Dick Bond CITA on behalf of the Planck collaboration planck Quantum Inflation in the 2015 Planck Era & Beyond phonon ~ $\zeta = |n\rho|_a / 3(1 + <w > = energy-density quanta$ isotropic (volume) strain ~ $\zeta = lna|_{\rho}$ $\zeta_{NL} = ln(\rho a^{3(1+w)})/3(1+w) <= dE+pdV$ **Cosmic_Probes**[$\zeta(\mathbf{x})$, q_{cosmic}, isoc, ..] or $\zeta(\mathbf{k})$, or looking out $\zeta_{LM}(\chi), \chi = |\mathbf{x}| \& \zeta_{LM}(k), k = |\mathbf{k}|$ maps **CMB_Probe no tomography:** projected- χ few modes per LM < $\zeta_{LM}(\chi)|T_{LM} > <\zeta_{LM}(\chi)|E_{LM} >$ available modes: $f_{sky} L_{max}^2 - f_{sky} L_{min}^2 = L_{max} - L_{damp}$ Planck near limit of nonG exploration with CMB (ACT/SPT) $f_{NL} \pm 5$ gravity waves ~Transverse_Traceless_Strain: no tomography, limited L range nt LSS Probe tomography: **Large Scale Structure Galaxy Surveys** available modes ~ f_{sky} L_{max}² k_{max} d_{max} ~ f_{sky} ($k_{max}^3 d_{max}^3$), $k_{min}^2 \pi/d_{max} V_{com}^2 d_{max}^3$ How many high precision extra modes can we realize?

CMB stage II, III, IV Ground Based

lyman page, ferrara 2014

Chile

- ABS
 ACTPol/AdvACt
 POLARBEAR
- * CLASS

Antarctica

BICEP/KECK
 SPTPol
 QUBIC-Bolo int.

2016

TBD

Elsewhere (for now) B-Machine – WMRS

- GroundBIRD, LiteBIRD
- GLP Greenland
- MuSE-Multimoded TBD
 QUIJOTE –Canaries, HEMPTS

Have data

Current or planned freqs

145 GHz 30, 40, 90, 150, 230 GHz 90, 150 GHz 40, 90, 150 GHz

90, 150, 220 GHz 90, 150 GHz 90, 150, 220 GHz

40 GHz 150 GHz 150, 210, 270 GHz 44, 95, 145, 225, 275 GHz 11-20, 30 GHz

IPL

The ACT Collaboration ACT, now ACTpol, => Advanced ACTpol

Advanced ACTPol (AdvACT) Observations

- ~20,000 deg² survey (f_{sky}~0.5) with complete LSST overlap as well as DES, ALMA, and other observatories located in Chile
- Substantial overlap with spectroscopic surveys (SDSS, PFS, DESI)

Stony Brook University

Berkeley 👷 🛄 🔤 🏵 Penn 😳

AdvACT: Power Spectra

High S/N B-mode detections for r > 0.01 are measured in independent frequency bands (90 & 150 GHz) and on many patches across the sky.

This provides important crosschecks on any detected signal

Also shown:

- Error bars before and after foreground cleaning
- Varying amplitudes of the gravitational lensing signal for different values of the sum of the neutrino masses

Berkeley 🏨 🛄 🎰 🍘 🛱 Penn 🛞

Planck forecasts

UBC

CMB stage IV DOE funding, grand unification of ground efforts 200-500K detectors @ SP, Atacama, Greenland (GLP)?

Inflation Physics from the Cosmic Microwave Background and Large Scale Structure

Topical Conveners: J.E. Carlstrom, A.T. Lee

K.N. Abazajian, K. Arnold, J. Austermann, B.A. Benson, C. Bischoff, J. Bock, J.R. Bond, J. Borrill,
I. Buder, D.L. Burke, E. Calabrese, J.E. Carlstrom, C.S. Carvalho, C.L. Chang, H.C. Chiang, S. Church,
A. Cooray, T.M. Crawford*, B.P. Crill, K.S. Dawson, S. Das, M.J. Devlin, M. Dobbs, S. Dodelson,
O. Doré, J. Dunkley, J.L. Feng, A. Fraisse, J. Gallicchio, S.B. Giddings, D. Green, N.W. Halverson,
S. Hanany, D. Hanson, S.R. Hildebrandt, A. Hincks, R. Hlozek, G. Holder, W.L. Holzapfel, K. Honscheid,
G. Horowitz, W. Hu, J. Hubmayr, K. Irwin, M. Jackson, W.C. Jones, R. Kallosh, M. Kamionkowski,
B. Keating, R. Keisler, W. Kinney, L. Knox, E. Komatsu, J. Kovac, C.-L. Kuo, A. Kusaka, C. Lawrence,
A.T. Lee, E. Leitch, A. Linde, E. Linder, P. Lubin, J. Maldacena, E. Martinec, J. McMahon, A. Miller,
V. Mukhanov, L. Newburgh, M.D. Niemack, H. Nguyen, H.T. Nguyen, L. Page, C. Pryke, C.L. Reichardt,
J.E. Ruhl, N. Sehgal, U. Seljak, L. Senatore, J. Sievers, E. Silverstein, A. Slosar, K.M. Smith, D. Spergel,
S.T. Staggs, A. Stark, R. Stompor, A.G. Vieregg, G. Wang, S. Watson, E.J. Wollack, W.L.K. Wu,
K.W. Yoon, O. Zahn, and M. Zaldarriaga

Cdns on the case; CMBpol satellites too?

SATELLITE MISSION OPPORTUNITIES FOR CMB POLARIZATION: WHITE PAPER FOR THE CANADIAN LRP MIDTERM REVIEW

DICK BOND^{2,3}, SCOTT CHAPMAN⁶, MATT DOBBS^{1,*}, MARK HALPERN⁴, GARY HINSHAW^{4,*}, GIL HOLDER¹, PETER MARTIN^{2,3,5} BARTH NETTERFIELD², DOUGLAS SCOTT⁴, KENDRICK SMITH⁷, KEITH VANDERLINDE^{2,5}

Draft version November 29, 2014

CMB stage IV

testing tensor consistency? better f_{sky}=25% for spt3g/AdvACT-like than current 6% goal for spt3g

AdvACTpol (f_{sky}~50%): *Cosmological Forecasts* **Planck_f, Spider**, SPT3g, .. CMBpol (CoRE+,Pixie,.)

nice BB spectra, hence a slope, but tensor consistency is a steep relation. how well we can do will depend upon the ability to de-lens to get to the high L tail

r to +-0.02 Spider forecast r to +-0.003 AdvACTpol forecast w/ fgnds

CMB stage IV 200-500K detectors @ SP, Atacama, Greenland (GLP)?

 $r_{fid} = 0.20$

0.01

0.10

f_{skv}

1.00

Beyond Planck 2015 +LSS: Inflation futures from CMB & LSS: LSS & nonG

≈ 10,000,000 T/E modes of tΛCDM ≈ 1000 modes of (slight) anomaly ≈ 200 modes T/E reionization history the vast CMB-un-illuminated ζ_{LM}(d) LSS tomography f_{sky} L_{max}² k_{max} d_{max} LSS ~ CMB x 1000? New bispectrum constraints using full mission data including polarization

	$f_{\rm NL}(\rm KSW)$		
Shape and method	Independent	ISW-lensing subtracted	
SMICA (T) Local Equilateral Orthogonal	9.5 ± 5.6 -10 ± 69 -43 ± 33	1.8 ± 5.6 -9.2 ± 69 -20 ± 33	
SMICA (T+E) Local Equilateral Orthogonal	6.5 ± 5.1 -8.9 ± 44 -35 ± 22	0.71 ± 5.1 -9.5 ± 44 -25 ± 22	

ben wandelt, ferrara 2014 on behalf of Planck

Preliminary

2.3.1 Non-Gaussianity from the CMB

The current best limits on primordial non-Gaussianity are obtained using data from the *Planck* satellite [67]: $f_{\rm NL}^{\rm local} = 2.7 \pm 5.8$, $f_{\rm NL}^{\rm equilateral} = -42 \pm 75$ and $f_{\rm NL}^{\rm orthogonal} = -25 \pm 39$. At the angular scales that contribute most of the weight to the $f_{\rm NL}$ constraints, *Planck* has measured the CMB temperature fluctuations as well as they can be measured (i.e., the constraints on $f_{\rm NL}$ is now limited by cosmic variance, not noise). Adding CMB polarization information will improve this constraint, but at most by $\sqrt{3}$.

LSS & nonG

white paper on nonG+LSS on arXiv 1412.4671 outcome of CITA October 23-24 2014 meeting DESI, LSST, Euclid .. CHIME .. SphereX proposal the varieties of nonG f_{NL} ... feature nG ... preheating F_{NL} [χ,g]

scale-dependent bias & power spectrum on very large scales bispectrum - more promising than scale-dependent bias it seems nonG intermittent F_{NL}

=> search for large scale rare events, e.g., superduper superclusters

Testing Inflation with Large Scale Structure: Connecting Hopes with Reality

Conveners: Olivier Doré and Daniel Green

Marcelo Alvarez¹, Tobias Baldauf², J. Richard Bond^{1,3}, Neal Dalal⁴, Roland de Putter^{5,6}, Olivier Doré^{5,6}, Daniel Green^{1,3}, Chris Hirata⁷, Zhiqi Huang¹, Dragan Huterer⁸, Donghui Jeong⁹, Matthew C. Johnson^{10,11}, Elisabeth Krause¹², Marilena Loverde¹³, Joel Meyers¹, P. Daniel Meerburg¹, Leonardo Senatore¹², Sarah Shandera⁹, Eva Silverstein¹², Anže Slosar¹⁴, Kendrick Smith¹¹, Matias Zaldarriaga¹, Valentin Assassi¹⁵, Jonathan Braden¹, Amir Hajian¹, Takeshi Kobayashi^{1,11}, George Stein¹, Alexander van Engelen¹

¹Canadian Institute for Theoretical Astrophysics, University of Toronto, ON

LSS & nonG

	LSST	DESI	Euclid	SPHEREx	CHIME
Survey type	photo	spectro	photo+spectro	low-res spectro	21-cm
Ground or space	ground	ground	space	space	ground
Previous surveys	CFHTLS, DES, HSC	BOSS, eBOSS, PFS	no direct precursor	PRIMUS, COMBO-17, COSMOS	GBT HIM
Survey start	2020	2020	2018	2020	2016
Redshift-range	z < 3 (1% sources above 3)	z < 1.4, 2 < z < 3.5 (Lya)	z < 3	z < 1.5	0.75 < z < 2.5
Survey area [deg ²]	20k	14k	15k	40k	20k
Approximate number of objects	2×10^9 (WL sources)	22×10^6 gal., ~ 2.4×10^5 QSOs	40×10^6 redshifts, 1.5×10^9 photo-zs	15×10^9 pixels	10^7 pixels
Galaxy clustering	11 °	1	1	✓	1
Weak lensing	1		1		1
RSD		1	1	11	11
Multi-tracer	11	11	11	✓	

Table 2. A selection of currently funded or planned surveys. Other important surveys not included in the table are PFS, JPAS, PAU, EMU. Relevant survey links [LSST],[DESI],[Euclid], [UBC],[PFS], [JPAS],[PAU], [EMU]. °Galaxy clustering is possible, but very strong radial degradation.

LSS & nonG SphereX is low-ish res, photo-z

SPHEREx: An All-Sky Spectral Survey

A high throughput, low-resolution near-infrared spectrometer

Optical-IR imaging spectrometer	⇒Inflation Science
λ= 0.75-4.1 μm R=41.5	 Cosmology derived from 3-D galaxy large-scale structure.
λ= 4.1-4.8 µm R=150	 Survey the z < 1.5 universe to fundamental limits to measure signatures of inflation, non-Gaussianity, the primordial power spectrum, and dark energy.
20cm telescope	Complement Euclid and WFIRST which survey smaller areas at z > 1.
Passively cooled	Determine how interstellar ices bring water and organics into proto-planetary systems through absorption in ice spectra
6.2"x6.2" pixels	⇒Measure Extra-galactic Background Light to probe EOR
2x(3.5x7) sq. deg. FOV	

SPHEREx data-set:

R=40 spectra spanning (0.75 μ m< λ <4.81 μ m) for every 6.2" pixel over the entire sky

SPHEREX	Creates	a High	Legacy	All-Sky	Survey
---------	---------	--------	--------	---------	--------

Extra-galatic sources	1.4 billion
	120M
	9.8M
	>1.5M QSOs with redshift
	0-300 QSOs with redshift > 7
	25,000 galaxy clusters with redshift
Galactic sources	>100M
	>104
	>400 brown dwarf spectra

SMEX Concept; PI: J. Bock, PS: O. Doré

30th IAP Conférence - Bonjour tout le monde!

LSS & nonG SPHEREx as a Probe of non-Gaussianity

 $\sigma(f_{NL}^{loc}) \sim 0.8$ (3-D Powerspectrum) $\sigma(f_{NL}^{loc}) \sim 0.2$ (3-D Bispectrum)

30th IAP Conférence - Bonjour tout le monde! bispectrum delivers more than scale dependent bias

Olivier Doré

CHIME Collaboration

THE UNIVERSITY OF BRITISH COLUMBIA

- Graeme Addison
- Mandana Amiri
- Meiling Deng
- Mateus Fandino
- Kenneth Gibbs
- Carolin Hofer
- Mark Halpern
- Adam Hincks
- Gary Hinshaw
- Kiyo Masui
- Kris Sigurdson
- Mike Sitwell
- Rick Smegal
- Don Wiebe

will generate more data per second than the annual internet use of every smartphone in the world combined

the new radio astronomy, GPU-enabled

- Kevin Bandura
- J-F Cliché
- Matt Dobbs
- Adam Gilbert ٠
- David Hanna ٠
- Juan Mena Parra ٠
- Graeme Smecher

NRC CNRC

Amy Tang

UNIVERSITY OF TORONTO

- Dick Bond ٠
- Liam Connor ٠
- Nolan Denman ٠
- Peter Klages ٠
- Laura Newburgh
- Ue-Li Pen
- Andre Recnik ٠
- **Richard Shaw** ٠
- Keith Vanderlinde

Tom Landecker ٠

PI Kendrick Smith

CMU Jeff Peterson

CHIME Collaboration

NIVERSITY OF COLUMBIA

DRAO (49°19'N, 119°37'W) 2560400 - 800 MHz $0.39\,\mathrm{MHz}$ 75 - 37 cm z = 2.5 - 0.8 $11 - 8 \,\mathrm{Gyr}$ $2.5^{\circ} - 1.3^{\circ}$ $\sim 90^{\circ}$ about zenith $0.52^{\circ} - 0.26^{\circ}$ $10-50\,\mathrm{Mpc}$

UNIVERSITY OF

bandura+14, newburgh+14 spie proceedings, arXiv

Table 1: The salient features of the CHIME instrument.

the new radio astronomy, GPU-enabled

CHIME sample all-sky Δv maps sim to 6 Gpc to cover z=0.8 to 2.5

alatt=1Mpc, N=1024 LSS & nonGaussian mocks

Alvarez, Bond, Huang, Stein, Braden, Frolov14

search with bispectrum & scale-dependent bias in power spectrum

alatt=1Mpc, N=1024 LSS & nonGaussian mocks Gaussian Spike Model Smoothed on R=32Mpc Alvarez, Bond, Huang, Stein, Braden, Frolov14

modulated intermittent preheating nonG

search for localized but very large scale rare "events" e.g., hierarchical peaks

LSS & nonGaussian mocks

CMB restricts us to a projected 2D ζ -scape we will reconstruct phonon/isotropic strain power, but the future may look much the same as now (perhaps) => V => ϵ

r futures look bright modulo the dusty MW we will reconstruct graviton power de-lens for consistency check r-n_t TBD

thou shalt mock the LSS future end-to-end to probe the 3D ζ-scape, modes abound success modulo large scale mode control of systematics

the END

+ BAO

cleaned with Planck 353 GHz

0<r<.49 95%CL, .2±.15 1σ cf. r<0.11 uniform n_s

1412.4671

LSS & nonG

1412.4671

LSS & nonG

CHIME

SphereX is also low-ish res, photo-z

z=1 zoom in brightness temperature zoom (with a stacked 20 MHz bandwidth)

Galactic foregrounds (synchrotron) are smooth, but many many orders of magnitude cleaning is needed, signal-to-noise eigenmode method Shaw+14 nontrivial processing is needed

CHIME

z=1 zoom in brightness temperature zoom (with a stacked 20 MHz bandwidth)

Galactic foregrounds (synchrotron) are smooth, but many many orders of magnitude cleaning is needed, signal-to-noise eigenmode method Shaw+14 nontrivial processing is needed

