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Abstract

The interaction potential energy surface (PES) of Hy is of great impor-
tance for quantum chemistry, as a test case for molecule-molecule interactions.
It is also required for a detailed understanding of certain astrophysical pro-
cesses, namely collisional excitation and dissociation of Hy in molecular clouds,
at densities too low to be accessible experimentally. The 6101 ab initio Hy
energies reported in 1991 by Boothroyd et al. demonstrated large inaccura-
cies in analytic Hy surfaces available at that time. Some undesirable features
remained in the more accurate Hy surfaces fitted to these energies by Keogh
and by Aguado et al., due in part to the relatively sparse coverage of the
6-dimensional Hy conformation space afforded by the 6101 ab initio energies.
To improve the coverage, 42079 new ab initio Hy energies were calculated,
using Buenker’s multiple reference (single and) double excitation configura-
tion interaction (MRD-CI) program. Here the lowest excited states were
computed as well as the ground state, and energies for the original 6101 con-
formations were recomputed. The ab initio energies have an estimated rms
“random” error of ~ 0.5 millihartree and a systematic error of ~ 1 millihartree
(0.6 kcal/mol).

A new analytical Hy PES was fitted to these 48180 ab initio energies
(and to an additional 13367 points generated at large separations), yielding a
significant improvement over previous Hy surfaces. This new PES has an rms
error of 1.43 millihartree relative to these 48180 ab initio energies (the fitting
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procedure used a reduced weight for high energies, yielding a weighted rms
error of 1.15 millihartree for these 48180 ab initio energies). For the 39064
ab initio energies that lie below twice the Hy dissociation energy, the new
PES has an rms error of 0.95 millihartree. These rms errors are comparable
to the estimated error in the ab initio energies themselves. The new PES
also fits the van der Waals well to an accuracy of about 5%. For relatively
compact conformations (energies higher than the Hy dissociation energy), the
conical intersection between the ground state and the first excited state is the
largest source of error in the analytic surface. The position of this conical
intersection forms a somewhat complicated 3-dimensional hypersurface in the
6-dimensional conformation space of Hy. A large portion of the position of the
conical intersection has been mapped out, but trying to include the conical
intersection explicitly in an analytic surface is beyond the scope of the present

paper.

I. INTRODUCTION

The interaction potential energy surface (PES) of Hy (i.e., four hydrogen atoms) is of
great importance for quantum chemistry. Available ab initio potential energy surfaces for Hs
and for Hy — He serve as important test cases of theories of the interaction of a molecule with
a single atom. H, is the simplest, and yet a crucial, test case for a basic understanding of
intermolecular energy transfer and chemical reactions between molecules, and for checking
rigorous theoretical predictions against experimental results. It is highly desirable to have
a PES for Hy that attains or at least approaches the “chemical accuracy” (of order one
millihartree, i.e., better than one kcal/mole) required for reaction dynamics. The ab initio
energy computations of Boothroyd et al.! enabled analytic H, surfaces to approach this
goal?®; this paper reports a greatly-expanded set of ab initio energies, and an improved
H, PES fitted to these energies.

The Hy PES is also of particular astrophysical interest for studying Hy — Hs interactions
in physical conditions not accessible to experiment, namely the low densities characteristic
of giant molecular clouds in the interstellar medium, where star formation occurs. Heating
of these clouds by strong shock waves causes rotational and vibrational excitation of the
H; molecules, and can lead to collision-induced dissociation of Hy into free H atoms. The
collision rates in molecular clouds can be so low that the (observed) forbidden (quadrupole)
infrared emission of excited Hy molecules can induce highly non-thermal distributions over
the internal states of Hy (see, e.g., Refs. 6, 7, and 8). Because the mean free paths of
molecules are thousands of kilometers at such low densities, these processes will remain
inaccessible to laboratory experiment. Computer simulation is therefore a sine qua non in
the study of the physics and chemistry of star forming regions.

The van der Waals well of Hy + Hy has been extensively studied, and very accurate
PES’s are available for this restricted region of Hy. The rigid-rotor Hy, + Hy PES of Schae-
fer and Kohler? is almost identical to that reported a decade later by Diep and Johnson'?,
but these Hy + Hy PES’s are valid only for Hy molecules of near-equilibrium size with rel-
atively large intermolecular separations R 2, 2 A (corresponding to interaction energies



S 10 keal/mol). Billing and Kolesnick'! combined an older 7-parameter long-range Hy + Hy
interaction potential'> with a 6-parameter H, + H, fit to the 85 ab initio Hy energies of
Schwenke'® (which lay mostly in the region of the Hy + Hy repulsive wall), but fitted these
latter points two or three times worse than Schwenke’s own surface did!'!+!3.

Boothroyd et al.! reported 6101 ab initio Hy energies, providing for the first time full
(albeit relatively sparse) coverage of the entire 6-dimensional conformation space of Hy that
can be reached by a pair of Hy molecules colliding with sufficient energy to dissociate one or
both of the molecules. They demonstrated that even the best Hy PES available at that time
(that of Schwenke'®) had errors more than an order of magnitude worse than the wished-
for “chemical accuracy” in the Hy 4+ Hy interaction region. However, the 6101 ab initio Hy
energies provided sufficient information to fit an H, PES that could approach “chemical
accuracy”, and this was done both by Keogh? (using an extension of Schwenke’s'? approach
to fitting Hy) and by Aguado et al.® (using a many-body expansion); a slightly-improved
version of Keogh’s PES was developed and used by Martin et al.* and Mandy et al.® for
quasi-classical trajectory calculations of Hy, + Hy interactions. Some undesirable features
remained in these more-accurate H, surfaces, due in part to the relatively sparse coverage
of the 6-dimensional H, conformation space afforded by the 6101 ab initio energies.

In the present work, we have computed 42079 new ab initio Hy energies to improve the
coverage of the Hy conformation space. We have also recomputed the original 6101 ab initio
energies (nine erroneous energy values were found and corrected). Both the ground state
energy and the first few excited state energies were computed, and a large portion of the
conical intersection of the ground state with the first excited state was mapped out. A new
H, PES was fitted to the 48180 ground-state ab initio energies (and to an additional 13367
points generated to constrain the fit at very large and at very small separations), yielding a
significant improvement over the previous H, surfaces.

II. METHODS

Atomic units are used in this paper unless otherwise specified, i.e., distances are in
bohrs (a,) and energies are in hartrees (E}), millihartrees (mE},), or microhartrees (uE},).
Recall that 1 a, = 0.529177 A, while 1 mE), = 0.0272114 eV = 0.62751 kcal/mole.

Unless otherwise stated, energy values are measured relative to the energy of four isolated
hydrogen atoms; thus an energy E = 0.0 E}, lies about twice the H, dissociation energy above
the energy of two isolated equilibrium Hy molecules.

A. The grid of conformations to be fitted

The relative positions of the four hydrogen atoms in any specific conformation can be
expressed in terms of six independent relative coordinates. We defined our main grids in
conformation space in terms of three distances (A4, B, and C') and three angles (0, v, and ¢);
for convenience in referring to them we numbered the hydrogen atoms as atom-1 through
atom-4, and also defined a set of Cartesian coordinates, atom-i lying at (z;,v;, 2;) (see
Boothroyd et al.l). By definition, A = ry5 is the shortest of the 6 interatomic distances,
and lies along the z-axis centered on the origin; B = 7193 is the shortest of the remaining



5 distances, except possibly for C' = r3;. Atom-3 lies in the upper-right quadrant of the
y-z plane, at an angle 6 about the origin relative to the z-axis (0 < 6 < 7/2). The projection
of C' on the y-z plane makes an angle ¢ about atom-3 relative to the positive z-direction
(—m < ¢ <), and C itself lies at an angle 9 relative to the y-z plane (0 < ¢ < 7/2). Note
that different distance and angle definitions were used in the analytic surface (see § I1 C).

The original 6101 conformations of H, described in Boothroyd et al.! were used (these
included 87 conformations with energies computed by Schwenke'®14). Improved ab initio
energies were computed for all of these original conformations (note that 9 of the energies
reported by Boothroyd et al.! were in error by 2 mEj, or more: see § IIB). These original
6101 conformations were supplemented by ab initio energies computed at 42079 new confor-
mations, to improve coverage of conformation space and to constrain the analytic surface in
regions where the original fit of Keogh? tended to have unphysical features (this yielded a
total of 48180 conformations with ab initio Hy energies). An additional 13367 conformations
were generated to constrain the fit in regions where the energy could not be obtained directly
from an ab initio Hy computation (see § IIA6, IIA7, and IT A 8), for a total of 61547 fitted
conformations.

1. The main grid

The original main grid of Boothroyd et al.! had contained 5832 conformations (which
had been supplemented by 182 “test” conformations and the 87 Schwenke!®!* conformations
to yield the original total of 6101 conformations). This original main grid was enlarged by
adding three new distance values (0.8, 4.0, and 5.0 a,); the enlarged grid thus contains the
original grid of 5832 conformations as a subset, along with 7968 new conformations. In this
enlarged grid, the three distances described above (A, B, and C) were thus chosen from
among the enlarged set of ten values {0.6, 0.8, 1.0, 1.4, 1.75, 2.1, 2.6, 3.4, 4.0, 5.0 a,},
although only one of the three distances was allowed to be as small as 0.6 a,. (If the
direction of the third distance C' was back towards the first two atoms, the distance C was
lengthened as necessary to put the fourth atom on the far side of the first two atoms.) As
before, the three angles described above (6, ¥, and ¢) were chosen at 30 degree intervals,
unless one of the three distances was short (0.6 a,) or long (> 3.4 a,), in which case angles
were at 45 degree intervals. For an “out-of-plane” angle ¢ = 60 degrees, the corresponding
azimuthal angle ¢ was stepped by 90 degrees, to avoid excessively closely-spaced points (note
that for ¢ = 90 degrees the angle ¢ is irrelevant). Care was taken to eliminate duplicate
(and almost-duplicate) conformations.

For the new conformations (those containing distances of 0.8, 4.0, or 5.0 a,), the actual
grid position was “fuzzed out” in distances and angles. For the three distances (A, B,
and (), the permitted range reached half-way to the next-lower and next-higher distance
values; for the three angles (6, 1, and ¢), the permitted range was centered on the angular
grid value with a size equal to the angular grid spacing (30 or 45 degrees, depending on the
distances, as described above). Random values of the six coordinates were chosen uniformly
in these permitted ranges, i.e., the “fuzzed” grid-point lay randomly in the six-dimensional
“box” in conformation space defined by “those conformations lying closer to the grid point
than to any neighboring grid point.” Certain coordinates were in some cases excepted from



this “fuzzing,” such that planar conformations were not made non-planar, equilateral- and
isosceles-triangle sub-conformations of the first three atoms were not made scalene, and
linear conformations were not made non-linear. The “fuzzing” was intended to reduce the
room for oscillations in the analytic surface between grid points. (Note that this “fuzzing”
was not done for the original grid of Boothroyd et al.').

An additional 190 conformations of high symmetry were computed, with distances as in
the above enlarged grid; these comprised squares (Dyy,), rectangles (Dyy,), “pyramids” on an
equilateral triangle base (Cs,, or higher symmetry for tetrahedra and “flattened pyramids”
of height zero), and “T-shapes” (Cs,: linear symmetric Hy with a fourth H atom at right
angles from the center). These supplemented the high-symmetry cases that comprised many
of the 182 old “test” conformations of Boothroyd et al.! (note that the 87 conformations
where Schwenke’s energies were used'*1% were also of symmetry Cy, or higher).

The above grid was initially supplemented by 1940 “random” H, conformations, where
distances A, B, C' (between 0.7 and 5.0 a,) and angles 6,1, ¢ were obtained randomly (but
not completely uniformly, in order to provide a coverage of conformation space not too
different from that of the above grid: i.e., intermediate and short distances were favored
over long ones, there was a significant probability of two distances being equal, and there
was a significant probability of obtaining a planar conformation). These conformations were
intended to provide coverage between grid points of the original grid.

2. Conformations tending towards H3 + H

A grid of 2320 conformations tending towards H3 +H was computed, since the interaction
energy between Hs; and H is non-negligible out to longer separations than is the case for
H, + Hy or Hy + H. The shortest distance (A) was chosen from {0.6, 0.8, 1.0, 1.4, 1.75,
2.1, 2.6 a,}, and the next-shortest (B) from {0.8, 1.0, 1.4, 1.75, 2.1, 2.6, 3.4, 4.0, 5.0 a,} (to
comprise the “Hs”); the long distance (C, roughly the distance from the fourth H atom to
the nearest atom in the “Hj”) was chosen from {6.0, 7.0, 8.4 a,}. Angles were at 45 degree
intervals; these grid points were also “fuzzed” as described above. Conformations in regions
already sampled by the main H, grid were omitted.

This grid was supplemented by 174 higher-symmetry cases, comprising either an
equilateral-triangle or linear-symmetric Hy (with distances {0.8, 1.0, 1.4, 1.75, 2.6 ao})
and a fourth H atom at a fairly large distance from the center (distances {5.0, 6.0, 7.0,
8.0, 9.0, 10.0, 11.0 a,} in most cases; the largest pyramid height was actually 9.999999 a,).
The triangles thus yielded “pyramids” as well as “Y-shaped” and “kite-shaped” planar Cs,
conformations, while the linear Hs yielded linear and “T-shaped” conformations.

3. Fairly compact conformations

To constrain the fitted surface in regions where it tended to have unphysical features?,
a set of 1262 fairly compact conformations of high symmetry was computed. These were
made up of a small Hy (of sizes {0.6, 0.8, 1.0, 1.4 a,}) and a large Hy (of sizes {1.75, 2.1,
2.6, 3.0, 3.4, 4.0, 5.0, 6.0, 7.0 a,}) with a small separation between their centers ({0.0, 0.5,
1.0, 1.5, 2.0, 2.75 a,}). The two Hy’s were either parallel (yielding trapezoids) or “crossed”
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(forming a diamond shape for zero Hy — Hy separation); in the latter case, the displacement
was either along the axis of the shorter Hy (yielding “Y-shapes”) or perpendicular to both
H, axes (yielding a non-planar “crossed” conformation). Excessively compact conformations
were omitted, i.e., conformations with any distance below 0.5 a,, or with a small Hy of 0.6 a,
and another distance below 0.7 a,. In addition, 640 variants were also computed, by taking
one of the above conformations at random and shifting the larger H, along its own axis by
a relatively small amount. None of these conformations were “fuzzed”.

4. Large set of “random” conformations

After a number of preliminary fits had been made, 27585 additional “random” H, con-
formations were computed. Distances A, B,C (between 0.7 and 5.0 a,) and angles 0,1, ¢
were obtained randomly (but non-uniformly); unlike the “random” conformations of § ITA 1,
the probability distributions for these additional conformations were chosen to emphasize
the region of conformation space that was expected to be sampled by typical Hy + Hy disso-
ciative collisions (H4 energies below twice the Hy dissociation energy, i.e., below the energy
of four isolated H-atoms). Also, for conformations tending towards Hs + H (namely, with
C > 1.5 max{A, B}), the range for C was extended such that the maximum allowed dis-
tance for C' became 8.0 a, rather than 5.0 a, (to sample the cases tending towards Hs + H
with non-negligible interaction energy between the H3 and the H).

Only about 6% of this set of 27585 “random” conformations were planar, and only
about 0.3% of the planar conformations were linear. Compare this to the earlier 20595
conformations (described in § IIA 1 through IT A 3), where the relatively coarse angular grid
meant that 48% of the conformations were planar, and 9% of the planar conformations were
linear (note that very nearly the same proportions hold true for the main grid of § ITA 1
alone, and for the original points of Boothroyd et al.!).

5. Mapping of conical intersection with excited state

As discussed in more detail below in § III A, a considerable effort was made to map out
any conical intersections where the ground state and the first excited state meet. Since
the intersection proved much more complex than we had at first realized, a total of 13356
ab initio energies were computed during the mapping process. These were not included in
the fit, since they were concentrated in only a small sub-volume of the total conformation
space and would have distorted the fit by vastly over-emphasizing that sub-volume at the
expense of the rest of the conformation space.

6. Non—ab-initio Hy + Hy conformations for the van der Waals well

For Hy, + Hy with intermolecular separations greater than about 5 a,, the estimated
uncertainty became far from negligible compared to the interaction energy; also, this region
of the H, PES has been studied by many other investigators. In particular, the rigid-
rotor Hy + Hy, PES of Schaefer and Kohler®, based on both ab initio computations and



experimental results, should certainly be quite accurate in this region; for example, it may
be seen to be in good agreement with the accurate ab initio computations (over a range of
intermolecular separations) of Burton and Senff’®'® and of Senff and Burton'’, as well as
with the experimental results of Buck et al.'® 2°. Our Hy surface does not fit the Hy 4+ Hy
van der Waals well sufficiently accurately to justify updating to a more recent rigid-rotor
Hy + Hy PES, such as that of Diep and Johnson!'® (which differs from the Schaefer and
Kohler? surface by only a few pEj in the region of the van der Waals well). We thus used
the Schaefer and Kohler® formula to obtain energies of 3611 conformations in the Hy + Hy
van der Waals well, which were given a relatively high weight in the fit to reflect their high
accuracy and the small depth of the van der Waals well (see § IID 1); these were referred to
as “S&K-Hy+H,” conformations, and were generated as described below.

For Hy molecules of size r, = r, = 1.449 a,, the separation R between their centers was
chosen from {4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 9.0, 10.0, 11.0, 13.0, 16.0, 20.0 a,}, and
relative orientations of the H, molecules were generally considered at 45 degree intervals
(for some separations, 22.5 degree intervals were used) — orientations were defined in terms
of Schaefer and Kohler’s modified Jacobi angles 60, 6,, and ¢, where cos 6, = 7, - ﬁ/ (r,R),
cosfy = —7 - R/(rpR), and cos ¢ = (7, x R) - (7, x R)/(|7% x R||7 x E|). The Schaefer
and Kohler® formula was not designed for non-equilibrium H, molecule sizes, but these were
still needed to constrain our analytic Hy surface. We thus considered Hy molecules of sizes
chosen from {0.6, 0.8, 1.0, 1.2, 1.449, 1.75, 2.1, 2.6, 3.4 a,}, but with fewer intermolecular
distances and fewer orientations for sizes other than 1.449 a, (and lower weight in the fit:
see § IID1). Our ab initio energies indicated that the position of the van der Waals well
and its repulsive wall varied with the size of the H, molecules; to approximate this effect,
the Schaefer and Kohler® formula was modified slightly, such that its repulsive wall joined
smoothly onto that from the ab initio energies.

The original Schaefer and Kohler® surface is written in terms of functions of the in-
termolecular separation R multiplied by functions of the orientation angles. This formula
was modified in two ways. (i) The intermolecular distance R used in their formula was in-
creased for small Hy molecule sizes, and decreased for large H, sizes where the Hy molecules
were inclined towards each other (i.e., if the shortest distance B between atoms in differ-
ent molecules was less than would be the case for equilibrium H, sizes); this improved the
agreement with the position of the repulsive wall. Note that conformations were discarded
altogether if the shortest distance B between atoms in different molecules was too small,
namely, B < 3.5 a, for r, =1, = 1.449 a5, B < 4 q, for 1.2 a, < {r,, 75} < 1.75a,, B < 5 a,
for max{r,,r,} = 3.4 a,, and B < 4.5 a, otherwise. (ii) For small Hy molecule sizes, the
anisotropic terms were reduced, since a small Hy molecule should look more nearly spherical.
Note that Diep and Johnson!® computed rigid-rotor Hy + H, potentials for H, molecule sizes
of both 1.449 a, and 1.402 a,; their figures 11 and 12 suggest that the latter case is slightly
less anisotropic, in qualitative agreement with modification (ii). A detailed description of
the modified Schaefer/Kohler formula is presented in Appendix A in EPAPS?!.

Note that this modified version of the Schaefer/Kéhler formula does not have continuous
derivatives and is thus not suited for use as an actual Hy surface. However, it is adequate
for generating constraining conformations at discrete distances, to give a general guide as
to the position of the van der Waals well for our Hy fit.



7. Non—ab-initio very compact conformations

To ensure that extrapolation of our fitted Hy surface to very short distances is reasonably
well behaved, we added a grid of 1197 extremely compact conformations with distances
chosen from {0.4, 0.6, 1.0, 1.4, 1.75, 3.4 a,}; either just one distance was as short as 0.4 a,,
or at least two distances were 0.6 a,. Angles were incremented by 30 degrees, unless at least
one distance was 0.4 or 3.4 a,, in which case they were incremented by 45 degrees. As we
did in constraining the BKMP2 H; PES??, energies were estimated via the (non-Johnson-
corrected, non-cusp-rounded) London formula (see § IIC 1) and were given very low weight
in the fit (see § IID 1; the lowest energy of this set of points was 0.464 Ej, and the highest was
2.690 Ej. Although the energies calculated via the London equation are quite inaccurate
compared to ab initio energies, these points (with an appropriately reduced weight) can
guide the surface in this region of very compact geometries and prevent it from turning back
over and decreasing in energy. These were referred to as “HyLondon” conformations.

8. Semi- and non—ab-initio Hs + H conformations

Finally, the Hy PES must reduce asymptotically to the H3 PES as the fourth atom is
moved off to a large distance from the first three atoms. As a basis we took the 8559 Hj
conformations of BKMP22?2: the 542 of the preliminary grid, the 6548 of the comprehensive
grid (2 being duplicates of preliminary grid points), and the 503 of Partridge et al.?®?* — all
7951 of these have ab initio energies (of higher accuracy than the Hy ab initio energies) — as
well as the 968 Hs van der Waals conformations generated from the MTT formula?? fitted to
Partridge’s energies. We then added a fourth H atom at a random position, from 9 to 16 a,
from the nearest atom in Hj, or slightly further for reasonably compact Hjz distances r;:
this allowed range was shifted outwards by 0.6 max{0.0 a,, 8 a, — (r1 +72 + 73)} (e.g., for
r1 =19 = r3 = 1.5 a,, the fourth atom would lie in the range from 11.1 to 18.1 a,). Our
ab initio energies for conformations tending towards Hs + H suggested that, even at the
lower end of this range of distances, interaction energies for the fourth atom relative to the
first three would be less than the “random” error of ~ 0.1 mE}, in the H3 ab initio energies,
and much less than the systematic Hs error of ~ 0.4 mFE) estimated in BKMP2?2. Thus
for these 8559 Hs + H conformations we simply adopted the H; energy; they are referred to
as “HyfromH3” conformations. They were given increased weights in the fit to reflect the
higher accuracy both of their energies and of the BKMP2 Hj surface which the Hy surface
asymptotically approaches.

B. Ab initio computations and analysis
1. Computational methods and CPU-time

The ab initio computations and analysis of errors largely follow the methods described
in our previous papers\'?>?°. Earlier H, energies' had been computed using a Cray version
of Buenker’s MRD-CI program?®; subsequent energies were computed using a workstation
version®’. The (9s3pld)/[4s3pld] Gaussian basis set from Siegbahn and Liu*® was used,
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as in Boothroyd et al.! (see Appendix B in EPAPS?' for more details). For most con-
formations, molecular orbitals were obtained from closed shell SCF, as before'; if closed
shell SCF iterations were slow to converge, open shell SCF or mixed (1 closed, 2 open)
shell SCF was automatically used instead (for several hundred conformations, energies were
computed using molecular orbitals from two or three different SCF types). A configuration
selection threshold of T' = 10 pE), was used for most points (Buenker’'s MRD-CI program
automatically extrapolates to zero threshold, using truncated-CI energies at T and at 27
plus a parameterization of the estimated effects of neglected configurations). Multiple CI
roots were computed, to ensure that the ground state energy was always among the energies
reported by the program. A fairly extensive set of reference configurations was used for
the CI calculation: the minimum size of C> (the sum of reference configuration C? values)
was 0.927, and the average size was 0.974. (Note that additional reference configurations
were included automatically if the program estimated that they would increase C}f by more
than 0.001 individually and by more than 0.003 collectively).

The above relatively small basis set and relatively large selection threshold were required
by CPU-time considerations (and also yielded energies consistent with our previous H,
ab initio computations'). So long as the ab initio energies are of accuracy comparable
to the desired “chemical accuracy,” the most important factor in obtaining a good fitted
analytic surface is adequate coverage in the 6-dimensional conformation space of Hy, which
requires large numbers of ab initio energies. In the late 1980’s, only a generous grant of time
on a Cray X/MP enabled computation of the original 6101 ab initio energies of Boothroyd
et al.l, even though only a single CI root was computed for each. By the time when the
points of the current work were computed (in the late 1990’s), the workstation version of
Buenker’s MRD-CI program proved to have comparable speed. Nonetheless, a total of over
5 years of CPU-time plus I/O-time was required for the 74134 ab initio energies that were
computed in the present work (this includes all recomputations, as well as the points used
to look for the conical intersection). These computations were distributed among about a
dozen different computers, mostly workstations of various types, but including a couple of
high-performance machines. For the faster computers the I/O-time tended to dominate (due
to large temporary files), but there was one exception to this: more than half of the energies
were computed on a single high-end SGI with a fast disk, which allowed computation of a
typical ab initio energy in about 10 minutes. The other computers typically required 30
to 60 minutes per point, with some older machines requiring up to several hours per point.

2. Errors in nine earlier points
Aguado et al.>* pointed out that a few of the earlier energies of Boothroyd et al.! were
in error for high-symmetry conformations, lying at the first excited state energy rather than
the ground state energy. We thus recomputed the energies of those points where only one
MRD-CI root had been computed, having the MRD-CI program compute the lowest 5 roots,
to check for such errors. We first recomputed all high-symmetry conformations (Dyy, Dsp,
Doy, Doopy Dag, Csy, Coyy Cooyy Cay), all points where the SCF iterations had been slow to
converge or where closed shell SCF had not been used, all points that had a difference of
more than 1.5 mE), between two computed energies (with different SCF-types or different



reference sets), and all points differing by more than 4 mEj, from the then-current fitted
analytic H, surface of Keogh? (which had an rms of about half that); these cases comprised
1149 of our 6101 previously-computed points. Of these 1149 points, only 9 were found to
have been in error by more than ~ 2 mkE), with 7 having yielded the first excited state
(~24.2, 23.6, 21.2, 14.8, 4.8, 3.9, and 2.5 mE}, above the respective ground states), and 2
with errors of 3.8 and 3.4 mE), still lying much nearer the ground state than the first excited
state. It seemed worthwhile to test all the remaining single-root energies, by recomputing
with multiple roots the remaining 4952 points from the original grid, as well as the 12000
points from the new grid (that had at that time already been computed with the workstation
MRD-CI program). Of these 16952 points, none were found to have had erroneous single-
root energies. The 2494 conformations of “Hy tending towards Hsz + H” were all computed
with multiple roots in the first place, as were the 20595 conformations of the “random” Hy
grid.

3. Small corrections applied to the MRD-CI energies

Using different basis sets, different SCF types, different configuration selection thresholds,
and/or different CI reference sets for a given Hy conformation yielded MRD-CI energies that
differed systematically, though by relatively small amounts. Extrapolation to zero threshold
(performed automatically by the MRD-CI program) and the Davidson correction to full CI
are both standard procedures. The London-type basis correction is reasonably well justified,
and makes a significant improvement in the accuracy. In addition, we made two small ad
hoc corrections, functions of the extrapolation threshold and the SCF type, to improve
consistency among the various cases; these latter two corrections were were typically smaller
than the random errors in the energies, and could have been omitted with only minor effect
on the final energy values.

The Buenker MRD-CI program’s extrapolation to zero CI threshold is quite accurate;
however, rms differences of 0.42 mFE), remained, between 1753 cases with differing configu-
ration selection thresholds 7" = 10, 2, or 0.4 uFE,. These rms differences could be reduced
to 0.30 mE}, by a small ad hoc systematic correction, described in detail in Appendix B in
EPAPS?. The rms size of this ad hoc correction was 0.42 mFE},, comparable to the estimated
errors in the extrapolation to zero threshold (and smaller than the total estimated MRD-CI
errors discussed below).

As in Boothroyd et al.!, we made a parameterized Davidson-type correction to full CI,
namely,

Asc1 = \p& AEpe = X&) (1 — C2)AE,/CF (1)

where AFE,,; is the contribution of single and double excitations to the energy, and AFEp¢
is the standard Davidson correction. For single-reference closed-shell configurations with at
least four electrons, if the effects of quadruple excitations are assumed to be much larger than
triple excitations, then the above formula for the Davidson correction (with an expected value
of Apc ~ 0.5 for closed-shell H;) can be derived theoretically®* 3. We not only used multiple
references, we also used open and mixed shell SCF cases; we therefore obtained values for
the parameter Apc by minimizing the average differences between MRD-CI energy values
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computed for the same point with different reference sets (which thus had different sizes for
the Davidson correction). As in Boothroyd et al.’, we used \j5 = 0.46, 0.14, and 0.30 for
closed, open, and mixed SCF cases, respectively; the average size of AEpc was 1.81, 0.34,
and 1.01 mE}, respectively, yielding full-CI corrections averaging 0.83, 0.05, and 0.30 mE},
respectively. For 46733 cases where the program obtained improved reference sets, and
thus two different-sized Davidson corrections were available, the rms difference between the
resulting energies was 0.52 mEj,. This may be an overestimate of the uncertainty, since
it may be biased by the rare cases where the larger Davidson correction was very large
indeed (up to AEpc = 18.82 mE}). For the 39926 of the above cases where the larger
of the resulting AFEpc was either less than 2.5 mE) or less than 2.5 times the smaller
of the resulting AFEp¢c, the rms difference between the resulting energies was 0.31 mE}.
This is probably an underestimate of the uncertainty, as the larger Davidson correction
averaged only 1.68 times the smaller one for this latter sample, and there may also be
some systematic error since we have no information from cases where only one value of
the Davidson correction was available. There are suggestions of a systematic uncertainty
of order 0.1 in the preferred value of \J’, leading to a systematic uncertainty in the
energy correction of order 0.2 mE). We estimate the total uncertainty in the Davidson-type
correction to full-CI to be about 0.5 mE},.

Small but not completely negligible systematic differences (rms size of 0.55 mE},) were
found in energies computed using molecular orbitals from different SCF types (note that this
rms difference gives an estimate of the sum of the “random” errors in extrapolation to zero
threshold and the Davidson correction). These rms differences could be reduced to 0.43 mEj,
by applying a small ad hoc systematic correction to the relatively few open- and mixed-shell
SCF cases. This correction was estimated by comparing MRD-CI energies computed using
different SCF types, and is discussed in detail in Appendix B in EPAPS?!. The rms size of
this ad hoc correction was only 0.25 mFE},, much smaller than the estimated MRD-CI errors;
and of course it was applied only to those few points where closed-shell SCF was not used.

The final energy value Ejg,, was obtained from the estimated full-CI energy using the
London-type basis correction described in Boothroyd et al.'; the average size of this correc-
tion was 3.21 mE},. This London-type basis correction is obtained by taking the difference
between the Hy London energy with the accurate H singlet curve and the Hy London energy
with the H singlet curve computed using the finite basis set:

Abasis = Vfi;ﬁdon { lE accurate } - VL%;Ldon { 1Ebausis } (2)

The fractional error in this basis correction might be hoped to be of the same order as the
fractional error in the London energy. For Hj3 geometries, this basis correction has been
shown to have an insufficient dependence on the bending angle between the distances 715
and 793, and thus for the BKMP2 Hj surface?? we added a semi-empirical modification to
the Hj basis correction to alleviate this problem. For Hy, the angular dependence of the
London basis correction seems likewise to be insufficient, although there are not enough
accurate energies computed with differing basis sets to be certain that this problem is real,
and certainly not enough to enable one to attempt any modification of the basis correction.
Thus the unmodified London basis correction was used, but our earlier estimate® of 0.6 mE,
for the size of its error may be an underestimate: the systematic error in the basis correction
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may be closer to 1 mE}, on average. It will be larger for very compact geometries, and
smaller for spread-out geometries (especially those tending towards Hy + Hy).

4. Best MRD-CI energies and estimated errors

The above small corrections reduce but do not completely eliminate inconsistencies in
the MRD-CI energies computed with different basis sets, different SCF types, different
configuration selection thresholds, and/or different CI reference sets. Where more than one
energy value had been computed for a given conformation, the “best” value was chosen to be
used in the fitting procedure. (In general, multiple-root cases were preferred to single-root
cases, closed shell cases to open and mixed shell cases, lower thresholds to higher ones, and
smaller Davidson corrections to larger ones.) The extrapolation to zero threshold and the
Davidson-type correction to full CI appear to yield largely “random” errors; the systematic
components of these, though not completely negligible, are much smaller than the systematic
error in the basis correction. Thus the total uncertainty in the ab initio energies probably
comprises a “random” error of about 0.5 mE} and a systematic error of order 1 mkE}.

C. Functional Representation of the H, Surface

This section lays out the equations which underlie our fits to the Hy ab initio data. The
total Hy potential energy surface is given by

Nmaw
VH4 = Vlgizdon + anjg + Z Vi ) (3)
N=1

where V4 . is the London equation for Hy, V2 is a term based on the non-symmetric

bending terms (i.e., non-London terms) from the BKMP2 Hj surface?”, and the Vy are
general Hy terms used to correct for the deficiencies in the London term (N, = 8, except
in the earliest of the fits). The separate equations for these terms are given below.

1. The London component

The London component®*, with an added “cusp-rounding” term E, (as in the BKMP2
H; surface??), is given by

6
1
VLfg;lLdon = ZQZ_ (E52+§[(J1+J6_J2_J5)2 (4)
=1
1/2
(ot Js— Js— T3+ (Jo+ Ju— Ty — J6)2])

in which

[B(r) — B ()] 6

NN

Qi = [lE(n)Jr?’E(ri)] and J; =

N | —
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for each of the six internuclear distances 7;. Note that 'F(r;) is the Hy singlet energy
(obtained from Schwenke’s'® formula), and 3E(r;) is the effective H, triplet energy, for one
of the six internuclear distances r;. The effective triplet curve used here was taken unchanged
from that used by BKMP2 for their H; fit??; note that it includes a Johnson?®® correction at
small distances to ensure that the difference between the two curves increases monotonically
for decreasing values of internuclear separation. As pointed out by Johnson®®, this condition
is necessary if one wishes to avoid unphysical discontinuities in the first derivative of the
London equation at short distances.

For the BKMP2 Hj surface??, a constant value of E, = 1 uE}, was used as an (optional)
term to slightly round off the cusps in the London equation (e.g., to avoid numerical problems
from discontinuous derivatives). However, for the H, surface, the London equation inserted
cusps in the wrong places (see § III A), and a more general formula was introduced to allow
the London cusps to be rounded off by arbitrarily large amounts in certain regions:

Ec({ri}) = CepSI({r:}) + (LpBn)[1 - SI{ri})] (6)

where C.p is a parameter giving the maximum amount of rounding, and S/({r;}) is the
cusp-rounding switch factor. This switch factor should go to zero for conformations tending
towards Hy + Hy or Hs + H (since the London component is an essential part of the BKMP2
Hj surface??). If one chooses the “best” way of dividing the H, conformation into a separate
pair of molecules, the four distances between atoms in separate “molecules” will be large
for Hy, + Hy, and two of these four distances will be large for Hz + H. Schwenke!? defined a
switch factor S_(SJ ) to choose between the three ways (g = 1,2, 3) of describing the Hy + H,
pairing into 7o, and 5, (AB+CD, AC+BD, or AD+BC); this is discussed in more detail in
§ ILC 3 below: see equation (19). Using this “separate-molecule” switch S{”) (a function of
Tays Thy, and Rg), we define a “separation measure” s, as

1/4

se({ri}) = ;Sf(’J) II (ri+Ca)| (7)

i#ag,by

where C,x is a parameter that reduces the variation among s, values when the distances r; are
small — in particular, for H3 4+ H, the sensitivity of s, to the size of the H3 sub-conformation
is reduced.

Let C.s be a parameter giving the position in terms of s, where the London-rounding
should be switched on, let C.y be a parameter giving the half-width of the switch-over
region in terms of s, and let § = (s, — Ccs)/Cew (i.e., the fractional separation measure
relative to the switchover position); then the cusp-rounding switch factor is defined as

1 ,5eS—1
1-31-6)1+6) ,-1<6.<0
f ) — 2 € € ’ €
S =110 spa=-s)  o<e <1 ®
0 75621

This switch factor has continuous first and second derivatives, and switches smoothly from
1 to 0 as the “separation measure” s, goes from C.g — Cy to Ces + Ceopy-
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2. Bending terms from the H3 surface

The term V% is based on the non-symmetric bending terms in the BKMP2 Hj
potential??. From the four H atoms, there are four possible ways h of choosing 3 atoms
(ABC, ABD, ACD, or BCD, corresponding to h = 1, 2, 3, or 4, respectively). For each way,
we calculate a weighted Hs term V7, and define

4
h=1
The weighted Hj3 terms are defined as

Vi = S1(h) [Vasym (h) + Voena(l)] + S2(h) [Cau(h) + Casym(h) + Crena(h)] (10)

where the terms Visym, Viend, Caits Casym, and Cheng are taken directly from our BKMP2 Hj
surface??. The switches (weights) S;(h) and Sy(h) are defined as follows. For the 3 atoms
chosen to be part of the “H3” (for choice h), call the distances r4,, 719, , 73, . Call the other
3 distances 741, , T2, Tu3, - Let

]1/2 ’ (11)

_ _ 9 11/2

_ -2 -2 -2
pth - I:rtlh + rtQh + rt?)h

The switches (weights) for V.2 are then defined as

Si(h) = [1+ 87 exp(Si/py, — St/pu,)] (13)
Sa(h) = [1+ S5 exp(S3/py, — S3/pu)] ™ (14)
where S?, S9, St, SL, S*, and S¥ are six (non-linear) parameters. The combination V4, +

ang asymptotically approaches the BKMP2 Hj surface?? as one of the four hydrogen atoms
is removed from the vicinity of the other three.

3. General Hy Jacobi terms

The Vi term (also referred to as our Vi, term, since it is almost identical to the Vg,
formula of Schwenke'?), is defined in terms of the Jacobi coordinates 7,7y, R, 0,,6, and ¢
(strictly, these Jacobi coordinates should also be subscripted by g — see description below):

3 Ip; Kh;
—p1 p° corr 1 iy J
Vi=e fre Z S!SJ)AQ ({TZ}) Z y(hqwt(oa, Oy, ¢) Z Z Cél()lw,ijk Ta Tb]Rk : (15)
g=1 aq2p 1,5=11o k=Kjo

Several other similar terms were also introduced, namely Vy for N = 2 to N;:

3 Ip; Kp;
_ 3 N i,. 7
Vn = AN({TZ}) e e Z SssJ) Z yQ1q2u(9a> Oy, ¢) Z Z Clgu]lu;ijk Ta TbJRk : (16)
9=1 qQq21 uj=lio k=K,
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Note that the C’ o q2 ik are the linear parameters of the fitted surface. For most of our fits,
we had N; = N0, = 8; however, for our final fits (including the final adopted surface), we
set N; = 7 and replaced Vs with a many-body-expansion term based on that used in the
Aguado et al.® surface (see § IIC5).

Each of the general H, terms in equations (15) and (16) contains a selector function
A({r;}) which is a relatively simple function of the internuclear distances r;; these are
described in § IIC4 below. Each term also contains a factor e #~ 7 to reduce the size of
the correction for large geometries. Here p is a useful measure of the overall size of a given
Hy geometry:

In the terms V; through Vy,, the description of the Hy is basically in terms of a pair of
H, molecules. As in Schwenke!?, we use the Jacobi coordinates 7,, 7, (Hy molecule sizes),
R (intermolecular separation), and the angles 6,6, ¢, where ¢ = ¢, — @p. In particular,
cosl, =7, - R/ (r,R), cos 0, = 7 - R/(ryR), and cos ¢ = (7, x R) - (7, x R) /(|7 x R| |7 x R|).
In addition to the Jacobi coordinates, we also use the six internuclear separations. Here we
follow the convention3* that sets ry = |7ag|, 72 = |Facl, 73 = |Fap|, 74 = |FBc|, 75 = |7BD|,
and r¢ = |Fop|. Since it is not always clear to which distances in the molecule to assign the
labels 7, and 73, we follow Schwenke’s'® method of using all three possible descriptions. For
each of the three ways (g = 1,2, 3) of describing the H, + Hy pairing (AB+CD, AC+BD or
AD+BC), we calculate the following useful quantities in terms of the corresponding Jacobi
coordinates 7q,, Tp,, and Ry:

_ _ -1
Ny = I:(raf + Tbg2)1/2R9] (18)
S) — g=Prng (e—ﬂJ moy e Pinz + e P na)_l - (19)

Note that S éJ ) is also used in the definition of quantities used in the London cusp-rounding
switch of § IIC1 above: see equation (7). The quantities 7, and S!SJ ) are used to combine
contributions from the three possible descriptions; the smallest value of 7, indicates the best
description, and the switch SgJ ) gives the appropriate weight. Schwenke'® let 3; = 20 to
give rapid switching between the three descriptions. We found that softer switching between
the three descriptions resulted in a better fit, and so 5; = 10 was used in our fit. For some
geometries encountered, R, has a value of zero for at least one of the three descriptions of
the best pairing; these situations must be handled as a special case to avoid dividing by zero
(note that negative powers of R are possible in the fit). For a case with R, < 107'° g, (or
S!SJ ) < 1073%), the weight for that particular description g was set to exactly zero and the
corresponding terms in the fitting formulae were not evaluated.
As in Schwenke’s'? surface, the angular functions are given by

AT
B+ 0,0 [Yauu (0o, a) Yao,—u(0s, B) + You,—u(0a, a) Yoo (0, H1)] (20)
where Y, , is a spherical harmonic. Due to homonuclear symmetry, only even values of
the indices ¢; and ¢, appear in the above equation'®. The combinations of ¢;qop used are

Vargon =
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{000, 220, 221, 222, 200, 020}; equations (15) and (16) involve a summation over these
combinations. (Note that Schwenke’s'® ab initio points did not have general enough sym-
metry to allow him to determine coefficients for g;qop = 221, which he therefore omitted
in his equations.) The ‘radial’ dependence in the terms V; through Vi, is described by
the final summations over %, j, and k in each correction term. Note that the selector func-
tions Ay ({r;}) can depend on all six internuclear distances, and are not decomposed into
the above ‘radial’ and ‘angular’ coordinates.

It is required that the surface be unaffected when r, is swapped with r,. This constrains
the number of independent Céf\g uijk- BY symmetry, the range of indices on the summation
over the index j must be the same as the range on the summation over the index 7. In
addition, when doing the triple summations, when ¢; = ¢y the off-diagonal elements 7, j and
j,% must have the same coefficient. This requirement therefore applies to ¢;gou = 000, 220,
221, and 222 only. Similarly, the coefficients for ¢;go4 = 200 are reused as coefficients for
the q1gop = 020 (with 7,* and 7y’ changed to 7,7 and r,?) to meet the symmetry requirement.

In the general case, given index ranges n; = I; — I}, + 1 and ny, = Kp; — K, + 1, the total
number of linear parameters N, for a term with these index ranges may be obtained via

ny = Nk Xn; Xn;
ny = ng X (no. of elements in upper triangle of n; X n; matriz)
= Ng XnN; X (TLZ+1)/2
Nierm = 4 X nIL +nL

(21)

Consider an example for any one of the correction terms V. If the indices on the triple
summation all run from 0 to 2 (n; = ny = 3), this yields 18 terms for each of ¢;gopx = 000, 220,
221, and 222 (after adding together the appropriate off-diagonal terms for these four values
of q1gopt), and 27 terms for ¢q;gopr = 020, for a total of 99 separate optimizable parameters
(not 162 as one would obtain without any of these restrictions imposed by symmetry).

4. Selector functions

Various selector functions A({r;}) were used in an attempt to distinguish certain subsets
of the fitted points. The subsets weighted by the various selector functions are not mutually
exclusive, but help to reduce the number of linear dependencies between the hundreds of
linear terms.

The selector function A" (used in our V; term) is a general selector and is based on
Schwenke’s'® V,,,, term; for each of the three possible Hy + H, pairings g, with Hy, molecule
Sizes Tq, and Tby s

Agorr — Z V},(T‘z) = l; %(Tz)] - %(Tag) - ‘/IJ(Tbg) . (22)

i#ag,bg

As in Schwenke’s fit, V,, is the non-bonding pairwise potential
AP
V;J(r’t) = exp <_Ap27‘i 3) ) (23)

containing two non-linear parameters A,, and A,,.
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The other selector functions Ay ({r;}) were defined in terms of all six distances r; in such
a way as to be invariant under interchange of atoms. Recall that under the definition of
the r; (see § IIC3 above), it will always be the case that r; and rg connect disjoint pairs of
atoms, as do r, and 75, or r3 and r4. The selector functions were defined as:

AQ({T,}) = Akite(16; 23, 45) + Akite(61a 24, 35) —+ Akite(25a 13, 46)

+ Akite(52, 14,36) 4+ Agite(34, 12, 56) + Agire(43, 15, 26) (24)
0.17% 0.17%
25
Arid) = 5197 A (D) T 0077 4 A, (16) + Ay (25) + Ay (34) (25)
Ay({r:}) = Ap,r(124,356) + Ap, (135, 246) + Ap, r(236,145) + Apg, (456, 123) (26)
As({r:}) =1.0 (27)

Ap,i(135,246)\°

72 : > AnonlinH3(135)

(AH3H(456, 123))6
72 A

As({r:}) = (AHSH(?’ 356)>6 Anontintrs (124) + (

Ap,r(236,145)\°
+< HBH( )> AnonlinH3(236)+

nonlinHgs (456) (28)

=2
T
A;({r:}) = AHZH2(16 2345) + Ag,m, (25, 1346) + Ag, , (34, 1256) (29)
AS {T'L} ZAcompact(Tz) (30)
=1
where
1 6
r= iy (31)
6 i=1
i\ T2 T2
A ite ] 'a ’ = — — 32
kite (17, kL, mn) (r]) <(rk—rl)2+r +(rm—rn)2+r2> (32)

(-
—
=
.
|
=3l
~
N
—
w
w
~~

A({ri}) = _

-~
I
-

2
P+ 6 \ [(ri+r; 62
As ..:i__2 _92 T J _ 1 J _
i) = (ri=13) ”( 7 2+ﬁ>< . 2+\/§>

2

Ap,g(ijk,lmn) = [(n +rj+r) — (1 4+ rm 4] (35)

Aponiings (17k) = — (7"Z +r;— rk) (ri + 15 — rj)Q(rj + 7 — ri)2 ) (36)

Ay, (17, klmn) = (r; ) (ri +ri+rm+ Tn)2 (37)
(7",—1 15a0)3/(r; —1.25a,) , 73 < 1.15 a,

compact(rz) { LT 2 115 a, (38)

The selector function A, emphasizes “kite-shaped” conformations, Az anti-selects against
squares and tetrahedra, A, distinguishes between “H3-+H” and general H; conformations,
As is unity (no selection), Ag is similar to A4 but selects only non-linear Hz parts, A; dis-
tinguishes between “Hs+Hy” and general H, conformations, and Ag selects “compact” con-
formations containing short distances.
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5. General Hy many-body expansion term

As mentioned in § IIC3, for our final fits (including the final adopted surface) we set
N; = 7 (rather than 8) and replaced V3 with a many-body-expansion term based on that
used in the Aguado et al.® surface:

i+j+k+l+m+n
( b) ﬂ 3 SMorder (8) . ko
moe) __ —pgp 1,0 m, n
Vs =e > Cijkimn D PiD3 D3 PiDE DG (39)
0<4,5,k,l,m,n<Lp; permutations

of H atoms

where ij-s,zlmn are the linear parameters, and the polynomial Rydberg-type variables®*® p,
are simple functions of the corresponding internuclear distances 7, for v =1 to 6:
by=17 e_ﬁp " ) (40)

with a non-linear parameter 3,. The sum of the six indices must never exceed My, 4e,, the
order of the surface; in addition, we constrained the maximum power for any individual
distance by requiring that no index exceed a limit Ly; . (Note that our choice of numbering
the distances 7, differs from that of Aguado et al.; their notation is recovered by exchanging
rs with 74, or indices k¥ with I. The four-body term of Aguado et al.® is then obtained by
setting B = 0.0 and Lp; = Myrger -)

As pointed out by Aguado et al.?, some constraints on the indices are needed to make
sure that this is indeed a four-body term, i.e., that for each way of dividing H, into two
or more disjoint subsets, the disjoint subsets are always connected by at least one distance
with a non-zero index. This can be accomplished by the two conditions that (i) each H atom
must have at least one distance with a non-zero index:

it+7+k>0, i+l4+m>0, j+Il+n>0, k+m+n>0, (41)
and (ii) at least three of the six indices are non-zero:
min{s, 1} + min{j, 1} + min{k, 1} + min{/,1} + min{m, 1} + min{n,1} > 3. (42)

[This latter is the condition that the next-to-last line in equation (6) from Aguado et al.?
was intended to express, although their equation (6) actually allowed up to four indices to
be zero, provided that the remaining two indices were 2 or higher — the correct conditions
were embedded in their fitted surface, however.]

The requirement that the surface be symmetric under interchange of H atoms is met in
equation (39) by the sum over all 4! permutations of the H atoms. Given this symmetriza-
tion sum, further conditions on the indices are required to avoid duplicate terms. These
conditions may be expressed as:

1 >35>k, j2>21, j>m, i>n, if 1 =7 then m > n,
if j =k thenl>m, if j =1then k > m, (43)
if j=mori=mnthen k> 1, ift=1[0then k >n .

Combining all of the above conditions, the sum over indices then yields all different symmetry
adapted functions for the relevant four-body terms of Hy. If, for example, one sets Ly; = 3
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and M,.q4.r = 8, then one obtains 95 independent linear parameters Cg,glmn (as opposed to

99 linear parameters in a Vi term, with N < N;, having I;; = Kp; = 2 and [}, = K, = 0).
Aguado et al?® set Lp; = My4er = 12 in their best-fit surface, for a total of 865 linear
parameters.

6. Other types of terms tested

Many different versions were tried for the selector functions of § I1C4 before the final
versions given above were decided upon, and many different summation index ranges and
different subsets of the above terms Vi were tested. A lower-powered cutoff factor e=##*
(rather than e™##°) was tried in equations (15) and (16), but was found to yield a poorer
fit. Likewise, an alternate cutoff factor e ™" was tested, using the mean internuclear
separation T (to some power n) instead of the rms internuclear separation p [see equations
(31) and (17)]. A switch to turn off the entire London term of equation (4) was tried, in place
of the switch to turn on London cusp-rounding [equations (6) through (8)]. In addition, two
entirely different types of terms were tried in the H, surface.

A term V;,,, was tested, of a form similar to the many-body-expansion term but of higher
symmetry, being symmetric under all 6! permutations of the interatomic distances (rather
than the 4! permutations of the H atoms):

i+j+k+l+m+n
ﬂ 3 SMorder ( ) . Dk
_ . —Psp S % 0] m ., n
Vsym = Asym({rz}) e Z Cijklmn Z DP1P2DP3 PaPs Dg » (44)
0<i<5<k<I permutations
<m<n<Lp; of (123456)

where no more than two of the powers {i, j, k,l, m,n} were allowed to be zero for any term
in the summation. A selector function of Ay ({r:}) =1 (no selection) was the most obvious
choice to try, but other possibilities were tested as well.

With Ly, = 4 and My,qe, = 13, this term Vy,, contains 95 linear parameters to be fitted,
as opposed to 99 linear parameters in a Vy term with I,; = Kp; = 2, I}, = K;, = 0. However,
replacing one such Vy term with V,,, not only increased the CPU-time required for surface
evaluation by a large factor, it was also significantly less effective: it led to an increase of
about 15% in the rms error of the fitted ab initio energies (in a fit with a total of about 790
parameters). Moreover, the high powers of the interatomic distances (introduced in order
to obtain a significant number of distinct terms in Vjy,,) would tend to introduce unphysical
“wiggles” in the fitted surface. The term V,,,, was therefore abandoned.

A Vi, m term was also tried, using some of the quantities defined for an;’g in § IIC2:
HsH B p® . I (HsH) i pk
— 3 7
Vi = A% ({r) e 73 51(h) Y Y G RERE (45)
h=1 i=l, k=K,

where as selector functions we tried both A ({r;}) = A3({r;}) and AHH)({r;}) =
74/[0.172+ A3({r;})] [see equations (26) and (31)], and as “distance values” R we tried both
{Ry, = o, 712, 7135 Ruy = Tuty F7u2, +7us, b and {Ry, = 11,712,743, » Ry = Tty Tuzp Tuss }
[see equations (11), (12), and (13)]. Like Viym, the Vi, g term proved much less useful than
the Viy terms, and was discarded.
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D. Our Approach to Fitting

This section outlines in general the steps followed in developing the terms and optimizing
the parameters in our analytical representation of the H, surface. The details of the equations
are given in § I1C above.

We started with the London H, equation, with the negligible cusp-rounding E. = 1 uFEj,
(see § IIC1). As described in Boothroyd et al.!, we found that it fit our set of Hy ab initio
energies about as well as any of the H, surfaces existing at that time (though the subsequent
Aguado et al.® surface of course did much better). Since the parameters in the London
equation are fixed, other terms in the fit were added to correct for differences between the
London representation and the data. After discovering that, unlike Hj, the cusps in the
London Hy equation did not correspond well with the position of the conical intersection
with the first excited state, E. was modified to allow non-negligible cusp-rounding as a
function of the internuclear distances: see equations (6) and (7) in § IIC1.

To compare the quality of different fits numerically, we monitored the rms values of
various subsets of the points after the completion of each fit. The following subsets were
monitored: (a) all 61547 points, (b) all 48180 ab initio points, (c¢) the 2500 Hy — H3 + H
ab initio points (these include one of Schwenke’s points), (d) the 8559 HufromH; points,
(e) the 10 ab initio tetrahedra, (f) the 11 ab initio squares, (g) the 1197 HyLondon points,
and (h) the 3611 S&K-Hy+H, points. Once a small number of “good” fits had been selected
numerically, various subdivisions of the above subsets were considered, and a large number
of graphs and contour plots were used to select the surface that appeared to have the fewest
non-physical “wiggles”.

1. Weights applied to fitted energies

In this section, the weights referred to are those that were used to multiply the deviations
between the fit and the data, before squaring these weighted deviations to calculate the rms
of the fit. Note that, frequently, the “weight” in a fit is defined as that applied to the square
of the (unweighted) deviation, i.e., with this definition the weight would be the square of
the values reported below.

Several different criteria were used to determine weight values. If more than one applied,
the final combined weight used was the product of the individual weight factors from the
following separate criteria.

Higher ab initio energies have larger uncertainties than lower energies, and high-energy
portions of the surface are less likely to be accessed in collisions of hydrogen molecules. Thus
all points with high energy E were given reduced weight, namely,

< 0.
wE:{1 » B<02E, (46)

(02 Ey)/E , E>02FE,

i.e., a weight inversely proportional to the energy for cases with energies more than about 3.1
times the Hy dissociation energy above that of a pair of separated equilibrium Hy molecules.

The generated Schaefer & Kohler Hy + Hs points (see § IT A 6) should be of high accuracy
for near-equilibrium Hy molecule sizes; they lie in or near the van der Waals well, which has
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a depth of order 0.1 mE}. Their absolute accuracy will be less in the repulsive wall inside
the van der Waals well, or for the cases that we generated with non-equilibrium Hy molecule
sizes. For Schaefer & Kohler Hy + Hy points only, two weight factors w, and wg were
combined, the former depending on the H, sizes 1, and r,, and the latter on a modified
intermolecular separation R':

(80 , 1, =1y =1.449q,
60 , elseif 1.2 ay < {ry, 7} < 1.75 a,

w, =1} 30 , elseif 1.0 ay < {r,,rp} < 2.1 aq, (47)
20 , elseif 0.8 ay < {ry, 7} < 2.6 a,
| 10 , otherwise: i.e., min{r,, 73} = 0.6 a, or max{r,, s} = 3.4 a,

(0.11 , R <4.6a,
0.333 , 4.6a, <R <5.4a,

wg=14 10 , 54aq, <R <59aq, (48)
3.0 , 59a, <R <89aq,
(4.0 R' > 8.9 q,
where

1, — 1.5 a,

- 1.5
R'=R—|cos€a\max{ 5 {u

,0.0 ao} — | cos 6| max ,0.0 ao} (49)
i.e., R’ is reduced relative to R by the the extent to which the ends of larger-than-equilibrium
H, molecules are closer to each other than equilibrium Hy molecules would be (ignoring their
relative orientation ¢ around the axis joining the Hy molecules).

The “HyfromH3” points generated from both the ab initio and the generated Hs points
(see § I A 8) are of higher accuracy than the Hy ab initio points, and the BKMP2 surface
(to which the fitted Hy surface should reduce for such conformations) fits the ab initio Hs
points to an rms (unweighted) accuracy of 0.27 mF},, and the generated Hs + H points even
better??. These points were thus assigned an increased weight of ws = 10.

The very compact “HsLondon” points generated from the London equation (see § ITA7)
are of very low accuracy, and were intended only to provide a rough guide to the surface
extrapolation to small distances and high energies. These points were thus assigned a
reduced weight of w; = 0.05.

2. Optimization of non-linear parameters

In the A selector function of equation (22) for the V; (i.e., V o) term of the surface
lequation (15)], there are two non-linear parameters A,, and A,,. There are two H3 switches
involving a total of six non-linear parameters [see equations (13) and (14)] — these switches
control the switchover to the BKMP2 Hj surface?? as one hydrogen atom is removed to a
large distance from the other three. These eight parameters were varied using a nonlinear
fitting procedure. At this point, only the terms V4, = (with E, = 1 uEy), V.3, and
Vi = Veorr were included in the fit: see equations (3), (4), (9), and (15). Limits of (I, I1;) =
(Ko, Kpi) = (—1,2) were used in the ijk summations of equation (15) at this point, yielding
a total of 224 linear parameters. The points fitted at this time included only the original
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6101 ab initio Hy energies, the 3611 “Hy + Hy” points, the 1194 “HyLondon” points, and a
subset of 891 “H,fromHj3” points. At each cycle of the nonlinear least squares optimization,
the 224-parameter linear least squares problem was solved anew. The resulting rms error
for the 6101 ab initio energies was 4.0 mE},. Once converged, these parameters for A“"" and
the H; switches were left constant for the remainder of the fits.

Additional non-linear parameters Sy (for N = 1,..., Ny,.) appear in the exponential
cutoff terms e ##° in equations (15), (16), and (39). These were not fitted, but a number of
different (3 values were tested, and final values chosen such that the van der Waals well had
enough flexibility to be fitted reasonably but not so much that “wiggles” appeared there
(or beyond). Different powers of p in the exponential were also tested; p® worked best.
The same value was used for most of the Sy, but a lower value was used for (g, since the
corresponding selector function Ag selects conformations tending towards non-linear H3 4+ H,
and our ab initio energies indicate that the fourth H atom has a non-negligible interaction
energy with the non-linear H3 out to larger distances than is the case for Hy + Hy. There
was one case where a [ value was indeed fitted: in the final fits, when the compact-term V4
was replaced by the many-body-expansion term Vg(mbe), the parameter 3 was varied along
with two other non-linear parameters, 3, [see equations (39) and (40) in § IIC5], and Ceg
[see equation (6) in § IIC1].

In the London cusp-rounding E. of equation (6), there are four non-linear parameters
Cen, Ces, Caw, and C.g. The first of these, C.a, is used in the the definition of the “sep-
aration measure” s. to reduce the sensitivity to Hs size in H3 + H conformations; a value
of C.ao = 3.0 a, was chosen, that provided a reasonable separation between “H;fromH3”
conformations and conformations of the worst-fitted points (from best of the fits that did
not include cusp-rounding). The position C.s and half-width C.y of the switch (in terms
of s.) were not varied continuously; rather, several dozen different cases with different posi-
tions and widths were tested. For each of these cases, the optimum amount C.g of rounding
was determined by performing a non-linear optimization minimizing the (energy-weighted)
rms error of the 48180 ab initio Hy points; this Hy ab initio rms error for each test value
of C.g was obtained by performing a linear fit for the full set of equations fitted (with the
full weights of § IID 1) to all 61547 conformations (both ab initio and non-ab initio).

The values of all the above non-linear parameters are given in Table I, including the
London cusp-rounding parameters for the six “best” fits, which we have labelled surfaces “F”,
“E”, “D”, “C”, “B”, and “A” — in the last two of these, the compact-term V3 was replaced
with the many-body-expansion term Vs(mbe). Note that surface “G” is the best fitted surface
without any London cusp-rounding. The adopted surface “Ad” is a version of surface “A”,
with a reduced number of parameters, as discussed in § IID4 and III B below.

3. Direct solution for n linear parameters

In performing the simultaneous determination of the hundreds of coefficients in the seven
linear correction terms, a matrix, F, which was m points by n linear terms was constructed
(in this case, up to about 12000 by 1200 for the original fits, and 70000 by 1200 for the later
ones ... quite a large matrix). The 4, j element of F, is the j-th linear correction term eval-
uated using the i-th geometry and energy (where the energy has already been corrected by
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other terms not currently being optimized, i.e. the London energy and the Vi, y correction).
After constructing the matrix, the eight ‘blocks’ of F (one for each of the eight correction
terms) were then each rescaled separately using the block average value so that the average
in each block was 0.1. This rescaling was done for increased numerical stability during the
inversion step. The next step was to calculate F'F to obtain an n by n matrix, Q. This
step involved the computation of hundreds of thousands of vector dot products where each
vector has a length of about 70000. The resulting matrix, Q, was then inverted numerically
to obtain the solution to the linear least squares problem. To accomplish this inversion,
the subroutine INVERT was used (originally part of program MINVRD from the Univer-
sity of Toronto FORTRAN library). This inversion procedure performs pivots around the
largest element in each row for the maximum numerical stability. This routine was modified
slightly so that if it encountered a term that was linearly dependent on some previous term
(or combination of terms), it would simply give the dependent term a coefficient of zero
and continue with the inversion, instead of aborting. Normally, in a fit of several hundred
linear parameters, a few linearly dependent terms were found (up to a few dozen, for fits
with larger index ranges), and between 10 and 20% of the terms were found to be essentially
“useless” (i.e., with the formal error for the fitted parameter being larger than the fitted
parameter value).

4. Elimination of insignificant terms

After deciding on a final form for the fitting functions, the inversion process was repeated,
this time adding in one coefficient at a time, in order, from the most significant to the
least significant. Adding the most significant term at each iteration automatically avoids
the problem of linearly dependent terms. This method of solving for the coefficients was
done using the program ‘STEPWISE’ (written by M. R. Peterson of the Department of
Chemistry at the University of Toronto, who adapted it from ‘Procedure STEPWISE’ by
G. H. Goodnight of SAS Institute, N.C., U.S.A.).

The STEPWISE method gives a very slightly better final rms value than the INVERT
method (better by of order 1 pE}). This difference is understandable since the two methods
are somewhat different. STEPWISE chooses the next best term at each step, and even
compares terms already ‘in’ to see if swapping some terms ‘in’ or ‘out’ might help the rms
value.

For the development of our fit “A”, Figure 1 shows the stepwise reduction in the weighted
rms value as more linear parameters are added to the fit, one by one; energy-weighted rms
values for subsets of the ab initio H, points are also shown at every 50" step. The adopted
fit “Ad” corresponds to Ny, = 400 on this plot. The rms values of the other “best” fits
followed very similar trends as a function of the number of linear parameters. Keeping about
half of the terms for these surfaces is enough to yield a weighted rms only a few percent
higher than one would get if the entire matrix were inverted.
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E. Re-Fitting The Aguado Surface

By replacing the terms V™~ and V™ in equation (3) with the Hs/Hy terms of
Aguado et al®, eliminating all the Vi terms except for Vi™® [from equation (39)] with
Ly = Myrger = 12, and setting g = 0.0, we were able to attempt to refit the surface of
Aguado et al®. This surface has one non-linear parameter 3, and 865 linear parameters.
We tried three cases: “ASPo”, refitting only the original 6101 ab initio energies, similar to
the fit of Aguado et al.® (though with corrected energy values in a few cases: see § IIB);
“ASPa”, refitting all 48180 ab initio energies; and “ASPf”, refitting the full set of 61547
energies.

Unfortunately, due to the large number of terms with high powers, the resulting correla-
tion matrix Q proved inadequate for the Aguado et al.® surface: the matrix inversion step
yielded rms values of order 50 mFE}), and even STEPWISE reported “no further improve-
ment possible” at an rms of ~ 3 mkE}, after only about half of the terms had been selected.
For surfaces “ASPo” and ‘ASPa”, the best rms error was obtained by simply refining the
Aguado et al.?® surface, i.e., retaining 8, = 1.404 a,' and fitting the residuals when the
Aguado et al.® surface was subtracted from the ab initio points (and thus obtaining refined
values for about half of the linear parameters). For surface “ASP{”, a good fit in the high-
weight van der Waals region required a lower value for f3,, and a straightforward fit to the
full set of points did best.

It is possible to estimate the extent to which the refitted many-body expansion surfaces
could be improved if an optimal set of parameters was actually attained. For surface “ASPo”
(fitted to the 6101 old ab initio energies), a straightforward fit yielded an (energy-weighted)
rms of 3.06 mE), with 356 linear parameters and an optimized value of the non-linear pa-
rameter (3, = 1.36 a,”'. With the Aguado et al. value of 3, = 1.404 a,™*, a straightforward
fit yielded only a slightly worse rms of 3.09 mE}), (with 367 linear parameters); the original
Aguado et al.® surface had an rms of 1.95 mE},, and our differential-Aguado fit (with refined
values for 365 parameters) yielded an improved rms of 1.79 mE),. For surface “ASPa” (fitted
to all 48180 ab initio energies), a straightforward fit yielded an rms of 3.03 mE), with 342
linear parameters and a value of 8, = 1.30 a,™'; with 8, = 1.404 a,™!, a straightforward
fit yielded only a slightly worse rms of 3.19 mFE) (with 372 linear parameters), and our
differential-Aguado fit (with refined values for 370 parameters) yielded an improved rms
of 2.61 mFE},. This suggests that, even without trying to fit the van der Waals well, a many-
body expansion surface such as that of Aguado et al.® cannot be expected to fit the ab initio
energies to better than ~ 2 mFE,. Adding the Schaefer & Kohler van der Waals energies to
the points to be fitted can only worsen the fit to the ab initio energies. Since the best of the
fitted surfaces of the current work have an rms error of ~ 1 mFE), for the ab initio energies
(a factor of 2 better — they also fit the van der Waals well about 4 times better than the
best of the refitted Aguado surfaces), it did not seem worthwhile to expend a large amount
of effort to get a relatively minor improvement in a large many-body expansion surface,
especially given the fact that the high powers of the distance factors in the expansion might
yield short-range wiggles in the analytic surface.
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IT1. DISCUSSION

Table II compares the rms errors of three earlier analytic H, surfaces and nine fitted
surfaces of this work, for various subsets of ab initio and generated energies. “Energy-
weighted” deviations were used to obtain these rms values, i.e., energies above about three
H,-dissociation energies were given reduced weight according to the formula of equation (46).
The only exception to this is the last line of Table II, where the fully weighted rms values of
all points in our Hy fit is reported (this is the rms value that the fitting programs described
in § IID3 and ITD4 tried to minimize).

Among the subsets of “all ab initio Hy”, the “E < 0.0 E,” and “E < —0.174 E}” subsets
exclude points with ab initio energies above two and one dissociation energies, respectively
(relative to a pair of separated Hy molecules). Subsets such as “A > 1.15 a,” refer to
non-compact conformations of Hy, since “A” is the shortest of the six interatomic distances
(as in § ITA). The selector “¢ < 3.5” yields conformations tending towards Hy + Hy. The
“random H,” subset refers to the randomly-generated conformations described in § 11 A 4.
The “original Hy” subset refers to the recomputed versions of the ab initio energies of
Boothroyd et al.'; note that, for all but 9 of the points, the new ab initio energies agree
with the old ones, within the uncertainties. The “Schwenke’s H,” subset refers to the
ab initio energies of Schwenke'®!*, most of which tend towards Hy + H,. There are only a
few “tetrahedra” and “squares”; they tend to lie at high energies, on or near the conical
intersection with the first excited state, and are included here mainly because they were
among the subsets kept track of during the fitting process. The “Hy — Hs+ H” subset refers
to ab initio energies of conformations where the fourth H atom lies at some distance from the
other three, but where the interaction energy between the Hs and the fourth H atom is still
reasonably large; most of these cases come from the grid described in § IT A 2. The “S&K
Hy + Hy” subset contains the energies described in § IT A 6, generated from a version of the
Schaefer and Kohler? rigid-rotor Hy + Hy surface with modifications to allow non-equilibrium
H, sizes; these generated energies are expected to be most accurate in the equilibrium-H, van
der Waals well, i.e., the subset with Hy molecule sizes r, = r, = 1.449 a, and intermolecular
separation R > 5.9 a,. The “HyfromH3” subset refers to the Hs conformations of BKMP2%2
with a fourth H atom added randomly at a large distance, as described in § IIA8. The
“cusp-test Hy” subset was not included in the fit; as discussed in § IIA5 and IIT A, these
points were used to map out the conical intersection between the ground state and the first
excited state, and the rms error of this subset gives an estimate of the extent to which the
fitted surfaces fail to reproduce the cusp at this conical intersection.

Three previously-existing H, surfaces are shown in Table II. Surface “Th” is the H,
surface of Keogh?, having a form somewhat similar to the surfaces of the present work
but with some undesirable features (including much larger spurious wiggles for somewhat
compact conformations); it was fitted to the original 6101 ab initio energies of Boothroyd
et al.l, plus the Hy + Hy van der Waals energies and a subset of the “HyfromH;” energies.
Surface “Tr” is a slightly improved version of surface “Th” (fitted to the same set of energies);
it was used for some semi-classical trajectory calculations by Martin et al.* and Mandy et al.®.
Surface “ASP” is the many-body expansion Hy surface of Aguado et al.?, which was fitted
only to the original 6101 ab initio energies. Of these three, the “ASP” surface does least well
on overall Hy ab initio energies, and in addition has spurious wiggles of order 1 mFE), in the
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van der Waals region (an order of magnitude larger than the errors of the “Th” and “Tr”
surfaces there), but has the smallest spurious wiggles for relatively compact Hy geometries.
Even for the restricted subset of energies to which these three earlier surfaces were fitted,
the best surfaces of the current work yield a significant improvement.

As discussed in § IIE, the particular form of the Aguado et al.> many-body expansion
surface made it difficult to refit: even the best of our refits have optimized values for less
than half of the linear parameters, and even these may still be slightly sub-optimal due to
the numerical problems. Table II displays surface “ASPo” (a differential refit to the 6101
original ab initio energies, yielding refined values for 365 of the 865 linear parameters and
keeping Aguado’s values for the other 500), surface “ASPa” (a differential refit to all 48180
ab initio energies, yielding refined values for 370 of the 865 linear parameters), and a full
H, fit “ASPf” (refitting the full set of 61547 energies, using 351 linear parameters plus the
non-linear parameter (3,: see Table I). As detailed in § IIE, it seems likely that even a
“perfect” refit of the Aguado et al.® surface would still be a factor of 2 worse than the best
surfaces of the current work. (In this regard, it should be noted that, for our best surfaces,
obtaining optimized values for only half of the linear parameters still brought the rms error
to within 5% of its value with all parameters optimized.)

Of the other surfaces from the present work displayed in Table II, surface “G” is the best
fit that does not include London cusp-rounding (see § IIC1); the presence of the London
component in this fitted surface often produces cusps in regions where there is in fact no
conical intersection with the first excited state, and frequently fails to predict a cusp where
the conical intersection actually occurs (the conical intersection with the first excited state
is discussed in more detail below). Four fits (“F”, “E”, “D”, and “C”), with four different
London cusp-rounding regimes (see Table I) but otherwise similar to surface “G”, have
similar rms errors, but are in all cases an improvement on surface “G”; of these four, only
the best two (“F” and “C”) are displayed in Table II.

The surfaces “B” and “A” have much the same functional form as “F” and “C”, respec-
tively; the main difference is that a 99-parameter term Vg (that selected only geometries
with compact distances < 1.15 a,) was replaced with a 95-parameter many-body expansion
term Vé(mbe) (this term is of relatively low order in the distance factors p,, unlike the Aguado
et al.® Hy surface: see § IIC5). Since surfaces “B” and “A” have very similar rms values,
only the slightly better of the two (“A”) is displayed in Table II. There is only a slight overall
improvement relative to surface “C”, but in one region there is a major improvement: the
added flexibility (due to the many-body expansion term) yields a factor of 5 improvement
in the fit to the van der Waals well.

Given several surfaces with very similar rms errors, the main criterion for preferring
one surface over another was the extent of spurious wiggles in the surface. Hundreds of
plots of the seven surfaces “G” through “A” were examined, with surfaces “C” and “A”
appearing to be the best in this respect. A further reduction in spurious wiggles could be
achieved by keeping only the most effective terms in the surface, at a slight cost to the rms
error. For the six best surfaces “F” through “A”, reduced-parameter versions were obtained,
where the STEPWISE fitting program was instructed to keep only the most significant 400
linear parameters (see § IID4). Table II displays rms values for “Cd” and “Ad” (reduced-
parameter versions of surfaces “C” and “A”, respectively). The adopted surface “Ad” has
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only slightly higher rms errors than surface “A”, and appears to yield the best compromise
between goodness of fit and lack of spurious wiggles.

In the following subsections, we discuss in more detail some of the concerns mentioned
above, and consider the quality of the fit in various regions of H; conformation space.

A. Conical intersection with first excited state

Since our highest-symmetry ab initio points were among the first ones to be computed
with multiple roots, it soon became clear that the ground state and the first excited state
were degenerate for most equilateral-pyramid conformations (three atoms in an equilateral
triangle, with the fourth atom directly above the center — Cj3, symmetry). Shifting the po-
sition of the fourth atom from the center-line of the equilateral base, or distorting the shape
of the base, lifts the degeneracy. The H, London equation exhibits a cusp as one passes
through an equilateral-pyramid geometry, just as the H3 London equation has a cusp at
the conical intersection equilateral-triangle Hs conformations. Another similarity between
H, and Hj is an “anomaly” at small sizes. Multiple-root ab initio energies computed at
compact geometries for the BKMP2 H; PES?? demonstrated that sufficiently small equilat-
eral triangles ceased to represent conical intersections of the H3 ground and excited states
(the non-degenerate A} root dips below the degenerate E' roots at small sizes). In the Hy
surface, for equilateral pyramids with base sizes smaller than 2 a,, a similar thing happens
for pyramid heights of ~ 3 a,; the range of pyramid heights where this happens grows larger
with decreasing pyramid base size (see Appendix C in EPAPS?!).

In contrast to the Hs surface, for the H, surface the conical intersection between ground
state and first excited state is by no means confined to conformations with C'3, symmetry.
When we looked at the worst points in one of our earlier fits, we found that many of them
were on or near conical intersections. However, in general the London equation either had
a cusp nearby but in the wrong position, or had no cusp in the vicinity at all. Not only did
this lead to geometries with large errors, but the other terms in the fit were frequently trying
to “flatten out” a spurious cusp as much as possible, or add a “bump” to approximate an
absent cusp.

We went to some effort to map out the positions of the conical intersection, in the hopes
that it might be simple enough to incorporate into the fitted surface. Unfortunately, the
conical intersection turns out to lie on a rather complicated 3-dimensional hypersurface
in the 6-dimensional conformation space of Hy. Mapping out a reasonable portion of the
conical intersection required computation of 13356 ab initio points (with multiple roots);
this is described in detail in Appendix C in EPAPS?'. Even this yielded only a partial
characterization; obtaining a full characterization is beyond the scope of this paper.

Given the complexity of the geometry of the conical intersection, and the possibility
of unexpected behavior at relatively small distances, it was decided that any attempt to
include the conical intersection explicitly in our Hy surface fit would be pointless. Instead,
we included a factor in the London component of the fit to round off the London cusps for
H, conformations (see § IIC1). This led to somewhat smaller errors in the region of the
conical intersection (and of the spurious London cusps) and improved the overall rms error
significantly.
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There are two methods by which one can estimate the fraction of the 6-dimensional
H, conformation space affected significantly by the conical intersection. The first method
is to consider the fraction of the “random” H, ab initio energies that are poorly fitted
by the adopted surface, e.g., with errors more than about 4 times the rms surface error
of 0.99 mFE}, for this subset. This yields a fraction between 0.1% and 1%, but this method
can be criticized on the basis that the “random” H,; subset was distributed quite non-
uniformly in conformation space. The alternative method is to consider that the conical
intersection comprises a 3-dimensional hypersurface in the 6-dimensional H; conformation
space. The width in the other 3 dimensions over which the conical intersection causes the
ab initio energies to differ significantly from a smooth fitted surface appears to be typically
0.5 — 1.0 a,, as opposed to a range of order 5 a, where interaction energies are significant.
Taking the cube of the ratio of these two width estimates, one again obtains a fraction
between 0.1% and 1% of Hy conformation space to be significantly affected by the conical
intersection. It should also be noted that the conical intersection can only be reached when
the total Hy + Hy energy is greater than the Hy dissociation energy.

Given the relatively small volume of the 6-dimensional H; conformation space affected
significantly by the conical intersection, the 13356 ab initio energies computed to map it
out were not included in any of the surface fits of the present work. The presence of such
a large number of ab initio points in such a small fraction of the volume would skew the
fitted surface towards an improved fit near the conical intersection, at the expense of a much
worse fit over the major portion of the H, conformation space.

B. The adopted fit

In addition to varying the non-linear parameters as described above in § II D 2, various
functions were tried for the selector functions (the final forms being those described in
§ IIC4), and various ranges were tested for the ijk indices in equations (15) and (16) in
§ ITC 3. For the same number of linear coefficients, use of negative indices gave a better fit for
compact conformations but a poorer fit for more typical conformations. Larger index ranges
(i.e., more linear coefficients) produced a more accurate fit, but increased the size of non-
physical “wiggles” in the surface. In the end, index ranges (Ijy, In;) = (Ko, Kpni) = (0,2)
were used, yielding a reasonable compromise between accuracy and smoothness. For the
many-body expansion term Vy™ in equation (39) used in the later surfaces, negative index
values are non-physical (as they would lead to interaction energies growing exponentially
with distance). For this term, the index range was (Lo, Lp;) = (0, 3), with a maximum order
M,r4er = 8 for the product of the individual distance factors (see § IIC5).

Six fits (“F”, “E”, “D”, “C”, “B”, and “A”), with four different London cusp-rounding
regimes, have similar rms errors (three of these fits are shown in Table IT). For each of these,
STEPWISE was used to obtain 400-parameter versions of the fits. Several hundred plots
of these surfaces were compared, in an attempt to choose between them; the 400-parameter
version of surface “A” appeared to yield the best compromise between goodness of fit and
lack of spurious wiggles, and was thus chosen as our adopted surface (labelled “Ad”).

We have used a large number of linear parameters in order to fit our data. For compar-
ison, Truhlar and Horowitz3" fitted 287 ab initio Hy points with about 23 parameters to, a
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12:1 ratio of points to parameters. Our BKMP2 Hj surface® fitted 8559 Hs points (7591
ab initio points) with about 120 parameters, a 71:1 ratio (63:1 for ab initio). Aguado et al.?
fitted 6101 ab initio Hy energies with 865 linear parameters, a 7:1 ratio. The present H,
surface uses 400 parameters to fit 61547 points (48180 ab initio points), giving a ratio of
154:1 (120:1 for ab initio). Thus, considering the number of points used to constrain the
the fit, 400 parameters does not seem unreasonably high.

C. Checks of the adopted fit

As shown in Table II, the adopted fit has an energy-weighted rms error of 1.15 mFE},
with respect to the 48180 ab initio energies, comparable to the estimated ~ 1 mFE} error in
the ab initio energies themselves (see § IIB), though larger than the estimated “random”
ab initio error of ~ 0.5 mE}). (The unweighted rms error of the fit relative to the ab initio
energies is 1.43 mE},.) Figure 2 shows a histogram of the 48180 weighted deviations for the
ab initio energies [with reduced weights at high energies: see equation (46)] — this is very
similar to a histogram of unweighted deviations, since only a small fraction of the ab initio
energies lie at high enough energies to get reduced weight. At relatively low ab initio energies
E S —0.174 E,, below any conical intersection with the first excited state, the rms error is
only 0.45 mE, — again, comparable to the estimated error in ab initio energies of points
that are tending towards Hy 4+ Hy. At higher energies, the worst points are those on or near
the conical intersection with the first excited state, and can have errors as high as ~ 20 mE};
however, in many cases the surface just “rounds off” the conical intersection somewhat, and
in any case the position of the conical intersection comprises only a small portion of the
total conformation space. Some spurious wiggles remain in the surface at high energies, but
they have been minimized as far as possible.

Figures 3, 4, and 5 show scatterplots of the errors of our adopted surface as a function
of ab initio energy, for three subsets of the ab initio points. The sudden spread in the
distributions above about one Hy dissociation energy (i.e., at E < —0.174 E}) is due to the
presence of the conical intersection with the first excited state.

1. Ezamples of the surfaces’ worst features

Figure 6 shows an example of the worst of the spurious wiggles present in compact
geometries — in this case, for Hy sizes r, = 0.8 a, (very small) and r, = 4.0 a, (very large)
with small intermolecular separations R. (Two other similar examples are presented in
Appendix D in EPAPS?!.) The energy at which the wiggles appear here is E ~ 0.0 Ej, i.e.,
two Hs dissociation energies above the energy of a pair of separated equilibrium Hs molecules.
The energy plotted on the vertical axis is the Hy + Hy interaction energy for the given Hj-
molecule sizes, i.e., the total energy F minus the energy FE. of separated molecules of sizes
7, and 7. Three different surface fits are shown; each has more structure than required by
the ab initio data. The adopted 400-parameter surface “Ad” (heavy lines) has wiggles of
size ~ 5 — 10 mE}; in this particular case, it is of comparable quality to the 785-parameter
surface “A” (medium lines), from which it was obtained (“Ad” does slightly worse for “Y-
shape” orientations, but about the same for “T-shape”, “parallel”, and “crossed”). However,
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the surface “G” (light lines), the best of the surfaces that had no London cusp-rounding,
does significantly worse than the other two, and also has a small spurious cusp (due to the
London component of this surface) at R ~ 0.25 a, for the “T-shape” orientation of the H,
molecules. Note that the plots shown here contain extra-closely-spaced ab initio points for
illustrative purposes, that were not included in the set of fitted points (they are included
among the unfitted “cusp-test” points in Table II — these latter points were used in general
to find the position of the conical intersection with the first excited state). The points that
were included in the set of fitted points are shown by double-sized symbols in the plots.

Figures 7 — 9 present examples of Hy3 + H cases. They show not only the ground state
ab initio energies but also the first and second excited state energies (though all the second
excited state energies lie offscale, except for Fig. 8), revealing conical intersections.

Figure 7 is for T-shaped conformations based on a linearly symmetric H3. The energy
scale on the vertical axis is the interaction energy between a single H atom and a linear
symmetric Hy which has the given interatomic separations A = B. It shows an example
where the surface “G” is qualitatively correct, but where its London cusp is sufficiently far
from the true position of the conical intersection that the surfaces “Ad” and “A” (where
this cusp is rounded off) actually do better in fitting the conical intersection. (A similar
case where surface “G” does not have a cusp is presented in Appendix D in EPAPS?!.)

In Figures 8 and 9, the linear Hj is replaced with an equilateral triangle (which defines
the reference energy). The interaction distance Cy,_p is the distance between the “isolated”
H atom and the nearest of the three atoms in the equilateral-triangle Hs.

Figure 8 shows an example of the double conical intersection between the ground state,
the first excited state, and the second excited state, where the equilateral-pyramid geometry
switches between being singly and doubly degenerate. None of the fitted surfaces do very
well for this case; surface “G” fits the double-intersection better than either “Ad” or “A”,
but contains a spurious 5 mE, bump in the interaction energy at Cy,_u ~ 6.5 @, that is not
present in the other two surfaces. The “corner” geometry consists of the same equilateral-
triangle base with the fourth atom lying directly above one of the vertices (i.e., a pyramid
with the peak displaced); the first excited state for this “corner” geometry lies close in energy
to the first excited state of the pyramid geometry, but unlike the pyramid geometry it does
not experience a crossover between the ground state and the second excited state.

Figure 9 shows an example where the pyramid-conformation conical intersection is fitted
reasonably, but a “kite-shaped”-conformation conical intersection is ignored entirely by the
fitted surfaces. The “A]” orientation refers to a case where the “isolated” H atom starts at
one vertex of the equilateral-triangle Hs and, as Cy,_y increases, moves away in the plane
of the triangle towards and through the mid-point of the opposite side; note that when the
H atom is at the center of the triangle (Cy,_g = 1.501 q,), this orientation corresponds to
a pyramid of zero height. This is the conical intersection that is reasonably fitted, although
surfaces “Ad” and “A” round it off of course, and surface “G” has a cusp that is too narrow by
a factor of ~ 2 in the “A]” orientation. The “kite-shaped”-conformation conical intersection
(“A}” orientation at Cy, u ~ 3.75 a,) is completely ignored by all fitted surfaces.

Note that the Aguado et al.® surface also rounds off or ignores the conical intersections,
and has some spurious wiggles of comparable magnitude for compact geometries such as
those discussed above, though in different regions of conformation space from those where
the adopted surface “Ad” has its worst spurious wiggles. However, the Aguado surface is a
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rather poorer fit to the ab initio energies than the adopted surface. The earlier Keogh?*?>
surfaces had much larger spurious wiggles for compact geometries than either the Aguado
et al.® surface or the present adopted surface “Ad”.

2. The Hy + Hy van der Waals well

The Hy + Hy van der Waals well is fitted quite well by the adopted surface “Ad”. For
three different relative orientations of a pair of equilibrium Hy molecules, Figures 10, 11,
and 12 compare contour plots of the van der Waals well of the adopted surface “Ad” with
the accurate representation from the rigid-rotor Hy + H, surface of Schaefer and Kohler®.
These figures show that surface “Ad” has the bottom of the repulsive wall in the right place
and very nearly the correct depth and anisotropy of the van der Waals well, although the
outer tail of the van der Waals well is shortened in surface “Ad” due to the fact that it
has an exponential cutoff (instead of R™%). As may be seen from Table II (S&K Hj + H,
with 7, = 1, = 1.449 @, and R > 5.9 a,), our adopted surface “Ad” has an rms error in
the van der Waals well of 0.007 mE},, about 5% of the depth of the well itself. This is six
times better than the van der Waals rms of the earlier Keogh?*5 surfaces (“Th” and “Tr”),
and very much better than the behavior of the Aguado et al.® surface (“ASP”), which is
not even qualitatively correct in the van der Waals well region (it has spurious wiggles of
order 1 mE}), there). Even the best refitted version (“ASP{”) of the Aguado et al.® surface
has an rms error in the van der Waals region of 0.032 mE}, only slightly better than the
earlier Keogh®%® surfaces (“Th” and “Tr”). These figures also show the Hy + H, repulsive
wall discussed in III C4 below. While the Schaefer and Kohler? surface is defined down to
intermolecular separations of 2 a,, we show in § III C4 below that it is not very accurate for
interaction energies above 10 mE), (R < 4 a,).

3. Other van der Waals regions

Very little information is available about the van der Waals interaction regions of non-
equilibrium Hy + Hy, or of H3 + H. As described in § IT A 6, we generated energies to con-
strain non-equilibrium Hs + Hy by extending the rigid-rotor Hy + Hy PES of Schaefer and
Kohler? in a reasonable manner, with reduced weight for non-equilibrium Hy molecules as
described in § IID 1. This ensured that our adopted surface “Ad” was accurate for near-
equilibrium Hy + Hy, and at least had qualitatively the correct form even for H, sizes fairly
far from equilibrium. For extreme cases, namely, Hy + Hy with both Hy molecules nearly a
factor of 2 either larger or smaller than equilibrium, our fitted surfaces tend to have spu-
rious features of order 0.1 mFE),. However, this is still a very small effect compared to the
vibrational or rotational energy of such extreme non-equilibrium H, molecules. Likewise,
the H3 + H van der Waals region can only be sampled by high-energy cases where one of the
Hy molecules is in the process of being dissociated. We therefore were satisfied to find that
the spurious-appearing features in the Hs + H van der Waals region of our surfaces tended
to have sizes S 0.01 mE}, (with features ~ 0.1 mE}, in only a few cases, mostly when the Hj
was relatively compact). High-energy interactions of hydrogen molecules will sample regions
of the surface that have much larger uncertainties than this.
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4. The surfaces’ best area: the Ho + Ho repulsive wall

Our adopted surface “Ad” is an extremely good fit to the repulsive wall inside the van
der Waals well: as may be seen from Table II (ab initio Hy with “¢ < 3.5”, especially the
non-compact cases with A > 1.15 q,), the rms error in this region is comparable to the
random error in the ab initio energies for such conformations. Figure 13 shows this region
of surface “Ad” (heavy lines) for several different orientations of a pair of equilibrium Hy
molecules; the Schafer and Kohler rigid-rotor surface® is also shown. One can see that the
Schafer and Kohler surface behaves rather poorly for interaction energies more than a few
tens of mE},, with errors of 10% to 30% at interaction energies of ~ 100 mE}, (note that the
Schafer and Kohler surface is defined, though not necessarily accurate, down to separations
of 2 a,). The more recent rigid-rotor surface of Diep and Johnson'® is only defined for
R > 2 A, ie., R > 3.78 a,; as one would expect, if one extrapolates this latter surface
inwards to R < 3.78 a, it can become wildly inaccurate. The Aguado et al.® surface does
fairly well in this region of conformation space, with errors about three times as large as
those of the adopted surface “Ad”.

5. Fits of subsets of the points

As a check on the reliability of our adopted fit at interstitial geometries, the set of
61547 fitted energies was split into two halves, and each half was fitted separately in the
same manner as the fit to the full set (the fits were labelled “A:odd” and “A:even” since
the points were sorted according to their positions in the data files). Although fitted to
only half of the points, these two surfaces had rms errors with respect to the full data
set that were within 1% of the rms of the adopted surface “Ad”. For most of the subsets
displayed in Table II, surfaces “A:odd” and “A:even” had rms errors that agreed within a few
percent or better with those of surface “Ad”. The exceptions were the small subsets, where
small-number statistics led to variations in the rms of roughly the expected size, namely,
“tetrahedra” and “squares” (size ~ 10/2 implies variations of ~ 40%) and the equilibrium-
H, van der Waals well subsets (size ~ 100/2 implies variations of ~ 15%). The fact that the
half-point fits “A:odd” and “A:even” show no unexpectedly large errors among the unfitted
points indicates that we are not over-fitting the data, i.e., the surfaces do not have excessive
flexibility for the energies being fitted.

6. Comparison of fits at interstitial geometries

The earlier surfaces of Keogh et al.>*® and of Aguado et al.® were fitted to the ab initio
energies of Boothroyd et al.!, which were regularly spaced on a grid in the distance/angle
space of Hy conformations. For these surfaces, one might reasonably worry that large spu-
rious features might exist in regions between grid-points, and in fact some large spurious
features were reported by Keogh?. For the surfaces of the present work, not only were nearly
an order of magnitude more points available to be fitted, but in addition the majority of the
ab initio points were chosen randomly in conformation space (albeit with a non-uniform dis-
tribution). This would be expected to make spurious features much less likely. Nonetheless,
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it seemed worthwhile to check this, by comparing different surfaces at interstitial geometries
(where no ab initio data existed). One million geometries were generated randomly, using
an algorithm similar to that used to generate the “random H,” geometries of § II A 4, but
with a longer tail to long distances so as to test van der Waals regions as well. Both for
comparisons between different surfaces of the present work and between our surfaces and
that of Aguado et al.?, the rms difference between surfaces at the newly-generated intersti-
tial geometries agreed very well (within 10%) with the rms surface differences at a similar
subset of the “random H,” ab initio point geometries; there was likewise good agreement
for cases tending towards van der Waals regions between rms differences for ab initio and
non-ab initio geometries. The distribution of the differences and the maximum differences
were likewise reasonable. This suggests that the interstitial regions of H4 conformation space
are fitted, on average, about as well as the actual ab initio points; there is no evidence of
spurious features larger than those already found and discussed in § ITTC 1.

D. Prospects for further improvement

Significant improvements over the adopted surface of this paper are possible, but would
require a major effort. Improvements in the van der Waals well and long-range Hy + H,
interaction region would require the addition of new analytic functions designed for this
region; improvements in the van der Waals well for non-equilibrium Hy-molecule sizes would
also require highly accurate ab initio computations for a significant number of conformations
in the relevant regions. Significant improvements in the interaction region would require not
only a greatly improved functional form (e.g., one that takes into account the position and
form of the conical intersection with the first excited state), but also an increase by at least
an order of magnitude in the number of ab initio energies (with accuracy comparable to
those of this paper), to improve the coverage in the 6-dimensional conformation space of Hy
and to map out more fully the conical intersection.

IV. CONCLUSIONS

The original 6101 ab initio energies reported by Boothroyd et al.' were checked for cor-
rectness, and 9 erroneous energy values were found and corrected. These were supplemented
by 42079 newly calculated ab initio energies, plus an additional 13367 conformations gen-
erated to constrain the fit in regions where the energy could not be obtained directly from
our ab initio computations. A new analytical Hy potential energy surface (the surface “Ad”
described above) was fitted to these energies. It has an rms error comparable to the error
in the ab initio energies, namely an energy-weighted rms of 1.15 mE}, for all 48180 ab wnitio
energies (unweighted rms of 1.43 mE}), and of 0.45 mE,, for the 14513 ab initio energies
below the Hy dissociation energy. This new H, surface is a significant improvement on the
surfaces that had been fitted to the original 6101 ab initio energies of Boothroyd et al.l,
namely, the many-body expansion surface of Aguado et al.?, the H, surface of Keogh?, and
a slightly improved version of this latter used for semi-classical trajectory calculations by
Martin et al.* and Mandy et al.5.
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For relatively compact conformations, i.e., for energies higher than the H, dissociation
energy, the conical intersection between the ground state and the first excited state is the
largest source of error in the analytic surfaces. The fact that the analytical surfaces “round
off” the conical intersection for many geometries results in an error 2 2 mE), over of or-
der 0.1% of that volume of conformation space that has significant interaction energy, with
maximum errors up to ~ 20 mE}. This conical intersection forms a somewhat complicated
3-dimensional hypersurface in the 6-dimensional conformation space of Hy. The present pa-
per has mapped out a large portion of the locus of this conical intersection (see Appendix C
in EPAPS?!). However, trying to include the conical intersection explicitly in the analytic
H, surface would require a major effort, both to map its position and shape in more detail,
and to fit its geometry to some analytic form.

Our adopted surface “Ad” fits the van der Waals well to an rms accuracy of about 5% and
behaves reasonably for non-equilibrium Hs-molecule sizes (although it has an exponential
cutoff at large intermolecular separation R, rather than dying away as R°). For equilibrium-
size Hy molecules at large separations (R % 4 a,, or interaction energies S 10 mE},), the
rigid-rotor Hy + H, surfaces of Schaefer and Kohler? or of Diep and Johnson!® are somewhat
more accurate than the adopted H, surface of the present work. However, the rigid-rotor
surfaces are defined only for equilibrium Hy molecules; in addition, they can be significantly
in error (by 2 10%) in the Hy + H, repulsive wall at R < 3.5 a, or at interaction energies
2 30 mE}, regions where our adopted surface is very accurate.

A Fortran program version of the adopted surface “Ad” of the present work, including
analytical first derivatives, is available from EPAPS?!. Files containing the ab initio ener-
gies (either ground state energies only, or all computed MRD-CI roots) are also available
from EPAPS?' (as are the Hs Fortran programs and ab initio energies, and Appendices A
through D). These Fortran programs and files of ab initio energies can also be obtained from
the authors®.
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TABLES

TABLE I. Values of non-linear parameters used in the best of the fitted Hy surfaces.

SUITACE oo e e Parameter Values . ......ouiiiiin i
ASPo  f,=1.404a, !
ASPa Bp=1.404 a, !
ASPf Bp=128a,!
AP Ay, =0.2593 a,~ s S¢=10.04 St=0.312a,7! S¥=1.61q,""

A,, =1.6813 59=4.03 S5=0.53a,7" S¥=1.079a,""
BestP B1 =0.006 a, 3 B2 =0.006 a,~® B3=0.006 a,”% B4=0.006 a, 3

Bs =0.006 a, > B =0.003 a,™®  B7r=0.006 a,"% Cca =3.0 a, By =10.0

G° Cz=0.0E), Ces=0.0 a, Cew = 0.0 a, Bs = 0.006 a,~3
F C.g =0.073 E), Ces = 6.0 a, Caw = 1.5 a, Bs = 0.006 a,~3
E C.p=0.181 E, Ces =5.5 a, Cow =1.5 a, Bs =0.006 ao ™3
D C.g=0.368 E}, Ces =4.0 a, Caw =4.0 q, Bs = 0.006 a0_3
C C.g=0.775 E}, Ces =3.75 a, Caw =3.75 a, Bs = 0.006 a0_3
Bd C.r =0.075 E}, C.s =6.0 a, Cow =1.5 a, Bs=0.0a,"3 B,=0.8a,""
Ad C.p=0.775 E}, C.s =3.75 a, Cow =3.75 aq Bs=0.0a,"2 B,=0.8a,""

aExcept for the refits of the Aguado et al.® surface, all of our surface fits used these parameters.

b Although a number of earlier fits had of course been made to test other sets of 8 values, all of

the “best” fits (with good rms values and not too many spurious wiggles) used this set of 3 values;

note that the B value (for term selecting “non-linear Hsy + H”) differs from the others.

¢Surface “G” is the best of the surfaces that have no London cusp-rounding, i.e., for which these

cusp-rounding parameters are zero.

dIn surfaces “B” and “A” the “compact” term Vj is replaced with the relatively low-order many-

body expansion term V™)
y exp 8

of surface “A”.

. Note that the adopted surface “Ad” is the the 400-parameter version
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TABLE II. Energy-weighted? rms errors of fitted surfaces, in mFEy},.

Surface I.D.:> Th Tr ASP ASPo ASPa ASPf G F C A Cd Ad
No. of linear parameters: 400 400 865 365+ 370+ 351 791 790 792 785 400 400

Subset Npis Tms rms rms Tms TmS TIms TIms TImS IS Ims Ims TIms
All ab initio Hy 48180 3.52 2.82 4.13 4.05 2.61 3.12 1.39 1.13 1.12 1.07 1.19 1.15
.. £ <0.0 Ey° 39061 2.06 2.01 292 287 231 264 1.16 0.96 0.96 0.89 1.00 0.95
.. E<-0.174 E,4 14513 1.05 1.08 1.56 1.44 1.33 1.64 0.50 0.48 0.48 0.41 0.49 0.45
.. A <0.95aq 11712 5.34 3.64 6.69 6.59 2.99 3.94 1.66 1.29 1.28 1.25 1.39 1.35
. A>0.95a, 36468 2.69 2.50 2.85 2.78 248 2.80 1.29 1.07 1.07 1.01 1.13 1.08
.. A<1.15a, 18198 5.03 3.73 b5.67 5.58 2.83 3.66 1.67 1.30 1.29 1.28 1.39 1.37
.. A>1.15a, 290982 2.13 2.08 2.80 2.73 247 2.73 1.19 1.01 1.01 0.93 1.05 0.99
..t >3.5° 40249 3.82 3.06 4.34 4.25 2.78 3.29 1.50 1.21 1.21 1.16 1.29 1.24
.. t < 3.5° 7931 1.08 0.95 2.84 2.86 1.47 2.03 0.52 0.49 0.49 0.44 0.50 0.46
...... A <1.15q, 4225 1.34 1.14 3.77 3.83 1.85 2.66 0.60 0.57 0.56 0.52 0.58 0.54
...... A>1.15a, 3706 0.67 0.65 0.99 0.90 0.86 0.87 0.40 0.39 0.39 0.33 0.40 0.36
... “random” Hy 27585 2.53 2.24 3.36 3.29 231 246 1.13 0.94 0.94 0.85 0.98 0.91
.. Original Hy 6101 1.94 217 195 1.79 2.75 439 1.64 138 1.38 1.36 1.48 1.48

... Schwenke’s Hy 87 2.21 223 199 197 214 225 0.74 0.71 0.73 0.56 0.65 0.52
... Tetrahedra 10 4.34 4.11 6.67 6.97 10.46 20.14 2.07 2.60 2.49 2.12 2.26 1.89
.. Squares 11 3.26 3.72 249 2.59 6.27 10.51 1.24 1.21 1.27 1.10 1.95 2.36

.. Hi—-Hs+H 2500 5.95 5.57 3.80 3.78 3.30 2.83 2.11 1.38 1.31 1.26 1.36 1.29
...... A<1l1l5a, 1613 6.91 6.46 4.05 4.02 3.35 2.66 2.47 1.55 1.47 1.39 1.52 1.43
...... A > 1.15 aq 887 3.57 3.39 3.30 3.29 3.21 3.12 1.20 0.98 0.96 0.97 1.00 0.99

S&K Hy+H, 3611 779 .775 1.256 1.255 .630 .280 .188 .173 .172 .137 .162 .152
v Tg, Ty = 1.449a, 224 .077 .082 422 378 .356 .120 .078 .071 .072 .037 .075 .047
...... R <5.9a, 79 .115 .124 399 311 309 .197 .122 110 .113 .062 .117 .078
...... R >59a, 145 .044 .044 .434 .410 378 .032 .035 .035 .035 .006 .035 .007
HyfromH3 8559 .829 .829 1.395 1.395 1.395 1.395 .200 .200 .200 .200 .200 .200

“Cusp-test” Hyf 13356 8.95 8.87 11.06 11.49 11.60 14.67 8.14 7.69 7.64 7.66 7.91 8.03
. E<00E,> 11887 8.82 8.78 10.90 11.32 11.73 14.95 8.12 7.67 7.64 7.63 7.92 8.03
Fitted full-weight® 61547 5.45 5.12 12.28 11.88 9.60 6.11 1.70 1.58 1.53 1.3%3 1.58 1.38

2For energy-weighted rms errors, deviations only get weight wg from equation (46), as opposed to
full-weight rms errors in last line of table; italics: rms values minimized by the fitting procedure.
bSurfaces of Keogh? (“Th”), modified Keogh®® (“Tr”), Aguado et al.> (“ASP”), and present work:
differential refits of Aguado et al.® surface to old Hy points (“ASPo”) and to all ab initio points
(“ASPa”), and refit to full dataset (“ASPf”); our best without London cusp-rounding (“G”), 3 of
6 “best” fits (“F”, “C”, and “A”), and 2 reduced-parameter fits (“Cd” and adopted fit “Ad”).
“Hy energy less than twice the Hy dissociation energy, relative to a pair of equilibrium Hy molecules.
dH, energy less than the H, dissociation energy.

The selector t is defined as t = (1, + 75) 20;244(1/7i), so small values of ¢ select conformations
tending towards separated Hy + Hy: for 1, ~ 7, requiring ¢ < 3.5 selects R 2 r, + 7.

fThese “cusp-test” points were not fitted; most lie on or near the conical intersection with the first
excited state (a sharp cusp that is not in the surfaces’ functional form, yielding a poor fit there).
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FIG. 1. Rms error as a function of the number of linear parameters N, kept by STEPWISE,
for the fit “A”; the adopted surface “Ad” corresponds to Nyt = 400. Heavy solid line indicates
the weighted rms error of the full fit. Other lines, with symbols, indicate the rms error of various
subsets of ab initio points, at every 50" step; these latter are “energy-weighted” rms values, the
weight being unity except at high energies (see § IID 1).
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FIG. 2. Histogram of the energy-weighted deviations of our adopted surface “Ad”, for the 48180
ab initio energies [see equation (46)].
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FIG. 3. Scatterplot of the unweighted errors of our adopted surface “Ad”, as a function of the
ab initio energy, for the 6101 points in the original grid plus the 12000 added points described in
§ITA1and ITA 3 (not including the 2494 added H4s — H3+H points of § IT A 2 or the large random
set of § IT A 4). Energies are measured relative to that of four isolated hydrogen atoms. Note that a
few hundred high-energy points with £ > 0.5 E}, lie offscale to the right — their distribution in dE
remains within the same bounds as that for £ < 0.5 Ej, but is of course less densely populated.
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FIG. 4. Scatterplot of the unweighted errors of our adopted surface “Ad”, as a function of the
ab initio energy, for the 27585 “random” Hy points of § IT A 4. The distribution in conformation
space is such that the majority of these points have energies E < 0.0 Ej,. Note that several dozen
high-energy points with E > 0.5 E}, lie offscale to the right.
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FIG. 5. Scatterplot of the unweighted errors of our adopted surface “Ad”, as a function of the
ab initio energy, for the 2494 Hy — H3 + H points of § IT A 2. Note that a few dozen high-energy
points with E > 0.5 E}, lie offscale to the right.
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FIG. 6. An example of spurious wiggles in the fitted surface, for fairly compact geometries,
as a function of the distance R between the centers of a short and a long Hy “molecule” (sizes
1, = 0.8 a, and 1, = 4.0 a,; this conformation has energy Fys for R — o00). Discrete symbols
indicate ab initio energies (double-sized symbols indicate fitted points; others are extra “test”
points). Heavy curves show surface “Ad” (the adopted surface, with 400 parameters), medium
curves show the corresponding 785-parameter surface “A”, and light curves show the 791-parameter
surface “G” (the best of the surfaces that had no London cusp-rounding). The “parallel” case refers
to the case with 7, || 7 L R. The other three are cases with 7y L 7%, forming a “+” shape at R = 0;
the “Y-shape” has 7, || R, the “T-shape” has 7, || R, and the “crossed” case has 7, L R L 7.
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FIG. 7. An example where London cusp-rounding (in the adopted surface “Ad” and in sur-
face “A”) smoothes out a cusp (in surface “G”) that is somewhat out of position, yielding some
improvement. For this “LinH3-T” orientation, the distance Ry, g is that between a fourth H atom
and the central atom of a linear-symmetric Hs (that has interatomic separations A = B = 2.6 a,),
with A || B L Ry, , forming a T-shape with respect to the linear Hj (this conformation has
energy Eres for Ry, _m — 00). Symbols for ab initio energies of the first and second excited states
(in this case, larger and smaller solid triangles, respectively) are indicated immediately above the
middle of the line-type legend (note that all second excited state energies lie offscale in this figure).
Heavy, medium, and light curves show surfaces “Ad”, “A”, and “G”, respectively, as in Fig. 6.
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FIG. 8. An example of the double conical intersection between the ground state, the first excited
state, and the second excited state (where the equilateral-pyramid geometry switches between
being singly and doubly degenerate). The first three atoms form an equilateral triangle with sides
of 1.75 a¢; Cuy—u is the distance from the fourth atom to a vertex of the equilateral triangle
(this conformation has energy FEyer for Cu,—u — 00). For the “corner” case, the fourth atom lies
directly above one vertex of the triangle; for the “pyramid” case, the fourth atom lies directly above
the center of the triangle. Heavy, medium, and light curves show surfaces “Ad”, “A”, and “G”,
respectively, as in previous figures.
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FIG. 9. An example where the pyramid conical intersection is fit relatively well, but another
“kite-shaped” conical intersection (“A]” at Chy,—g ~ 3.8 a,) is completely ignored by the fitted
surfaces. Notation as in Fig. 8, except that the size of the equilateral triangle Hs is 2.6 a,; also, the
added curve labelled “A |” refers to a case where the fourth atom starts at one vertex of the triangle
(for Cy—g = 0) and moves away in the plane of the triangle towards and through the mid-point
of the opposite side as Cy,_n increases. Heavy, medium, and light curves show surfaces “Ad”,
“A” and “G”, respectively, as in previous figures.
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FIG. 10. Contour plot of the van der Waals well and repulsive wall of Hy 4+ Hy with equilibrium
Hs molecules, as a function of the intermolecular separation R (in a,), for the “crossed” orientation
of the Hs molecules: 7 is perpendicular to the plane defined by 7, and the intermolecular separa-
tion K. Comparison of (a) the adopted surface “Ad”, and (b) the Schaefer and Kohler rigid-rotor
surface’. Dashed lines indicate negative interaction energies, at contour levels { —0.005, —0.010,
—0.025, —0.050, —0.075, —0.100, —0.125, —0.150, —0.175 } mE},; solid lines indicate positive in-
teraction energies, at contour levels { 0.0, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 30,
50, 70, 100, 120, 140, 160, 180, 200, 300, 400, 500, 750, 1000 } mE}, (italics correspond to heavy
contour lines). Positions of the atoms in the first Hy molecule 7, are indicated by the symbols ®
near the origin. Orientation of the second Hy molecule 7 is indicated by the symbols ® at upper
right (different sizes of the symbols ® indicate displacement into and out of the plane of the page).
While the Schaefer and Kohler surface is defined down to intermolecular separations of 2 qg, it
is not very accurate for interaction energies above 10 mEy, (R < 4 a, — see IIIC4), so its inner
contour lines are not relevant.

48



of o

(ame)

10 =

N

(IR | &X]

(a) surface Ad

® ®]

~+-.__(b) Schaefer

. & Kohler

}® &

-5 0

H,+H, Parallel: r,=r,=1.4 a,

15

FIG. 11. Contour plot of the van der Waals well and repulsive wall of Hy + Hy (similar to

Fig. 10), for the “parallel” orientation of the Hy molecules: 7, || 7 (with R in the same plane).

The solid contour to the lower right (and upper right in the following figure) is curious but the

Diep and Johnson!? rigid-rotor surface also has regions of positive interaction energy in about the

same places (though with slightly less regular edges).
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FIG. 12. Contour plot of the van der Waals well and repulsive wall of Hy + Hy (similar to
Fig. 10), for the “T-shape” orientation of the Hy molecules: 7, L 7} (with R in the same plane).
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FIG. 13. The repulsive wall of Hy + Ho, showing ab initio energies (discrete symbols), the
adopted surface “Ad” (heavy lines), and the Schaefer and Kéhler rigid-rotor surface® (light lines)
— notation as in Fig. 6.
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