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In evaluating some low temperature (' < 1000 K) thermal rate coeflicients for inelastic
rotational excitation of Hy by H atoms, Sun and Dalgarno have found a marked sensitivity
to the potential energy surface adopted for the calculations. We have investigated the origin of
the discrepancies between previous Hs potential energy surfaces and have developed a refined
surface which addresses these concerns. New quasiclassical trajectory calculations of cross
sections for low energy rotational excitation are reported. The refined surface is based on 8701
ab initio energies, most newly computed for this purpose. It has the same functional form as our
earlier (BKMP) surface, but since the fit of the parameters is more fully constrained than for any
previous surface it is a more accurate representation. The refined surface matches the ab initio
energies with an overall rms error of 0.27 mEjy, (i.e., 0.17 kcal/mole) and a maximum absolute
deviation of 6.2 mE}, (for a very compact high energy equilateral triangle conformation). For
“noncompact” conformations (no interatomic distance smaller than 1.15 bohr), the rms error
is 0.18 mE}, and the maximum absolute deviation is 1.7 mE},. The refined surface is compared
critically to four previous surfaces, including the DMBE surface of Varandas et al., in several
respects: Legendre expansion coefficients; the interaction region for low energy rotational
excitation; near the collinear saddle point; near conical intersections of the ground and first
excited state surfaces; the van der Waals well; and compact geometries. We have also compared
new first excited state ab initio energies for 1809 conformations with corresponding predictions
from the DMBE surface.

I. INTRODUCTION

In this paper we present a refined Hs potential energy surface which addresses an important issue
raised recently by Sun and Dalgarno [1]. They carried out quantum mechanical calculations of the rotational
excitation (ground vibrational state) of Hy by H atoms, using the “DMBE” Hj potential energy surface of
Varandas et al. [2]. Quite surprisingly, the low temperature (T' < 1000 K) thermal rate coefficients for the
transitions 0 — 2 [i.e., H + H2(0,0) — H + H2(0,2)] and 1 — 3 were significantly higher than those found
earlier by Green and Truhlar [3] and Mandy and Martin [4] based on the “LSTH” surface developed by
Truhlar and Horowitz [5]. Sun and Dalgarno concluded “that the large discrepancies arise primarily from
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the different potential energy surfaces employed in the two calculations.” As supporting evidence they cited
unpublished quasiclassical trajectory (QCT) calculations of state-to-state cross sections by S. Lepp and by
two of us (Keogh and Martin; see Sec. V) on the two potential energy surfaces, which reveal the systematic
differences underlying those in the rate coefficients.

Because of the fundamental significance of this H 4+ Hs system in theoretical chemistry, and because
of important applications to the rotational excitation and hence cooling efficiency of hydrogen-rich gas (e.g.,
in astrophysics of the interstellar medium), it is important to understand in what ways the potential energy
surfaces are different and which is to be preferred for these rotational excitation (and other) calculations.
Sun and Dalgarno comment: “It is claimed by Varandas et al. that their potential is superior to the LSTH
potential at intermediate and long-range separations of H and Hy”, from which they concluded that the
DMBE surface should be preferable. However, what is meant by “intermediate and long-range” is critical
to this qualitative assessment. The range of separation Ry-y, (distance of H atom from center of Hy) most
influential for this low energy rotational excitation is 3 — 5 a, (in this paper distances are in bohrs). One
could call this range intermediate, it being well inside the longer-range van der Waals region and the very
long range asymptotic region. Varandas et al. do argue that the DMBE surface might be better than the
LSTH surface at these intermediate distances (about 3.5 a, is cited). However, neither the LSTH surface
nor the DMBE surface is well constrained there, this being an interpolation region between ab initio data
at smaller separations and experimentally-constrained descriptions of the van der Waals region.

Our interest in resolving this question stems in part from our development of the “BKMP” H3 potential
energy surface [6]. This extended the LSTH surface in several ways based on a more extensive grid of ab
initio interaction energies. Although the BKMP surface incorporates new data extending to Ry-m, = 4 ao,
it too is least well constrained in the critical range of Ry-n,. The BKMP surface tends to be closer to the
LSTH than to the DMBE surface (see Ref. 6); comparative calculations of QCT rate coefficients at 1000 K
by Lepp, Buch, and Dalgarno [7] bear this out.

Comparison of the Legendre expansion coefficients of the potential energy surfaces (see Ref. 6 and
Sec. IV B) shows that the DMBE, LSTH, and BKMP surfaces have important differences in this critical
unconstrained range of Rp-m,, which of course explains the different derived cross sections and rate
coefficients. More recent ab initio calculations by Partridge et aol. [8] including Ruy-n, > 4 a, begin to
address this problem, giving coefficients closer to those from the LSTH and BKMP surfaces than to those
from the DMBE surface. Comparison of the first expansion coefficient (spherically averaged interaction
energy, Vo) shows the DMBE surface to be too repulsive. More important for the current issue of rotational
excitation is the second coefficient (first anisotropic term, V5 [9,10]). For the DMBE surface uniquely this
coefficient displays a suspicious dip at Rpg-n, ~ 4 a, for an Hy molecule size near 1.4 a, (see Ref. 6, Table
VIII; Partridge et al. [8] Table IV and Fig. 6); as discussed below (Sec. IV B), this feature is unphysical.

Initially we carried out new ab initio calculations for 540 conformations on a preliminary grid spanning
this unconstrained region of Ry-m,, confirming that there were indeed problems with the DMBE surface in
the interpolation region. We found further support for this view in the ab initio calculations in Partridge
et al. [8]. Therefore, as the basis for a new analytic surface that would provide a correct description of this
region, we have performed further ab initio calculations for an extensive grid of 6548 H3 conformations, also
including good coverage in the 3 — 5.5 a, region (Sec. IT A).

There are other issues to be addressed. As mentioned, such “intermediate” separations are significantly
less than the extent of the van der Waals well (Rp-n, R 6 a,). Partridge et al. [8] have pointed out that the
H; surfaces could also be improved in the region of the van der Waals well (~6 — 10 a,; see e.g., their Figure
2). Their results are incorporated in our new analytic surface as well (see Sec. II C and Sec. IV C).

Mielke et al. [11] have presented low temperature (T" < 1000 K) thermal quantal rate coefficients for
the reaction D + Hy, — H + HD. For the LSTH and DMBE surfaces there is good agreement with the
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experimental data. While the BKMP results agree near 1000 K, they are systematically larger for lower
temperatures, differing from the values for the other surfaces by a factor 2 — 2.3 at 167 K. This behavior at
low temperature is presumably related in part to the value of the classical barrier height for this reaction,
which was constrained to be lower in the BKMP surface (9.54 kcal/mol) than in the LSTH and DMBE
surfaces (9.80 and 9.65 kcal/mol). As described in Sec. II D, our new surface is updated to match the best
current estimate of the classical barrier height, 9.61 kcal/mol. As pointed out by Garrett et al. [12], these
rate coefficients also depend on the width of the barrier and more global characteristics of the surface which
should be well constrained by our large grid of ab initio calculations (Secs. IT A and D).

The lowest two potential energy surfaces for H3 exhibit a seam of conical intersections for Dsy
conformations [13] (i.e., equilateral triangles), at least for “normal” sizes (see Sec. IV G). Mielke et al.
comment that the DMBE surface “is the only surface with the correct behavior in the region of the conical
intersection” (see also Ref. 8). Certainly it represents the only attempt at an analytic continuation onto the
upper surface and calculation of the associated nonadiabatic coupling. It is also the case that in developing the
BKMP surface [6] we did not incorporate the ab initio data reported by Varandas et al. for 18 nonsymmetric
conformations in the vicinity of Dsj symmetry, since there was insufficient information to bring the energies
to a common consistent basis. However, this does not necessarily mean that the BKMP (or LSTH) surface
has an incorrect behavior; it has simply not been constrained or modeled so explicitly. We have in fact
compared the shape of the BKMP and DMBE surfaces on cuts based on the s and ¢ symmetry coordinates
of Varandas et al., and the differences are not substantial (Sec. IV E). This is because conformations which
apply appropriate constraints do arise in our regular grid of conformations. Nevertheless, to be assured of a
good treatment of this part of the surface we have made further ab initio calculations (Sec. IT E) to constrain
the fit.

Johnson [14] pointed out that the London equation, which is used as a component of the three
surfaces, can lead to unphysical discontinuities in the derivative of the potential for certain high energy
isosceles triangle geometries. This is not addressed in the LSTH or DMBE surfaces, which thus exhibit this
problem, but is corrected here as in the BKMP surface. A “compact” geometry is defined to be one in which
any of the three distances between the nuclei is less than the distance r; below which the Johnson correction
begins to modify the Hs triplet curve: as with the BKMP surface, 7, = 1.15 a,.

Aguado and Paniagua [15] have proposed a new way of fitting ab initio data for triatomic molecules.
Using a FORTRAN code supplied to us by Aguado [16] we provide an assessment of their 71-parameter
surface. While this “AP” surface has a low rms deviation with respect to the ab initio BKMP data to which
it was fitted, it turns out to have several deficiencies in its shape (Sec. IV).

The surface fitting here follows that in Ref. 6 for the BKMP surface and is summarized in Sec. III; the
new surface is dubbed “BKMP2”. The weighted rms deviation with respect to 8701 ab initio energies used
is only 0.27mE}. In Sec. IV we discuss the various desirable properties which the BKMP2 surface embodies.
Sec. IV B focusses on how the new surface differs in shape relative to the previous surfaces, particularly in
the critical intermediate region Rp-m, ~ 3 — 5 a,; the deviations are largest for the DMBE surface. New
QCT calculations of cross sections for rotational excitation are given in Sec. V. These show the systematic
differences arising from the various surfaces; again, the DMBE values are the most discrepant. QCT cross
sections should be adequate for computing thermal rate coefficients down to about 600 K [4, 17], but for
lower temperatures such as treated by Sun and Dalgarno [1] new quantum mechanical calculations will be
required.

II. ENERGIES CONSTRAINING THE SURFACE

The conformations and energies which we used to fit our new analytic BKMP2 Hg surface are described
in this section. There are a total of 7172 different conformations for which ab initio data are available. Some
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of these have energies computed using two or more basis sets, for a total of 8701 ab initio energies; in addition
125 ab initio data from Ref. 8 for van der Waals conformations were also used. Tables of these data are
available in electronic form from the authors [18]. For some very small and large separations, this set of
energies is supplemented to ensure good behavior in those parts of the surface.

Unless otherwise specified, atomic units are used in this paper, i.e., distances are in bohrs (a,) and
energies are in hartrees (E}), millihartrees (mE}), or microhartrees (uEy). Recall that 1a, = 0.529177 A,
while 1mEy, = 0.0272114 eV = 0.62751 kcal /mole. Unless otherwise specified, energies are expressed relative
to the energy of isolated hydrogen atoms, i.e., zero energy corresponds to separated H + H + H. Relative to
this, an isolated H atom plus Hs at the equilibrium separation of 1.401a, (not a ground state Hy molecule) has
an energy of —0.174496 E;, (or —109.498 kcal/mole), according to the accurate analytic Hy curve presented
by Schwenke [19] which we used throughout this paper to obtain accurate Hy energies.

A. Conformations for new ab initio computations

Figure 1 in the BKMP paper (Ref. 6) illustrates the coordinates used to specify our grids of
H; conformations, which can be described by the shortest interatomic distance r;, the next-shortest
distance ro, and the (exterior) angle between them ;5 (which we shall simply denote 6 in this paper;
6 = 0° is collinear). Alternatively, one may specify the shortest distance r1, the distance Ry-n, of the third
atom with respect to the midpoint of r1, and the angle x between 71 and Ry-p, (x = 0° is collinear).

In our preliminary exploration of the interpolation region, we adopted the (9s3pld)/[4s3pld] Gaussian
basis set used previously [20, 6, 21, 22]. The grid was specified as follows: r; was chosen from {0.8, 1.0, 1.2,
1.4, 1.6, 1.8, 2.1, 2.35, 2.6 a, }, Ru-n, was chosen from {3.0, 3.5, 4.0, 4.5, 5.0, 5.5 a0}, and x ran from 0° to
90° inclusive in increments of 10° (note that this grid included a few points with ro < r1). This preliminary
grid comprised 540 conformations.

For our more comprehensive grid, our (9s3p2d)/[4s3p2d] basis set [22] was used; the only difference
from the [4s3pld] basis set was that the single d function (with exponent 1.0 a;2) is replaced by two
d functions, with exponents 1.76 and 0.62 a;2 (optimized for Hy at equilibrium separation). The grid was
specified as follows: 7y and 7 were chosen from {0.6, 0.7, 0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8, 1.9,
2.0, 2.15, 2.3, 2.45, 2.6, 2.8, 3.0, 3.2, 3.4, 3.7, 4.0, 4.3, 4.6, 5.0, 5.5 a,}, such that 7, < ry < r3; 6 ran from
0° to 90° inclusive in increments of 10°, and continued from # = 90° through x = 90° inclusive in one, two,
or three equally-spaced increments that did not exceed 10° (note that for r1 < r2, x = 90° corresponds to
6 < 120°). This grid contained 5083 new conformations, as well as 32 conformations from the preliminary
grid, and a number of conformations from the old grid of Ref. 6.

To investigate the bending behavior away from the collinear saddle point (Sec. II D) we computed
energies for 50 new conformations with r; = ro = 1.757a, for a range of . In the vicinity of D3, symmetry
(Sec. I E) we computed energies for the 18 conformations of Varandas et al. [2] and added 138 similar
new nearly-equilateral conformations. We also computed energies for 77 new conformations in between
grid-points for 0.7 a, < r1 < 1.0 a, (where there were few conformations from older grids) to test (and
constrain) the inter-grid-point behavior of the analytic surfaces (Sec. IV G).

Our comprehensive grid comprised 6548 conformations. Compared to the grid used for the BKMP
surface, it offers the following improvements: new coverage in the “interpolation region” from 4 to 5.5 ay;
better coverage at all r; and rq, particularly in the ranges 0.6 to 1 a, and 3 to 4 a,; and better angular
coverage in @ for all separations.

For comparative tests, we computed new ab initio energies for all the conformations from the old grid
and those available to us from other authors. This comprised our 403 old conformations [6], 137 conformations
from Liu [23], 156 conformations from Siegbahn and Liu [20] (six of which duplicate conformations from
Liu), 31 conformations from Blomberg and Liu [24] (six of which duplicate conformations from Liu), and
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50 conformations from Bauschlicher et al. [25] (one of which duplicates a conformation from our old grid [6]).
Besides the 57 conformations from Partridge et al. [8] which were contained in one of our above grids, we
also computed energies for the remaining 330 of their conformations that had Ry-p, < 5.5 (their grid had
comprised 503 conformations in all). An update for some of these Hs energies was supplied by Partridge [26].

For further checking, we also carried out computations using the [4s3pld] basis for all the conformations
of other authors described above, plus the added nearly-equilateral conformations. Along with our energies
from Ref. 6, this yielded 1233 conformations with [4s3pld] energies, all of which could be compared with
[4s3p2d] energies from the comprehensive grid, and 710 of which could be compared to energies obtained by
other authors.

B. Ab initio computations and analysis

The ab initio computations and analysis of errors follow the methods described fully in our previous
papers [6, 21, 22]. Here we give a brief summary and update. Energies were obtained using a workstation
version of Buenker’s MRD-CI program [27]. For most conformations, molecular orbitals were obtained from
an open shell SCF calculation; where the open shell SCF was slow to converge, mixed shell SCF (1 closed
and 1 open shell) or closed shell SCF was automatically used instead to obtain the molecular orbitals. In
almost all cases a second CI energy was also obtained using molecular orbitals from one of the other two
SCF types.

A fairly extensive set of reference configurations was used: the minimum size of le, the sum of reference
configuration C? values, was 0.976, and the average size was 0.986. A configuration selection threshold of
T = 0.4 pE, was used: the extrapolation to zero threshold comprised a shift of order 0.4 mE}), with an
estimated rms uncertainty of 0.02mE}), (this is expected to be “random” error, in that systematic effects are
probably on a smaller scale than the grid spacing of the conformations). As a check, some conformations
were also computed with T' = 2 uFEy, (yielding a shift of order 1 mEj,, with an estimated rms extrapolation
uncertainty of 0.07 mEy).

A very small semi-empirical Davidson-type correction to full CI was made, similar to that described
in Ref. 21, of AEq.cr = ApcusAEpc = Apcns(l — C’j)AEsd/le. The values of Apc.u3 were chosen
to minimize the difference between results using different SCF-types for molecular orbitals; this resulted in
Alper) — 0.01, Alxed) — 0,19, and A5 = 0.22 (cf. old Apc.us values of 0.16, 0.3, and 0.5, respectively,
used in Refs. 6 and 21). This correction is negligible for open shell cases, and of order 0.1 mE}, for mixed
and closed shell cases, but the estimated uncertainty for all three SCF-types is of order 0.1 mE};, (largely
“systematic” error, with a somewhat smaller “random” component). Comparing CI energies obtained using
molecular orbitals from different SCF calculations yielded: rmsopen—mixed = 0.059mEy (3891 conformations),
rMSopen—closed = 0.065 mEy (1301 conformations), and rmsmixed—closed = 0.056 mEy (658 conformations).
These differences are somewhat less than the estimated errors; note, however, that with the old Apc.u3
values these rms differences would have been 0.064, 0.148, and 0.151 mE},, respectively, with the closed shell
cases having a systematic shift averaging 0.14 mE} with respect to the open and mixed shell cases.

An independent estimate of the combined uncertainty from the extrapolation plus full CI correction
may be obtained by comparing our [4s3pld] basis results with the 186 energies computed previously [20, 23,
24] with this basis set; the rms difference between the earlier energies and ours is 0.099 mEy, or 0.078 mE},
if one leaves out the three energies in Ref. 20 that lie 0.2 mE}, above even our truncated-CI energies. This
suggests that an estimated uncertainty of 0.1 mFE}, in the extrapolation plus full CI correction is reasonable.

Because of the finite basis set, there is a small basis correction which averaged about 1.1 mE}, for the
[4s3p2d] basis set, and 1.8 mE}, for the less complete [4s3pld] basis set; in both cases, the basis correction
is larger for compact conformations and smaller for noncompact conformations. As before [6, 21, 22], this
correction was based on the London formula. Note that the BKMP version (see Ref. 6) of the triplet
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curve (without the Johnson correction) was used in the computation of the London Hj basis correction.
Our London-based correction has been tested further by Partridge et al. [8] who carried out calculations
with much larger basis sets, mostly (11s5p3d1f)/[6s5p3d1f], and concluded that “the results confirm the
accuracy of the BKMP potential and their scheme for correcting the Hj calculations using the error in the
H, potential.” Partridge [26] has supplied us with the appropriate errors in the Hs potential for the larger
basis sets.

Partridge et al. [8] suggested that the correction scheme might be refined further by introducing a
slight dependence on @ or x. Note, for example, that the London basis correction is independent of angle for
r1 = o, where one might expect variation by a factor of order 1.5 from consideration of the change in the
geometry. To gauge how to implement this we have computed (Sec. IT A), with both of our (smaller) basis
sets, energies for the 387 of their conformations with Ry-n, < 5.5 a,. For the angular dependence it appears,
empirically, that a relatively simple function fpasis(X, 71, 72) multiplying the original correction AE{;;’SS"“ of
Ref. [21] should suffice, namely

fbasis(X, 'I‘1,7‘2) —-1- fl e—(rz/r1—1)2 cos> Y+ f2 e—fs(TQ/Tl—l)z_f4(T1—1.4) sin2 X, (1)

where 1y < ry < 73, fi and fy are parameters that differ for different basis sets and f;3 and f; are
simple constants. The exponential factors are largely to make fuasis(X,71,72) go to unity for conformations
approaching Hs + H, where the London basis correction approaches the correct value (by construction). The
f1 term is used to make a small shift to obtain a collinear saddle point energy that agrees with the Monte
Carlo classical barrier height of 9.613 & 0.006 kcal/mole obtained by Diedrich [28] (see also Ref. 29 and
Sec. II D). To do this for Partridge’s [6s5p3d1 f] basis, Liu’s Slater basis, our [4s3p2d] basis, and our [4s3pld)
basis (the latter is the same as that of Refs. 20 and 24) one needs f; = 0.182, 0.09053, 0.073, and 0.06747,
respectively. Note that the resulting shift for linear symmetric geometries is < 0.1 mEj,, smaller than our
earlier estimate [6] of 0.15 mE}, for the uncertainty in the basis correction for such geometries; this estimate
still seems reasonable.

The f, term is used to provide additional flexibility in the angular dependence. Differencing energies
obtained with [4s3pld] and [4s3p2d] basis sets shows no evidence of a systematic trend as a function of angle;
however, differencing energies obtained with [4s3p2d] and [6s5p3d1 f] basis sets does show a significant angular
effect (note that the size of the Hy basis correction differs by a factor of ~ 1.6 for both of these pairs of
bases). Since this angular effect depends on something other than the pure size of the basis set or basis
correction, the most conservative assumption is that Partridge’s [6s5p3d1 f] basis set requires no additional
angular dependence beyond that introduced by setting f; = 0.182, i.e., that f2 = 0 for the [6s5p3d1 f] basis
set. In this case, one obtains f» = 0.6 and 0.35, respectively, for our [4s3p2d] and [4s3pld] basis sets; values
of f3 = 1.5 and f4 = 0.8 give the best agreement. The resulting shift reduces the rms difference between
Partridge’s [6s5p3d1 f] energies and our [4s3p2d] energies from 0.37 to 0.14 mEy, (387 conformations). The
shift is comparable to our earlier estimate of 0.3 mEj}, for the uncertainty in the basis correction for nonlinear
geometries; furthermore, an angular contribution to the basis correction error amounting to even half the
H, basis correction would still be only 0.4 mE}, and so our earlier estimate again seems reasonable.

For conformations that are very close to being equilateral triangles (i.e., near Dj3;, symmetry), a
systematic difference remains between Partridge’s energies and ours; it can be of order 0.5mE}, for ry = ry S
2a, and x = 90°, but vanishes for § < 90° or ra/r; 2 1.3. This remaining difference cannot be characterized
well enough to attempt a correction; but it points out the difficulty of estimating the (systematic) error in
the basis correction, which for equilateral triangles might be of order 1 mE},.

In summary, our ab initio energies Eg, 5 have a total “random” error of about 0.1 mE}, (from MRD-CI
errors), plus a systematic error of about 0.4 mE; (mostly from basis correction errors; smaller for linear
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conformations, larger for equilateral triangles). The errors are somewhat larger for the high-energy compact
conformations, and smaller for conformations tending towards H, + H.

C. The van der Waals region

The Partridge et al. [8] ab initio computations also improve the van der Waals region, filling in a
region at large Rp-m, from 5.5 to 8 — 10 @, that had been left out in previous theoretical studies. Although
this region is not at the root of the discrepancies in inelastic rotational excitation, it seemed worthwhile to
refine the BKMP surface here as well. In the fitting we have made use of the ab initio energy values for all
503 conformations of Ref. 8, of which 116 have 6 a, < Ry-n, < 10 a,.

Partridge et al. [8] showed that their ab initio data in the well region and beyond were accurately
fit by a modified Tang—Toennies (MTT) surface [this gives energies relative to Hy(r1) + H for fixed 7).
We adopted this MTT representation; the four parameters describing the dependence on Ry-p, and x were
found as a function of 1 by nonlinear least squares fitting to their ab initio energies for Ry-g, > 5.5 a,, the
accuracy of these fits being of order 1 pFy. Following their recommendation, the well was deepened slightly
for each 7y (from 66 to 75 uEy, at r1 = 1.449 a,) by adjusting the two parameters describing the spherically
symmetric radial dependence. By construction, for Ry-n, > 10 a, this representation extrapolates to the
asymptotic long range dispersion interaction energies [8].

This MTT form is not incorporated explicitly in our surface. Instead, energies were computed from it
(plus Schwenke’s [19] Hy potential) to be used as constraints in fitting the new surface (the BKMP surface
used energies from the Gengenbach et al. formula [30]). The grid was as follows: r; was chosen from {0.7,
0.8, 1.0, 1.2, 1.449, 1.7, 2.0, 2.45, 3.0, 3.4, 4.0 a,}, and Ry, was chosen from {5.5, 5.75, 6.0, 6.25, 6.5,
6.75, 7.0, 7.25, 7.5, 7.75, 8.0, 8.5, 9.0, 10.0, 12.0, 15.0 a, }, subject to the constraint that ro > 4.5 ao; the
angle x ran from 0° to 90° inclusive, generally in increments of 15° (for r; = 0.7, 1.7, 2.45, and 3.4 a,, the
X increment was 30°, and values of Ry-g, > 10.0 a, were omitted). This van der Waals grid comprised
968 conformations (80 of which coincide with conformations computed in Ref. 8).

During the fitting procedure described in Sec. III, deviations of the fit for these conformations were
given high weights as follows. A set of basic weights for r; near equilibrium (1.4a, < r1 < 1.5a,) were assigned
according to Ry-p,: 10 for Partridge et al. conformations with 5.25a, < Ry-p, < 5.6 ap; 20 for MM T-derived
points with 5.5 a, < Ru-u, < 5.6 a,; 40 for 5.6 a, < Ru-n, < 5.9 ao; 80 for 5.9 a, < Ru-u, < 8.9 a,; and
360 for the “distant” conformations with 8.9 a, < Ru-n,. These were then scaled down on the basis of rq:
by 0.5 for 0.9a, <7 < 14a, and 1.5a, < r; < 2.1 ae; by 0.25 for 2.1 a, < r; < 3.2 ao; and by 0.1 for
r1 < 0.9a, and r; > 3.2 a,. Some of the conformations generated by the MTT representation had r; rather
far from equilibrium and so the weight was reduced from the above by a factor 2 for 1.499 < ro/r; < 1.7499
and by 4 for 75 /r1 < 1.499. But in no case was the weight allowed to sink below unity.

D. Collinear saddle point/classical barrier height

On the collinear cut the adopted Hz saddle point occurs at 71 = ro = r, = 1.7570 a, (linear
symmetric conformation) and its energy is Esqqqie = —0.1591760 E}, (relative to H + H + H). Using the
Schwenke equilibrium H, energy, this matches the latest Monte Carlo result (Ref. 28) on the classical barrier
height, namely, 9.613 £ 0.006 kcal/mol. This saddle point is incorporated in our surface implicitly through
specification of the effective Hy triplet curve.

Various ab initio estimates of the barrier height have been discussed recently by Partridge et al. [8];
these depend on the basis correction. Smooth agreement of our surface with the Monte Carlo result at the
saddle point is achieved by fitting ab initio data which have been corrected using a slight reduction of the

London basis correction for geometries that are not too far from linear symmetric (see discussion above
in Sec. II B).
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In order to tie down the asymmetric stretch and bending quadratic force constants at the collinear
saddle point, two conformations with high weight (1000) were added as for the BKMP surface. We also
computed energies for 50 new conformations with r; = ry = 1.757a, for a range of 8 to study the angular
dependence away from this saddle point (e.g., the quartic bending force constant; Sec. IV D).

E. Near D3; symmetry

Varandas et al. report ab initio data for 18 nonsymmetric conformations explicitly in the vicinity of
D3p, symmetry. These are specified using s and ¢ symmetry coordinates which are useful in connection with
analytic continuation to the upper electronic surface; ¢ is the rms r;, while s is a measure of the deviation
from Dj3p, symmetry (s = 1 corresponds to the collinear limit). There is a third angular coordinate giving
the direction of the deviation; only two choices of this angle were used in their conformations corresponding

12 r, = ¢, and 73 = ¢(1 4+ scos30°)'/? (an atom is

to two cases: (a) scalene with 11 = ¢(1 — scos30°)
moved in a direction which is initially, for small s, parallel to the opposite side, r2, of the triangle) and (b)
isosceles with r1 = ro = q(1 — 5/2)/2 and r3 = ¢(1 + s5)'/? (an atom is moved in a direction perpendicular
to and toward the opposite side, r3, of the triangle). As part of the comprehensive grid (Sec. I A) we
computed in the same manner energies for 156 conformations with ¢ = {0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0,
2.3, 2.5, 2.8, 3.2, 3.7a,}, s = {0.05, 0.1, 0.2, 0.3}. These include the 18 conformations of Varandas et al.,
which have ¢ = 1.6, 2.0, and 2.5 a,. We also added a third case: (c) isosceles with r; = ¢(1 — 5)'/? and
ry =13 = q(1 + s/2)'/2 which is equivalent (geometrically — the smallest separation is denoted ;) to using

negative values of s in case (b); case (a) is of course unaffected by changing the sign of s.

The behavior of the surface in the vicinity of D3 symmetry is also constrained through many other
conformations in the grids described in Sec. IT A (conformations with x = 90° including equilateral triangles,
and others with § = 90° through x = 90° in the appropriate range of r2/ry).

F. Extremely compact conformations

To ensure that extrapolation of our surface to very short distances is well behaved we added
175 extremely compact conformations (distances down to 0.32 a,) with energies estimated from the
(non-Johnson-corrected) London equation. The conformations were generated for 0° < x < 90°, at
15° intervals, for 71 = 0.5, 0.4, and 0.32 a, with 7, taking the values {0.32, 0.4 0.5, 0.6, 0.8, 1.0, 1.2,
1.4, 1.75 a,} (subject to the constraint ro > rq), and also for r; = ro = 0.6 a, (for overlapping angles,
energies for the latter agreed with the ab initio energies within S 10%).

III. THE FITTING PROCEDURE

Since the BKMP surface [6] is already a flexible and accurate representation we used this parametrized
functional form as the basis for the fit to the new set of H3 energies. Despite the vastly increased number of
constraining energies and conformation coverage, the same number of parameters was used; the parameters
were simply reoptimized. For the main steps in the fitting procedure we followed closely the same strategy as
for the BKMP surface; we used the same optimization methods and we adopted the same criteria to assess
the surface fit.

The overall rms error of the BKMP2 surface (as well as those of the LSTH, DMBE, and BKMP
surfaces) with respect to the ab initio data is given in Table I, along with the rms errors for various subsets
of the ab initio energies, corresponding to various subsections of the surface. The fitted surface has continuous
first and second derivatives everywhere (the cusp at conical intersections with the first excited state surface
is only rounded off by a negligible, and removable, amount, namely 1 uE}; see Sec. IV E). Other specific
qualities of the BKMP2 surface are discussed in Sec. IV.
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A. The Triplet Equation and the Johnson Correction

In the first step we optimized the effective Hy triplet curve. The form used for r > r; (no Johnson
correction) was actually fitted to 71 ab initio energies for linear symmetric conformations, including 8 for
compact ones. As in all subsequent stages of the fit, deviations for energies greater than 0.2 E;, were
given a reduced weight of 0.2/E. In addition, energies for 14 “distant” linear asymmetric van der Waals
conformations (Ry-pg, = 124, and 15 a,) for 7 values of 71 (0.8 a, to 4.0 a,) were included in order to force the
triplet curve to decay such that the London energy is not too large in the region of the van der Waals well.
As described in Sec. II C, the deviations for these energies were assigned high weights producing a fit better
than 2 pFEj,. Of the triplet parameters only 73, 74, 75, and 7 have to be optimized. As in the BKMP and
LSTH surfaces, 71 and - are obtained self-consistently by ensuring that the surface reproduce the collinear
saddle point accurately. All linear symmetric geometries were fit very well with this modified form of the
triplet potential (see Table I). The correct symmetric force constant ks = 0.1068 Ej, a, 2 is obtained (for a
summary of force constants see Table VI in Ref. 6).

The Johnson correction coefficients 77, s, and 9 were calculated analytically such that the triplet
curve is continuous (with continuous first and second derivatives) at the point r, = 1.15 a, where the Johnson
correction takes over.

B. The Asymmetric Correction

The second step was optimization of the asymmetric correction V,sym. The optimization of the seven
parameters was carried out using 850 energies for linear conformations, including all 674 ab initio values
for noncompact geometries. A further 67 ab initio energies for barely compact (1.01 a, < 71 < r5) linear
conformations were included so that the Vg4, correction term would have the correct shape through 7. The
deviations for the 70 Partridge et al. energies among these were assigned higher weights (the same scheme
also applies in later parts of the fit). For their 22 conformations in the van der Waals range (Ru-n, > 5.25 a,)
the weights are as described in Sec. II C. For smaller Ry-p, the scheme is essentially the same except that
the basic Rp-mu,-based weights at the outset are ramped down to 7 for 4.75 a, < Ru-n, < 5.25 a,; 4 for
4.25 ay < Ryu-n, < 4.75ay; 2 for 3.75a, < Ru-n, < 4.25a,. No weight in this range is less than 1.0. There
is no special weight for Rg_p, < 3.75 a,. In addition, 109 energies for noncompact linear van der Waals
conformations from the MTT representation were used to ensure a reasonable van der Waals well in the
linear direction for a range of r;. The correct asymmetric force constant k, = —0.0579 Ej, a; 2 is obtained
due to the constraining conformation with weight 1000.

C. Two Compact Corrections

The third step was the optimization of the terms Coy and Cogym, correction terms which have an effect
only on compact geometries (which are affected by the Johnson correction). The parameters in both terms (16
in total) were optimized simultaneously using 356 energies for compact linear conformations. This included
281 ab initio energies from our grid and 5 from Partridge et al.. Using the MTT representation, 45 van
der Waals conformations ensure that the van der Waals well has a stable behavior for these nonequilibrium
H, separations. Some 25 extremely compact conformations (Sec. II F) all had E > 0.2 E;, and weights
0.007(0.2/E), sufficient to ensure that modest extrapolation of our surface remains well behaved (Sec. IV G).

D. The Bending Terms

The fourth step was the optimization of terms to reduce the residuals for bent geometries,

Vial, and V&) . All of the bending terms (including the compact ones) contain an exponential decay

factor to ensure the correct asymptotic behavior; the same values as for the BKMP surface were used.

(A)

The parameters in V} ', and Vb(frid (32 in total) were optimized simultaneously using 6402 energies for

bent conformations, including all 5453 ab initio energies for noncompact bent geometries (91 of the latter
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are for van der Waals conformations from Ref. 8) A further 366 ab initio energies for barely compact bent
conformations were included to obtain the correct shape through r,. The 390 Partridge et al. energies among
the above were assigned higher weights by the above scheme where appropriate. Using energies from the
MTT representation, 583 noncompact bent van der Waals conformations were used to ensure a reasonable van
der Waals well for bent geometries for a range of r1. The correct bending force constant k, = 0.0210 E}, a; 2
is obtained due to the constraining conformation with weight 1000.

E. The Compact Bending Terms

The final step was to optimize the term Cpeng, a correction term for compact bent geometries. The
60 coefficients were optimized using 2731 energies for compact bent conformations, including 2350 ab initio
values (12 of these are for van der Waals conformations from Ref. 8) plus 231 bent compact van der Waals
conformations using the MTT representation. As mentioned in Sec. II F, we also added 150 extremely
compact bent conformations of low weight.

IV. DISCUSSION

A FORTRAN computer subprogram which evaluates this surface and its derivatives with respect to
the three internuclear distances is available from the authors [18]; it is in a form that readily replaces the
routines supplied to evaluate the LSTH [31] or BKMP [6] surface. The BKMP2 surface (of the BKMP form)
is simple enough that it can be used for quantum mechanical and QCT scattering calculations. Quantum
mechanical calculations using the BKMP surface have been carried out by Chang and Brown [32] and QCT
calculations have been reported by Keogh et al. [33] and Lepp, Buch, and Dalgarno [7]. As a benchmark for
quasiclassical trajectory studies, a BKMP2 (or BKMP) evaluation of the interaction potential and derivatives
takes typically 140 us on a DEC 3000 workstation (Alpha 150 MHz processor).

A. Low rms for ab initio energies and other global comparisons
Table I summarizes some comparisons of the various surfaces with the ab initio data.

The quality of the fit for the BKMP2 surface is very good. It fits the entire set of 8701 ab initio energies
with an rms error of 0.27 mE}, (the maximum deviation being 6.2 mE}, for a very compact equilateral triangle
with 71 = 0.7 a,). For 6077 energies for noncompact conformations the rms error is 0.18 mEj, (the maximum
deviation being only 1.67 mEy). These rms accuracies are comparable to the estimated “random” error
of 0.1 mE}, for our newly-computed ab initio energies and are actually slightly smaller than the estimated
systematic errors in the ab initio energies (0.4 mE}, mostly from basis correction errors; Sec. II B).

At low energies the new BKMP2 surface is quite similar to the BKMP surface, but it is based on a grid
with more extensive coverage and better resolution; for example, the rms difference between the BKMP2
and BKMP surfaces is 0.26 mE}, for the noncompact conformations used for the ab initio calculations. At
higher energies we have used many more ab initio data than were used in the BKMP fit, and so the new
BKMP2 representation should be even more accurate there; note for example the much lower rms error for
compact bent conformations.

The BKMP surface fits their version (slightly different basis correction) of the energies for their
766 independent conformations with an rms error of 0.25 mE;, (the maximum deviation being 1.93 mEy},).
The BKMP fit to the new energies for this “BKMP subset” is slightly worse, having an rms error of 0.36 mE},.
For the same energies, the BKMP2 fit has an rms error of 0.30 mE},, slightly larger that the original 0.25 mE},
value in Ref. 6 because now the same number of parameters is being used to fit a much more extensive set
of energies. The BKMP surface fits our entire new set of energies with an rms error of 3.76 mE;, (maximum
deviation 262 mE}, for an equilateral triangle with r; = 0.6 a,); comparison with the new value 0.27mE}, for
BKMP2 illustrates the overall benefit of the reoptimization of the parameters.
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Not shown in Table I are values for the AP surface; for non-compact conformations, it has an rms
error of 3.4 mE;, (with maximum deviation 17 mE},), several times worse than any of the other surfaces.
The overall rms error is 6.2 mE}, with a maximum deviation of 46 mE), for an equilateral triangle with
r1 = 0.6 a,- As shown below, this surface also lacks many of the desirable features seen in the other surfaces.

B. Legendre coefficients

We have computed Legendre coefficients Va,, for the various surfaces for several values of r1. These
are compared in Figure 1 for the case r; = 1.449 a, which is representative. Also plotted are the coefficients
computed by Partridge et al. directly from their ab initio data, which have less extensive angular coverage
than our comprehensive grid.

Our fit surface generates a spherical average Vy (Fig. 1a) which is in good agreement with the other
surfaces, the results of Partridge et al. and the best available experimental data discussed therein. The
DMBE surface stands out somewhat as being more repulsive in the intermediate (or interpolation) range
near Rg-g, = 4 a,.- The AP surface is the most discrepant (as for all V3,), having poor extrapolation
characteristics beyond where it is constrained by the BKMP data.

For inelastic rotational excitation we are interested in the radial dependence of the first anisotropic
coefficient V5 (Fig. 1b) for the intermediate range 3a, < Ru-u, < 5.5a,. Our ab initio energies (see Sec. IT A)
provide better radial coverage than was available to the LSTH, DMBE, and even BKMP fits for this range
and also superior angular coverage; thus the BKMP2 surface should be the most accurate in the interaction
region. Note how the added coverage has changed the BKMP2 coefficient slightly relative to the BKMP
coefficient; both are quite close to that from the LSTH surface. The DMBE surface produces a dip near
Ru-n, = 4 ao; this incorrect behavior accounts for the discrepant cross sections and rate coefficients (see
also Sec. V). The AP surface has the most discrepant representation of the minimum and again extrapolates
poorly. There are slight discrepancies of the BKMP2 result compared to Partridge et al., but only at the
0.2 mE}, level comparable to the random and systematic errors of the fit (see also Fig. 2).

Calculations of Vy, Vs, and Vg (the first two shown in Figs. 1c¢ and 1d respectively) show the continued
good behavior of the coefficients from the BKMP2 fit. Other surfaces are somewhat less precise, as for the
lower order coefficients.

A complementary way of examining how surfaces differ in their basic asymmetry is to plot cuts of
the interaction potential for various fixed r; and Ry-p, as a function of x. We have done this for many
combinations; three representative ones are shown in Figure 2a—c for r; = 1.449 @, and Ryg-p, = 3, 4, and
5 ay. The relative bulge in the DMBE potential near Rg-g, = 4 a, at x = 90deg (up by ~ 1.5 mEp) is
reflected in the anomalous dip in V5.

These plots also show the ab initio energies used in the BKMP2 fit, including the Partridge et al
data. The BKMP2 surface appears to have low level angular structure (which changes with Ry-p,) somewhat
larger than warranted by just these data. However, recall that the surface is required to fit simultaneously
energies on a grid comprising many more separations and angles. Therefore, some of the structure just arises
from the decaying tails of functions required for more compact geometries. These oscillations are constrained
by data at many more angles than shown in Figure 2, but only at the level of the rms of the fit, ~ 0.1 mE}, in
this region of conformation space (Ru-u, ~ 4 a,). Given this and the accuracy of the ab initio data, we tend
to discount the details of the high order coefficients at levels below 0.1 mE},. Even the derived BKMP2 V5
coeflicient is slightly different than directly computed by Partridge et al. from ab initio data for Ru-n, > 4 a,
(Fig. 1b), which suggests caution in applications at very low energy (or temperature).

C. The van der Waals well

The BKMP2 functional form for the surface has sufficient flexibility that it is not necessary to join it
explicitly to another description (like MTT) for larger separations (5.5 a, < Ru-n, < 10 a,). The BKMP
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surface fit the constraining data from Gengenbach et al. [30] well, but these data have been superseded by
the present MTT description which also has a much more securely-based dependence on r;. The BKMP2
fits resulted in a van der Waals well that agrees fairly closely in position, depth, and shape with the data
underlying the MTT description. Figure 3 illustrates the angular dependence of the well for r; = 1.449 q, for
different analytic Hs surfaces. Also shown are the ab initio data from Partridge et al. and the constraining
data generated from our MTT formula. The BKMP2 well behaves smoothly as a function of angle and also
of the size of the Hy molecule: we have examined the well for r; as small 0.6 a,. The BKMP2 Legendre
coefficients in the van der Waals region are correspondingly well behaved. For r1 = 1.449 @, the minimum
of Vy is 75 pEy, occurring at Ru-p, = 6.58 a,, close to the values recommended by Partridge et al.

The BKMP2 analytic form of the surface (like the BKMP and the LSTH surfaces) approaches the
London surface exponentially at very large distances (Ru-n, > 10a,), unlike the DMBE surface which closely
mimics the asymptotic form of the interaction; however, at these distances the interaction energy is only a
few pEr. The BKMP2 surface also dissociates to give Schwenke’s accurate Has potential curve.

D. Saddle point properties

The collinear saddle point occurs at r; = 1.757 a,. The classical barrier height of our fitted surface
is 15.32 mEy, (i.e., 9.613 kcal/mole) in good agreement with the best recent determinations (Sec. II C).
As mentioned in Sec. III, all three quadratic force constants for our surface agree closely with Liu and
Siegbahn’s values and those for the LSTH, DMBE, and BKMP surfaces.

The reactivity of the system can also depend on the angular dependence away from this collinear
saddle point. In their discussion of transition state properties and the possible relevance of the zero-point
corrected barrier height (which correction depends on various force constants), Garrett et al. [12] used an
expansion for fixed nearest-neighbor distances:

1o, 1
= — — 2
V(0) = Vsaddie + 2F9 + 24A9 + (2)

Adopting the framework of this expansion, Figure 4 shows 2[V (0) — Vyqqaie] /67 versus 62 for ry = ro = 1.757a,
(1.755 a, for DMBE). The curves therefore have intercept F', which is the quadratic bending force constant
(as expressed in mEj, radian—2). For the BKMP2 surface, as for the LSTH and BKMP surfaces, this is
determined by a highly weighted constraining energy (solid square); the DMBE and AP surfaces also have
similar bending force constants.

The slope of the curves in Figure 4 is approximately A/12, where A is the quartic bending force
constant (mEj, radian—*) as defined by Garrett et al. Clearly there is curvature to each surface, pointing to
the need for additional higher-order expansion coefficients beyond 6 ~ 0.1 radian. Because of this curvature,
evaluation of the quartic bending constant could depend on the range of #2 over which the (average) slope
was measured. To be precise in calculating A as one of many expansion coeflicients, one can either restrict
the range to very small §? and fit coefficients only up to A4 or fit a suitably higher-order polynomial over a
more extended range. The values of A calculated consistently in this way for the BKMP2, BKMP, LSTH,
and DMBE surfaces are 75.6, 78.9, 16.0, and 28.7 mE}, radian—*, respectively. We cannot see how to reconcile
these with the values reported for the latter two surfaces in Table I of Garrett et al.

Away from the collinear geometry, the surfaces have slightly different curvature as illustrated in
Figure 4. The detailed shape of the surface here is determined by the functional form of the analytic
representation, whose parameters are in turn determined by energies for a wide variety of conformations not
chosen specifically to isolate this region near the collinear saddle point. The BKMP2 (and BKMP) surface
has the most angular flexibility and so shows some higher-order structure. Note that the BKMP2 surface is
very close to the BKMP surface, despite many more constraining energies. In particular, we did use the ab
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initio data shown in Figure 4 for the new fit, but with obviously little effect since the BKMP fit was already
so good, well within the errors (largely systematic) expected for bent geometries (Sec. II B). The deviation
is 0.3mE}, at 8 ~ 1 radian and actually decreases at smaller 6 (the deviations appear amplified in Figure 4
because of division by 62/2).

In particular the differences in the quartic bending force constant are not being determined by localized
ab initio data. Nor is it possible to use data of this level of accuracy to choose between the surfaces in this
region. This is probably not a serious issue. While a difference in the zero-point corrected barrier height,
which is the transition state theory activation energy at 0 K in the absence of tunneling, could influence
the relative exchange reaction rate coeflicients according to the usual Boltzmann factor, Garrett et al. [12]
also emphasize the importance of tunneling contributions for low temperature thermal rate coefficients. Low
energy tunneling probabilities are sensitive to the global characteristics of the surface, not just the barrier
height, including fairly large-distance interactions (Rg-p, ~ 4 a,). From our ongoing discussion of both the
increased constraints and the overall accuracy of the BKMP2 surface, we suggest that it should produce the
most reliable results.

E. Near D3; symmetry

As discussed in Sec. IT E, we have computed many additional points to explore the nature of the
D3p,-symmetry conical intersection (which for “normal” sizes occurs between the ground and first excited
state surfaces; see Sec. IV F). The minimum energy conical intersection is also the saddle point for § = 120°.
On the BKMP2 surface it occurs at r; = 1.9711 a, with energy 74.33 mE},, or 62.85kcal/mole relative to the
equilibrium H, energy; the corresponding values for the DMBE surface are 1.973 a, and 63.36 kcal/mole.

Figure 5 shows two cuts of the surfaces near this intersection, specified using the Varandas et al.
symmetry coordinates ¢ and s (see Sec. II E). Both have ¢ = 2.0 a, rather than 1.9711 a, in order to
display the ab initio data. The two cuts are for cases (a) and (b)+(c) of Sec. IT E (scalene and isosceles,
respectively). We have examined such plots for many different values of g (not shown). Except for the
AP surface, which does not even have a cusp in its formulation and which for other values of ¢ often does
not pass through the ab initio energy for the equilateral triangle geometry, the surfaces all fit the ab initio
energies fairly well. This is true even of the LSTH and BKMP surfaces, whose shapes were not constrained
by the data shown in Figure 5 (except for the equilateral triangles); this agreement is possible because of
a sufficiently flexible and apt functional form (not the case for the AP surface) and because conformations
which apply appropriate constraints do arise in a regular grid of conformations even if not explicitly generated
in symmetry coordinates.

Quantitatively the BKMP2 surface, with constraints including these new ab initio data, provides the
most accurate fit. For noncompact geometries (i.e., with shortest distance r1 > 1.15 a,) near the conical
intersection (|s| < 0.3) the rms errors for 325 ab initio energies are 0.29 mE, for BKMP2, 0.62 mE), for
BKMP, 0.82mE}, for DMBE, 1.2mFE}, for LSTH, and 9.4 mE}, for AP. For 54 compact ab initio energies for
g > 0.85a, (see Sec. IV G for the reason for this cut) and |s| < 0.3, the rms errors are 0.91 mE}, for BKMP2,
2.4 mEy, for BKMP, 5.9 mE), for DMBE, 7.9 mE}, for LSTH, and 20 mE}, for AP. For the very high-energy
points with ¢ < 0.85 a,, only the BKMP2 surface remains accurate (Sec. IV G.)

F. The DMBE first excited state surface

Porter, Stevens, and Karplus [13] showed that for D3;, symmetry (equilateral triangles) the doubly-
degenerate E' state of H3 corresponds to a conical intersection between two surfaces. For Hz systems of
“normal” size the two states intersecting at Dsp symmetry (of symmetry A; and Bs for isosceles triangles
and otherwise A’ for scalene triangles) define the ground and the first excited potential energy surfaces.

The DMBE surface is intended to be a consistent analytic representation of the two lowest potential
energy surfaces for Hs, explicitly making an analytic continuation based on this conical intersection for Dsy,
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geometries. The comparison in Figure 5 (for ¢ = 2 a,) with the ab initio energies for the first excited state
that we have computed shows that the DMBE representation is indeed quite good near D3, symmetry.
However, away from the conical intersection it becomes less accurate, as might be expected because the first
excited state surface was not constrained by these (or any) ab initio energies. As g decreases, the predicted
surface is not as asymmetric in s (for isosceles triangles) as the ab initio data indicate.

Having computed ab initio excited state energies for 1809 of our conformations (these excited state
energies are also available from the authors [18]), we can examine more globally the accuracy of the DMBE
excited surface prediction; the overall rms error for these energies is 19 mEj). Near the conical intersection,
for |s| < 0.3 where the surface is best, there is an rms error of 1.1 mE}, for 71 noncompact points and 1.9mE),
for 20 compact points with ¢ > 0.85 a,. With no restriction on s the overall rms error is 7.9 mE}, for all 1246
noncompact points and 30 mE}, for 531 compact points with ¢ > 0.85 a,.

G. Compact conformations

Except for our studies, the high energy interaction region has received little attention. For compact
conformations (r1 < 1.15a,), the BKMP2 surface should be fairly accurate up to at least the energy of our
highest ab initio points, of order 1 Ej; above the energy of H + H + H. The grid coverage (Sec. IT A) is more
extensive than for the BKMP surface. Energies up to 200 mE}, above the energy of H + H + H are given full
weight in the fit. Our weighting scheme gives lower weight to the deviations for conformations with very high
ab initio energies, but only by a factor of six at the very most, thus ensuring that the absolute error at high
energy is acceptable. Energies above ~ 1 E} require extrapolation, and, of course, any fitted surface is best
used for interpolation rather than extrapolation; however, we did ensure (Sec. IT F) that our Hs surface does
not differ too greatly from the non-Johnson-corrected London equation, even when extrapolated in to very
short distances where we did not have ab initio energies. For r; = ry the surface is monotonically increasing
for all 8 up to energies ~ 3 E}, down to distances slightly shorter than 0.35 a,. Below this, for sufficiently
bent geometries, the analytic surface turns over and drops steeply.

Our multiple-root MRDCI calculations near and including Dsp, symmetry show some interesting
changes as the geometry becomes more compact. For ¢ = 0.9 a,, the energy of the doubly-degenerate
E' root is 341 mEy, (all energies relative to H 4+ H 4+ H). The third root at D3 symmetry is single, with state
symmetry A'; away from Dgsp, the symmetry becomes A; for isosceles triangles and otherwise A’ for scalene
triangles. The energy of the A} root is 347 mEy. In Varandas symmetry coordinates (s and their angle
30) the lowest three surfaces defined by these states are all fairly convex (“bowl”-shaped) for such compact
geometries. As ¢ decreases the upper surface associated with A} rises in energy, but the two formerly lower
surfaces associated with E' rise even more quickly. The A} and E' roots at D3, symmetry coincide at
g = 0.844 a, (energy 438 mE},).

For even smaller g the A} root is lower than the E' root. For example, by ¢ = 0.8 the energy of the A}
root is 525 mE}, clearly separated from the energy 530 mE}, for the doubly-degenerate E’ root. In fact the
surface associated with A} remains the ground state for most s and 36, except for an isolated intersection
with the first excited state for a squashed isosceles triangle geometry at s & 0.225 (i.e., r1 = r2 &~ 0.754 a,,
r3 ~ 0.885 a,), having an energy ~ 549 mE;, (24 mE;, up from the bottom of the “bowl”). The conical
intersection between the surfaces through E’ at D3, symmetry is now between the first and second excited
state surfaces.

We can conclude that the DMBE first excited state surface should not be extrapolated to such compact
geometries. The first reason is technical, since the representation depends explicitly on the existence of the
Dg3p-symmetry conical intersection with the ground state surface; the second reason is practical, since the
rms error with respect to our ab initio energies increases to 30 mE}y, for 531 compact points with ¢ > 0.85 a,
and 50 mE}, for 32 compact points with ¢ < 0.85a,. (For near-Dsp, points with |s| < 0.3, corresponding rms
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errors are 1.9 mEy, for 20 points with ¢ > 0.85a,, and 64 mEy, for 15 points with ¢ < 0.85a,.) Of course, the
DMBE ground state representation is also becoming less accurate when extrapolated to compact geometries,
having an rms error of 5.6 mE}, for 2118 compact points with ¢ > 0.85 a,, and 40 mE}, for 51 compact points
with ¢ < 0.85 a,.

Even our more accurate BKMP2 surface, which provides a much better fit to the small-g (compact)
ab initio data, still exhibits a slight cusp at small-g D3;, geometries (rather than, for example, shifting it
to the isosceles-triangle geometry where the actual intersection takes place when g = 0.8 a,). This cusp
at D3 symmetry arises from the London term which appears explicitly in the analytic surface, as it does
for the LSTH and DMBE surfaces. For compact geometries this London term is increasingly overwhelmed
by the three compact correction terms (see Ref. 6) in the BKMP2 surface, but a D3j cusp, now relatively
insignificant, must still appear. The size of both the spurious Ds; cusp and features like the missing
isosceles-triangle cusp for small g are of order a few mE}, like the error in the fit, so that while the BKMP2
surface is qualitatively incorrect, it is quantitatively still acceptably close.

V. CROSS SECTIONS FOR INELASTIC ROTATIONAL EXCITATION

In this section we report on quasiclassical trajectory calculations carried out to assess low energy
state-to-state cross sections for rotational excitation (nonreactive rotationally inelastic scattering). The
method of calculation generally follows that described by Mandy and Martin [4, 17] and references therein.
We use a revised three-body trajectory code written to incorporate several different optional surfaces and
to make use of a state-of-the-art Runge-Kutta variable step integrator [33]. Cross sections are computed
for transitions in the downward direction [e.g., for H 4+ H5(0,2) — H + H»(0,0)]; the upward cross sections
are determined from these using detailed balance [34]. With the QCT method, cross sections involving
nonreactive excitation and exchange are distinguished. For the low energy transitions of interest here, only
the former are important for parity-conserving transitions; these are the values reported.

Results for H + H2(0,0) — H + H»(0, 2) are shown in Figure 6. This example is sufficient to contrast
the results from different surfaces. Like the original DMBE quantum cross sections [1], the QCT cross

sections for the DMBE surface remain substantial to a much lower relative kinetic energy than encountered
(in QCT calculations) for other surfaces (LSTH, BKMP, and now BKMP2).

The relatively high DMBE cross sections at low energy are of course what cause the discrepantly high
rotational rate coefficients at low temperature. The origin of the high cross sections is the abnormally large
asymmetry in the DMBE surface through the intermediate (interpolation) region Ry-n, ~ 4 a, (Sec. IV B;
Figs. 1 and 2). We have been able to verify this explicitly with our QCT calculations as follows. First the
trajectories (specified by particular initial conditions) which produce the low energy excess cross section for
the DMBE surface were isolated. Then the time development of these trajectories was examined in detail.
The H atom approaches the Hy molecule and is strongly deflected in an interaction region which is seen
to be Ry-pg, ~ 4 a,, leaving behind a rotating molecule. For the same initial conditions, but for the other
potential energy surfaces, there is little deflection or induced rotation.

The smooth curves in Figure 6 are from nonlinear least squares fits of the data to the Le Roy class II
excitation function [35]. The thermal rate coefficient for rotational excitation can be obtained in analytic
form by the appropriate integral of this excitation function over the Maxwell-Boltzmann distribution [35].
For the LSTH surface we verified that these rate coefficients are within a few percent of those previously
calculated [4, 17] for temperatures up to 2000 K (coefficients for higher temperatures would require an
extrapolation of the new cross section data to higher energies than computed). Our rate coefficients also
compare well with the QCT results by Lepp, Buch, and Dalgarno [7] for the BKMP, DMBE, and LSTH
surfaces. For the DMBE surface the QCT rate coefficients also agree well with the quantum values above
600 K.
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In summary, we have shown that these rate coefficients for nonreactive rotational excitation using the
DMBE surface are indeed too large; quantitatively this is by a factor 10 at 1000 K and growing toward lower
temperatures (more than a factor 30 discrepancy at 600 K). We have identified the reason for this excess.
Since new BKMP2 surface is the most directly constrained by ab initio calculations for conformations
in the relevant interaction region and shows less extraneous structure there (previous surfaces relied on
interpolation), it should be the most reliable for these calculations. The rate coefficients for temperatures
600, 800, 1000, 1400, and 2000 K are 0.076, 0.32, 0.76, 2.0, and 4.0 x 10~!! cm3 s™!, respectively, up to 30%
lower than the LSTH results at the lower temperatures.

ACKNOWLEDGEMENTS

We wish to thank the following: R. J. Buenker and his associate P. Funke for supplying us with a
workstation version of their MRD-CI program; H. Partridge for an electronic version of the ab initio data
reported in Ref. 8, for making new calculations to correct a few of those entries, and for evaluating the error
in the Hs potential using the larger basis sets; D. L. Diedrich for his latest evaluation of the saddle point
energy; and A. Aguado for the FORTRAN code to evaluate the AP surface. This work was supported by
grants from the Natural Sciences and Engineering Research Council of Canada (A. I. B., P. G. M.).

REFERENCES

[1] Y. Sun and A. Dalgarno, Astrophys. J. 427, 1053 (1994).

[2] A. J. C. Varandas, F. B. Brown, C. A. Mead, D. G. Truhlar, and N. C. Blais, J. Chem. Phys. 86, 6258
(1987).

[3] S. Green and D. G. Truhlar, Astrophys. J. (Lett.) 231, L101 (1979).
[4] M. E. Mandy and P. G. Martin, Astrophys. J. Supp. 86, 99 (1993).

[5] D. G. Truhlar and C. J. Horowitz, J. Chem. Phys. 68, 2466 (1978); J. Chem. Phys. (Errata) 71, 1514
(1979)

[6] A. I. Boothroyd, W. J. Keogh, P. G. Martin, and M. R. Peterson, J. Chem. Phys. 95, 4343 (1991).
[7] S. Lepp, V. Buch, and A. Dalgarno, Astrophys. J. Supp. 98, 345 (1995).

[8] H. Partridge, C. W. Bauschlicher, J. R. Stallcop, and E. Levin, J. Chem. Phys. 699, 5951 (1993).
[9] J. R. Stallcop, J. Chem. Phys. 61, 5085 (1974).

[10] D. G. Truhlar, and R. E. Wyatt, Adv. Chem. Phys. 36, 141 (1977).

[11] S. L. Mielke, G. C. Lynch, D. G. Truhlar, and D. W. Schwenke, J. Phys. Chem. 98, 8000 (1994).
[12] B. C. Garrett, D. G. Truhlar, A. J. C. Varandas, and N. C. Blais, Int. J. Chem. Kinet. 18, 1065 (1986).
[13] R. N. Porter, R. M. Stevens, and M. Karplus, J. Chem. Phys. 49, 5163 (1968).

[14] B. R. Johnson, J. Chem. Phys. 74, 754 (1981).

[15] A. Aguado and M. Paniagua, J. Chem. Phys. 96, 1265 (1992).

[16] A. Aguado, private communication (1992)

[17] P. G. Martin and M. E. Mandy, Astrophys. J. (Lett.) 455, L89 (1995).

[

18] Electronic files for the data and a program to evaluate the BKMP2 surface are available via anonymous
ftp (currently ftp.cita.utoronto.ca, file cita/pgmartin/h3pes/readme); for up-to-date instructions
contact the authors by e-mail at the following addresses: boothroy@vulcan.maths.monash.edu.au;
pgmartin@cita.utoronto.ca.



17 -

[19] D. W. Schwenke, J. Chem. Phys. 89, 2076 (1988).
[20] P. Siegbahn and B. Liu, J. Chem. Phys. 68, 2457 (1978).
21] A. I. Boothroyd, J. E. Dove, W. J. Keogh, P. G. Martin, and M. R. Peterson, J. Chem. Phys. 95, 4331
g
(1991).

[22] See AIP document no. PAPS JCPSA-95-4343-163 for a total of 163 pages comprising appendices to
Ref. [21] (30 pages) and tables of Hs energies (15 pages) and Hy energies (118 pages). Order by
PAPS number and journal reference (Ref. 21) from American Institute of Physics, Physics Auxiliary
Publication Service, 335 East 45th Street, New York, NY 10017. The price is $

for photocopies up to 30 pages and $

for each

microfiche (98 pages), or $ for each additional page

over 30 pages. Airmail additional. Make checks payable to the American Institute of Physics.
23] B. Liu, J. Chem. Phys. 58, 1925 (1973).
24] M. R. A. Blomberg and B. Liu, J. Chem. Phys. (Notes) 82, 1050 (1985).
25] C. W. Bauschlicher, S. R. Langhoff, and H. Partridge, Chem. Phys. Lett. 170, 345 (1990).

[

[

[

[26] H. Partridge, private communication: Hy energies (1992) and H3 energies (1994).

[27] R. J. Buenker and P. Funke, private communication (1992).

[28] D. L. Diedrich, private communication (1992).

[29] D. L. Diedrich and J. B. Anderson, Science 258, 186 (1992).

[30] R. Gengenbach, Ch. Hahn, and J. P. Toennies, J. Chem. Phys. 62, 3620 (1975).

[31] AIP document PAPS JCPSA-68-2466-18: see Ref. 24 of Truhlar and Horowitz (Ref. 5).
[32] J. Chang and N. J. Brown, J. Chem. Phys. 103, 4097 (1995)..

[

33] W. J. Keogh, A. I. Boothroyd, P. G. Martin, S. L. Mielke, D. G. Truhlar, and D. W. Schwenke, Chem.
Phys. Letters 195, 144 (1992).

[34] M. E. Mandy and P. G. Martin, J. Phys. Chem. 95, 8726 (1991).
[35] R. J. LeRoy, J. Phys. Chem. 73, 4338 (1969).



- 18 -

Table I. Accuracy of the analytic Hs potential energy surfaces: rms errors and maximum deviations for
various subsets of the 8701 ab initio data (125 energies for van der Waals conformations from Ref. 8 are
not included). “Compact” geometries are those having at least one distance less than 1.15 a,. Note that
different authors used slightly different H3 basis corrections to the ab initio energies.

BKMP2 BKMP LSTH DMBE
surface surface surface surface
Max Max Max Max
Description rms dev® rms dev?® rms dev® rms dev®

of subset Naata (MmER) (mER) (mER) (mER) (mER) (mER) (mER) (mEp)

All H3 energies 8701 0.27  6.22 3.76  261.62 10.87 -169.35 4.34 -168.93
BKMP subset? 766 0.30 -2.23 0.36°  2.98 10.54 -98.98 3.53 -47.93
LSTH subset? 283 022 -1.78 0.24 0.97 0.60% 2.40 0.66 4.07
DMBE subset’ 308 023 -1.78 0.23 0.97 0.60 2.40 0.66¢ 4.07

Compact 2624 0.42 6.22 6.82 261.62 19.76 -169.35 7.84 -168.93
Noncompact 6077 0.18 -1.67 0.28 2.58 0.71 4.06 0.69 2.72

Linear 1001 0.15 -1.26 0.22 -2.82 10.35 -169.35 1.58 9.01

Linear symmetric 74 0.18 -1.26 0.38 -2.82 20.33 -169.35 0.84 -3.98
Linear asymmetric 927 0.14 -0.54 0.20 -1.24 9.09 -116.38 1.63 9.01
Linear compact 286 0.19 -1.26 0.30 -2.82 19.36 -169.35 2.91 9.01
Linear noncompact 715 0.13 -0.37 0.18 -0.47 0.22 0.52 0.35 -1.55

Bent 7700 0.29 6.22 3.99 261.62 10.93 -165.88 4.58 -168.93
Bent compact 2338 0.44 6.22 7.23 261.62 19.81 -165.88 8.24 -168.93
Bent noncompact 5362 0.19 -1.67 0.29 2.58 0.76 4.06 0.72 2.72

@ Largest deviation—analytic surface energy minus ab initio energy.

b The numbers of energies for these sets are slightly lower than those in the BKMP paper (Ref. 6), due to
elimination of duplicate geometries here and, for the LSTH and DMBE subsets, to leaving out three
Siegbahn and Liu energies (Refs. 20 and 23) that are inaccurate by about 0.5 mE}. Differences in
rms values with respect to the BKMP values for these subsets are due largely to the different basis
correction (Sec. IT B).

¢ Boothroyd et al. (Ref. 6) fitted the BKMP surface to their version of these data with an rms error
of 0.25 mE}, and a maximum deviation of 1.93 mE},.

4 Truhlar and Horowitz (Ref. 5) fitted the LSTH surface to their version of these data with an rms error
of 0.27 mE}y, and a maximum deviation of 0.88 mE},.

¢ Varandas et al. (Ref. 2) fitted the DMBE surface to their version of these data with an rms error of 0.39mE},.
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FIGURE CAPTIONS

Fig. 1. Legendre expansion coefficients for the representative case r; = 1.449 a, evaluated for various
surfaces: BKMP2 (solid), BKMP (dashed), LSTH (dotted), DMBE (dashed-dotted), and AP (dashed—triple
dotted). Ry-p, spans the intermediate range inside the van der Waals well. Open circles present values from
Partridge et al. [8] at certain Ry-p,. Note the change in energy range for the successive panels. (a) Spherical
average Vp. (b) First anisotropic term, Va2, important for rotational excitation. (¢) V. (d) Vs.

Fig. 2. Cuts of the various potential energy surfaces as a function of y for fixed r; = 1.449 a, and
selected Ry-n,. Interaction energy plotted is relative to Ry-p, = oo for this r1 (cf. Fig. 1a). Line types as
in Fig. 1. Ab initio data are from our calculations (squares) and from Partridge et al. (open circles). Note
the change in energy range for the successive panels. (a) Ry-p, = 3 ao. (b) Ru-g, = 4 ao. (¢) Ru-n, = 5 ao.

Fig. 3. Profile of the van der Waals well as a function of Ry-p, for fixed 71 = 1.449 a, and selected
values of x. Interaction energy plotted is relative to Ru-p, = oo for this r;. Line types as in Fig. 1. Ab
ingtio data are from our calculations (squares) and from Partridge et al. (open circles). Bullets are from our
MTT representation. (a) x = 0°. (b) x = 45°. (c¢) x = 90°.

Fig. 4. Angular dependence of the potential with fixed r; = ro for bent geometries relative to the
energy for the collinear saddle point. The representation plotted is motivated by the expansion in equation
2. Line types as in Fig. 1. The solid square on the BKMP2 (and BKMP and LSTH) curve is the high weight
conformation used to constrain the quadratic force constant. Ab initio results are shown as open squares.

Fig. 5. Cuts of the potential energy surfaces near the conical intersection at fixed ¢ = 2 a, as a function
of symmetry coordinate s (s = 0 is the equilateral triangle, whereas s = 1 is the collinear limit). Line types
as in Fig. 1. Note that all surfaces but AP have a cusp. Ab initio results for the ground electronic state
are shown as open squares. DMBE analytic extension onto the upper surface is shown for comparison with
our ab nitio results for the first excited state (bullets). See Sec. IT E for definition of cases (a) scalene and
(b) isosceles (squashed for positive s).

Fig. 6. QCT cross sections for rotational excitation (without exchange) of Hy by H atoms for the
transition (0,0) — (0,2) as a function of relative translational energy. Symbols are circle, square, cross, and
diamond for the BKMP2, BKMP, LSTH, and DMBE surfaces, respectively. Smooth curves (with line types
as in Fig. 1) of the Le Roy class II form have been fitted to the data. The cross sections from the DMBE
surface are too high at low energies.
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