#### **cosmology forecasts for PlanckEXT** n<sub>s</sub>(k), GW r(k), nonG f<sub>NL</sub>++, ρ<sub>de</sub>(t), m<sub>v</sub>, strings, isocurvature, ...

current CMB+LSS+WL+SN1a+Lyα **PEXT=**Planck2.5yr + low-z-BOSS + CHIME + Euclid-WL + JDEM-SN *Huang, Bond, Kofman 2010* 

## $n_s = 0.963 \pm 0.011 =>\pm 0.002$ (Pext)

## Powers~25x10<sup>-10</sup> $\ln A_s = \pm 0.03 = \ge \pm 0.008$ (Pext)

Farhang, Bond, Dore, Netterfield 2011 forecasting QU not EB Spider  $2\sigma_r \sim 0.013 \Rightarrow \sim 0.02$  for  $0.02 < f_{sky} < 0.15$ Planck2.5yr  $2\sigma_r \sim 0.02 \Rightarrow \sim 0.05$  (foregrounds)

### quadratic local nonG -10< f<sub>NL</sub> <74 (+- 5 Planck)

the emergence of the collective from the random: coherence from driven zero-point vacuum fluctuations ⇒ V inflaton, gravity waves; decohere

*let there be heat:* entropy generation in **preheating** from the coherent inflaton (origin of all matter)

Standard Parameters of Cosmic Structure Formation



Thursday, 10 November, 11

en-Tango-ment, the dance of S+R=U Universe=System(s)+Reservoir,

=Signal(s)+Residual noise,

=Effective Theory+*Hidden variables,* 

observer(s)+observed,

ruled by (information) entropy, entangled. the fine grains in the coarse grains

the coherent and the entropic, in all its forms, from ultra-early-U to ultra-late-U



en-Tango-ment, the dance of S+R=U Universe=System(s)+Reservoir,

=Signal(s)+Residual noise,

=Effective Theory+*Hidden variables,* observer(s)+observed,

ruled by (information) entropy, entangled. the fine grains in the coarse grains

the coherent and the entropic, in all its forms, from ultra-early-U to ultra-late-U

*the emergence of the collective from the random:* **coherence** from driven zero-point vacuum fluctuations ⇒ V **inflaton**, gravity waves; decohere

*let there be heat:* entropy generation in **preheating** from the coherent inflaton (origin of all matter)

information in **nearly-Gaussian** random **fields** of U: spatial coarse-grained **CMB entropy** & how we capture it. dark matter entropy, cluster & protocluster & cosmic web entropy. MHD turbulence entropy with cooling & grain polarized emission - a CMB fgnd. How Shannon info-entropy flows from CMB bolometer timestreams to marginalized cosmic parameters via **Bayesian** chains from prior to posterior.

Shannon entropy ~ von-Neumann entropy = Trace  $\varrho \ln \varrho^{-1}$  = full non-equilibrium S  $\varrho(U) = \varrho(S,R) = \varrho(R|S) \varrho(S)$  entanglement of phase & probability



en-Tango-ment, the dance of S+R=U Universe=System(s)+Reservoir,

=Signal(s)+Residual noise,

=Effective Theory+*Hidden variables,* observer(s)+observed,

ruled by (information) entropy, entangled. the fine grains in the coarse grains

the coherent and the entropic, in all its forms, from ultra-early-U to ultra-late-U

*the emergence of the collective from the random:* **coherence** from driven zero-point vacuum fluctuations ⇒ V **inflaton**, gravity waves; decohere

*let there be heat:* entropy generation in **preheating** from the coherent inflaton (origin of all matter)

**resolution** dimension  $\lambda = -In r/r_0$ 

S(λ |coarse-grained-measures) deals with the non-equilibrium & non-thermal S in clusters, includes DarkMatter coarse-grained S and of preheating configurations.

**gravitational entropy** remains a **mystery, horizon needed? gravo-thermal catastrophe** = negative specific heat, what gravity wants is to localize concentrating mass into black holes and make accelerating voids to straighten out U.



25 papers & a large fraction of the papers at Planck2011 were unveiled for 10 months & 9-freq T data, + a press conference, highlighting: HFI & LFI work flawlessly with great results on ERCSC (~15000 sources, 189 SZ clusters), CIB, SZ, AME & the dusty MW, & much more, so many areas, enabled by so many frequencies. more Veils Feb 2012, primary CMB & pol TBD, Jan 2013, 14, .

SZ - 189 SZ clusters. SZ scaling relations appear as expected for X-ray clusters , apparent SZ deficit for optical clusters (jury out on cause, ACTxSDSS-LRGs too)

CIB - clustering clearly detected at 217-857 GHz, in power spectrum & images Sources in halo model fits the spectra. BLAST, ACTxBLAST, Planck agree, Herschel a little higher, still an interpretation uncertainty.)

Spinning dust - clearly seen in Perseus and rho-Ophiuchus regions with a spectrum in excellent agreement with spinning PAH theory.

Radio sources: Planck counts consistent with ACT/SPT; local IR galaxies: cold dust component.

beautiful Milky Way dust maps, all sky and for selected regions - see extra emission from 'dark gas' not in HI or CO, could be H<sub>2</sub> that survives when CO does not.

ACT+WMAP7: tilted ΛCDM still works well, modest basic 6 parameter improvement, separated power components CIB, tSZ+kSZ; 7+ peaks seen; running =-0.024±0.015; r <0.19 40% stronger, cosmic strings 60% more constrained, primordial Helium (electron number/baryon) 0.313±0.044 cf. ~0.25 BBN,

 $N_{v,eff}$  =4.56±0.75, so 3 OK; CMB lensing @4 $\sigma$  via 4pt function Das+11 =>  $\Omega_{de}$  @3.3 $\sigma$  via just CMB Sherwin+11

ACTpol+Planck2.5+SPTpol+ABS+Spider+..n<sub>s</sub>(k), GW r(k), nonG f<sub>NL</sub>++, ρ<sub>de</sub>(t), m<sub>v</sub>,... ~25x ACT&Pol, ~1000clusters, CMB lens for DE isocurvature, strings,...

# end of inflation @E=1 through preheating (linear resonance, nonlinear backreaction $\delta \psi, \delta \chi$ ) to thermal equilibrium $ln(n_{k}^{-1}+1) = k/T, \rho_{k} \in E_{k}(n_{k}+1/2)$

from coherent "background" field with nearly-Gaussian linear fluctuations to incoherent heat bath through a not-that-turbulence-like cascade:

development of complexity: information (multi-scale entropy) b+braden 11



=> no effect on k-observed? MAYBE: relics (e.g., strings, isocons), HF gravity waves (kHz-GHz cf. 10<sup>-19</sup>Hz), isocon modulation & non-Gaussianity



Thursday, 10 November, 11

#### Andrei Frolov, Defrost code

 $V(\phi,\chi) = 1/4 \lambda \phi^4 + 1/2 g^2 \phi^2 \chi^2$ 



Preheating = Shock-in-time Jonathan Braden + B 2011

Initial State = Nearly Homogeneous Inflaton Low entropy (vac fluc.), information encoded in a few parameters

Preheating

Instabilities result in nonlinear transition to an incoherent state KLS 94, 97,e.g. Tkachev, Felder, Garcia-Bellido, ...

#### **Transition Regime**

Complex slowly evolving nonlinear, nonequilbrium state e.g. Micha and Tkachev 2004, turbulence analogy??? not quite

the shock-in-time is the sharp mediator between the linear & the highly nonlinear transition a fascinating non-Gaussianity through a

#### Thermal Equilibrium

Maximum spreading of information in modes subject to energy and particle number constraints.

### A Shocking End to Post Inflation Mean Field Dynamics

Shock-in-space t = const  $v_{bulk}^2 > c_s^2 \Rightarrow v_{bulk}^2 < c_s^2$ 

supersonic  $\Rightarrow$  subsonic

Characteristic spatial scale Jump Conditions:  $\Delta T^{\mu\nu}$ **Randomizing** Shock Front:  $\Delta S$ **Mediation**: width via viscosity or collisionless dynamics **post-shock evolution**, slow, of temperature, etc. **Shock-in-time** x = const (deviations for nonG) < $\rho$ > >> δ $\rho \Rightarrow <\rho$ > << δ $\rho$ 

Homogeneous  $\Rightarrow$  Fluctuations

Characteristic temporal scale Jump Conditions:  $\Delta T^{\mu 0}$ **Randomizing** mode cascade & Particle Production:  $\Delta S$ **Mediation**: width via gradients and nonlinearities **post-shock evolution**, slow, of fluctuations





nonequilibrium Shannon (~von Neumann) entropy S =-Tr P[f ] In P[f ]  $\Leftarrow$  - Tr  $\rho$  In  $\rho$ 

P[f] : probability density functional,  $\rho$  density matrix

classical  $\leftarrow$  quantum

 $\varrho(U) = \varrho(S,R) = \varrho(R|S) \varrho(S)$  entanglement of phase & probability

#### **Coarse Graining & Entropy Production**

we have explored many ways of treating non-eq S. max S constrained by measurements we theorists make on the medium  $Field \Rightarrow Correlation Functions$ 

Measurements: Constraints (information) on Correlators Maximize entropy subject to given constraints Generation of higher order correlators  $\Rightarrow$  entropy generation



### Entropy & Correlator Constraints & Gaussian Distributions if only power spectrum is constrained $\Rightarrow$ multivariate Gaussian maximizes S S/N = 1/2N Tr In P(k) +1/2+ 1/2 In(2 $\pi$ ) In=log<sub>e</sub> measure info in nats, Ib=log<sub>2</sub> measure info in bits

P(k) dimensionful, so  $\Delta S$  relative to a S<sub>i</sub>, counting states  $\Rightarrow$  normalize to =1 state

## **Power Spectrum**

Nonlinear dynamics via large parallel lattice simulations using modified version of DEFROST Frolov 2008

log is more Gaussian

 $\ln(\rho/3H^2) \sim \ln(\rho/<\rho)$  as the dynamical random field.



 $V = \frac{m^2}{2}\phi^2 + \frac{g^2}{2}\phi^2\chi^2$  $m/M_P = 10^{-6}, g^2 = 10^{-5}$ 

low entropy initial state: uniform inflaton + simulated vacuum aka quantum fluctuations, initial isocon field rapid classical increase in nonlinear fluctuation power through mode-mode coupling  $\Rightarrow$  shock-in-time.

post shock evolution of power is relatively slow (coupling to standard model?? accelerates particle production at very high k? subgrid phenomenology a la eddy viscosity.)

Thursday, 10 November, 11

#### Scale Dependence of Shock-in-Time



entropy production is not scale-localized. resolution of the field = kcut (sharp k space cut). Rapid spread in k, but not a turbulence-like cascade, slower movement to high k. Suggests *Renormalization Group Flow picture*.

**Renormalization and Scale Dependence via Wilsonian RG Blocking** Sequence of smoothed fields  $\rho_{s}$  defined by averaging over groups of 8 nearest neighbours with  $r_{s} = 2^{s} \delta X_{lat}$  the smoothing scale.

Define local background for  $\rho_s(x)$  by  $\rho_{s+1}$ 

lidea: fluctuations layered on fluctuations layered on fluctuations ...

The shock-in-time has a more pronounced effect on larger scales At late times, local fluctuation PDFs evolve more slowly on larger scales than on small White bounds the extremal values in the simulation box.



#### Relation to Nongaussianities entropy change as coupling changes



dependence of In(a<sub>shock</sub>/a<sub>end</sub>) on parameters (coupling constants,<x<sub>init</sub>>, ...) relationship to nongaussianities from preheating Bond,Frolov,Huang,Kofman (2009), and e.g. Chambers and Rajantie (2008)

The spatial structure of  $\ln(a_{shock}/a_{end})(x)$  from modulated initial conditions encodes information about the perturbation spectra including nongaussianities.

#### a case with small post-shock nonG?? **Preheating After Roulette Inflation** pre-heating patch (<1cm)

a = -1

## A visualized 2D slice in lattice simulation

#### Barnaby, Bond, Huang, Kofman 2009

**HLattice** code: arbitrary number of fields, hybrid symplectic, to ~ trillionth accuracy! Huang 2011 added full metric back action



trying to prove that Inafinal/aend~Inashock/aend

curvature  $F_{NL}(\chi(x,t)) = \delta \ln a H(\chi_i)$ 

highly nonlinear function of a Gaussian random 'isocon' field



#### large post-shock nonG?? calculate $\delta Ina[\chi_i(x,t)]$ from $\epsilon=1$ (end of inflation) through preheat (copious mode-mode-coupling aka particle creation) to thermal equilibrium Bond, Andrei Frolov, Zhiqi Huang, Kofman 09





# large post-shock nonG?? trying to prove that Inafinal/aend~Inashock/aend curvature $F_{NL}(\chi(x,t)) = \delta Ina |_{H}(\chi_{i})$ highly nonlinear function of a Gaussian random 'isocon' field



### large post-shock nonG?? to develop the $lna(\chi_i)$ response curve, we perform > 10<sup>4</sup> lattice simulations for each g<sup>2</sup>/ $\lambda$ curvature $F_{NL}(\chi(\chi,t)) = \delta lna |_{H}(\chi_i)$ highly nonlinear function of a Gaussian random 'isocon' field



### large post-shock nonG?? to develop the $lna(\chi_i)$ response curve, we perform > 10<sup>4</sup> lattice simulations for each g<sup>2</sup>/ $\lambda$ curvature $F_{NL}(\chi(\chi,t)) = \delta lna |_{H}(\chi_i)$ highly nonlinear function of a Gaussian random 'isocon' field



field smoothing over  $\chi$ HF over  $\sim$ 50 e-folds of HF structure

$$< F_{NL} |\chi_{b+}\chi_{>h} > \sim \beta(\chi_{>h}) \chi_{b} + f(\chi_{>h}) \chi_{b}^{2} + ...$$

cf.  $F(x) = F_G(x) + f_{NL} F_G^2(x)$ 



field smoothing over  $\chi$ HF over  $\sim$ 50 e-folds of HF structure

$$< F_{NL} |\chi_{b+}\chi_{>h} > \sim \beta(\chi_{>h}) \chi_{b} + f(\chi_{>h}) \chi_{b}^{2} + ...$$

cf.  $F(x) = F_G(x) + f_{NL} F_G^2(x)$ 

![](_page_24_Figure_3.jpeg)

 $\mathbf{f}_{NL}^{equiv} = \beta^2 f \chi [P \chi / P \phi]^2 (k_{pivot})$ 

=> constrain  $f\chi^3 \chi > h^2 (P\chi/P\phi \sim 2\varepsilon => rela = limit)$ 

field smoothing over  $\chi$ HF over  $\sim$ 50 e-folds of HF structure

$$< F_{NL} |\chi_{b+}\chi_{>h} > \sim \beta(\chi_{>h}) \chi_{b} + f(\chi_{>h}) \chi_{b}^{2} + ...$$

cf.  $F(x) = F_G(x) + f_{NL} F_G^2(x)$ 

![](_page_25_Figure_3.jpeg)

 $f_{NL}^{equiv} = \beta^{2} f \chi \left[ P \chi / P \phi \right]^{2} (k_{pivot}) -10 < f_{NL} < 74 WMAP5 (\pm 5 Planck) \\ => constrain f \chi^{3} \chi > h^{2} (P \chi / P \phi \sim 2\varepsilon) = rela & ed limit)$ 

large-ish  $\chi$ >h regime:

### 

![](_page_26_Figure_3.jpeg)

long aside: novel ways of finding hot & cold spots in the CMB vs. resolution; probing their interior structures; their polarization & relation to anisotropic **T-strain**; use of L-statistics (L-mean, Lskewness, L-kurtosis, ...) less biased than conventional central moment estimators

Relation to Nongaussianities smooth in time over oscillations gives EOS change  $\rho a^4$ 

looking for sub-parts-per-million deviations so high accuracy fundamental

![](_page_28_Figure_2.jpeg)

![](_page_29_Figure_0.jpeg)

Thursday, 10 November, 11

#### Relation to Nongaussianities EOS change $\rho a^4$ near the entropy jump

![](_page_30_Figure_1.jpeg)

#### **Conclusions**

new language for preheating with complex information measures at its core: the shock-in-time = randomization front, an efficient entropy source Spatial block RenormGp smoothing indicates that PDF's of fluctuations around local values evolve slowly post-shock

nearly Gaussian PDF for *Inp* & V hydro/phonon regime

Observable preheating nongaussianities can be encoded in the spatial structure

of the shock-in-time, characterized by  $\ln a_{shock}(x)/a_{end} \&$ 

the mediation width. reasonable case made for  $\sim \ln a_{final}(X)/a_{end}$ 

**TBD:** solidify the case for nonG from shock-in-time(x | couplings, isocon, ...) & explore the parameter dependence, and thus the **variety of nonG** that can arise. *constrain/detect with Planck. explore more short-astro-distance exotica of spiky potential pits* whence opening of large number of particle dofs & standard model? can this kick in earlier, aka warm inflation. anyway, we are having fun with the high k drain publish all of our cold spot /quadratic constraints nonG-S stuff

# end

#### closing in on cold spot structure (resolution)

![](_page_33_Picture_1.jpeg)

#### closing in on cold spot structure (resolution)

![](_page_34_Picture_1.jpeg)

![](_page_34_Figure_2.jpeg)

#### $K_{ab} \equiv \Delta^{-1} \nabla_a \nabla_b T$ *isotropic T-strain:* = I Stokes *anisotropic T-strain:* K<sub>11</sub>-K<sub>22</sub> ~ Q E-like Stokes *anisotropic T-strain:* K<sub>12</sub>+K<sub>21</sub> ~ U E-like Stokes

![](_page_35_Figure_1.jpeg)

![](_page_36_Picture_0.jpeg)

data Aug 13 09 to Jun 7 10: all-9-frequency maps + maps-CMB produced & delivered to consortium Aug 2 10

![](_page_36_Picture_2.jpeg)

F. R. Bouchet: "The Planck High Frequency Instrument Sky"

PLANCK conference 2011, January 10th, Paris

![](_page_37_Figure_0.jpeg)

- 15000 sources. Reliability > 90% (using MC) with photometric accuracy <30%, no completeness stats and not flux limited.
- => radio/submm extragalactic sources, Galactic sources, +
- Have to take care at 100 GHz of possible CO.

![](_page_37_Figure_4.jpeg)

- 915 cold cores in catalog ECC (7-17K, 1.4<beta<2.8), 10783 (C3PO) seen in maps, most within 2kpc Herschel follow-up, some done
- precursors of pre-stellar cores, up to 1e5 Msun
- Cold Clumps aka cold cores in groups & filaments, on edges of H1/IRAS loops

![](_page_38_Figure_0.jpeg)

Thursday, 10 November, 11

![](_page_39_Figure_0.jpeg)

Herschel ATLAS is a key legacy survey of 550 sq deg, 300 sq deg & lots of science done

# gastrophysics

= gastrointestinal disorder? or

= gourmand's paradise?

![](_page_40_Picture_3.jpeg)

in paris, the latter @planck2011

![](_page_40_Picture_5.jpeg)

Example 3 Beauty in complex information, but how best to measure it - compress into fewer bits of high Quality (cf. entropy) what art our science should/must be

![](_page_41_Figure_0.jpeg)

ISMer-cosmologist cross talk is good and increasing, stimulated by Planck etal

n(M)dM, morphology of filaments, clustering/power spectra, "bulk/turbulent flows" SIMPLICITY in COMPLEXITY? but so much chemistry etc

Thursday, 10 November, 11

Aquila curvelet N<sub>H2</sub> map (cm<sup>-2</sup>) 10<sup>21</sup> 10<sup>22</sup>

![](_page_41_Picture_5.jpeg)

André et al. 2010, A&A special issue

![](_page_41_Figure_7.jpeg)

25 papers & a large fraction of the papers at Planck2011 were unveiled for 10 months & 9-freq T data, + a press conference, highlighting: **HFI & LFI work** 

 Galactic dust and templates. MW maps! - see extra emission from 'dark gas' component not in HI or CO, could be H<sub>2</sub> that survives when CO does not. (linear response to templates of all sorts. Planck & Herschel maps beautiful. Tdust vs dust depth/N\_H trend ) the PlanckEXT extinction model will rule (sometime)

![](_page_43_Figure_0.jpeg)

Fig. 4. Spectrum of G160.26-18.62 in the Perseus molecular cloud. The

25 papers & a large fraction of the papers at Planck2011 were unveiled for 10 months & 9-freq T data, + a press conference, highlighting: **HFI & LFI work** 

Spinning dust - AME clearly seen in Perseus and rho-Ophiuchus regions with a spectrum pulled out in excellent agreement with Draine & Lazarian theory from the 90s, a long journey from the OVRO AME discovery & a leap forward

#### **Delta T over Tea Toronto May 1987**: first dedicated CMB conference, exptalists+theorists, primary+secondary DT/T

an early CITA/CIFAR collaboration, 65 participants

e.g., Bond, Carlberg, Couchman, Efstathiou, Kaiser, Page, Silk, Tremaine, Unruh; Bennett, Halpern, Lange, Mather, Wilkinson, ...

A tentative list of topics organized according to angular scale, with theory and observation intertwined, is:

 very small angle anisotropies - VLA results, secondary fluctuations via the Sunyaev-Zeldovich effect, primeval dust emission, and radio sources

• small angle anisotropies - current results, optimal measuring strategies, statistical methods for small signals in larger noise, which universes can we rule out, the <u>reheating issue</u>, future detectors and techniques, <u>CMB map statistics</u>, <u>polarization</u>

• intermediate and large angle anisotropies -  $5^{\circ} - 10^{\circ}$  results, future experiments at  $\sim 1^{\circ}$ , COBE and other large angle analyses, theoretical  $C(\theta)'s$  and their angular power spectra, Sachs-Wolfe effect in open Universes, the isocurvature CDM and baryon stories,  $\Delta T/T$  from gravitational waves, the cosmic string story.

# 25 papers & a large fraction of the papers at Planck2011 were unveiled for 10 months & 9-freq T data, + a press conference, highlighting: **HFI & LFI work**

#### radio source counts Planck, ACT, SPT, WMAP

- Radio src counts consistent with ACT/SPT (at higher flux range), & WMAP, lower than prior model. there is spectral steepening above 70 GHz.
- IR src possible evidence for cold dust component in local IR galaxies (T<20K).

#### dusty gals Planck, ACT, SPT, ACTxBLAST, Herschel

gg-clustering term is much more important than for clusters, resolution needed to see both,

#### Planck Early Results: The Power Spectrum Of Cosmic Infrared Background Anisotropies

exquisite information on Galactic foregrounds from the Green Bank telescope (H from 21 cm) & other data, and the Planck point sources +CMB, allows one to dig out an underlying CIB

![](_page_47_Picture_2.jpeg)

Planck-HFI Raw maps 26.4 sq. deg.

Raw maps

- CMB
- ERCSC point sources

Raw maps

- CMB
- ERCSC point sources
- Galactic dust

#### CIB maps @ 10 arcmin

#### Planck Early Results: The Power Spectrum Of Cosmic Infrared Background Anisotropies

clustering of luminous infrared galaxies at high redshift: starbursts, dust-shrouded AGNs, etc

![](_page_48_Figure_2.jpeg)

- Planck measures the CIB anisotropies from 10 arcmin to 2 degrees at 217, 353, 545 and 857 GHz
- Half of power comes from z<0.8 at 857 GHz and z<0.9 at 545 GHz. 1/5 and 2/3 come from z >3.5 at 353 GHz and 217 GHz
- Results depends strongly on the HI data & Toronto GBT results

consistent with  $\xi gg \sim r^{-1.8}$  (or even r<sup>-2</sup>) & linear bias, but halo model with 2-halo dominant, *sources are exactly what?* shot noise not (really) measurable with Planck, need higher res expts cf. *ACTxBLAST, BLASTxBLAST, SPT/ACT CL separation, Herschel (higher)* 

25 papers & a large fraction of the papers at Planck2011 were unveiled for 10 months & 9-freq T data, + a press conference, highlighting: **HFI & LFI work** 

CIB - clustering term clearly detected at 217-857 GHz, with diminishing correlation as band separation increases. imaged (BLAST, ACTxBLAST, Planck agree, Herschel a little higher). Source halo model fits the spectra, so does usual galaxy clustering with <bias>. source population is exactly what? => uncertain interpretation

25 papers & a large fraction of the papers at Planck2011 were unveiled for 10 months & 9-freq T data, + a press conference, highlighting: **HFI & LFI work** 

ambient/blank-field tSZ effect from clusters & gps

SZ - 189 SZ clusters. SZ scaling relations appear as expected for X-ray clusters (no deficit, assuming universal profile), apparent SZ deficit for optical clusters (jury out on cause, but seen in ACTxSDSS-LRGs as well)

![](_page_51_Figure_0.jpeg)

Thursday, 10 November, 11

![](_page_52_Figure_0.jpeg)

#### ESZ 20 new + 169 in X/Opt cats

(& ~80% new in SZ, Ethermal view)
PlanckXMM dedicated time on newbies
~95% reliable, validation, S/N ~ 6 cut
+ cross-correlate with X/SDSS cats, Y-"M" scaling OK in shape, puzzle in amp for optical maxBCG/LRG

## new SZ cluster detections reported

![](_page_52_Figure_4.jpeg)

![](_page_52_Figure_5.jpeg)

A2319

![](_page_52_Figure_7.jpeg)

![](_page_53_Picture_0.jpeg)

**Planck sees the rarest & most massive clusters over the whole sky:** small/moderate redshifts (86% with z<0.3); masses to  $1.5 \times 10^{15} M_{sol}$ . 90% of the RASS above M

 $> 9 \times 10^{14}$  M<sub>sol</sub> detected by blind ESZ, 5/21 of new Planck clusters have M  $> 9 \times 10^{14}$  M<sub>sol</sub>.

Feb10 targets for XMM-Newton - 25 candidates observed: DDT time, eg, pilot 10 targets from 62% of sky coverage, in 4 < S/N < 6 range (EZ > 6); high S/N (>5) programme 15 targets. 21 confirmed  $\rightarrow \sim 85\%$ success rate; 17 single clusters, most disturbed; 2 double systems; 2 triple (supercluster) systems; 0.09 < z < 0.54

![](_page_53_Figure_4.jpeg)

N. Aghanim

![](_page_54_Figure_0.jpeg)

Dick Bond: Synergy between Clusters & other cosmological probes kitp11/03

**N**cluster (Ysz, Mlens, Yx, Lx, Tx, Lcl, opt, Rich, ... **z**, gold-sample, thresholds) +  $C_{L}^{SZ}(cuts)$  +  $\xi_{cc}(r|n_{cl})$  will deliver valuable cosmic gastrophysics for sure. Will it deliver fundamental physics e.g., the dark energy EOS, primordial non-Gaussianity??? σ<sub>8</sub> even?

cluster/gp system used since 80s: Xtra power  $\xi_{cc}$   $\xi_{cg} => xCDM$  $P_{\rho\rho}(.25h/Mpc)$  aka  $\sigma_8$  via  $n_{cl}$  are we really ready for prime time? mock-ing!! NOW & future DE equation of state trajectories (1+Wde) = - dInpde / dIna<sup>3</sup> = 2/3  $\varepsilon_{\psi}$  &  $\varepsilon = \Omega_{\psi}\varepsilon_{\psi} + \Omega_{m}\varepsilon_{m}$  &  $\varepsilon_{m} = 3/2$ 

![](_page_56_Figure_1.jpeg)

3-parameter  $w_{de}$  ( $z|V(\psi),IC$ ) paves well late-inflaton trajectories

![](_page_56_Figure_3.jpeg)

![](_page_56_Figure_4.jpeg)

## the **Cosmotician**'s agenda the **Bayesian chain**

posterior P(cosmic parametersID,T) Likelihood P(D I cosmic params,T) prior P(cosmic paramsIT) evidence P(DIT) = partition function P(qID,T) = P(DIq,T)P(qIT)P(T)/P(DIT)posterior Shannon entropy  $S_f(D,T) = - \int dq P(qID,T) \ln P(qID,T)$ 

**D=CMB,LSS,SN,...,complexity, life** T=baryon, dark matter, vacuum mass-energy densities,..., early & late inflation as low energy flows on a (string) landscape (point process of vacuua, river-flow trajectories),  $L(g_{\mu\nu}, \phi, \chi_i, \psi, A_{\mu}, \rho_m, p_m)$ , structure of manifolds (extra dims compactifying 7+3+1, holes, branes, fibres, coupling 'constants')

#### Anthrostatician=superHorizon measurer

![](_page_57_Picture_5.jpeg)

V.Acquaviva <sup>1,2</sup> R. Dunner<sup>4</sup> P.Ade<sup>3</sup> T. Essinger-Hileman<sup>6</sup> R.P. Fisher<sup>6</sup> P.Aguirre<sup>4</sup> M. Amiri<sup>5</sup> I.W. Fowler<sup>6</sup> J. Appel<sup>6</sup> A. Hajian<sup>6</sup> E. Battistelli<sup>7,5</sup> M. Halpern <sup>5</sup> J. R. Bond<sup>8</sup> M. Hasselfield <sup>5</sup> B. Brown <sup>9</sup> C. Hernandez-Monteagudo <sup>13,2</sup> B. Burger <sup>5</sup> G. Hilton 11 M. Hilton 14, 15 I. Chervenak<sup>10</sup> S. Das <sup>29,6,1</sup> A. D. Hincks<sup>6</sup> M. Devlin<sup>2</sup> R. Hlozek<sup>12</sup> S. Dicker<sup>2</sup> K. Huffenberger<sup>16,6</sup> W. B. Doriese <sup>11</sup> D. Hughes<sup>17</sup> I. Dunkley 12,6,1 I. P. Hughes<sup>18</sup>

<sup>1</sup> Princeton University Astrophysics (USA)
<sup>2</sup> University of Pennsylvania (USA)
<sup>3</sup> Cardiff University (UK)
<sup>4</sup> Pontifica Universidad Catolica de Chile (Chile)
<sup>5</sup> University of British Columbia (Canada)
<sup>6</sup> Princeton University Physics (USA)
<sup>7</sup> University of Rome "La Sapienza" (Italy)
<sup>8</sup> CITA, University of Toronto (Canada)
<sup>9</sup> University of Pittsburgh (USA)
<sup>10</sup> NASA Goddard Space Flight Center (USA)
<sup>11</sup> NIST Boulder (USA)
<sup>12</sup> Oxford University (UK)
<sup>13</sup> Max Planck Institut fur Astrophysik (Germany)
<sup>14</sup> University of KwaZulu-Natal (South Africa)

L. Infante <sup>4</sup> K.D. Irwin <sup>11</sup> N. Jarosik <sup>6</sup> R. Jimenez <sup>19</sup> J.B. Juin <sup>4</sup> M. Kaul <sup>2</sup> J. Klein <sup>2</sup> A. Kosowsky <sup>9</sup> J.M. Lau <sup>20,6</sup> M. Limon <sup>21</sup> Y.T. Lin <sup>22,1,4</sup> R. Lupton <sup>1</sup> T.A. Marriage <sup>1,6</sup> D. Marsden <sup>2</sup> K. Martocci <sup>23,6</sup> P. Mauskopf <sup>3</sup> F. Menanteau <sup>18</sup> K. Moodley <sup>14</sup> H. Moseley <sup>10</sup> B. Netterfield <sup>24</sup> M.D. Niemack <sup>11,6</sup> M.R. Nolta <sup>8</sup> L.A. Page (PI) <sup>6</sup> L. Parker <sup>6</sup> B. Partridge <sup>25</sup> H. Quintana <sup>4</sup> B. Reid <sup>19,1</sup> N. Sehgal <sup>20,18</sup> J. Sievers <sup>8</sup> D. Spergel <sup>1</sup> S.T. Staggs <sup>6</sup> O. Stryzak <sup>6</sup> D. Swetz <sup>2</sup> E. Switzer <sup>23,6</sup> R. Thornton <sup>26,2</sup> H. Trac <sup>27,1</sup> C. Tucker <sup>3</sup> L. Verde <sup>19</sup> R. Warne <sup>14</sup> G. Wilson <sup>28</sup> E. Wollack <sup>10</sup> Y. Zhao <sup>6</sup>

<sup>15</sup> South African Astronomical Observatory
<sup>16</sup> University of Miami (USA)
<sup>17</sup> INAOE (Mexico)
<sup>18</sup> Rutgers (USA)
<sup>19</sup> Institute de Ciencies de L'Espai (Spain)
<sup>20</sup> KIPAC, Stanford (USA)
<sup>21</sup> Columbia University (USA)
<sup>22</sup> IPMU (Japan)
<sup>23</sup> KICP, Chicago (USA)
<sup>24</sup> University of Toronto (Canada)
<sup>25</sup> Haverford College (USA)
<sup>26</sup> West Chester University of Pennsylvania (USA)
<sup>27</sup> Harvard-Smithsonian CfA (USA)
<sup>28</sup> University of Massachusetts, Amherst (USA)
<sup>29</sup> BCCP UC Berkeley and LBL (USA)

![](_page_58_Picture_6.jpeg)

![](_page_58_Picture_7.jpeg)

# Planck

![](_page_59_Picture_1.jpeg)

Focal plane

![](_page_59_Picture_3.jpeg)

#### HFI cut view

![](_page_59_Picture_5.jpeg)

### **HFI performance**

#### • Thermal performance

- 100 mK HFI detectors behave exactly as during ground tests. Set for minimum Helium flow, enough for 5 sky coverages (until ~Jan 2012 +-x)
- **CosmicRays: Glitch** rate at ~80/min on each bolometer=>thermal fluctuations
  - contribute to 1/f noise (significant CSA-HFI role in discovering and characterizing the effect)
- Sensitivity and Beams: a little better than Blue Book widely used for forecasts. (CR thermal fluctuations make it a little higher than ground measurements). Anticipated "aggregated" sensitivity (100-217 GHz) for 30 months is 0.33 microK-deg ie, ~1000 years of WMAP (60-94 GHz = 10.8 microK-deg in 1 yr) + >2 smaller beam
- **CarbonMonoxide lines** in 100 and 220 GHz complicates modelling, a problem becomes a strength? with separation of components, could get an all-sky CO map

### LFI performance

 Sensitivity and Beams: ~ Blue Book widely used for forecasts. Beams to - 20 db understood.

![](_page_60_Figure_9.jpeg)

![](_page_60_Figure_10.jpeg)

cluster ENTROPIES with INTERNAL BULK KINETIC ENERGY **s** per particle =  $\int [-f \ln f + f] dV dV_p / \int f dV dV_p (MB corrected for BE/FD)$  $\Delta s_{th} = Y_T (3/2 \ln \langle p_{th} \rangle \rho_g \rangle - \ln \rho_g), \text{ particles per baryon } Y_T = \sum Y_A$ Sackur Tetrode formula 117+Y<sub>T</sub>(3/2InT/kev-In n<sub>b</sub>/cc), Y<sub>T</sub>~1.7 constant involves abundances,... gps-cls ~150-190 bits/baryon, Δsth~12 bits/b a coarse-grained entropy, turbulence + bulk interior flows  $\Delta s_{k+th} - \Delta s_{th} = \sum Y_A 1/2$  Trace In(  $I+m_A/m_p (p_{kin} I + \Pi_{kin})/p_{th}$ ) kinetic pressure pkin anisotropic pressure tensor Ikin how coarse? our decision. e.g., cluster interior R<sub>500</sub>, R<sub>200</sub> R<sub>vir</sub> **s<sub>k+th</sub>-s<sub>th</sub>~1bit/b** 

*(generalized) way of looking at* **phase-space density <f>**<sub>p</sub>~n/σ<sub>v</sub><sup>3</sup> **entropy-per-DM-particle** cf. entropy-per gas-baryon

 $\Delta s_{dm} = 1/2 \operatorname{Tr} In < (p_{kin} I + \Pi_{kin}) / \rho_{dm} > - In \rho_{dm} \sim 7 \text{ bits/DM}$ 

zero point depends on type of DM, WIMP or axion or ...

s<sub>t</sub> / n<sub>b</sub> ~1.66x10<sup>10</sup>/(1+δ<sub>b</sub>) bits/b; s<sub>γ</sub> / n<sub>γ</sub> = 5.2 bits/Y = 2130/411; s<sub>γ</sub> = 21/22 s<sub>γ</sub> AGN's black hole entropy  $S_{bh} = M_{bh}^2/2M_P^2 \sim 10^{22} S_b$ ; but  $\tau_{bh}^{62} \sim 10^{120}$ yrs

#### non-equilibrium and non-thermal Entropy Profiles (M | z=0) for Mass-binned Scaled Stacked Clusters

![](_page_62_Figure_1.jpeg)

![](_page_62_Figure_2.jpeg)

P<sub>kin</sub> /P<sub>th</sub>~0.1-0.6!

 $<(\Delta v)^2 > /c_s^2$  affects hydrostatic equilibrium

better-than-NFW fit to DM-only simulation density profiles. gas/star effect affect NFW-ism.

ongoing mystery - why halos have this entropy growth law

**S(resolution**  $\lambda = -ln r/R_{200}$  **[coarse-grained-measures)** Ptot, ij ~  $<\delta V_i \delta V_j | \lambda >$ , I, ij ~  $<\delta X_i \delta X_j | \lambda > <\delta ln\rho \delta ln\rho | \lambda >$ kinetic pressure tensor & turbulent cascade; space-space fluctuations & ... pressure & density clumping fine-macro-small-grain 10<sup>6</sup> baryons in cubic metres sph--macro-large- grain 10<sup>65</sup> baryons. ~26 dims per sph-grain, huge dimensional reduction, scaled-radial-resolution-grain further dim reduction. entanglement of fine & coarse & EFT. feedback. gravitational entropy, a mystery: the gravo-thermal catastrophe = negative specific heat, what gravity wants is to localize concentrating mass into black holes and make accelerating voids to straighten out U. Thursday, 10 November, 11

![](_page_63_Picture_0.jpeg)

![](_page_63_Picture_1.jpeg)

Universe=System+Res =Data+Theory en-TANGO-ment

the **Cosmotician's** Agenda: Statistical Paths in Cosmic Theory & Data

we compress the Petabit++ observed cosmic info into a precious few bits encoding 6+ parameters of the Minimal Cosmic Standard model (LCDM)  $\rho_{dm}/\rho_{b}=5.1 \ \rho_{m}/\rho_{de}=.30 \ \Omega_{m}=0.268 \pm .012 \ \Omega_{\Lambda}=0.736 \pm .012$ Powers= $25 \times 10^{-10}$  Tilts = 0.963±0.013 running=-0.024 ± 0.015 r=T/S<0.19

![](_page_63_Picture_5.jpeg)

How Structure in the Universe Arose?: fluctuation generation in curvature from inflaton: isocurvature, Gravity Wave, non-Gaussianity signatures

(coherence + quantum noise => incoherence via entropy/information generation) morphs into the nonlinear Cosmic Web: clusters, filaments, voids; galaxies (SZ)

Entropy/Information Generation in Post-inflation Preheating: A Shock-in-Time

the fate of the U?: dark energy properties driving late inflation, S in asymptotic dS?

## 'low-L' part of ACT's power spectrum

![](_page_64_Figure_1.jpeg)

## primordial (lensed) CMB + veils, the veils = radio sources, the ClB, tSZ and kSZ (& Milky Way dust and synchrotron at lower multipoles)

![](_page_65_Figure_1.jpeg)

Dunkley+.2010