Novel LSS/CMB non-Gaussianities from __ Generate fully-correlated

Instabilities & Entropy Generation 9 <~Z nonGaussian Websky-
During and After Inflation Ensembles for CMB/LSS probes

Dick Bond @ PennState 19 02 01

Bond+Braden+Frolov+Huang+Morrison+Stein
. varieties of primordial nonG and how to search for them
Simons Modern Inflation group - b2fhms & Eva Silverstein+ & Dan Green+

Origin of the observed entropy in the Universe and SMpp/BSMpp particles

- coarse-grained coherent condensate breaks up into fine-grained fluctuations
- particle creation = (instability => stretch and break via mode-mode coupling aka fluctuation generation)

- episodic stretching (adiabatic) and breaking (non-adiabatic — nonG) during inflation & after

nonlinear multi-field classical coupled system. evolve using lattice
simulations. via pseudo-spectral code & symplectic defrost++ code =>
very high accuracy to unveil small nonlinear effects leading to nonG

3(x, )= [field-patn (AE+pdV)/(E+pV) = Trace alj + [fietd-path dIn PEC/(1+wc)
during inflation (beyond stochastic inflation. nonlinear k-space burst structure)

(AP yapa(k) | AV, Amesz), (AP (k)| AV(¢, y) controls) (A(HCN )ee | AV controls) s88s9, $B90,91 BYS,.
& after inflation ends (modulated heating. marginalize ~50 e-folds of sub-LSS)

<{NL|Xcgt¥>n>
dynamical system Kolmogorov-Sinai entropy cf. true Shannon entropy
nonG ~ “particle” production ~ Shannon entropy generation

ASgryeskx = Trace In[Cya sCrp, — Cpam, Cr, g8l/2 ~ InMygyyeqy + 1/2) cf. old way ~ In[p(8)/ (1))

adiabatic flucs encoded in the collective Phonons, fluctuations + condensate = C k
<o)X, V)| & > = yy(xt|x;) * {(Xy), xj- = linear transfer fnV fields J



varieties of primordial nonG and how to search for them

perturbative, nonG part correlated with dominant Gaussian part
see Planck 2015/2018 nonG for exhaustive study and current constraints - 2018 including T+Epol
local fnl* - current limit cf. fnl target < 1. & equilateral orthogonal

fPlanck2015 .... Planck2018 not yet h
l}( ) f( ) ) nonG 3-point-correlation-pattern measure
<(NL +ysh> ~ P(X>h) Acg +I\A>h) Acg” + fo: 2.7 £ 5.8 local for Newton potential

( IOXCg ¢ => fn.+=0.44 * 3.5 for phonons/3-curvature
fnLeauiv=A1 [BPy/Psinf]>? & Py/P¢ = ¢ fu: 42.3 £ 75.2 equilateral
\25.3 * 39.2 orthogonal -

beyond Planck2015/2018 nonG: some nonG probes in Planck 2015/2018 Isotropy & Statistics. main result
is no strong evidence, anomalies

if uncorrelated quadratic nonG suppressed by at least ~ £2

outside horizon (very): via stochastic inflation - huge nonG from feedback via diffusion sb90/91 semi-
eternal

k-localized nonG: wide open. role of instabilities during inflation to make k-localized zeta-bursts. could
even make PBHs. chain together instabilities - oscillations in power and 3-point. silverstein and Planck

new silverstein etal approach. explore higher N-points = anomalous tails.

BBM numerical pseudo-spectral codes to correct stochastic inflation, all weakly nonlinear terms included.
B2FHMS can ensemble-measure everything, N-pt, coherences!

nonG from heating: 1 cm comoving scale => to be in observable LSS/CMB bands need modulation, but
that is natural if there are light fields (heavy fields damp power)

nonG in long-lived field-condensates: strings, oscillons, curvaton structures, ... short-scale short-lived

nonG bubbles from tunneling during inflation bbm

nonG from later phase transition structures - need first order (discontinuity in entropK - latent heat) cf.
e

second order (discontinuity in second derivative aka in fluctuations) or smoother higher order, eg
adiabatic evolution of particle content - entropy conserving

nonG from out-of-equilibrium decays Bond+Braden+Frolov+Huang+Morrison & Stein



© ( TOPOGRAPHY & CARTOGRAPHY
of our Hubble-patch bit of the early universe: RECONSTRUCT

Beyond the Standard Model of cosmology? Smc = tiltedACDM +r via ({,h+x)
BSMc = SMc + primordial anomalies (nonG) in the true { -WebSky

anomalies @ low L => sample variance limited ~20’s CMB TT power L~ 20-30 dip => {-Spectrum k-dip

<§‘Temp5 EPO/> +5§fluc : e — és ~3 bits
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BFH, b+frolov+huang
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2D intermittency WMAP cold spot

CMB+LSS mocks to test: standard Gaussian inflaton é'inf+ subdominant uncorrelated Cisoc

e.g., from modulated preheating scan sims to get
chance intermittent
Gaussian + single spike NG: 10°5 zeta single spikj: 10°5 zeta a I ig n me nt to get a
( ‘ 5deg fwhm WMAP “cold spot”
y- , ’ , intermittent nonG from
. T ¢ \“ early U preheating
. o ' lattice sims
. ‘ _ Tl - here tunable peak model
- also cf, quadratic nG:
e I e " correlated fnL

uncorrelated nonG ‘wide open’ cf. usual correlated highly constrained nonG uncorrelated Iarge fNLeff



the true quadratic (-VWebsky of the (-SCape

Planck 2018 X inflation: TTTEEE lowL Epol + CMBlens + BK15 BB + BAO

Anomalies in CMB TT power: L~ 20-30 dip => {-Spectrum k-dip ~20
includes CMB lensing, parameter marginalization
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Webskys: Mocking with PeakPatches+Hydro+

THEN BBKS, BCEK, B+Myers91,93,96, BKP96 web, BW96 importance '.32’

NOW: CITA mini-industry Alvarez, Bond, George Stein 2018, .. Validation SAB18 + Euclid 2018 validation a,b,c

Berger, Battaglia, Codis, van Engelen, Motloch, Huang, Frolov,
now 19.2 Lague, Lokken, Murray, Keating, Lahklani, Breysse, bruno, connor, ronan, furen, remi, jason lee ++

need End to End mocks: m DE/modG, Mnu, ...
need all signals to be correla

need speed to build ensembles & ex Iore BSMc

. CHIME. §

Planck, AdvACT, SO, CMB-S4, CCATp, EUCLID, LSST, DES, CHIME, HIRAX, COMAP, ...SKA



2D intermittency WMAP cold spot

CMB+LSS mocks to test: standard Gaussian inflaton é'mf+ subdominant uncorrelated Cisoc

e.g., from modulated preheating scan sims to get

chance intermittent
Gaussian + single spike NG: 10°5 zeta single zeta a I i g n me nt to get a
— ~ 5deg fwhm WMAP “cold spot”

' . intermittent nG from
4 4 4 “ early U preheating
o L | ted lattice sims
- - = tunable peak model
:‘ S also cf. quadratic nG:
correlated fNL
uncorrelated large fNLeff

I 6 .00

3 D lntermltt en cy uncorrelated nonG ‘wide open’ cf. usual correlated highly constrained nonG

LSS tSZ: Gaussian std LSS tSZ Gaussian std +
subdominant uncorrelated C

B2FH, b+braden+frolov+huang ABSB+FH, alvarez+b+stein+frolov+huang



COmap sims using Li+ Mhalo = Lco ¢/. CIB a [a Planck13,15
Danger: correlated stochasticity of bursty star formation etc.

z=2.4-3.4 eventually z=6-8 cf. CHIME HI z=.8-2.5

CcO CIB

using Li et al. 2016 Model using 217 GHz Planck 2015 Model, no tomography

-1.5 -1.0 -0.5 0.0 0.5 1.0 15-1.5 —-1.0 -0.5 0.0 0.5 1.0 1.5
deg deg

underway: Lensing of CIB COmap HImaps KSZ tSZ

nonG sources seen through a nonG lens
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Primordial Non-Gaussianity in observable Webskys constructed with the mass-Peak Patch method
+ gas-halo response functions/susceptibilities
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Primordial Non-Gaussianity in CO example: the LCDM signal and 2 nonG difference maps - a movie
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large scale => CHIME much larger volume is better
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quartic inflaton V(¢,x) = 1/4 Ap* + 1/2 g2 ¢p2 x2

coarse-grain cm-horizon
=> ﬁne—grain fluctuations
=5 generation

log-normal pdf (density aka (), in k-bands too; normal pdf (velocity)



after inflation - instabilities => entrory => nonG
dS/dt(t,g) =,  the Shock-in-time: entropy production rate

Cshock(XC , eo | (X) ‘gZ/ )\)) => Chaotic Billiards: NonG from Parametric Resonance in Preheating
B+Frolov, Huang, Kofman 09
B+Braden, Frolov, Huang 19

V((I),X)— |74 M)“ +172 82 (|)2 X2 smooth over
12.0 AR | RN ) c-folds of
o T g for gZIA'Z HF structure
T 80Ff
E ) Ot Cc
S 60
MMM N e
. 207 ate-time
: 0.0 I U K) density-bias
0 et R A R ) >h control
0.1 1 10 arameter
o Otinimp1) computational
\\)l ' \J I \ )i \\ - \\v TN T TR tour de force
2.4F \\J \\)” ; i \) S 3 h number of
AN ) i3 =0 huge number o
2. 2g2l)\ v ! \V/ ‘ \V i\ VT earasims to
< 2.0 — WV ' —  show the
=18k g wondrous
12 i _ e’ 1 ¢ | complexity of
1.4} P[¢(x), tshock | X<, eoi(X), g(x),tend-of- inflatibn] / N C,(Xc g?/\)

—-11 —10

gigafigure of lattice simulations™ /o) lan eoi / MPL



coherent inflaton => incoherent mode cascade of fields thru a shock-in-time to thermal equilibrium

Sui~0; Sutot,m+r/Np ~1.66x7070 bits/b; s, ény =5.2 bits/Y' =2130/411; sy=21/22
Y
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(' nonG from large-scale modulations of the shock-in-times of preheating )

1ok entroby proHuctioh B+BradentFrolov Jtrue thermal
info-content in phonons __ dS/ dt ](caqumbrlum
oy ,_I'E_-i ﬂﬁ B ..-..l' |
: - In [p V/E] ar of
00k e —~a .

entangled primary fields (o, Iy, 7, IT,)

decay rates (Feynman diagrams) and transport theory difficult to make accurate through preheatn%g

H | 3 other non-equilibrium | T 5

entropy production measures i
- based on the “fundamental X

scalar fields “ - identify the — ¢+x
shock-in-time

1.0

adiabatic 1cm condensate of
energy-phonons breaks into
fluctuations aka {-phonon
particles. nearly Gaussian, 2- .
pt dominates! amazing really

0.5

7t ! qr max

0.0 ASor ~ 172 S In det <(o. My, 7. IL) (0. Mo, 7. IL,)F >



generic nature of {-spikes post inflation - lessons learned
<C| V-control x-control g2-control,...>

multi-arm/filament potentials: here 4, but 3, 5-star,.. angular V = > Vu(r) cos(M0)
modulate coupling “constants” in potential, g2/A g2 controlled by 3rd field

Spikes are ubiquitous though details change

understood via caustics of trajectory bundles: Lyapunov = strain-rate > 0
Kolmogorov-Sinai entropy (rate) = > positive strain-rate eigenvalues

field-strains of the deforming condensate in the ballistic regime - instability
probability density bundles stretch s.t. - In p = Trace strain (Shannon conserved)

{(X,t) is conserved at each x in the ballistic regime
stopped by the shock in time: a burst of phonon production to alleviate the strain

{(X,t) is not conserved Shannon entropy S=- In pVG = - In p - Trace strain
spectrum of phonons is very non-thermal

slow adiabatic evolution toward thermal

phonons are the control variables for the other field degrees of freedom

= subdominant nonG ubiquitous, need x-light

17



single field V heating slow, oscillating
but shaped V can give rapid heating (roulette)
still driven by a radial instability m?f <0 |
field-strain story the same but no modulation
=» transverse fields to get observable nonG
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stochastic inflation:
the battle of classical drift V. &

diffusion of quantum fluctuations Vp
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during inflation - instabilities => entropy => nonG

numerical experiments
of in-out states through
localized AV.

hain together .. oscillating

experiment y-light  in states

1

AVHA TP
s w o X

out sta?te‘:'“

instability

p Kp ap

5.5

Bond+Braden+Morrison
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experiment y-light
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experiment y-light
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TBD coherence of N-point bursts in N-space ..



during inflation - instabilities => entropy => nonG

- i numerical experiments
experiment x-heavy of in-out states through

localized AV. o
chain together .. oscillating

instability potential surface

Bond+Braden+Frolov+Morrison

00000000

0.000005

trapped potential surface -

trapped inflation: same parameters, no instability ¥
.. Kofman, Silverstein, Green, Barnaby, Huang, many more T —00s 29



experiment y-heavy V., Parameter Comparison
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experiment y-heavy
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experiment y-heavy unstable y cf.
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TBD coherence of N-point bursts in N-space ..
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experiment x-light 1 (p,)

-10
____m_"___”__pa%ticle production picture aka
5 5 5 5 5 ntropy production picture
here shown in phonons
= soft rather than hard

phonon occupation
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Novel LSS/CMB non-Gaussianities from

Instabilities & Entropy Generation «Z

During and After Inflation
Dick Bond @ PSU 19 02 01 _
what are the degrees of freedom / parameters of the ultra early Universe? TBD

begin-inflate => inflate => end-inflate => preheat => non-equilibrium heat+entropy
=> Standard Model particle physics QG plasma radiation dominated
=> dark matter dominated structure via gravitational instability => dark energy now

d¢(x,t)= (dE+pdV)/3(E+pV) = d InPc/ 3(1+wc) + Trace d a,-j
fit into a UV-complete theory (ultra-high energy to the Planck scale) stringg, landscape, ..

& IR-complete theory (post-inflation heating -> quark/gluon plasma)??? TBD

role of (1) instabilities after inflation
entropy generation via the breakup of the deforming coherent low-k inflaton condensate
into incoherent high-k fluctuations aka phonons at a “shock-in-time” = nonGaussianity

role of (2) instabilities during inflation
phenomenology of in-states propagating through localized unstable potential structures
to out-states, like scattering theory = k-localized nonGaussianity

(3) |cg <=> fg> condensate/fluctuation framework, for both
using coherent states classical-like approach with h.

includes Bogoliubov transformations for fluctuations as condensate evolves
=> particle creation interpretation in both heating and inflating regimes.






