

CMB Polarization, Past, Present & Future

Dick Bond Canadian Institute for Theoretical Astrophysics, University of Toronto

- theory of CMB polarization
- E/B modes
- detection history
- future CMB polarization experiments
- reionization 'trajectories'
- inflation & forecasts of the gravity wave level: is the energy scale of inflation high (80s/90s) or low (00s)?
- the quest for gravity wave induced B-modes

Peebles, Page, Partridge, Finding the Big Bang, Feb09 CUP Rees 1968: CMB should be polarized; detection 2002 DASI

Peebles, Page, Partridge, Finding the Big Bang, Feb09 CUP Rees 1968: CMB should be polarized; detection 2002 DASI

redshift Ζ the nonlinear z~1100 **COSMIC WEB** <u>secondary</u> *primary* anisotropies anisotropies •linear perturbations: •nonlinear scalar/density, tensor/ evolution gravity wave Decoupling LSS •weak lensing • tightly-coupled photon-baryon fluid:

Lsound

ksound

•thermal SZ

+kinetic SZ

• polarization π_{γ}

viscously damped

oscillations $\delta_{\gamma} v_{\gamma} \pi_{\gamma}$

• gravitational redshift Φ SW d Φ/dt

10Gyrs

z=0

today

19 Mpc

13.7Gyrs

time

Peebles, Page, Partridge, Finding the Big Bang, Feb09 CUP

Rees 1968: CMB should be polarized; detection 2002 DASI

Kaiser83, pol via line-of-sight integration BE84: pol via Boltzmann transport, ~7% target, effect on shear viscosity, damping tail, "E" mode BE87: low to high L full CLpol, maps

First E detection DASI 2002; CBI04/05, Boom05, WMAP06, Capmap08, QuAD08; BICEP09?

Delta T over Tea Toronto May 1987: first dedicated CMB conference, exptalists+theorists, primary+secondary ∆T/T

A tentative list of topics organized according to angular scale, with theory and observation intertwined, is:

 very small angle anisotropies - VLA results, secondary fluctuations via the <u>Sunyaev-Zeldovich</u> effect, <u>primeval dust emission</u>, and <u>radio sources</u>

 small angle anisotropies - current results, optimal measuring strategies, statistical methods for small signals in larger noise, which universes can we rule out, the <u>reheating issue</u>, future detectors and techniques, <u>CMB map statistics</u>, <u>polarization</u>

• intermediate and large angle anisotropies - $5^{\circ} - 10^{\circ}$ results, <u>future experiments at ~ 1° , COBE</u> and other large angle analyses, theoretical $C(\theta)'s$ and their angular power spectra, Sachs-Wolfe effect in open Universes, the isocurvature CDM and baryon stories, $\Delta T/T$ from gravitational waves, the cosmic <u>string story</u>. Boom05² deep

Tensor perturbations, transverse-traceless metric h_+, h_x & neutrino+photon anisotropic stress: U & Q in q-space, i.e., B & E "fgnd" lensing by the cosmic web shifts scalar E pattern inducing B & E "fgnd" Galactic & extragalactic sources give B &E separate by frequency, spatial pattern

E and B modes: f(ss',xpt) Stokes parameters I,Q,U,V with Q-only for Thompson scattering in a plane parallel atmosphere Chandrasekhar...BE84... scalar polarization basis in Fourier space E=Q(q), B=U(q), q=L+1/2 $Q + iU(\hat{\mathbf{n}}) = \sum_{2} a_{lm} {}_{2}Y_{lm} Q - iU(\hat{\mathbf{n}}) = \sum_{-2} a_{lm} {}_{-2}Y_{lm}$ large sky patches: lmlm"local" l "local" Q $\tilde{\theta}$ Blue = + Red = $a_{lm}^E = -(a_{lm} + a_{lm})/2 \quad a_{lm}^B = i(a_{lm} - a_{lm})/2$ Tensor perturbations, transverse-traceless metric h +, h x & neutrino+photon anisotropic stress: U & Q in q-space, i.e., B & E "fgnd" lensing by the cosmic web shifts scalar E pattern inducing $\mathbf{B} \ \& \ \mathbf{E}$ "fgnd" Galactic & extragalactic sources give B & E separate by frequency, spatial pattern

Peebles, Page, Partridge, Finding the Big Bang, Feb09 CUP

Rees 1968: CMB should be polarized; detection 2002 DASI

Kaiser83, pol via line-of-sight integration BE84: pol via Boltzmann transport, ~7% target, effect on shear viscosity, damping tail, "E" mode BE87: low to high L full CLpol, maps Crittenden & Turok 96: TE correlation DASI02,WMAP03 Kaiser95, Stebbins96: rotate lensing E to B, a null test Kamionkowski, Kosowsky & Stebbins97 & Seljak & Zaldarriaga97: apply to CMB E/B modes. emphasize as gravity wave discriminator Zaldarriaga & Seljak98 lensing distorts E into B

First E detection DASI 2002; CBI04/05, Boom05, WMAP06, Capmap08, QuAD08; BICEP09?

CBI pol to Apr'05 @Chile	CBI2	Quiet1	Quiet2
_	QUaD @S	SP @Chile	1000 HEMTs
Boom03@LDB	Bicep @	SP Bicep	2 Keck/Spud
WMAP @L2 to 2009-201	3? Plan	nck09.3	EBEX @LDB Spidor
DASI @SP CAPMAP	(52 +] 9 f BLAS T	2 bolometers) HEMTs @L2 Frequencies Herschel	2312 bolos @LDB CHIP
2004 2006	2008	CLHC	
2005 Acbar to Jan'd SZA @Cal	2007 06, 08f @SP	2009 SPT 1000 bolos @SPole ACT 3000 bolos 3 freqs @Chile	(@L2 ASTpol Clover @Chile Polarbear 300 bolos @Cal/Chile SPTpol
G	~400 bolos @Chile	SCUBA2 12000 bolos JCMT @Hawa	ALMA @Chile ii LMT@Mexico

CBI pol to Apr	''05 @Chile C	BI2	(Quiet1	Quiet2
Boom03@LD	В	Bicep @	SP ((Bicep2	Keck/Spud
WMAP @L2 t DASI @SP CAPMAP	o 2009-2013?	Plai (5 + 9 BLAS	nck09.3 52 bolometers) HEMTs @L2 frequencies Herschel		@LDB 2312 bolos @LDB CHIP
2004 2005	2006	2008 2007	8 SPT	LHC 2009	201 Bpol @L2 Clover
ACD	AMI	08f @SP	1000 bolos @SPole ACT 3000 bolos 3 freqs @Ch SCU 12000	hile	©Chile Polarbear 300 bolos @Cal/Chile SPTpol ALMA @Chile
	GBI		JCM	T @Hawaii	LMT@Mexico

CBI pol	l to Apr'0	5 @Chile	QUaD @SP	Quiet1 @Chile	Quiet2 1000 HEMTs
Boom	03 @LDB		Bicep @SP	Bicep2	Keck/Spud
WMAF	• @L2 to :	2009-2013?	Planck09	9.3	<pre>EBEX @LDB Spider</pre>
DASI @S	SP IPMAP		(52 bolome + HEMTs (9 frequencie	@L2 es	2312 bolos @LDB <i>CHIP</i>
2004		2006	2008	LHC	201 Bpol
	2005	2007		2009 BLAST	©L2 Clover @Chile Polarbear 300 bolos @Cal/Chile SPTpol

CBIpol 2.5yrs Sievers etal 05/06, Readhead etal 04

CBIpol 2.5yrs Sievers etal 05/06, Readhead etal 04

CBIpol 2.5yrs Sievers etal 05/06, Readhead etal 04

ĕ −3.5

315

313 312 RA (deg)

314

311

310

Sievers etal 2008 Dec astroph CBI5yrs, still 2.5yrs pol, so slight effect on TE

l

B03 pol TE, EE 2005 1st bolo detection

'Shallow' scan, 75 hours, f_{sky}=3.0%, large scale TT

'deep' scan, 125 hours, fsky=0.28% 115sq deg, ~ 2 X Planck2yr

B03 pol TE, EE 2005 1st bolo detection

'Shallow' scan, 75 hours, f_{sky}=3.0%, large scale TT

'deep' scan, 125 hours, fsky=0.28% 115sq deg, ~ 2 X Planck2yr

B03+B98 Contaldi etal 01..09! xfaster! Boom/Planck/Spider workhorse

B2K 145 GHz

300200100 0 100200300

300 µK

'deep' scan, 125 hours, fsky=0.28% 115sq deg, ~ 2 X -300.
Planck2yr

emergence of CMB polarization power

DASI02,04 CBI04 Boom05 CBI05 WMAP3,5 Capmap07 QUaD07,08

Standard Parameters of Cosmic Structure Formation

$$\begin{array}{c|c} \theta \sim \ell_s^{-1} & \sim \ln \sigma_8^2 \\ \hline \Omega_k \Omega_b h^2 \Omega_{dm} h^2 & \overline{\Omega_\Lambda} & \overline{\tau_c} & \ln A_s & n_s & r = A_t / A_s \\ \hline 1 + w_0, w_a & n_e(a) & dn_s / dlnk & n_t \\ \hline 1 + w_0, w_s & dn_s & dn_s & dn_s \\ \hline 1 + w_0, w_s & dn_s & dn_s & dn_s \\ \hline 1 + w_0, w_s & dn_s & dn_s & dn_s \\ \hline 1 + w_0, w_s & dn_s & dn_s & dn_s \\ \hline 1 + w_0, w_s & dn_s & dn_s & dn_s \\ \hline 1 + w_0, w_s & dn_s & dn_s & dn_s \\ \hline 1 + w_0, w_s & dn_s & dn_s & dn_s \\ \hline 1 + w_0, w_s & dn_s & dn_s & dn_s \\ \hline 1 + w_0, w_s & dn_s & dn_s & dn_s \\ \hline 1 + w_0, w_s & dn_s & dn_s & dn_s \\ \hline 1 + w_0, w_s & dn_s & dn_s & dn_s \\$$

+ subdominant isocurvature/cosmic string/ tSZ ...

What do we learn from E polarization?

- 0 EE/TE agree with TT forecasts! pillar6: out-of-phase pks/valleys
 - I constrain radically broken scale invariance out-of-phase pks
- 2 constrain subdominant isocurvature modes CBI
- 3 constrain anomalies e.g., WMAP haze, COBE/WMAP "hole" TBD
- 4 aid in lensing reconstruction of lensed CMB TBD
- 5 aid in separation of components, dust & synchrotron; SZ WMAP1 .166+-.08 TE, WMAP3 .089+-.03 EE fgnd-clean, WMAP5 .086+-.016, WMAP5 .090+-.019 GibbsMCMC; Planck1yr 09.3+1.5yr +-.005;

Spider test flight 2-6d, 2010.3, Alice Springs, +-.007

6- reionization epoch $\tau_{\rm C} = \text{l.o.s.-int } n_{\rm e}\sigma_{\rm T} \text{ cdt}$ $\sim .1 ((1+z_{\rm reh})/15)^{3/2}$ $(\Omega_{\rm b}h^2/.02)(\Omega_{\rm m}h^2/.15)^{-1/2}$ 0.085+- .017 CMBall_{cbi10} $z_{\rm reh} = 0.8 +- 1.5$

INFLATION THEN

PROBES NOW

the quest for Pillar 7, B-modes from primordial zero-point gravity waves with the standard inflation space'': $n_s dn_s/dlnk r$ @k-pivots

$$\begin{split} n_{s}(k_{p}) &= .962 + -.013 ~(+-.005 ~\text{Planck1}) .959 + -.011 ~\text{all data} \\ r &= P_{t}/P_{s}(k_{p}') < 0.40_{\text{cmb}} ~95\% ~\text{CL} ~(+-.03 ~\text{Pl}, +-.01 ~\text{Spider} + \text{P2.5}) \\ dn_{s} ~/d\ln k ~(k_{p}) = -.016 ~+ -.019 ~(+-.005 ~\text{Planck1}) \end{split}$$

(partially) blind trajectories e.g., $\mathbf{n}_{s}(\mathbf{k})$ and $\mathbf{\Gamma}(\mathbf{k}_{p})$, are better

INFLATION THEN WHAT IS PREDICTED?

Smoothly broken scale invariance by nearly uniform braking (standard of 80s/90s/00s) r~0.03-0.5

or highly variable braking r tiny

(stringy cosmology) r<10⁻¹⁰

INFLATION THEN WHAT IS ALLOWED?

radically broken scale invariance by variable braking as acceleration approaches deceleration, preheating & the end of inflation $\epsilon(k)=(1+q)(a)=-d/nH/d/na =r(k)/16$

Blind power spectrum analysis cf. data, then & now

expand $\varepsilon(\mathbf{k})$ in localized mode functions e.g. Chebyshev/B-spline coefficients $\varepsilon_{\mathbf{h}}$

the measures on ε_{b} matter - choice for "theory prior" = informed priors?

INFLATION THEN WHAT IS ALLOWED?

radically broken scale invariance by variable braking as acceleration approaches deceleration, preheating & the end of inflation $\epsilon(k)=(1+q)(a)=-d/nH/d/na =r(k)/16$

Blind power spectrum analysis cf. data, then & now

expand $\varepsilon(\mathbf{k})$ in localized mode functions e.g. Chebyshev/B-spline coefficients $\varepsilon_{\mathbf{h}}$

or dual In $P_s(k)$; $P_t(k)$

the measures on ε_{b} matter - choice for "theory prior" = informed priors?

 $C_L BB$ for $ln \mathcal{E}_s$ (nodal 5) + 4 params inflation trajectories reconstructed from CMB +LSS data using Chebyshev nodal point expansion & MCMC

INFLATION THEN **PROBES** THEN

CBI pol	l to Apr'0	5 @Chile	QUaD @SP	Quiet1 @Chile	Quiet2 1000 HEMTs
Boom	03 @LDB		Bicep @SP	Bicep2	Keck/Spud
WMAF	• @L2 to :	2009-2013?	Planck09	9.3	<pre>EBEX @LDB Spider</pre>
DASI @S	SP IPMAP		(52 bolome + HEMTs (9 frequencie	@L2 es	2312 bolos @LDB <i>CHIP</i>
2004		2006	2008	LHC	201 Bpol
	2005	2007		2009 BLAST	©L2 Clover @Chile Polarbear 300 bolos @Cal/Chile SPTpol

CL with **BB polarization** (+- .02 PL2.5+Spider), .01 target; Bpol .001 BUT foregrounds/systematics? But r(k), low Energy inflation

GW/scalar curvature: current from CMB+LSS: r < **0.3** 95%; good shot at **0.02** 95% CL with **BB polarization** (+- .02 PL2.5+Spider), .01 target; **Bpol .001** BUT foregrounds/systematics? But r(k), low Energy inflation

Spider/Keck: best fsky for E/B-demixing via direct max-L filters for r τ test LDB flight: 2-6 days, 10.3 Alice Springs main LDB flight: 20-40 days, 11.9 Antarctica

Nt~2.5 Tbytes, Np~10 Mb

Planck1 simulation: input LCDM (Acbar)+run+uniform tensor r (.002 /Mpc) reconstructed cf. r_{in} to <~ 0.05 prior-independent

B-pol simulation: ~10K detectors > 100x Planck r_{in} to <~ 0.001 a very stringent test of the ε -trajectory methods: A+ prior-independent

PRIMARY END @ 2012?

CMB ~2009+ Planck1+WMAP8+SPT/ACT/Quiet+Bicep/QuAD/Quiet +Spider+Clover

2000

1500

1000

500

0

5

0

-5

0.4

0.3

0.2

0.1 0

0.04

0.03

0.02

0.01

0

/(µK²)

90

-9< f_{NL} <111 (+- 5-10 Planck1) + Pillar 4: primordial non-Gaussianity

r~0.002

end1

