Collisions of Vacuum Bubbles with Quantum Fluctuations

Jonathan Braden, CITA / U. Toronto

Perimeter Institute, Waterloo, Ontario

December 17, 2013

in collaboration with Dick Bond, Laura Mersini-Houghton

1312.XXXX : Cosmic Bubbles and Domain Walls I : Parametric Amplification of Linear Fluctuations
1312.XXXX : Cosmic Bubbles and Domain Walls II : Nonlinear Fracturing of Colliding Walls
1312.XXXX : Cosmic Bubbles and Domain Walls III : The Role of Oscillons in Three-Dimensional Bubble Collisions

Videos at www.cita.utoronto.ca/~jbraden/
Outline

- Bubbly Overview and Review of SO(2,1) Framework
- Setting Initial Conditions (solution of bounce equation)
- Full Nonlinear 3D Dynamics
 1. double-well with slightly broken Z_2 (symmetry breaks)
 2. double-well with strongly broken Z_2 (symmetry remains)
 3. single-well with plateau (symmetry remains)
 4. two-field potential supporting inflation (symmetry breaks)
- Linear Fluctuation Analysis
- Implications for Observations
The Bubbly Universe

\[N_{col} \sim \sqrt{\Omega_k} \left(\frac{H_{\text{false}}}{H_{\text{inflation}}} \right)^2 \frac{\Gamma}{\mathcal{V}} H^{-4}_{\text{false}} \]

[Aguirre,Johnson],[Freivogel,Kleban,Nicolis,Sigurdson]

\[\frac{\Gamma}{\mathcal{V}} \sim B^2 |\text{det}(\delta^2 S)|^{-1/2} e^{-B} \]

What are the dynamics of individual collisions?
Large Body of Past Work

Single Instantons
- Coleman, deLuccia
- Hawking, Moss
- Turok
- Sasaki, Linde, Tanaka, Yamamoto
- Garriga, Vilenkin, Montes, Garcia-Bellido
- Guth, Guven
- Freese, Adams
- Susskind et al
- ...

Vacuum Bubble Collisions
- Hawking, Moss, Stewart
- Kosowski, Turner, Watkins, Kamionkowski
- Johnson, Aguirre, Tysanner, Larfors
- Chang, Kleban, Levy, Sigurdson
- Easther, Giblin, Lim, Lau (3D, but symmetric IC’s)
- Johnson, Lehner, Peiris, … (GR)
- ...

Observations
- Johnson, Peiris, Mortlock, McEwan, Feeney, ...
- Smith, Senatore, Osborne

Assume (Spacetime) Symmetries
Numerical Approach

Massively Parallel Lattice Simulation

- Solve field equation (e.g.)

 \[\ddot{\phi}_i + 3\frac{\dot{a}}{a} \dot{\phi}_i - \frac{\nabla^2 \phi_i}{a^2} + V'(\phi) = 0 \]

- 10th order Gauss-Legendre integration (general) or 8th order Yoshida (nonlinear sigma models)
- Finite-difference (fully parallel) or Spectral (OpenMP, but MPI version in the works)
- Optional absorbing boundaries
- Quantum fluctuations → realization of random field

Energy conservation \(\mathcal{O}(10^{-9} - 10^{-14}) \)
Standard Framework SO(2,1) Symmetry

- Most likely bubble has SO(3,1) symmetry
- Second bubble breaks
 - Boosts along axis connecting centers
 - Rotations about any axis in plane orthogonal to axis connecting centers
- Preserve SO(2,1)
Standard Framework SO(2,1) Symmetry

\[t = s \cosh(\psi) \]
\[x = x \]
\[y = s \sinh(\psi) \cos(\theta) \]
\[z = s \sinh(\psi) \sin(\theta) \]

- *Most likely* bubble has SO(3,1) symmetry
- Second bubble breaks
 - Boosts along axis connecting centers
 - Rotations about any axis in plane orthogonal to axis connecting centers
- Preserve SO(2,1)

1+1-Dimensional Dynamics (e.g. in Minkowski)

\[\frac{\partial^2 \phi}{\partial s^2} + \frac{2}{s} \frac{\partial \phi}{\partial s} - \frac{\partial^2 \phi}{\partial x^2} - V'(\phi) = 0 \]
Standard Framework SO(2,1) Symmetry

\[t = s \cosh(\psi) \]
\[x = x \]
\[y = s \sinh(\psi) \cos(\theta) \]
\[z = s \sinh(\psi) \sin(\theta) \]

- Most likely bubble has SO(3,1) symmetry
- Second bubble breaks
 - Boosts along axis connecting centers
 - Rotations about any axis in plane orthogonal to axis connecting centers
- Preserve SO(2,1)

1+1-Dimensional Dynamics (e.g. in Minkowski)

\[\frac{\partial^2 \phi}{\partial s^2} + \frac{2}{s} \frac{\partial \phi}{\partial s} - \frac{\partial^2 \phi}{\partial x^2} - V'(\phi) = 0 \]

Should We Trust This When Quantum Fluctuations are Included?
Effect of Fluctuations on the Collision

Dilute Gas Initial Conditions

\[\phi_{init} = \sum \phi_{bounce}(|x - r_i|) - (N_{bub} - 1)\phi_{false} + \delta\phi(x, y, z) \]

\(\delta\phi\) is not SO(2,1) symmetric and **must** be included in quantum theory

- The bubbles nucleate
- Inflation amplifies subhorizon fluctuations

Is \(\delta\phi\) dynamically important?

Need simulations with more than one spatial dimension
SO(4) Bounce Equation

\[\frac{\partial^2 \phi}{\partial r_E^2} + \frac{3}{r_E} \frac{\partial \phi}{\partial r_E} - V'(\phi) = 0 \]

\[\phi(r_E = \infty) = \phi_{\text{false}} \quad \frac{\partial \phi(r_E = 0)}{\partial r_E} = 0 \]

Pseudospectral Solution

\[\phi(r_E) = \sum_i c_i B_{2i} \left(h \left(\frac{r_E}{\sqrt{r_E^2 + L^2}} \right) \right) \]

\[h(x) \equiv \frac{1}{\pi} \tan^{-1} \left(d^{-1} \tan \left(\pi \left[x - \frac{1}{2} \right] \right) \right) + \frac{1}{2} \]

Global Expansion \rightarrow Extremely Accurate

Mapping Parameters

\[L : \sim \text{radius of bubble} \]
\[d : \sim \text{width / radius} \]

Extendable to . . .

- dynamical metric
- multiple fields (shooting hard)
- PDEs (shooting breaks)
Versatile and Accurate (Even for Very Thin Walls)

Jonathan Braden, CITA / U. Toronto (Perimeter Institute, Waterloo, Ontario)

December 17, 2013
Collisions in a Double Well Potential

$$V(\phi) = \frac{\lambda}{4} (\phi^2 - \phi_0^2)^2 - \delta \lambda \phi_0^3 (\phi - \phi_0)$$

Exactly SO(2,1) Invariant Collision

$$s^2 = t^2 - y^2 - z^2$$
Numerical Test: Exact Instanton Initial Conditions

SO(2,1) Invariant Initial Condition

\[\phi_{\text{init}} = \sum_{r_i} \phi_{\text{bounce}}(|x - r_i|) - (N_{\text{bub}} - 1) \phi_{\text{false}} \]
Numerical Test: Exact Instanton Initial Conditions

SO(2,1) Invariant Initial Condition

\[\delta \phi = 0 \]
Thin-Wall Approximation

\[\phi_{init} = \sum_{r_i} \phi_{tw}(|x - r_i|) - (N_{bub} - 1)\phi_{false} \]

Break boost invariance of time-evolved solution

\[\phi_{tw} = \phi_0 \tanh \left(\frac{m(r - R_0)}{\sqrt{2}} \right) + \frac{\delta}{2} \]
Thin-Wall Approximation

\[\delta \phi = \sum_{r_i} (\phi_{\text{bounce}}(|x - r_i|) - \phi_{\text{tw}}(|x - r_i|)) \]

Break boost invariance of time-evolved solution

\[\phi_{\text{tw}} = \phi_0 \tanh \left(\frac{m(r - R_0)}{\sqrt{2}} \right) + \frac{\delta}{2} \]
Thin-Wall Approximation

\[\delta \phi = \sum_{r_i} (\phi_{\text{bounce}}(|x - r_i|) - \phi_{tw}(|x - r_i|)) \]

Break boost invariance of time-evolved solution

\[\phi_{tw} = \phi_0 \tanh \left(\frac{m(r - R_0)}{\sqrt{2}} \right) + \frac{\delta}{2} \]
Comparison with One-Dimensional Simulation

This Effect is Missed by Assuming SO(2,1)
Bulk Vacuum Fluctuations

\[\phi_{\text{init}} = \sum_{r_i} \phi_{\text{bounce}}(|x - r_i|) - (N_{\text{bub}} - 1)\phi_{\text{false}} + \delta\phi(x, y, z) \]
Field Evolution with Fluctuations ...

Bulk Vacuum Fluctuations

\[\delta \tilde{\phi}_k \sim \frac{a_k}{\sqrt{k^2 + V''(\phi_{false})}} \]

\[\dot{\delta \tilde{\phi}_k} \sim b_k \sqrt{k^2 + V''(\phi_{false})} \]

without Hubble

with Hubble
... Produces Oscillons

Oscillons Form from Asymmetric Blobs

Initial Blob of Field

\[\phi_{\text{init}} = \phi_{\text{true}} + (\phi_{\text{false}} - \phi_{\text{true}}) \exp \left(-\frac{x^2}{a^2} - \frac{y^2 + z^2}{b^2} \right) \]

\[a^2 < b^2 \quad \text{versus} \quad a^2 > b^2 \]
A Model without Amplification
A Model without Amplification
Oscillons with Inflation?

$W(\phi) / \lambda \phi_0^4$

$\frac{\phi}{\phi_0}$
Oscillons with Inflation?

\[\frac{\phi}{\phi_0} \]

\[n_{\text{eff}} \]

- Fluctuations
- No Fluctuations

\[\text{Time}=0 \]
An Inflationary Model with Oscillons

Two Field Model

\[V(\sigma, \phi) = \lambda \sigma \sigma_0^4 \left[\frac{1}{4} \left(\frac{\sigma^2}{\sigma_0^2} - 1 \right)^2 + \delta \left(\frac{\sigma^3}{3\sigma_0^3} - \frac{\sigma}{\sigma_0} + \frac{2}{3} \right) \right] + \frac{g^2 \lambda \sigma_0^2}{2} (\sigma - \sigma_0)^2 \phi^2 + \lambda \sigma_0^3 \epsilon \phi + V_0 \]

\[V(\sigma, \phi) = V_{tunnel}(\sigma) + V_{coupling}(\sigma, \phi) + V_{inflation}(\phi) \]
Instanton in Two-Field Model

This solution has only a single negative eigenmode in the $O(4)$ symmetric sector
Field Evolution in Two-Field Model

σ Evolution

ϕ Evolution
Parametric Resonance for Linear Fluctuations

Linear Fluctuations Around SO(2,1) Solution

\[\phi(s, x, \psi, \theta) = \phi_{bg}(s, x) + \delta\phi(s, x, \psi, \theta) \]

\[\frac{\partial^2 \phi_{bg}}{\partial s^2} + \frac{2}{s} \frac{\partial \phi_{bg}}{\partial s} - \frac{\partial^2 \phi_{bg}}{\partial x^2} + V'(\phi_{bg}) = 0 \]

\[\frac{\partial^2}{\partial s^2} (s\delta\phi_\kappa) - \frac{\partial^2}{\partial x^2} (s\delta\phi_\kappa) + \left(\frac{\kappa^2}{s^2} + V''(\phi_{bg}) \right) (s\delta\phi_\kappa) = 0 \]
Parametric Resonance for Linear Fluctuations

Linear Fluctuations Around Planar Solution

\[\phi(t, x, y, z) = \phi_{bg}(t, x) + \delta\phi(t, x, y, z) \]

\[\frac{\partial^2 \phi_{bg}}{\partial t^2} - \frac{\partial^2 \phi_{bg}}{\partial x^2} + V'(\phi_{bg}) = 0 \]

\[\frac{\partial^2}{\partial t^2} (\delta \phi_{k_{\perp}}) - \frac{\partial^2}{\partial x^2} (\delta \phi_{k_{\perp}}) + (k_{\perp}^2 + V''(\phi_{bg})) (\delta \phi_{k_{\perp}}) = 0 \]

Planar Limit

- \(s \gg 1 \)
- Time scales much shorter than \(s \)
- \(\kappa^2 \gg s^2 \)
Form of V''

Oscillating Background \rightarrow Floquet Theory

Exactly Periodic Effective Mass

$$\delta \phi_{\text{Floquet}} = P(x, t)e^{\mu t} \quad P(x, t + 2T) = P(x, t) \quad P \in \mathbb{R}$$
Form of V''

Two wells that repeatedly annihilate

Oscillating Background \rightarrow Floquet Theory

Exactly Periodic Effective Mass

$$\delta \phi_{\text{Floquet}} = P(x, t)e^{\mu t} \quad P(x, t + 2T) = P(x, t) \quad P \in \mathbb{R}$$
Form of V''

One well oscillating up and down

Oscillating Background \rightarrow Floquet Theory

Exactly Periodic Effective Mass

$$\delta \phi_{Floquet} = P(x, t)e^{\mu t} \quad P(x, t + 2T) = P(x, t) \quad P \in \mathbb{R}$$
Instability in Sine-Gordon Model

Exactly Periodic Backgrounds

\[\phi_{\text{breather}} = 4 \tan^{-1} \left(\frac{\cos(\gamma_v vt)}{v \cosh(\gamma_v x)} \right) \]

\[\gamma_v \equiv (1 + v^2)^{-1/2} \]

\[v \ll 1 \]
Instability in Sine-Gordon Model

Exactly Periodic Backgrounds

\[\phi_{\text{breather}} = 4 \tan^{-1} \left(\frac{\cos(\gamma v t)}{v \cosh(\gamma v x)} \right) \]

\[\gamma_v \equiv (1 + v^2)^{-1/2} \]

\[v \gtrsim 1 \]
Broad Resonance: Well-Defined Wall Collisions c.f. [Kofman,Linde,Starobinski] for homogeneous bg

Single Wall, $\phi_{kink,SG} = 4\tan^{-1}(e^x)$, $\phi_{kink,DW} = \tanh(x/\sqrt{2})$

In 1d theory $\delta \phi = \partial_x \phi_{kink}(x)$ is a zero mode

In 3d theory \rightarrow bound fluctuations with $\omega = k_\perp$

Very General: Goldstone for spontaneously broken translation invariance

During the collision, there is a short interval when these are not eigenmodes
Broad Resonance: Well-Defined Wall Collisions c.f. [Kofman, Linde, Starobinski] for homogeneous bg

Single Wall, $\phi_{kink,SG} = 4\tan^{-1}(e^x)$, $\phi_{kink,DW} = \tanh(x/\sqrt{2})$

- In 1d theory $\delta\phi = \partial_x \phi_{kink}(x)$ is a zero mode
- In 3d theory \rightarrow bound fluctuations with $\omega = k_\perp$

Very General: Goldstone for spontaneously broken translation invariance

$$n_{\text{eff}}^{\omega_{\text{bound}}} + \frac{1}{2} = \int dx \frac{1}{2k_\perp}(k_\perp^2 \delta \phi_{k_\perp}^2 + \delta \dot{\phi}_{k_\perp}^2)$$
Weak Resonance: Oscillating Blob

\[n_{\text{eff}}^{(\omega_{\text{breather}})} + \frac{1}{2} \equiv \frac{1}{2\omega_{\text{breather}}} \int dx \left(\delta \dot{\phi}^2 + \omega_{\text{breather}}^2 \delta \phi^2 \right) \]
Resonance in Double Well (with approximate backgrounds)

Collisions of Walls

Jonathan Braden, CITA / U. Toronto (Perimeter Institute, Waterloo, Ontario)

Collisions of Vacuum Bubbles with Quantum Fluctuations

December 17, 2013 27 / 32
Resonance in Double Well (with approximate backgrounds)

Oscillating Blob

\[\kappa^\frac{2}{1} \]

\[\epsilon \]

\[\mu_{\text{max}} T_{\text{oscillon}} \]
Resonance in Double Well (with approximate backgrounds)

Oscillating Wall Width
Contours of $\rho/\lambda\phi_0^4$
Evolution of ϕ
Spectrum of Growing Instabilities

Distribution of Energy
SO(2,1) symmetry can be badly broken by amplified quantum fluctuations

1. Initial state evolves as a piece that preserves SO(2,1) plus a small perturbation that doesn’t
2. Perturbations are unstable in the evolving symmetric background
3. Grow ripples and bumps on the bubble walls
4. Large ripples and bumps lead to a random field with blobs whose characteristic size is determined by linear instability
5. Nonlinearities condense these blobs into oscillons

Can have oscillons and inflation in multifield models
Implications

SO(2,1) symmetry can be badly broken

Observables don’t necessarily have azimuthal symmetry

- Beam smoothing versus inhomogeneity scale
- Tensor modes are produced by fracturing of walls
- Distribution of energy density is different than w/ SO(2,1)
- Sign of \(\zeta = \delta \ln(a) \) in one field versus two field model

Analysis doesn’t depend on eternal inflation scenario

- Oscillons as nonequilibrium environment for baryogenesis?
- Oscillons dilute as \(a^{-3} \rightarrow \) perturbed EOS during phase transition?
- Application to braneworlds with colliding walls

These signals are spatially **intermittent**...
... just like density perturbations from preheating caustics $[B^2FH: \text{Bond, Braden, Frolov, Huang}]$14XX.XXXX?

\[\zeta = \zeta_{\text{inflaton}} + F_{NL}(\chi) \]

\[\chi: \text{Gaussian random field} \quad F_{NL}: \text{Nonlinear Function} \]

Modulated Couplings
... just like density perturbations from preheating caustics [B²FH: Bond, Braden, Frolov, Huang]14XX.XXXX?

\[\zeta = \zeta_{\text{inflaton}} + F_{NL}(\chi) \]

\(\chi \): Gaussian random field \quad F_{NL} : \text{Nonlinear Function}
... just like density perturbations from preheating caustics $[B^2FH: \text{Bond, Braden, Frolov, Huang}]$ 14XX.XXXX?

\[
\zeta = \zeta_{\text{inflaton}} + F_{NL}(\chi)
\]

\(\chi\) : Gaussian random field \hspace{1cm} F_{NL} : \text{Nonlinear Function}

Modulated Initial Value of Decay Field
... just like density perturbations from preheating caustics [B^2FH: Bond, Braden, Frolov, Huang] 14XX.XXXX?

\[\zeta = \zeta_{\text{inflaton}} + F_{\text{NL}}(\chi) \]

\[\chi : \text{Gaussian random field} \quad F_{\text{NL}} : \text{Nonlinear Function} \]

Modulated Initial Value of Decay Field