Cosmological Imprints of the Superhorizon Universe (from Numerical Relativity)

Jonathan Braden

University College London

PASCOS 2017, UAM, June 20, 2017

w/ Hiranya Peiris, Matthew Johnson, and Anthony Aguirre based on arXiv:1604.04001 and *in progress*

The CMB and LSS

Inflation: Only a few parameters

$$P_{\zeta}(k) = Ak^{n_s-1}$$
 $r = 16\epsilon$ f_{NL}

< □ > < □ > < □ > < □ > < □ > < □ > = □

- Nature of Inflaton?
- Initial Conditions?

What About Ultra-Large Scales

Evolve long wavelength modes dynamically CMB scales see locally homogeneous background

Ultra-Large Scale Structure

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Ultra-Large Scale Structure

・ロト ・聞ト ・ヨト ・ヨト

э

Local Remnants of Ultra-Large Scale Structure?

Ultra-Large Scale Structure

Local Remnants of Ultra-Large Scale Structure?

- Structure present at start of inflation
- Conversion of structure during or after inflation

(日)、(四)、(E)、(E)、(E)

Modelling Initial Conditions

Monte Carlo Sampling: Planar Symmetry

$$ds^{2} = -d\tau^{2} + a_{\parallel}^{2}(x,\tau)dx^{2} + a_{\perp}^{2}(x,\tau)(dy^{2} + dz^{2})$$

Inflaton on $a_{\parallel}(au=0)=1=a_{\perp}(au=0)$

$$\phi(x)=ar{\phi}+\delta \hat{\phi}$$
 $ar{\phi}$ gives ${\cal N}$ e-folds $3H_{
m I}^2\equiv V(ar{\phi})$

Field Fluctuations

$$\delta\hat{\phi}(x_i) = A_{\phi} \sum_{n=1} \hat{G} e^{ik_n x_i} \sqrt{P(k_n)} \qquad \hat{G} = \sqrt{-2 \ln \hat{\beta} e^{2\pi i \hat{\alpha}}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Modelling Initial Conditions

Monte Carlo Sampling: Planar Symmetry

$$ds^{2} = -d\tau^{2} + a_{\parallel}^{2}(x,\tau)dx^{2} + a_{\perp}^{2}(x,\tau)(dy^{2} + dz^{2})$$

Inflaton on $a_{\parallel}(au=0)=1=a_{\perp}(au=0)$

$$\phi(x)=ar{\phi}+\deltaar{\phi}$$
 $ar{\phi}$ gives ${\cal N}$ e-folds $3H_{
m I}^2\equiv V(ar{\phi})$

Field Fluctuations

$$\delta\hat{\phi}(x_i) = A_{\phi} \sum_{n=1} \hat{G} e^{ik_n x_i} \sqrt{P(k_n)} \qquad \hat{G} = \sqrt{-2\ln\hat{\beta}} e^{2\pi i\hat{\alpha}}$$
$$P(k) = \Theta(k_{\max} - k) \qquad H_{\rm I}^{-1} k_{\max} = 2\pi\sqrt{3}$$

Observational Constraints

$$\begin{split} \Pr(A_{\phi}, H_{I}L_{\rm obs} | C_{2}^{\rm obs}, \dots) \propto \mathcal{L}(A_{\phi}, H_{I}L_{\rm obs}) \Pr(A_{\phi}, H_{I}L_{\rm obs} | \dots) \\ \mathcal{L} = \Pr(C_{2}^{\rm obs} | A_{\phi}, H_{I}L_{\rm obs}, \dots) \end{split}$$

- A_{ϕ} : Fluctuation Amplitude $P(k) \propto A_{\phi}^2$
- $H_I L_{\rm obs}$: Uncertain post-inflation expansion history
- ... : $V(\phi)$, spectrum shape, IC hypersurface, $C_2^{\mathrm{high}-\ell}$, etc.

Planck measured C_{ℓ}

$$C_2^{\rm obs} = 253.6 \mu K^2$$
 $C_2^{\rm high-\ell} = 1124.1 \mu K^2$

Numerical GR Input

$$\Pr\left(\hat{C}_2|A_{\phi},H_1L_{obs},\dots\right)$$

Required Evolution

Initial Conditions ($\tau = 0$)

<ロト <回ト < 注ト < 注ト

æ

Required Evolution

End of Inflation ($\epsilon_H = -d \ln H/d \ln a = 1$)

SQR

æ

Evaluation of CMB Quadrupole

$$\hat{C}_2 = \frac{1}{5} \left[\left(a_{20}^{(\mathrm{UL})} + a_{20}^{(\mathrm{Q})} \right)^2 + \sum_{m=-2, m \neq 0}^{m=2} \left(a_{2m}^{(\mathrm{Q})} \right)^2 \right]$$

<□ > < @ > < E > < E > E のQ @

Evaluation of CMB Quadrupole

$$\hat{C}_{2} = \frac{1}{5} \left[\left(a_{20}^{(\text{UL})} + a_{20}^{(\text{Q})} \right)^{2} + \sum_{m=-2, m \neq 0}^{m=2} \left(a_{2m}^{(\text{Q})} \right)^{2} \right]$$

$$a^{
m (Q)}_{2m}$$
 : Gaussian with $\langle (a^{
m (Q)}_{2m})^2
angle = 1124.1 \mu K^2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Evaluation of CMB Quadrupole

$$\hat{C}_{2} = \frac{1}{5} \left[\left(a_{20}^{(\text{UL})} + a_{20}^{(\text{Q})} \right)^{2} + \sum_{m=-2, m \neq 0}^{m=2} \left(a_{2m}^{(\text{Q})} \right)^{2} \right]$$

 $a_{20}^{(\text{UL})}$: NR simulations

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Dependence of C_2 on Model Parameters

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Final Posterior

Significant deviations from Gaussian approximation

Heuristic Explanation: Initial Conditions

▲□▶ <圖▶ < ≧▶ < ≧▶ = のQ@</p>

Heuristic Explanation: End-of-Inflation

Distribution of a_{20} with $\delta \zeta$ dependence

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト の Q (2)

Analytic Approximation

 ζ and comoving derivatives nearly Gaussian

Treat as Gaussian random field

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Analytic Approximation

 $\boldsymbol{\zeta}$ and comoving derivatives nearly Gaussian

Treat as Gaussian random field

Large-Scale Approximation for a_{20}

$$a_{20}(x_0) \sim -\mathcal{A}e^{-2\zeta(x_0)}\left(\zeta''(x_0) - \mathcal{O}(\zeta'(x_0)^2)
ight)$$

Anaytic *a*₂₀ Distributions

Vary σ_{ζ} at fixed $\sigma_{\zeta^{(p)}}/\sigma_{\zeta}$

Recall The Numerical Result

Conclusions

- Numerical relativity is a useful framework for making cosmological predictions
 - Sometimes it is a necessary tool (deviations from Gaussianity)
- Robust qualitative conclusions over a variety of inflationary models
- Constraining large amplitude superhorizon structure is hard even in the most optimistic case
- Inflation is effective at hiding large amplitude initial fluctuations
- Gaussianity of ζ in comoving coordinates suggests analytic approach in 3D

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <