Constraining the Ultra-Large Scale Structure of the Universe Using Numerial Relativity

Jonathan Braden

University College London

GRG21, Columbia University, New York, July 12, 2016

w/ Hiranya Peiris, Matthew Johnson, and Anthony Aguirre based on arXiv:1604.04001 and *in progress* 



## Ultra-Large Scale Structure



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

## Ultra-Large Scale Structure



・ロト ・聞ト ・ヨト ・ヨト

э

Local Remnants of Ultra-Large Scale Structure?

## Ultra-Large Scale Structure



#### Local Remnants of Ultra-Large Scale Structure?

- Structure present at start of inflation
- Conversion of structure during or after inflation

(日)、(四)、(E)、(E)、(E)

#### Modelling Initial Conditions

Monte Carlo Sampling: Planar Symmetry

$$ds^{2} = -d\tau^{2} + a_{\parallel}^{2}(x,\tau)dx^{2} + a_{\perp}^{2}(x,\tau)(dy^{2} + dz^{2})$$

Inflaton on  $a_{\parallel}( au=0)=1=a_{\perp}( au=0)$ 

$$\phi(x)=ar{\phi}+\delta \hat{\phi}$$
 $ar{\phi}$  gives  ${\cal N}$  e-folds  $3H_{
m I}^2\equiv V(ar{\phi})$ 

Field Fluctuations

$$\delta\hat{\phi}(x_i) = A_{\phi} \sum_{n=1} \hat{G} e^{ik_n x_i} \sqrt{P(k_n)} \qquad \hat{G} = \sqrt{-2 \ln \hat{\beta} e^{2\pi i \hat{\alpha}}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

#### Modelling Initial Conditions

Monte Carlo Sampling: Planar Symmetry

$$ds^2 = -d au^2 + a_{\parallel}^2(x, au)dx^2 + a_{\perp}^2(x, au)\left(dy^2 + dz^2\right)$$

Inflaton on  $a_{\parallel}( au=0)=1=a_{\perp}( au=0)$ 

$$\phi(x)=ar{\phi}+\delta \hat{\phi}$$
 $ar{\phi}$  gives  ${\cal N}$  e-folds  $3H_{
m I}^2\equiv V(ar{\phi})$ 

Field Fluctuations

$$\delta\hat{\phi}(x_i) = A_{\phi} \sum_{n=1} \hat{G} e^{ik_n x_i} \sqrt{P(k_n)} \qquad \hat{G} = \sqrt{-2\ln\hat{\beta}} e^{2\pi i\hat{\alpha}}$$
$$P(k) = \Theta(k_{\max} - k) \qquad H_{\rm I}^{-1} k_{\max} = 2\pi\sqrt{3}$$

$$\mathcal{V}(\phi) = \mathcal{V}_0 \left(1 - e^{-\sqrt{rac{2}{3lpha}}rac{\phi}{M_P}}
ight)^2$$

$$\mathcal{V}(\phi) = \mathcal{V}_0 \left(1 - e^{-\sqrt{rac{2}{3lpha}}rac{\phi}{M
ho}}
ight)^2$$



•  $\alpha \ll 1 \rightarrow$  small-field model

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

$$\mathcal{V}(\phi) = \mathcal{V}_0 \left(1 - e^{-\sqrt{rac{2}{3lpha}}rac{\phi}{M
ho}}
ight)^2$$



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

- $\alpha \ll 1 \rightarrow$  small-field model
- $\alpha = 1 \rightarrow \text{Starobinski}$

$$V(\phi) = V_0 \left(1 - e^{-\sqrt{rac{2}{3lpha}}rac{\phi}{M_P}}
ight)^2$$



・ロト ・西ト ・ヨト ・ヨー うらぐ

- $\alpha \ll 1 \rightarrow$  small-field model
- $\blacktriangleright \ \alpha = \mathbf{1} \to \mathsf{Starobinski}$
- $\blacktriangleright \ \alpha \gg 1 \rightarrow m^2 \phi^2/2$

$$V(\phi) = V_0 \left(1 - e^{-\sqrt{rac{2}{3lpha}}rac{\phi}{M_P}}
ight)^2$$



・ロト ・西ト ・ヨト ・ヨー うらぐ

- $\alpha \ll 1 \rightarrow$  small-field model
- $\blacktriangleright \ \alpha = \mathbf{1} \to \mathsf{Starobinski}$
- $\blacktriangleright \ \alpha \gg 1 \rightarrow m^2 \phi^2/2$







## **Required Evolution**



Initial Conditions ( $\tau = 0$ )

<ロト <回ト < 注ト < 注ト

æ

### **Required Evolution**



End of Inflation ( $\epsilon_H = -d \ln H/d \ln a = 1$ )

SQR

æ

# Solving Einstein's Equations for a Self-Gravitating Inflaton

#### Machine precision accuracy

- Gauss-Legendre time-integrator ( $\mathcal{O}(dt^{10})$ , symplectic)
- Fourier pseudospectral discretisation (exponential convergence)

#### Fast to allow sampling

- Adaptive time-stepping
- Adaptive grid spacing

 $\mathcal{O}(1s-10s)$  to evolve through 60 e-folds of inflation Machine precision convergence and constraint preservations

### **Observational Constraints**

$$\begin{split} \Pr(A_{\phi}, H_{I}L_{\rm obs} | C_{2}^{\rm obs}, \dots) \propto \mathcal{L}(A_{\phi}, H_{I}L_{\rm obs}) \Pr(A_{\phi}, H_{I}L_{\rm obs} | \dots) \\ \mathcal{L} = \Pr(C_{2}^{\rm obs} | A_{\phi}, H_{I}L_{\rm obs}, \dots) \end{split}$$

- $A_{\phi}$  : Fluctuation Amplitude  $P(k) \propto A_{\phi}^2$
- $H_I L_{\rm obs}$  : Uncertain post-inflation expansion history
- ... :  $V(\phi)$ , spectrum shape, IC hypersurface,  $C_2^{\mathrm{high}-\ell}$ , etc.

Planck measured  $C_{\ell}$ 

$$C_2^{\rm obs} = 253.6 \mu K^2$$
  $C_2^{\rm high-\ell} = 1124.1 \mu K^2$ 

Numerical GR Input

$$\Pr\left(\hat{C}_2|A_{\phi},H_1L_{obs},\dots\right)$$





## Evaluation of CMB Quadrupole

$$\hat{C}_2 = \frac{1}{5} \left[ \left( a_{20}^{(\mathrm{UL})} + a_{20}^{(\mathrm{Q})} \right)^2 + \sum_{m=-2, m \neq 0}^{m=2} \left( a_{2m}^{(\mathrm{Q})} \right)^2 \right]$$

<□ > < @ > < E > < E > E のQ @

### Evaluation of CMB Quadrupole

$$\hat{C}_{2} = \frac{1}{5} \left[ \left( a_{20}^{(\text{UL})} + a_{20}^{(\text{Q})} \right)^{2} + \sum_{m=-2, m \neq 0}^{m=2} \left( a_{2m}^{(\text{Q})} \right)^{2} \right]$$

$$a^{
m (Q)}_{2m}$$
 : Gaussian with  $\langle (a^{
m (Q)}_{2m})^2 
angle = 1124.1 \mu K^2$ 



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Evaluation of CMB Quadrupole

$$\hat{C}_{2} = \frac{1}{5} \left[ \left( a_{20}^{(\text{UL})} + a_{20}^{(\text{Q})} \right)^{2} + \sum_{m=-2, m \neq 0}^{m=2} \left( a_{2m}^{(\text{Q})} \right)^{2} \right]$$

 $a_{20}^{(\text{UL})}$  : NR simulations



▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

#### Dependence of $C_2$ on Model Parameters



▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 - の Q ()・

#### Dependence of $C_2$ on Model Parameters



Sac

## **Final Posterior**



Significant deviations from Gaussian approximation

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

## Marginalised Constraints on Model Parameters: Amplitude



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

## Heuristic Explanation: Initial Conditions



## Heuristic Explanation: End-of-Inflation



## Analytic Approximation



 $\zeta$  and comoving derivatives nearly Gaussian

Treat as Gaussian random field

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

# Analytic Approximation



 $\zeta$  and comoving derivatives nearly Gaussian

Treat as Gaussian random field

Large-Scale Approximation for  $a_{20}$ 

$$a_{20}(x_0) \approx \mathcal{A}e^{-2\zeta(x_0)} \left(\zeta''(x_0) - \zeta'(x_0)^2\right)$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

## Anaytic *a*<sub>20</sub> Distributions



Vary  $\sigma_{\zeta}$  at fixed  $\sigma_{\zeta^{(p)}}/\sigma_{\zeta}$ 

・ロト ・聞ト ・ヨト ・ヨト

- 2

## Conclusions

- Numerical relativity is a useful framework for making cosmological predictions
  - Sometimes it is a *necessary* tool (deviations from Gaussianity)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Robust qualitative conclusions over a variety of inflationary models
- Inflation is effective at hiding large amplitude initial fluctuations
- Gaussianity of ζ in comoving coordinates suggests analytic approach in 3D