Collisions of Vacuum Bubbles with Quantum Fluctuations

Jonathan Braden, CITA / U. Toronto

Perimeter Institute, Waterloo, Ontario

December 17, 2013

in collaboration with Dick Bond, Laura Mersini-Houghton

1312.XXXX : Cosmic Bubbles and Domain Walls I : Parametric Amplification of Linear Fluctuations

1312.XXXX : Cosmic Bubbles and Domain Walls II : Nonlinear Fracturing of Colliding Walls

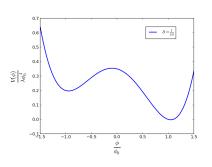
1312.XXXX : Cosmic Bubbles and Domain Walls III : The Role of Oscillons in Three-Dimensional Bubble Collisions

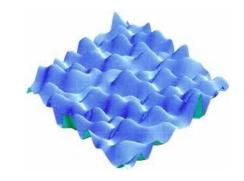
Videos at www.cita.utoronto.ca/~ibraden/

Outline

- Bubbly Overview and Review of SO(2,1) Framework
- Setting Initial Conditions (solution of bounce equation)
- Full Nonlinear 3D Dynamics
 - \bullet double-well with slightly broken Z_2 (symmetry breaks)
 - ② double-well with strongly broken Z_2 (symmetry remains)
 - single-well with plateau (symmetry remains)
 - two-field potential supporting inflation (symmetry breaks)
- Linear Fluctuation Analysis
- Implications for Observations

The Bubbly Universe

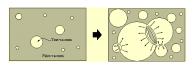




$$N_{col} \sim \sqrt{\Omega_k} \left(\frac{H_{false}}{H_{inflation}} \right)^2 \frac{\Gamma}{\mathcal{V}} H_{false}^{-4}$$

[Aguirre, Johnson], [Freivogel, Kleban, Nicolis, Sigurdson]

$$\frac{\Gamma}{\mathcal{V}} \sim B^2 |\textit{det}(\delta^2 S)|^{-1/2} e^{-B}$$



What are the dynamics of individual collisions?

Large Body of Past Work

Single Instantons

- Coleman, deLuccia
- Hawking, Moss
- Turok
- Sasaki, Linde, Tanaka, Yamamoto
- Garriga, Vilenkin, Montes, Garcia-Bellido
- Guth, Guven
- Freese, Adams
- Susskind et al
- ...

Vacuum Bubble Collisions

- Hawking, Moss, Stewart
- Kosowski, Turner, Watkins, Kamionkowski
- Johnson, Aguirre, Tysanner, Larfors
- Chang, Kleban, Levy, Sigurdson
- Easther, Giblin, Lim, Lau (3D, but symmetric IC's)
- Johnson, Lehner, Peiris,...(GR)
- ...

Observations

- **Johnson**, Peiris, Mortlock, McEwan, Feeney,...
- Smith, Senatore, Osborne

Assume (Spacetime) Symmetries

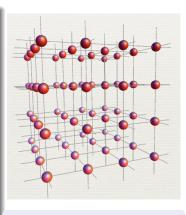
Numerical Approach

Massively Parallel Lattice Simulation

Solve field equation (e.g.)

$$\ddot{\phi}_i + 3\frac{\dot{a}}{a}\dot{\phi}_i - \frac{\nabla^2\phi_i}{a^2} + V'(\vec{\phi}) = 0$$

- 10th order Gauss-Legendre integration (general) or 8th order Yoshida (nonlinear sigma models)
- Finite-difference (fully parallel) or Spectral (OpenMP, but MPI version in the works)
- Optional absorbing boundaries
- Quantum fluctuations \rightarrow realization of random field



• Energy conservation $\mathcal{O}(10^{-9}-10^{-14})$

40149147177

Standard Framework SO(2,1) Symmetry [Hawking, Moss, Stewart], many others

- Most likely bubble has SO(3,1) symmetry
- Second bubble breaks
 - Boosts along axis connecting centers
 - Rotations about any axis in plane orthogonal to axis connecting centers
- Preserve SO(2,1)

Standard Framework SO(2,1) Symmetry [Hawking, Moss, Stewart], many others

$$t = s \cosh(\psi)$$

$$x = x$$

$$y = s \sinh(\psi) \cos(\theta)$$

$$z = s \sinh(\psi) \sin(\theta)$$

- Most likely bubble has SO(3,1) symmetry
- Second bubble breaks
 - Boosts along axis connecting centers
 - Rotations about any axis in plane orthogonal to axis connecting centers
- Preserve SO(2,1)

1+1-Dimensional Dynamics (e.g. in Minkowski)

$$\frac{\partial^2 \phi}{\partial s^2} + \frac{2}{s} \frac{\partial \phi}{\partial s} - \frac{\partial^2 \phi}{\partial x^2} - V'(\phi) = 0$$

Standard Framework SO(2,1) Symmetry [Hawking, Moss, Stewart], many others

$$t = s \cosh(\psi)$$

$$x = x$$

$$y = s \sinh(\psi) \cos(\theta)$$

$$z = s \sinh(\psi) \sin(\theta)$$

- Most likely bubble has SO(3,1) symmetry
- Second bubble breaks
 - Boosts along axis connecting centers
 - Rotations about any axis in plane orthogonal to axis connecting centers
- Preserve SO(2,1)

1+1-Dimensional Dynamics (e.g. in Minkowski)

$$\frac{\partial^2 \phi}{\partial s^2} + \frac{2}{s} \frac{\partial \phi}{\partial s} - \frac{\partial^2 \phi}{\partial x^2} - V'(\phi) = 0$$

Should We Trust This When Quantum Fluctuations are Included?

Effect of Fluctuations on the Collision

Dilute Gas Initial Conditions

$$\phi_{\textit{init}} = \sum_{\mathbf{r}_i} \phi_{\textit{bounce}}(|\mathbf{x} - \mathbf{r}_i|) - (N_{\textit{bub}} - 1)\phi_{\textit{false}} + \delta\phi(\mathbf{x}, \mathbf{y}, \mathbf{z})$$

 $\delta\phi$ is not $\mathsf{SO}(2,1)$ symmetric and **must** be included in quantum theory

- The bubbles nucleate
- Inflation amplifies subhorizon fluctuations

Is $\delta \phi$ dynamically important?

Need simulations with more than one spatial dimension

Setting Initial Conditions: Instantons [Coleman], [Coleman], [Coleman, DeLuccia]

SO(4) Bounce Equation

$$\begin{split} \frac{\partial^2 \phi}{\partial r_E^2} + \frac{3}{r_E} \frac{\partial \phi}{\partial r_E} - V'(\phi) &= 0\\ \phi(r_E = \infty) &= \phi_{false} \qquad \frac{\partial \phi(r_E = 0)}{\partial r_E} = 0 \end{split}$$

Pseudospectral Solution

$$\phi(r_E) = \sum_{i} c_i B_{2i} \left(h \left(\frac{r_E}{\sqrt{r_E^2 + L^2}} \right) \right)$$
$$h(x) \equiv \frac{1}{\pi} \tan^{-1} \left(d^{-1} \tan \left(\pi \left[x - \frac{1}{2} \right] \right) \right) + \frac{1}{2}$$

Global Expansion → Extremely Accurate

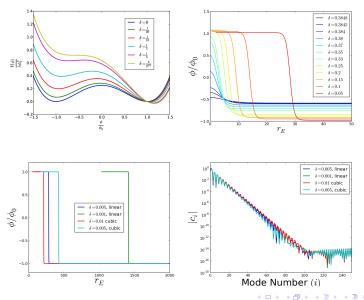
Mapping Parameters

 $L: \sim \text{radius of bubble}$ $d: \sim \text{width } / \text{ radius}$

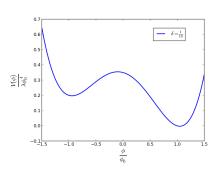
Extendable to ...

- dynamical metric
- multiple fields (shooting hard)
- PDEs (shooting

Versatile and Accurate (Even for Very Thin Walls)

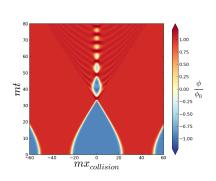


Collisions in a Double Well Potential



$$V(\phi) = \frac{\lambda}{4} \left(\phi^2 - \phi_0^2\right)^2 - \delta\lambda\phi_0^3(\phi - \phi_0)$$

Exactly SO(2,1) Invariant Collision

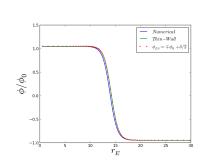


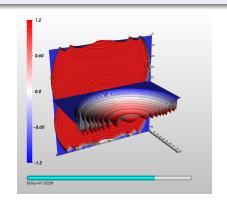
$$s^2 = t^2 - y^2 - z^2$$

Numerical Test: Exact Instanton Initial Conditions

SO(2,1) Invariant Initial Condition

$$\phi_{\mathit{init}} = \sum_{\mathbf{r_i}} \phi_{\mathit{bounce}}(|\mathbf{x} - \mathbf{r_i}|) - (\mathit{N_{bub}} - 1)\phi_{\mathit{false}}$$

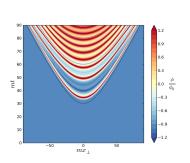


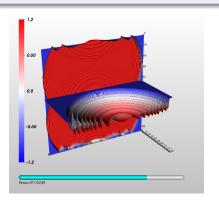


Numerical Test: Exact Instanton Initial Conditions

SO(2,1) Invariant Initial Condition

$$\delta \phi = 0$$

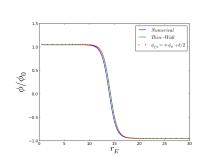




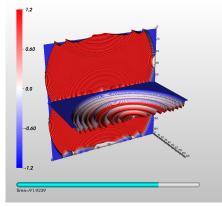
Thin-Wall Approximation

$$\phi_{\mathit{init}} = \sum_{\mathbf{r_i}} \phi_{\mathit{tw}}(|\mathbf{x} - \mathbf{r_i}|) - (\mathcal{N}_{\mathit{bub}} - 1)\phi_{\mathit{false}}$$

Break boost invariance of time-evolved solution



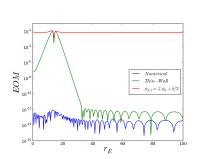
$$\phi_{tw} = \phi_0 \tanh\left(\frac{m(r-R_0)}{\sqrt{2}}\right) + \frac{\delta}{2}$$



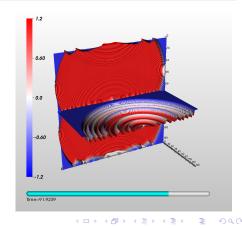
Thin-Wall Approximation

$$\delta \phi = \sum_{\mathbf{r_i}} \left(\phi_{bounce}(|\mathbf{x} - \mathbf{r_i}|) - \phi_{tw}(|\mathbf{x} - \mathbf{r_i}|) \right)$$

Break boost invariance of time-evolved solution



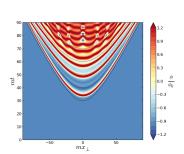
$$\phi_{tw} = \phi_0 \tanh\left(rac{m(r-R_0)}{\sqrt{2}}
ight) + rac{\delta}{2}$$



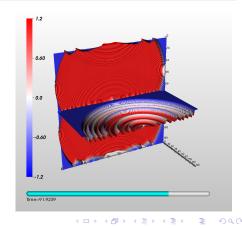
Thin-Wall Approximation

$$\delta \phi = \sum_{\mathbf{r_i}} \left(\phi_{bounce}(|\mathbf{x} - \mathbf{r_i}|) - \phi_{tw}(|\mathbf{x} - \mathbf{r_i}|) \right)$$

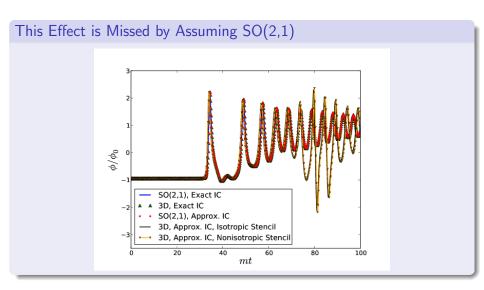
Break boost invariance of time-evolved solution



$$\phi_{tw} = \phi_0 \tanh\left(rac{m(r-R_0)}{\sqrt{2}}
ight) + rac{\delta}{2}$$



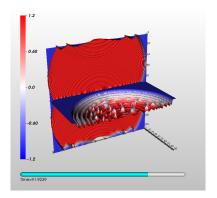
Comparison with One-Dimensional Simulation

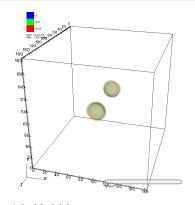


Field Evolution with Fluctuations ...

Bulk Vacuum Fluctuations

$$\phi_{\mathit{init}} = \sum_{\mathbf{r}.} \phi_{\mathit{bounce}}(|\mathbf{x} - \mathbf{r_i}|) - (N_{\mathit{bub}} - 1)\phi_{\mathit{false}} + \delta\phi(\mathbf{x}, \mathbf{y}, \mathbf{z})$$





without Hubble

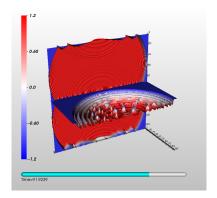
with Hubble

Field Evolution with Fluctuations ...

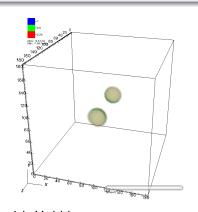
Bulk Vacuum Fluctuations

$$\delta ilde{\phi}_{\mathbf{k}} \sim rac{a_k}{\sqrt{k^2 + V''(\phi_{\mathit{false}})}}$$

$$\delta \dot{ ilde{\phi}}_{f k} \sim b_k \sqrt{k^2 + V''(\phi_{\it false})}$$



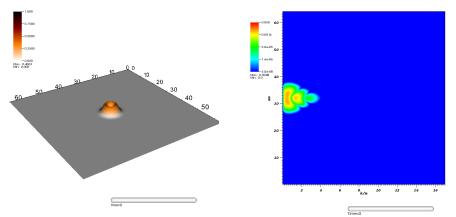
without Hubble



with Hubble

... Produces Oscillons

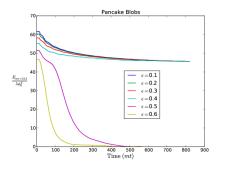
[Bogolubsky and Makhanov], [Gleiser, Copeland, et al] [Guth, Farhi, et al] [Amin, Easther, Finkel, Shirokoff] [Hertzberg],...

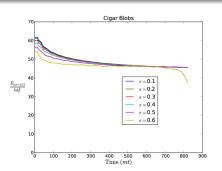


Oscillons Form from Asymmetric Blobs

Initial Blob of Field

$$\phi_{init} = \phi_{true} + (\phi_{false} - \phi_{true}) exp\left(-\frac{x^2}{a^2} - \frac{y^2 + z^2}{b^2}\right)$$



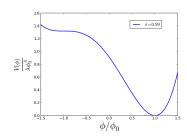


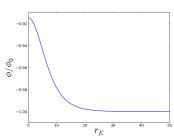
$$a^2 < b^2$$

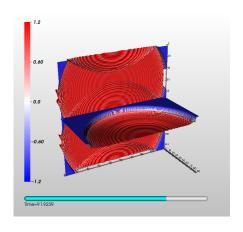
$$a^2 > b^2$$

∢ロト (個) (重) (重) (重) のQで

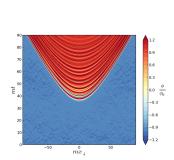
A Model without Amplification

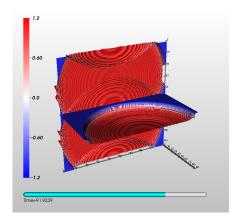




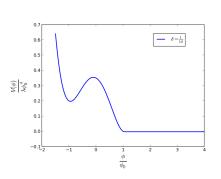


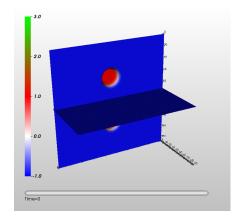
A Model without Amplification



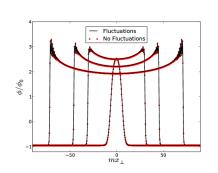


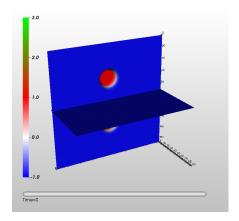
Oscillons with Inflation?





Oscillons with Inflation?

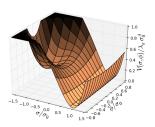




An Inflationary Model with Oscillons

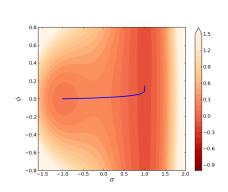
Two Field Model

$$V(\sigma,\phi) = \lambda_{\sigma}\sigma_0^4 \left[\frac{1}{4} \left(\frac{\sigma^2}{\sigma_0^2} - 1 \right)^2 + \delta \left(\frac{\sigma^3}{3\sigma_0^3} - \frac{\sigma}{\sigma_0} + \frac{2}{3} \right) \right] + \frac{g^2 \lambda_{\sigma}\sigma_0^2}{2} (\sigma - \sigma_0)^2 \phi^2 + \lambda \sigma_0^3 \epsilon \phi + V_0$$

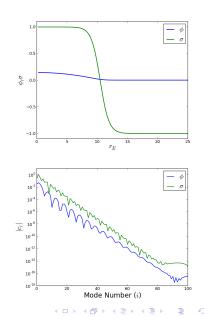


$$V(\sigma, \phi) = \frac{V_{tunnel}(\sigma)}{+ V_{coupling}(\sigma, \phi)} + \frac{V_{inflation}(\phi)}{+ V_{inflation}(\phi)}$$

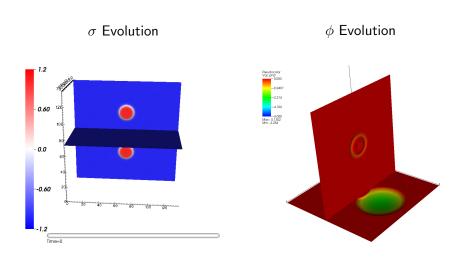
Instanton in Two-Field Model



This solution has only a single negative eigenmode in the O(4) symmetric sector



Field Evolution in Two-Field Model



Parametric Resonance for Linear Fluctuations

Linear Fluctuations Around SO(2,1) Solution

$$\begin{split} \phi(s,x,\psi,\theta) &= \phi_{bg}(s,x) + \delta\phi(s,x,\psi,\theta) \\ \frac{\partial^2 \phi_{bg}}{\partial s^2} &+ \frac{2}{s} \frac{\partial \phi_{bg}}{\partial s} - \frac{\partial^2 \phi_{bg}}{\partial x^2} + V'(\phi_{bg}) = 0 \\ \frac{\partial^2}{\partial s^2} \left(s \delta \phi_{\kappa} \right) - \frac{\partial^2}{\partial x^2} \left(s \delta \phi_{\kappa} \right) + \left(\frac{\kappa^2}{s^2} + V''(\phi_{bg}) \right) \left(s \delta \phi_{\kappa} \right) = 0 \end{split}$$

Parametric Resonance for Linear Fluctuations

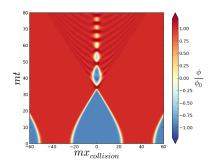
Linear Fluctuations Around Planar Solution

$$\begin{split} \phi(t,x,y,z) &= \phi_{bg}(t,x) + \delta\phi(t,x,y,z) \\ \frac{\partial^2 \phi_{bg}}{\partial t^2} &- \frac{\partial^2 \phi_{bg}}{\partial x^2} + V'(\phi_{bg}) = 0 \\ \frac{\partial^2}{\partial t^2} (\delta\phi_{k_{\perp}}) &- \frac{\partial^2}{\partial x^2} (\delta\phi_{k_{\perp}}) + \left(k_{\perp}^2 + V''(\phi_{bg})\right) (\delta\phi_{k_{\perp}}) = 0 \end{split}$$

Planar Limit

- *s* ≫ 1
- Time scales much shorter than s
- $\kappa^2 \gg s^2$

Form of V"



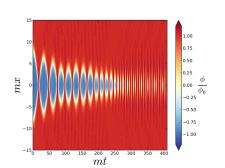
Oscillating Background \rightarrow Floquet Theory

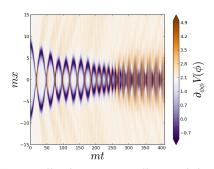
Exactly Periodic Effective Mass

$$\delta\phi_{Floquet} = P(x,t)e^{\mu t}$$
 $P(x,t+2T) = P(x,t)$ $P \in \mathbb{R}$

→ □ → → □ → → □ → □ → ○ ○ ○

Form of V"





Two wells that repeatedly annihilate

Oscillating Background \rightarrow Floquet Theory

Exactly Periodic Effective Mass

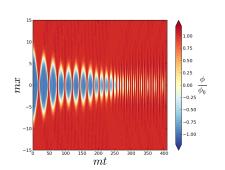
$$\delta \phi_{Floquet} = P(x, t)e^{\mu t}$$
 $P(x, t)$

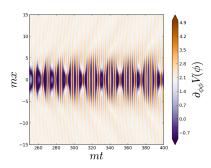
$$P(x, t + 2T) = P(x, t)$$

 $P \in \mathbb{R}$

4 D S 4 D S 4 D S 4 D S

Form of V"





One well oscillating up and down

Oscillating Background \rightarrow Floquet Theory

Exactly Periodic Effective Mass

$$\delta \phi_{Floquet} = P(x, t)e^{\mu t}$$

$$P(x, t + 2T) = P(x, t)$$

 $P \in \mathbb{R}$

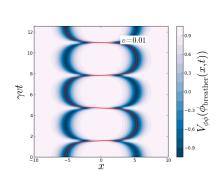
400480480480 8

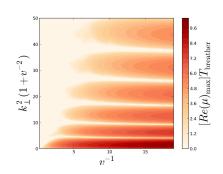
Instability in Sine-Gordon Model

Exactly Periodic Backgrounds

$$\phi_{\it breather} = 4 \, {
m tan}^{-1} \left(rac{\cos(\gamma_{\it v} \it vt)}{\it v } \cosh(\gamma_{\it v} \it x)
ight) \qquad \gamma_{\it v} \equiv (1 + \it v^2)^{-1/2}$$

 $v \ll 1$



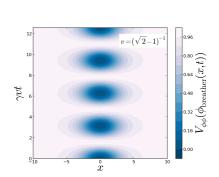


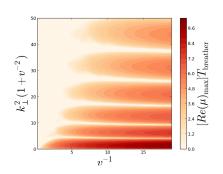
Instability in Sine-Gordon Model

Exactly Periodic Backgrounds

$$\phi_{\it breather} = 4 \, {
m tan}^{-1} \left(rac{\cos(\gamma_{\it v} \it vt)}{\it v } \cosh(\gamma_{\it v} \it x)
ight) \qquad \gamma_{\it v} \equiv (1 + \it v^2)^{-1/2}$$

 $v\gtrsim 1$





Broad Resonance: Well-Defined Wall Collisions cf.

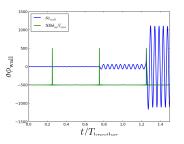
[Kofman,Linde,Starobinski] for homogeneous bg

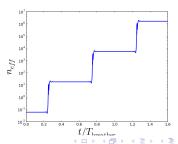
Single Wall,
$$\phi_{kink,SG} = 4tan^{-1}(e^x)$$
, $\phi_{kink,DW} = \tanh(x/\sqrt{2})$

In 1d theory $\delta \phi = \partial_x \phi_{kink}(x)$ is a zero mode In 3d theory \rightarrow bound fluctuations with $\omega = k_\perp$

Very General: Goldstone for spontaneously broken translation invariance

During the collision, there is a short interval when these are not eigenmodes





Broad Resonance: Well-Defined Wall Collisions of

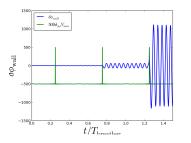
[Kofman,Linde,Starobinski] for homogeneous bg

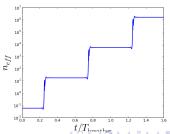
Single Wall,
$$\phi_{kink,SG} = 4tan^{-1}(e^x)$$
, $\phi_{kink,DW} = \tanh(x/\sqrt{2})$

In 1d theory $\delta \phi = \partial_x \phi_{kink}(x)$ is a zero mode In 3d theory \rightarrow bound fluctuations with $\omega = k_{\perp}$

Very General: Goldstone for spontaneously broken translation invariance

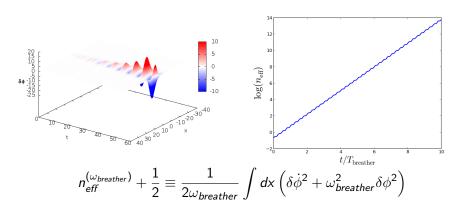
$$n_{\mathit{eff}}^{\omega_{\mathit{bound}}} + rac{1}{2} = \int dx rac{1}{2k_{\perp}} (k_{\perp}^2 \delta \phi_{k_{\perp}}^2 + \delta \dot{\phi}_{k_{\perp}}^2)$$



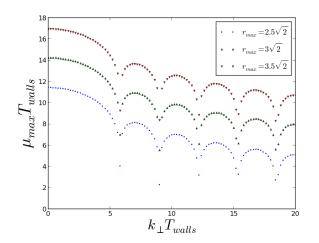


December 17, 2013 25 / 32

Weak Resonance : Oscillating Blob

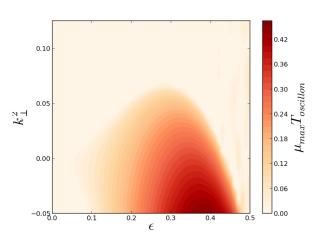


Resonance in Double Well (with approximate backgrounds)

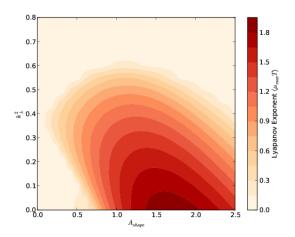


Collisions of Walls

Resonance in Double Well (with approximate backgrounds)

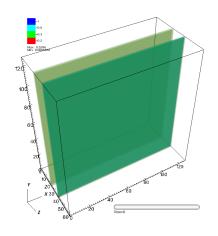


Resonance in Double Well (with approximate backgrounds)

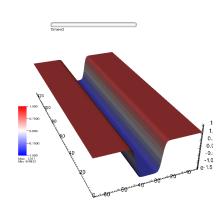


Oscillating Wall Width

Demonstration in Full Lattice Simulation

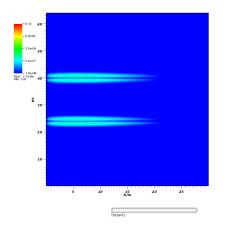


Contours of $\rho/\lambda\phi_0^4$

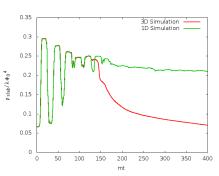


Evolution of ϕ

Spectrum of Growing Instabilities



Distribution of Energy



Review of Mechanism

SO(2,1) symmetry can be badly broken by amplified quantum fluctuations

- Initial state evolves as a piece that preserves SO(2,1) plus a small perturbation that doesn't
- Perturbations are unstable in the evolving symmetric background
- Grow ripples and bumps on the bubble walls
- Large ripples and bumps lead to a random field with blobs whose characteristic size is determined by linear instability
- Nonlinearities condense these blobs into oscillons

Can have oscillons and inflation in multifield models

Implications

SO(2,1) symmetry can be badly broken

Observables don't necessarily have azimuthal symmetry

- Beam smoothing versus inhomogeneity scale
- Tensor modes are produced by fracturing of walls
- Distribution of energy density is different than w/ SO(2,1)
- Sign of $\zeta = \delta \ln(a)$ in one field versus two field model

Analysis doesn't depend on eternal inflation scenario

- Oscillons as nonequilibrium environment for baryogenesis?
- Oscillons dilute as $a^{-3} \rightarrow$ perturbed EOS during phase transition?
- Application to braneworlds with colliding walls

These signals are spatially intermittent...

Caustics[B2FH: Bond, Braden, Frolov, Huang]14XX.XXXX?

$$\zeta = \zeta_{inflaton} + F_{NL}(\chi)$$

 χ : Gaussian random field

 F_{NI} : Nonlinear Function

Modulated Couplings

 aM_{P}/m

In(a/a_{end})

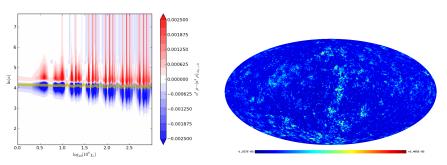
1.8

400

Caustics[B²FH: Bond, Braden, Frolov, Huang]14XX.XXXX?

$$\zeta = \zeta_{inflaton} + F_{NL}(\chi)$$

 χ : Gaussian random field F_{NL} : Nonlinear Function

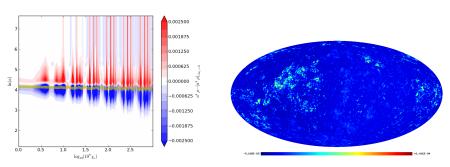


Modulated Initial Value of Decay Field

Caustics[B²FH: Bond, Braden, Frolov, Huang]14XX.XXXX?

$$\zeta = \zeta_{inflaton} + F_{NL}(\chi)$$

 χ : Gaussian random field F_{NL} : Nonlinear Function

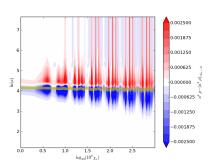


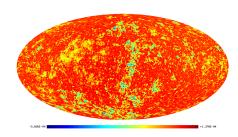
Modulated Initial Value of Decay Field

Caustics[B²FH: Bond, Braden, Frolov, Huang]14XX.XXXX?

$$\zeta = \zeta_{inflaton} + F_{NL}(\chi)$$

 χ : Gaussian random field F_{NL} : Nonlinear Function





Modulated Initial Value of Decay Field