

Evolution of Determinants: Fundamental Fields

Information Stored In Cross-Correlations

Information Content of Cross-Correlations

▲□▶▲圖▶▲≧▶▲≧▶ ≧ め�?

Evolution of Determinants: Phonons

The Shock-in-Time

$\ln \rho$ Phonon DOF

Field DOF

The Shock-in-Time

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 わへの

The Analogy

Spatial Shock

$$\blacktriangleright v_{bulk}^2 > c_s^2 \to v_{bulk}^2 < c_s^2$$

- Characteristic spatial scale
- Mediated by viscosity or collisionless dynamics
- Randomizing : shock front ΔS
- Post-shock evolution towards thermalization
- Jump in conserved quantities
- Timelike surface

Shock-in-Time

- $\ \, \blacktriangleright \ \, ln(\frac{\rho}{\bar{\rho}})^{-1} \gg 1 \rightarrow \\ ln(\frac{\rho}{\bar{\rho}})^{-1} \sim 1$
- Characteristic time scale
- Mediated by gradients and nonlinearities
- ► Randomizing : cascade/part. production ΔS
- Slow post-shock evolution
- ▶ Jump in $a^{3(1+w)}\rho$
- Can be spacelike surface

Entropy : Expectation Value of Information

$$S = -\langle \ln f \rangle_f = -\langle \ln \hat{\rho} \rangle$$

$$S_{KL} \equiv \int \mathcal{D}\varphi f[\varphi] \ln\left(\frac{f[\varphi]}{Q[\varphi]}\right) = \left\langle \ln\left(\frac{f}{Q}\right) \right\rangle_{f}$$

- 1. What is $f[\varphi]$?
- 2. What fields φ should we use?
- 3. What is Q?

Entropy : Expectation Value of Information

$$S = -\langle \ln f \rangle_f = -\langle \ln \hat{\rho} \rangle$$

$$S_{KL} \equiv \int \mathcal{D}\varphi f[\varphi] \ln\left(rac{f[\varphi]}{Q[\varphi]}
ight) = \left\langle \ln\left(rac{f}{Q}
ight)
ight
angle_f$$

- 1. What is $f[\varphi]$? (MaxEnt Coarse Graining)
- 2. What fields φ should we use?
- 3. What is Q?

What is φ - Phonons as Collective Variables : In Shock

$\ln \rho$ Phonons

Fundamental Fields

-▶ ◀♬▶ ◀불▶ ◀불▶ = ∽੧<♡

What is φ - Phonons as Collective Variables : Post Shock

$\ln \rho$ Phonons

Fundamental Fields

ㅁ▶ ◀륨▶ ◀돌▶ ◀돌▶ ' 볼' '의익()~

Fluid-Like Description

Fourier Mode Distributions: Pre-Shock

(□ ▶ ▲□ ▶ ▲ 三 ▶ ▲ 三 → りへぐ

Fourier Mode Distributions: In-Shock

(□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ● ●

Fourier Mode Distributions: In-Shock

(□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ● ●

Fourier Mode Distributions: Post-Shock

|□▶ <畳▶ <差▶ <差▶ = りへぐ

Entropy : Expectation Value of Information

$$S = -\langle \ln f \rangle_f = -\langle \ln \hat{\rho} \rangle$$

$$S_{KL} \equiv \int \mathcal{D}\varphi f[\varphi] \ln\left(rac{f[\varphi]}{Q[\varphi]}
ight) = \left\langle \ln\left(rac{f}{Q}
ight)
ight
angle_f$$

- 1. What is $f[\varphi]$? (MaxEnt Coarse Graining)
- 2. What fields φ should we use?
- 3. What is Q?

Entropy : Expectation Value of Information

$$S = -\langle \ln f \rangle_f = -\langle \ln \hat{\rho} \rangle$$

$$S_{KL} \equiv \int \mathcal{D}\varphi f[\varphi] \ln\left(\frac{f[\varphi]}{Q[\varphi]}\right) = \left\langle \ln\left(\frac{f}{Q}\right) \right\rangle_f$$

- 1. What is $f[\varphi]$? (MaxEnt Coarse Graining)
- 2. What fields φ should we use? (ln ρ Phonons)
- 3. What is Q?

Entropy : Expectation Value of Information

$$S = -\langle \ln f \rangle_f = -\langle \ln \hat{\rho} \rangle$$

$$S_{KL} \equiv \int \mathcal{D}\varphi f[\varphi] \ln\left(\frac{f[\varphi]}{Q[\varphi]}\right) = \left\langle \ln\left(\frac{f}{Q}\right) \right\rangle_f$$

- 1. What is $f[\varphi]$? (MaxEnt Coarse Graining)
- 2. What fields φ should we use? (ln ρ Phonons)
- 3. What is Q?

Entropy : Expectation Value of Information

$$S = -\langle \ln f \rangle_f = -\langle \ln \hat{\rho} \rangle$$

$$S_{KL} \equiv \int \mathcal{D}\varphi f[\varphi] \ln\left(rac{f[\varphi]}{Q[\varphi]}
ight) = \left\langle \ln\left(rac{f}{Q}
ight)
ight
angle_f$$

- 1. What is $f[\varphi]$? (MaxEnt Coarse Graining)
- 2. What fields φ should we use? (ln ρ Phonons)
- 3. What is Q? (phase space partitioning)

Approximating $f[\varphi]$: Maximum Entropy Coarse Graining Maximise S Subject to Measured $C_{\varphi\vartheta}(x,y) = \langle \varphi(x)\vartheta(y) \rangle$

$$S_{ME} = \frac{1}{2}\ln\det(\mathcal{C}) + \frac{N_{\text{dof}}}{2} + \frac{N_{\text{dof}}}{2}\ln 2\pi$$

Same as entropy of a Gaussian Random Field with same covariance

$$\det \mathcal{C} \sim V_{\text{fluc}}^2 \qquad \mathcal{J}^2 = \left| \frac{\partial \varphi}{\partial \varphi_{\text{can}}} \right|^2 \sim V_{\text{quantum}}^2$$

 $\frac{dS}{dt} = 0$ for linear fluctuation evolution of canonical fields

Approximating $f[\varphi]$: Maximum Entropy Coarse Graining Maximise S Subject to Measured $C_{\varphi\vartheta}(x,y) = \langle \varphi(x)\vartheta(y) \rangle$

$$S_{ME} = \frac{1}{2}\ln\det(\mathcal{C}) + \frac{N_{\text{dof}}}{2} + \frac{N_{\text{dof}}}{2}\ln 2\pi$$

NonCanonical Variables $(\mathcal{Q} \rightarrow \mathcal{J})$

$$S_{ME}^{\rm nc} = \frac{1}{2} \ln \left(\frac{\det \mathcal{C}}{\mathcal{J}^2} \right) + \dots$$

Same as entropy of a Gaussian Random Field with same covariance

$$\det \mathcal{C} \sim V_{
m fluc}^2 \qquad \mathcal{J}^2 = \left| rac{\partial arphi}{\partial arphi_{
m can}}
ight|^2 \sim V_{
m quantum}^2$$

 $\frac{dS}{dt} = 0$ for linear fluctuation evolution of canonical fields

NonCanonical Variables and Phase Space Discretisation *Q* represents partitioning of phase space

Choice of Phase Space Discretisation and Quantum Theory

$$\begin{split} C^{\text{quantum}}_{\vartheta,\varphi}(x,y) &= \left\langle \hat{\vartheta}(x)\hat{\varphi}(y) \right\rangle = \frac{1}{2} \left\langle \left\{ \hat{\vartheta}, \hat{\varphi} \right\} \right\rangle + \frac{1}{2} \left\langle \left[\hat{\vartheta}, \hat{\varphi} \right] \right\rangle = C^{\text{S}} + C^{\text{A}} \\ & [\hat{A}, \hat{B}] \equiv \hat{A}\hat{B} - \hat{B}\hat{A} \text{ and } \{\hat{A}, \hat{B}\} = \hat{A}\hat{B} + \hat{B}\hat{A} \end{split}$$

Semi-Classical Limit $\hbar \to 0$

$$\begin{split} C^S &\to C^{\text{classical}}_{\vartheta,\varphi} \\ C^A &\to \left\langle \left\{ \hat{\vartheta}, \hat{\varphi} \right\}_{PB} \right\rangle = \left\langle \left| \frac{\partial(\varphi)}{\partial(\varphi_{\text{can}})} \right|^2 \right\rangle \end{split}$$

Accounting for NonCanonical Nature

Accounting for NonCanonical Nature

Density Perturbations from the Shock-in-Time

DAG

Ultra Large Scale Modulating Isocurvature Field

 $\zeta = \zeta_{\text{inf}} + F_{NL}(\chi) \qquad \zeta = (\delta \ln a) |_{\rho}$

Dependence of Shock on Model Parameters: Coupling Constants

Dependence of Shock on Model Parameters: Initial Fields

Density Perturbations

Dependence of Density Perturbations on Parameters

Dependence of Density Perturbations on Parameters

Dependence of Density Perturbations on Parameters

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 りへで

▲□▶ ▲圖▶ ▲ ≧▶ ▲ ≧▶ ≧ 釣 Q @

▲□▶▲圖▶▲≣▶▲≣▶ ≣ め∢@

Conclusions

- Inflation is a crucial ingredient in modern cosmology, confirmed by CMB observations
- ► The inflationary phase *must* end, the stage of (p)reheating
- Leads to highly nonthermal slowly evolving state
- Transition characterised by short burst of entropy production
- Many interesting dynamical phenomena