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Abstract

After inflation the coherent energy of the inflaton field must ultimately be transferred into the incoherent energy density of Standard Model particles to begin the hot big bang. In
many models, the early stages of this energy transfer are very efficient due to instabilities that arise when the inflaton couples to other fields. This rapid transfer of energy,
known as preheating, leads to energy distributions that are sharply peaked in the infrared. In order to connect the end of inflation to the standard hot big bang, we need to
understand the evolution from this highly nonequilibrium state to thermal equilibrium.
We study thermalization in a preheating model driven by parametric resonance with large parallel simulations using a modified version of the lattice code DEFROST [1]. Shortly
after nonlinear effects terminate the resonance, the fields enter into a slowly evolving phase during which nearly stationary one-point distributions of the energy density emerge
and the density power spectrum develops a slowly moving peak whose height increases linearly with time as the overall fluctuations in the system grow. We introduce a
nonequilibrium entropy with contributions from all wavenumbers to measure the growing complexity in the system. We also use a hierarchical coarse-graining via
block-smoothing (akin to Wilson’s Renormalization Group analyses of lattice calculations) to study the scale dependence of the energy density and show there is a rapid buildup
in an intermediate range of scales. Our results indicate that within the multifield complexity prior to thermalization there are underlying entropic principles guiding the inexorable
cascade to short distances, the universality of which remains to be explored.

Model

We consider a simple model for preheating after chaotic inflation with lagrangian
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After inflation, the inflaton φ oscillates around the minimum of its potential leading to parametric
amplification of χ fluctuations. Eventually backreaction of these fluctuations ends the resonance and
leads to a breakup of inflaton coherence and the onset of the slowly evolving nonlinear stage [2,3].

Hints of Simple Dynamics

During the nonlinear stages, the one-point distributions of the stress-energy tensor components
become nearly stationary. In particular, we find the normalized energy density approaches a
log-normal distribution and the normalized components of the energy current become nearly
Gaussian. This evolution to such a broad brush-stroke low order result suggests we should look for
a simple principle underlying the dynamics.

Fig. 1: Left: Distribution of energy densities ρ
3H2 for a range of times, where 3H2 = ρ̄/M2

P is the box averaged
squared Hubble parameter. The blue line is a log-normal fit at mt = 1024. Right: Distribution of energy
current, again showing a very slow evolution at late time. The blue line is a Gaussian fit at mt = 1024. In both
figures, the probabilities have been normalized to their maximum value (we plot P(t)/Pmax(t)).

The Energy Cascade

Fig. 2: Evolution of the dimensionless power spectrum of
log(ρ/3H3) with the location of the peak indicated by the black line.

The parametric resonance
mentioned above leads to
exponential growth of modes with
k ∼ ma. This results in a sharp
peak in the power spectrum that
becomes visible at mt ∼ 100.
Shortly after this peak becomes
nonlinear, it rapidly shifts to shorter
wavelengths. This is followed by a
much longer stage of nonlinear
evolution where the peak slowly
moves to larger comoving
wavenumbers. A remarkable
feature of this stage is the linear
growth of the peak height with time.

Entropy Production

The nonequilibrium entropy of a random field f (x) with
probability density functional P [f (x)] is a functional integral over
all configurations,

S = −
∫
DfP [f ] lnP [f ] .

For a field subject to the constraint that only its covariance
matrix C, with eigenvalues P(k), has been measured, the
resulting entropy is
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This is also what one gets if P [f (x)] is Gaussian, but we are not
assuming that all higher point correlations vanish, just that they
are not observed to constrain the degrees of freedom of the
ensemble. Here we will take ln(ρ/3H2) to be our dynamical
field, where 3H2 = ρ̄/M2

P is the box averaged squared Hubble
parameter. Thus, ρ is normalized to its mean value. Taking only
the covariance matrix to be measured, we find the entropy
behaves as shown to the right. There is a rapid production of
entropy at mt ∼ 100 when the fields first go nonlinear. This is
followed by a much longer stage in which the entropy increases
much more slowly as the field attempts to equilibrate.

Fig. 3: The entropy of ln
(

ρ
3H2

)
assuming that only the covariance
matrix has been measured. Here we
have normalized the result by
subtracting the entropy of the initial
field configuration on the lattice. The
initial decrease is due to the
adiabatic evolution of the high
frequency modes, which we have
not accounted for by only
subtracting off the initial entropy.

Buildup of Fluctuations with Scale

We now study the scale dependence of our system in real space using a simple renormalization
procedure. Given a cubic lattice with N3 points and grid spacing dx , we define a new lattice of size(

N
2

)3
and spacing 2dx by grouping 2x2x2 cubes of sites together to form a single new site. We

define smoothed fields on the new lattice by averaging over the 8 lattice sites making up each cube.

Fig. 4: Left: Distribution of energy density as we vary the lattice spacing mdx . Right: Time evolution of the variance of
ln(ρmdx/3H2) for various smoothing scales. Here, ρmdx is the smoothed density field on a lattice with grid spacing mdx .

The figures above illustrate the buildup of density fluctuations smoothed by this procedure as
resolution increases. Initially, the width of the distribution grows at an increasing rate and as a result
shifts to the left. However, as we continue to resolve finer structure past mt ∼ 20/512, the
distribution changes much more slowly. In the right hand panel above, we see that the variances in
ln(ρ/3H2) obey a simple linear evolution at late times. Since our smoothed energy densities provide
us with a definition of the local background energy density, we can study fluctuations around these
local backgrounds, as in the figure below. At the time of the onset of nonlinearity, the fluctuations at
scales mdx ∼ 40/512 change much more dramatically than those at smaller scales. However, after
this rapid evolution, the distributions at these larger scales quickly settle down and become nearly
stationary. The smaller scale distributions, on the other hand, continue to grow. A plausible
explanation (to be further explored) is that the energy flows from large to small packets as the
system is drawn towards equilibration - although we are very far from that state in these simulations.
The flux has only reached a steady state at the larger scales.

Fig. 5: The distribution of fluctuations in energy densities between successive coarse-graining scales. The probability
distributions have been normalized to their maximum values. The locations where the distribution drops to e−1 and e−2 of
its maximum value are indicated by the black lines. The coloured regions indicate the extremal values.

Evolution at a Single Lattice Site

The previous sections focussed on properties of the density distribution over the lattice at a fixed
moment of time. The time dependence of the field fluctuations can shed light on how energy is
being transported. As the system evolves, the collective phonon modes of the total energy density
become of greater significance than the highly entangled φ and χ fields, but the dispersion relation is
that of a light field, with a near speed-of-light sound speed, in spite of the large nonlinear corrections
to the effective mass. This suggests that the energy may flow rapidly, decohering the time-time
correlations at a fixed lattice site. To illustrate this behaviour, the figures below show that the density
at a fixed lattice site indeed fluctuates at all times rather than settling down into a steady state,
indicating that energy is still being transported between lattice sites. The right hand figure shows the
fluctuations in density are larger on scales mdx ∼ 40 than on smaller scales, in agreement with the
findings in the previous section.

Fig. 6: Energy density at a fixed lattice site as a
function of smoothed lattice size.

Fig. 7: Density fluctuations around the local
mean for several different smoothing scales.
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