

the Power in Sunyaev & Zeldovich, then & now The Impact for ACT +Planck+SPT of AGN Feedback on SZ Power Spectra

the Power in Sunyaev & Zeldovich, then & now The Impact for ACT +Planck+SPT of

Dick Bond #CIAR

AGN Feedback on SZ Power Spectra

(Linear) primary CMB anisotropies are strongly damped by photonbaryon shear viscosity at high L > 1000, where secondary anisotropies from the weakly and strongly nonlinear cosmic web dominate. In order of dominance: thermal Sunyaev-Zeldovich effect (Compton scattering of CMB off hot gas, unique frequency signature), CMB weak lensing (smooths out peaks and troughs, no frequency signature), kinetic Sunyaev-Zeldovich effect (Thomson scattering of CMB off moving ionized gas, at high and low redshift), & more. Extragalactic radio (synchrotron) and infrared sources (dust emission) are important (frequency signatures, complex). Galactic foregrounds strongest at low L.

the Power in Sunyaev & Zeldovich, then & now The Impact for ACT +Planck+SPT of AGN Feedback on SZ Power Spectra

Dick Bond #CIAR

(Linear) primary CMB anisotropies are strongly damped by photon-baryon shear viscosity at high L > 1000, where secondary anisotropies from the weakly and strongly nonlinear cosmic web dominate. In order of dominance: thermal Sunyaev-Zeldovich effect (Compton scattering of CMB off hot gas, unique frequency signature), CMB weak lensing (smooths out peaks and troughs, no frequency signature), kinetic Sunyaev-Zeldovich effect (Thomson scattering of CMB off moving ionized gas, at high and low redshift), & more. Extragalactic radio (synchrotron) and infrared sources (dust emission) are important (frequency signatures, complex). Galactic foregrounds strongest at low L.

To get n_s , m_v etc., from cosmic parameter estimation of the primary CMB anisotropy power, the statistics of secondary power must be fully incorporated \Rightarrow need to know accurately.

the Power in Sunyaev & Zeldovich, then & now The Impact for ACT +Planck+SPT of AGN Feedback on SZ Power Spectra

Dick Bond #CIAR

(Linear) primary CMB anisotropies are strongly damped by photon-baryon shear viscosity at high L > 1000, where secondary anisotropies from the weakly and strongly nonlinear cosmic web dominate. In order of dominance: thermal Sunyaev-Zeldovich effect (Compton scattering of CMB off hot gas, unique frequency signature), CMB weak lensing (smooths out peaks and troughs, no frequency signature), kinetic Sunyaev-Zeldovich effect (Thomson scattering of CMB off moving ionized gas, at high and low redshift), & more. Extragalactic radio (synchrotron) and infrared sources (dust emission) are important (frequency signatures, complex). Galactic foregrounds strongest at low L.

To get n_s , m_v etc., from cosmic parameter estimation of the primary CMB anisotropy power, the statistics of secondary power must be fully incorporated \Rightarrow need to know accurately.

2ndary signals are also cosmic-info-loaded: density **power spectra** in gas and dark matter. **Dark energy equation of state** from **large SZ cluster samples** (measures their thermal energy, related by virial equation to DM+gas gravitational energy) (& CMB weak lensing).

the Power in Sunyaev & Zeldovich, then & now The Impact for ACT +Planck+SPT of

Dick Bond #CIAR

AGN Feedback on SZ Power Spectra

(Linear) primary CMB anisotropies are strongly damped by photonbaryon shear viscosity at high L > 1000, where secondary anisotropies from the weakly and strongly nonlinear cosmic web dominate. In order of dominance: thermal Sunyaev-Zeldovich effect (Compton scattering of CMB off hot gas, unique frequency signature), CMB weak lensing (smooths out peaks and troughs, no frequency signature), kinetic Sunyaev-Zeldovich effect (Thomson scattering of CMB off moving ionized gas, at high and low redshift), & more. Extragalactic radio (synchrotron) and infrared sources (dust emission) are important (frequency signatures, complex). Galactic foregrounds strongest at low L.

To get n_s , m_v etc., from cosmic parameter estimation of the primary CMB anisotropy power, the statistics of secondary power must be fully incorporated \Rightarrow need to know accurately.

2ndary signals are also cosmic-info-loaded: density **power spectra** in gas and dark matter. **Dark energy equation of state** from **large SZ cluster samples** (measures their thermal energy, related by virial equation to DM+gas gravitational energy) (& CMB weak lensing).

Delta T over Tea Toronto May 1987: first dedicated CMB conference, exptalists +theorists, primary+secondary ∆T/T

• very small angle anisotropies - VLA results, secondary fluctuations via the Sunyaev-Zeldovich effect, primeval dust emission, and radio sources

 small angle anisotropies - current results, optimal measuring strategies, statistical methods for + effect of energy injection / explosions on LSS- a big pre-COBE forecast issue bond@ ΔT/Tea87: "clustered shots" (bbks86-peaks for halos) with pressure profiles via binding energy (not mass) but beta-profiles with core scaling and old X-ray beta's

BUT spherical collapse - too many cls & non-dynamical masses - high M's too low ⇒ peak patches BM91-96 tidal fields - virial mass from homogeneous ellipsoid dynamics, accurate cluster positions, masses, binding energies, clustering

constrained supercluster treePM-SPH sim of ∧CDM +cooling: largest k-range of its time (>> Virgo sim) SZ in supercls may give us the outskirts of cls & gps, not filaments (unless ∃ large gas E-outflows) B+Kofman+Pogosyan+Wadsley 97/99

painting halos with analytic Y_{SZ} & pressure form factors cf. SPH-hydro: the discrepancy existed from 2002 (a big issue was/is the overdensity 200 to 20 far-field & non-equilibrium)

What sort of objects in the cosmic web dominate the SZ effect? Δ_{cut}= 200, 120, 60, 20 then convergence, pick up far-field of clusters and groups,+ a little into filaments (unless ∃ large gas E-outflows into filaments) What is the redshift range that contributes to the SZ effect? all from 0 to ~2

CITA-SZ with feedback: Battaglia, Bond, Pfrommer, Sievers & Sijacki 2010

the expts: CBI, ACBAR to L~2500+, BIMA ~6000, Quad to 2000+, *Planck* ~ 2000, SZA ~ 4000, *APEX, ACT* & *SPT* to ~10000, eventually SPTpol and ACTpol. + *high res follow-ups GBT, SZI, ALMA, CCAT, ...*

\Rightarrow urgent to show the range of C_L^{SZ} as effects are added

Oct07: do large treePM-sph sims (>700³ gas+DM)-NOT instead 512³ & 256³ & single-hi-res-cls shock heat only "adiabatic"; cool+SN E; cool + SN E + winds; cool + SN E-feedback + winds + CRs from cluster shocks;

AGN feedback + cool + SN E + winds: ΔE_{inj}~ εΔt SFR over R_{AGN} in halo centre, episodic above a SFR threshold, ε_{eff}<ε

ACT@5170m

ACT@5170m

ACT@5170m

CMB DATA ANALYSIS **Computing Life with** ~3000 detectors ACT ~200 GB/night **WMAP - 50 GB/7 yrs**, Planck 2-4 TB total 2 weeks of ACT=all of Planck + huge Monte **Carlo sims need** cosmo**hydro** etal 25M+5M hours/year

GPC: 3780 nekslem nodes=30240 cores 306 TFlops debut as #16 in Top500 TCS: 104 P6 nodes=3328 cores 60 TFlops debut as #53 in Top500 ->80 1.4 Pbytes storage GPUs@UofT & CMB? NERSC > 100000 cores (DOE Planck access) NCSA > 300000 IBM cores

IBM

400 Мрс ΛCDM WMAP5 gas density Gadget-3 SF+ SN E+ winds +CRs 512³ also & AGN **E-input** +all & shockadiabatic

CMB gets entangled in the cosmic web

aka the descent into the real astronomy of **IGM/ISM** weather, dust storms & turbulent times

CMB gets entangled in the cosmic web

aka the descent into the real astronomy of **IGM/ISM** weather, dust storms & turbulent times

CITA-SZ with feedback: Battaglia, Bond, Pfrommer, Sievers & Sijacki 2010

for ACT+SPT+Planck, urgent to show the range of C_L^{SZ} as effects are added

Oct07: do large treePM-sph sims (>700³ gas+DM)-NOT instead 512³ & 256³ & single-hi-res-cls shock heat only "adiabatic"; cool+SN E; cool + SN E + winds; cool + SN E-feedback + winds + CRs from cluster shocks;

but because of core overcooling and overproduction of stars, waited for a subgrid model of AGN feedback in cluster cores, to be calibrated with the (small mass) cluster-BH calculations of Sijacki (with Springel, Pfrommer, ...)

full Sijacki-resolution was/is ~ infeasible for single massive clusters, and certainly strongly infeasible for big-box statistically useful samples, & also itself is just a subgrid model hence our exploratory subgrid BH feedback model

AGN feedback + cool + SN E + winds: $\Delta E_{inj} \sim \epsilon \Delta t$ SFR over R_{AGN} in halo centre, episodic above a SFR threshold, $\epsilon_{eff} < \epsilon$: most E_{inj} above z=2, so much freedom to minimize ϵ_{eff} e.g., E_{inj} 58% at z > 2, 23% in 1 < z < 2 19% z<1

conclusion circa 2010: \nexists Universal panacea to cure cluster cores: episodic and cluster-historydependent. if observables are overly sensitive to this, then we become gastrophysical weather reporters and not cosmological gold-sample miners delivering pure cosmic parameters. BUT most relevant SZ-region ~0.5R₅₀₀ to ~3R₂₀₀ \Rightarrow different set of non-thermal problems.

we do need a hydrodynamically-reasonable inner core (beware of cutouts from overcooled cores)

(10 256³ gas+DM) $\land CDM$ sphericalize-scale-stack cluster profiles, with Y_{SZ} weighting, also z (& type) bins. types=??

for fast MCMC C^{LSZ}(cosmic & internal-cl parameters) with nonG statistics a la peak patch or .. includes all non-th & non-eq effects

better: rotate-into-principal-axes scale-stack profiles

(10 256³ gas+DM) ∧*CDM sphericalize-scale-stack* cluster profiles, with Y_{SZ} weighting, also z (& type) bins. *types=??*

for fast MCMC C^{LSZ}(cosmic & internal-cl parameters) with nonG statistics a la peak patch or .. includes all non-th & non-eq effects

better: rotate-into-principal-axes scale-stack profiles

cluster ENTROPIES with INTERNAL BULK KINETIC ENERGY s per particle = $\int [-f \ln f + f] dVdV_p / \int f dVdV_p (MB corrected for BE/FD)$ $\Delta s_{th} = Y_T 3/2 (In p_{th} - 5/3 In \rho_g), \quad Y_T = \sum Y_A$ $\Delta s_{tot} - \Delta s_{th} = \sum Y_A 1/2 \text{ Trace } In(I+m_A/m_p (p_{kin} I + \Pi_{kin})/p_{th})$ entropy-per gas-baryon cf. entropy-per-DM-particle $\Delta s_{dm} = 3/2 (In (p_{kin} I + \Pi_{kin})/3 - 5/3 \ln \rho_{dm})$

Variations in SZ with feedback

high res ICM follow-ups are essential to make a robust subgrid algorithm (& a cluster catalogue for cosmology ...) Battaglia, Bond, Pfrommer, Sievers, Sijacki 2010 ~20 hi res +JunLong 40x2 hi-res vary ΔE_{inj}

x/x_500

1.0

gas z=1

0.1

CITA SZ templates with feedback Battaglia, Bond, Pfrommer, Sievers, Sijacki 2010

256³ workhorse sims, 10 x 3cases

rotate and translate periodic boxes at many z-bins - sample lots and lots of virtual maps to compute the mean and variance of C_L^{SZ} 512³ box sims ~ 8 **256**³ box sims, but stats for 10 is much better

shock heat only - adiabatic

AGN E-feedback + radiative cool + SN energy + winds

cluster ENTROPIES with INTERNAL BULK KINETIC ENERGY **s** per particle = $\int [-f \ln f + f] dV dV_p / \int f dV dV_p (MB corrected for BE/FD)$ $\Delta s_{th} = Y_T 3/2 (In p_{th} - 5/3 In \rho_g), \quad Y_T = \sum Y_A$ $\Delta s_{tot} - \Delta s_{th} = \sum Y_A \frac{1}{2} \operatorname{Trace} In(I + m_A/m_p (p_{kin} I + \Pi_{kin})/p_{th})$ $\Delta s_{dm} = 3/2 (In (p_{kin} I + \Pi_{kin})/3 - 5/3 \ln \rho_{dm})$ 2.50.11.02.0 r / R_{500} 0.1 probability distribution for 💈 15 $\int p_{kin} / \int p_{th} (< r) / S. r / R_{200}$ 1.0 0.5 r /R₂₀₀ 0.11.0

r/R.m

cluster ELLIPTICITY TENSORS for gas and DM

 $U_{g,ij} = \int dm_g x_i x_j w(x) / \int dm_g x^2 w(x)$, weight $w(x) = 1/x^2$ (does not overweight the outskirts) cf. moment of inertia w(x) = 1

Udm,ij for DM

 $(U_{p,ij} = \int dPV x_i x_j w(x) / \int dPV x^2 w(x), dPV = pdV$

pth for SZ, ptot for virial equation & cluster masses)

rotate to principal axes, scale & stack

eigenvalues $u_1 > u_2 > u_3 \Rightarrow$

ellipticity e = (u₁-u₃) /2*Trace*U,

prolaticity (if >0, oblaticity if <0) p = (u₁-2u₂+u₃) /2TraceU

much TBD

max entropy to get an "optimal" ellipticity tensor? $\Delta S = \int \left[\left[-f \ln f + f \right] - \left[-f \ln f_{model} + f_{model} \right] \right] dV dV_{p}$ 37