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Inhomogeneous Nonlinear Cosmology

o First order phase transitions (this talk)
@ Conversion of isocurvature modes into intermittent density
perturbations in preheating [JB, Bond, Frolov, Huang]
» Caustic formation in chaotic long wavelength dynamics
» Generalized form of local nonGaussianity with localized spatial
properties
@ Entropy production in highly inhomogeneous nonlinear field theories
(such as the end of inflation) [JB, Bond]
@ Strongly inhomogeneous and nonlinear initial conditions for

cosmology [JB, Peiris, Johnson, Aguirre (in progress)]
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Numerical Approach is Essential

Massively Parallel Lattice Simulation
@ Solve field equation (e.g.)

V2¢;

5 T V(@) =0

. A
i+3-0i —
$i+32¢

@ 10th order Gauss-Legendre integration
(general) or 8th order Yoshida
(nonlinear sigma models)

o Finite-difference (fully parallel) or
Pseudospectral (OpenMP)

@ Optional absorbing boundaries o Energy conservation
@ Quantum fluctuations — realization of 0(107° —1071%) J
random field
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Outline

Bubbly Overview and Review of SO(2,1) Framework

Setting Initial Conditions (solution of bounce equation)

Full Nonlinear 3D Dynamics

@ double-well with slightly broken Z, (symmetry breaks)

@ double-well with strongly broken Z, (symmetry remains)
© single-well with plateau (symmetry remains)

@ two-field potential supporting inflation (symmetry breaks)

Linear Fluctuation Analysis

Application to Planar Domain Walls

Implications for Cosmology/Observations
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The Bubbly Universe
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[Aguirre, Johnson],[Freivogel,Kleban, Nicolis,Sigurdson]
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What are the dynamics of individual collisions?
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Large Body of Past Work
Vacuum Bubble Collisions
e Hawking, Moss, Stewart

Single Instantons ) .
@ Kosowski, Turner, Watkins,

e Coleman, delLuccia Kamionkowski

o Hawking, Moss e Johnson, Aguirre, Tysanner, Larfors
o Turok @ Chang, Kleban, Levy, Sigurdson,
@ Sasaki, Linde, Tanaka, Gobbetti

Yam.amoto. . e Easther, Giblin, Lim, Lau
° Garriga, Vilenkin, Montes, ¢ johnson, Lehner, Peiris,. .. (GR)

Garcia-Bellido

° ..
o Guth, Guven :
Observations
@ Freese, Adams ..
] o Johnson, Peiris, Mortlock,

@ Susskind et al McEwan, Feeney
° .

@ Smith, Senatore, Osborne
Assume (Spacetime) Symmetries
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Sta nd ard Fra meWOI'k SO (2 y 1) Sym met ry [Hawking,Moss,Stewart],many others

@ Most likely bubble has SO(3,1)
symmetry
@ Second bubble breaks

» Boosts along axis connecting
centers

» Rotations about any axis in
plane orthogonal to axis
connecting centers

@ Preserve SO(2,1)
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Sta nd al’d Fra meWOI'k 50(2 y 1) Sym met ry [Hawking,Moss,Stewart],many others

@ Most likely bubble has SO(3,1)

symmetry
t = scosh(y)) @ Second bubble breaks
X=X » Boosts along axis connecting
y = ssinh(1)) cos(6) centers

» Rotations about any axis in

z = ssinh(%) sin(0 :
() sin(0) plane orthogonal to axis
connecting centers

@ Preserve SO(2,1)

1+1-Dimensional Dynamics (e.g. in Minkowski)
2 2
%9 209 0°¢ V() = 0

0s2 ' s0s Ox?
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Sta nd al’d Fra meWOI'k 50(2 y 1) Sym met ry [Hawking,Moss,Stewart],many others

@ Most likely bubble has SO(3,1)

, h symmetry
= scos
(¥) @ Second bubble breaks
X=X » Boosts along axis connecting
y = ssinh(2)) cos(6) centers
. . Rotations about any axis in
= ssinh(v) sin(0 g y
z () sin(0) plane orthogonal to axis

connecting centers

@ Preserve SO(2,1)

1+1-Dimensional Dynamics (e.g. in Minkowski)

32¢ 2 0¢ 52¢ , -
0s2 ' s0s Ox? igl=0

Should We Trust This When Quantum Fluctuations are Included? )
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Effect of Fluctuations on the Collision

Dilute Gas Initial Conditions

¢init = Z ¢bounce(|x - ri|) - (Nbub - 1)¢false + 5¢(X7)/7 Z)

]

d¢ is not SO(2,1) symmetric and must be included in quantum theory
@ The bubbles nucleate

@ Inflation amplifies subhorizon fluctuations

Is ¢ dynamically important? )

Need simulations with more than one spatial dimension
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Initial Conditions -

Improved Calculation of the Bounce
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Settlng Inltlal COndItIOnS InStantOnS [Coleman],[Coleman, DeLuccia]
SO(4) Bounce Equation

2
P9, 300

or? rE Org Vig)=0
¢(rE - OO) - ¢false %,‘E:O) =0

Mapping Parameters
Pseudospectral Solution L : ~ radius of bubble
d : ~ width / radius

re
o(re) = Z ¢iB | h | —— Extendable to ...
i \/ R+ L2

@ dynamical metric

h(x) = ltan_l <d—1 tan (W [x _ 1})) + 1 e multiple fields
T 2 2 (shooting hard)

Global Expansion — Extremely Accurate ® PDEs (shooting
breaks)
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Versatile and Accurate (Even for Very Thin Walls)
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Collision Dynamics
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Collisions in a Double Well Potential

08— Exactly SO(2,1) Invariant Collision
0.6
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Numerical Test : Exact Instanton Initial Conditions

SO(2,1) Invariant Initial Condition

¢init = Z ¢bounce(|x - ri|) - (Nbub - 1)¢false

12
— Numerical I
——  Thin-Wall 060

. Gpp=TFo+ S

0.0

-0.60

0 10 20 30 40

Time=91.9239
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Numerical Test : Exact Instanton Initial Conditions

SO(2,1) Invariant Initial Condition

5 =0

Time=01.9239
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Thin-Wall Approximation

init = »_ bew(x — i) = (Npup — 1)Patse

L]

Break boost invariance of time-evolved solution

12

— Numerical
1 ——  Thin-Wall
. bre =Fdo+ 3

- 0.60

0 10 20 30 40 -0.60
TE

¢tw = ¢o tanh (%) + g
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Thin-Wall Approximation

3¢ =" ($bounce(|x — fil) — ew(|x — 1i[))

Break boost invariance of time-evolved solution

12

10° T T T T
10-41 |l | 060
— Numerical
QS 1078F —  Thin-Wall i
] — b =Fbo+ 3 00
1016
0 20 40 60 80 100 -0.60
TE
h m(r — Ro) 0 b
— — L —
¢tW ¢0 ta n \/§ + 2 Time=91.9239
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Thin-Wall Approximation

dp = Z (¢bounce(|x - ri|) - ¢tw(|x - ri|))

Break boost invariance of time-evolved solution

I 1-2
0.60

-0.60

mry

Otw = ¢otanh (M) n g -

V2
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Comparison with One-Dimensional Simulation

This Effect is Missed by Assuming SO(2,1)

SO(2,1), Exact IC T
s 3D, Exact IC

<+ S0(2,1), Approx. IC

_4ff — 3D, Approx. 1C, Isotropic Stencil
v—v 3D, Approx. IC, Noniso. Stencil

0 20 40 60 80 100
mt
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Field Evolution with Fluctuations ...

Bulk Vacuum Fluctuations

¢init = Z (Zsbounce(’x - ri‘) - (Nbub - 1)¢false + 5¢(X7}/7 Z)

]

———
Time=919239

without Hubble with Hubble
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Field Evolution with Fluctuations ...

Bulk Vacuum Fluctuations

~ ak ~
Ok ~ Ok ~ b/ k2 + V" (dfal
“ V k2 + V”(¢false) ( 35&‘)

—
Time=919239

without Hubble with Hubble
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... Produces Oscillons

[Bogolubsky and Makhanov],[Gleiser,Copeland,et al][Guth,Farhi,et al][Amin,Easther,Finkel,Shirokoff][Hertzberg],...
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Oscillons Form from Asymmetric Blobs

Initial Blob of Field

2 2 2
X y +z
¢init = ¢true + (¢false - ¢true)eXp (_? - T)
Pancake Blobs Cigar Blobs
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A Model
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A Model without Amplification

m,

Time=919239
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Oscillons with Inflation?

-3.0

V(9)/ A5

Time=0
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Oscillons with Inflation?

-3.0

Fluctuations

4r 4+ &+ No Fluctuations 7]

3k ]
S o .
~
< 1k .
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The landscape is not one-dimensional

o = £ DA
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An Inflationary Model with Oscillons

Two Field Model

1 (o2 2 o3 o 2

Ao — — 1 ) — —
AT )= Ao [4 (U% ) " (300 o " 3>]
g2/\002
S 270 (5 — g¢)%¢? + Aoged + Vo

V(O’, ¢) = Vtunnel(U)
+ Vcoup//’ng(o—f O)
+ %nflation(¢)
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Instanton in Two-Field Model

0.8
e 0.4F
. = Il Il
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This solution has only a single negative 10~k

H H H L | | | | :
eigenmode in the O(4) symmetric sector 0 20 40 60 20 100
Mode Number (7)
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Field Evolution in Two-Field Model

o Evolution ¢ Evolution

1.2
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Theory of Linear Fluctuations -

Parametric Resonance
in Inhomogeneous Backgrounds

Jonathan Braden, University College London [Three Dimensional Quantum Bubble Collisiol March 18, 2015 27 / 38



Parametric Resonance for Linear Fluctuations

Linear Fluctuations Around SO(2,1) Solution

¢(57X7w79) = ¢bg(s X) + 6¢(S X»Tl)’e)

82@bbg 2 8¢bg 6 ¢bg / .
52 T3 0s o2 TV (9)=0

2 K
5 (5980) = 3 (556 + (55 + V' (6n) ) (s58:) =

852
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Parametric Resonance for Linear Fluctuations

Linear Fluctuations Around Planar Solution

¢(t,X,y,Z) = ¢bg(tax) + 6¢(taxa}/7z)

82¢bg _ 82§bbg
ot? Ox?

82 82 2 "
2 (5¢kj_) - 2 (6¢kl) + (kJ_ + V (¢bg)) (5¢kj_) = 0
ot Ox

+ V'(¢rg) =0

Planar Limit
es>1
@ Time scales much shorter than s
° K2 > s?
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Form of V"

Oscillating Background — Floquet Theory

Exactly Periodic Effective Mass
8P Fioquet = P(x, t)elt P(x,t+2T) = P(x,t) PeR

Details in Braden et al arXiv:1412.5591
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Form of V"
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Two wells that repeatedly annihilate

Oscillating Background — Floquet Theory

Exactly Periodic Effective Mass
5¢Floquet = P(Xv t)eﬂt P(X7 t+ 2T) = P(X7 t) PeR J

Details in Braden et al arXiv:1412.5591
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Form of V"
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One well oscillating up and down

Oscillating Background — Floquet Theory

Exactly Periodic Effective Mass

5¢Floquet = P(X, t)eﬂt

P(x,t+2T) = P(x,t)

PeR

0oV (9)

Details in Braden et al arXiv:1412.5591
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Instability in Sine-Gordon Model

Exactly Periodic Backgrounds

_ COsS vt _
¢breather = 4tan ! (%) T = (1 + V2) 1/2

vkl
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Instability in Sine-Gordon Model

Exactly Periodic Backgrounds

_ COS vt _
¢breather =4tan ! (%) v = (1 + V2) 1/2

v2>1
_ 9 .
121U= ] 10A 2 :
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Broad Resonance : Well-Defined Wall Collisions .«

[Kofman,Linde,Starobinski] for homogeneous bg

Single Wall, ¢ink.sc = 4tan(€*), duink.ow = tanh(x/v/2)

In 1d theory 0¢ = Oxdkink(x) is a zero mode
In 3d theory — bound fluctuations with w = k|
Very General : Goldstone for spontaneously broken translation invariance

During the collision, there is a short interval when these are not
eigenmodes
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Broad Resonance : Well-Defined Wall Collisions
[Kofman,Linde,Starobinski] for homogeneous bg

Single WaII, ¢kink,SG = 4tan_1(ex), (bkink,DW = tanh(x/\/i)

In 1d theory 0¢ = Oxdkink(x) is a zero mode
In 3d theory — bound fluctuations with w = k|

Very General : Goldstone for spontaneously broken translation invariance

w 1
gt 45 = [ g (306R, +662,)

M= 6¢wal[ T r T
— OV -
2 H bp Vmin
3
)
s
3
<
£ Ll 11
L L 10— | L 1
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t/Tbreather t/Tbrcather
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Weak Resonance : Oscillating Blob

Woreather

t/Tbreather

(@peater) |, 11 2 4 2 2
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Resonance in Double Well (with approximate backgrounds)

T ° T"maz = 25\/§
20 A A Tmaexr = 3\/5
= T'max = 35\/§
s 15 __\,.v\",\
<
g 10 %\M‘m
3E~ 5F ' m""*-“f\‘
0 | ) | | ”
0 ) 10 15 20
kLTwalls

Collisions of Walls
‘fb‘;g — _tanh <\7@(X _ r(t))> + tanh <ﬁ(x+ (¢ ))> 1
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Resonance in Double Well (with approximate backgrounds)

* * Tmazx = 25\/§
A Tmax = 3\/5

[\V]
@]
I
>
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Collisions of Walls

1 mt
r(t) = fmax + —= log | cos? () + e_2‘ﬁ(r"’ax_"""")>
( ) e 2\@ . < T walis
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Resonance in Double Well (with approximate backgrounds)

* ¢ Tmax = 25\/§
A Tmax = 3\/§
v Tmas = 3.5V2
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Resonance in Double Well (with approximate backgrounds)

Oscillating Blob

Pog _q, e e
™ 1+\/asech(\/§emx)cos(\/§ 1 —e’mt)
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Resonance in Double Well (with approximate backgrounds)
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Demonstration in Full Lattice Simulation

Contours of p/A¢}

Evolution of ¢
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Spectrum of Growing Instabilities
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Resonance on a Single Wall
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Review of Mechanism

SO(2,1) symmetry can be badly broken by amplified quantum quctuationsJ

O Initial state evolves as a piece that preserves SO(2,1) plus a small
perturbation that doesn't

@ Perturbations are unstable in the evolving symmetric background
© Grow ripples and bumps on the bubble walls
o

Large ripples and bumps lead to a random field with blobs whose
characteristic size is determined by linear instability

@ Nonlinearities condense these blobs into oscillons

Can have oscillons and inflation in multifield models )
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Implications

SO(2,1) symmetry can be badly broken J

Observables don't necessarily have azimuthal symmetry

@ Beam smoothing versus inhomogeneity scale
@ Tensor modes are produced by fracturing of walls

@ Sign of ( = d1In(a) in one field versus two field model

Qualitative conclusions don't depend on inflationary scenario

@ Oscillons as nonequilibrium environment for baryogenesis?
@ Oscillons dilute as a=3 — perturbed EOS during phase transition?
@ Application to braneworlds with colliding walls
@ Preheating in unwinding inflation?
@ Bubble baryogenesis
These signals are spatially intermittent... J
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