

Saturday, November 21, 2009

Nasa's WMAP satellite @ L2: launch 2001.5, 1yr data 2003.2, 3yr 2006.3, 5yr 2008.3, funded for 9 years

Planck satellite @ L2: launch 2009.4 ESA+NASA+ Cdn Space Agency

Nasa's WMAP satellite @ L2: launch 2001.5, 1yr data 2003.2, 3yr 2006.3, 5yr 2008.3, funded for 9 years

Planck satellite @ L2: launch 2009.4 ESA+NASA+ Cdn Space Agency

fluctuations in the early universe "vacuum" grow to all structure

all this can evolve from early U vacuum potential and vacuum noise in the presence of late U vacuum potential aetherial!

fluctuations in the early universe "vacuum" grow to all structure

all this can evolve from early U vacuum potential and vacuum noise in the presence of late U vacuum potential aetherial!

fluctuations in the early universe "vacuum" grow to all structure

all this can evolve from early U vacuum potential and vacuum noise in the presence of late U vacuum potential aetherial!

end

Saturday, November 21, 2009

reionization trajectories: expansions in modes, eigenmodes

can we detect an early reionization bump in Compton depth? yes with Planck, no with WMAP

test case: height, z-position, width

z-position

end

the "Seven Pillars"

CBI pol to Apr'05 @Chile		QUaD @SP	Quiet1 @Chile	Quiet2 1000 HEMTs
Boom03@LDB		Bicep @SP	Bicep2	Keck/Spud
WMAP @L2 to DASI @SP CAPMAP	2009-2013?	Planck09 (52 bolome + HEMTs 9 frequencie	9.4 eters) @L2 es	EBEX @LDB Spider 2312 bolos @LDB CHIP
2004	2006	2008	LHC	2011 Bpol
2005	2007	7	2009 BLAS	@L2 Fpol Clover @Chile Polarbear 300 bolos @Cal/Chile SPTpol

very early Uearly to middle to now Uvery late Uinflationstring theory/landscape/higher dimensionsdark energyVeff (ψ inf) ?reconstruct gradient Veff (ψ inf) ?Keff (ψ inf) ? K_{eff} (ψ inf) ? K_{eff} (ψ inf) ?Keff (ψ inf) ? $1-n_s \sim 2\varepsilon_s + 4\varsigma_s$ x.999 & $r \sim 16\varepsilon_s$ slow roll $\varepsilon_s = (dlnV/d\psi)^2/4 @a_{eq}$ 2 solutions: nearly uniform acceleration & small ζ_s $\varepsilon_s \sim -.03 + .26 - .30$

$$\epsilon_{s} \sim .017 + -.007; \epsilon_{s} < .025$$
 95% from r

low energy inflation with tiny $\boldsymbol{\epsilon}_{s}$

 $2\varsigma_s \sim .017 + - .007$

errors go to +-.0012 Planck+JDEM+DUNE

 $\varepsilon_{s} \sim -.03 + .26 - .30$ to +- .07 Planck+JDEM+DUNE ζ_{s} =+- 1.001 $d^{2}lnV/d\psi^{2}/4$ @a_{eq} $\zeta_{s} \sim 0.1 + .6 - .7$ to +.6-.7 Planck+JDEM+DUNE LCDM to +.3-.3 steep-ish exp[- ψ]

PRIMARY END @ 2012?

CMB ~2009+ Planck1+WMAP8+SPT/ACT/Quiet+Bicep/QuAD/Quiet +Spider+Clover

PRIMARY END @ 2012?

CMB ~2009+ Planck1+WMAP8+SPT/ACT/Quiet+Bicep/QuAD/Quiet +Spider+Clover

Saturday, November 21, 2009

Saturday, November 21, 2009

Nongaussianity from Preheating

http://www.youtube.com/watch?v=6Uczz-WBBjU

Preheating After Roulette Inflation

http://www.youtube.com/watch?v=FW__su-W-ck&NR=1

DEFROST: V = $\frac{1}{2}$ m² φ^2 + $\frac{1}{2}$ g² φ^2 ψ^2 : Density ρ

http://www.youtube.com/watch?v=3xySN-gcbxg&feature=related

DEFROST: V = $\frac{1}{2}$ m² φ^2 + $\frac{1}{2}$ g² φ^2 ψ^2 : Potential Ψ

http://www.youtube.com/watch?v=YahXIBEkXPQ&NR=1

DEFROST: $V = \frac{1}{2} m^2 \phi^2 + \frac{1}{2} \sigma \phi \psi^2 + \frac{1}{4} \lambda \psi^4$: Composite $\rho \& \Psi$ <u>http://www.youtube.com/watch?v=rBizdnSaBoA&feature=related</u>

Observables and conclusions $\Phi(x) = \Phi_G(x) + f_{NL} (\Phi_G^2(x) - \langle \Phi_G^2 \rangle)$

local quadratic non-G constraint: -9< fNL<111 \Rightarrow -4< fNL<80 WMAP5 (± 5-10 Planck1yr) $\Rightarrow \Phi(x) = \Phi_G(x) + F_{NL}(\chi_b) - F_{NL} >$ resonant preheating form

modulated curvature fluctuations from preheating are superimposed on the usual curvature fluctuations from the inflaton

the peak values have $\delta \ln a \sim I 0^{-5} \Rightarrow$ comparable to standard Gaussian

temperature fluctuations, but spiky $F_{NL} \Rightarrow$ non-Gaussian?

As long as $g^2/\lambda \leq O(1)$, the χ field has very long wavelength perturbations (similar to, but uncorrelated with, the inflaton field) Large Scale Structure statistics of spiky F_{NL} mapping: under investigation

Rich possibilities in theory space & on the sky

e.g., $F_{NL}(\chi) \sim \sum_{P} F_{P} \exp(-(\chi_{P}-\chi)^{2}/2\gamma_{P}^{2}) \Rightarrow \stackrel{\text{e.g., } < \mathbf{F}_{NL}|\chi_{LF} > \sim \beta_{\chi} \chi_{LF} + f_{\chi} \chi_{LF}^{2}}{\text{non-G \& rare spot non-G}}$

end

Saturday, November 21, 2009

Saturday, November 21, 2009

Constraining Trajectories of Dark Energy Inflatons

Inflation Now $\varepsilon_{\phi}(a) = \varepsilon_s f(a/a_{\Lambda eq}; a_s/a_{\Lambda eq}; \zeta_s)$

 $\epsilon_{\Phi} = -d \ln_{\Phi}/d \ln a /2 \sim 0$ now, to $\epsilon = -d \ln_{tot}/d \ln a /2 \sim 0$ to 2, 3/2, ~.4

cf. w(a): w0,wa; w in z-bands or z-modes; $\epsilon(a)$: in modes, jerk

~1 good e-fold. only ~2 params. priors matter

Inflation Then $\varepsilon(k)=(1+q)(a)$ = mode expansion in resolution (InHa ~ Ink) ~r/16 (Tensor/Scalar Power & gravity waves) ~ 10 good e-folds CMB+LSS Cosmic Probes Now CMB(Apr08), CFHTLS SN(Union 307),WL, LSS/BAO, Lya Cosmic Probes Then JDEM-SN + DUNE-WL + Planck1

Zhiqi Huang, Bond & Kofman 09 ε_s =-0.03+-0.28 now, inflaton (potential gradient)²

to +-0.07 then Planck1+JDEM SN+DUNE WL, weak $a_s < 0.36$ now <0.21 then

$$\begin{array}{l} \hline \textbf{3-parameter formula} \\ \vec{\phi} + 3H\dot{\phi} + V'(\phi) = 0 \\ + \text{Friedmann Eqn+DM+B} \\ \vec{\phi} = \begin{cases} \sin^{-1}\frac{\dot{\phi}}{\sqrt{2\rho_{\phi}}} \\ \sinh^{-1}\frac{\dot{\phi}}{\sqrt{2\rho_{\phi}}} \\ \sinh^{-1}\frac{\dot{\phi}}{\sqrt{2\rho_{\phi}}} \end{cases} \\ \hline \textbf{w}(a) = \\ \hline \textbf{accurate} \\ \hline \textbf{fits to} \\ \text{slow-to-moderate} \\ \text{roll \& even wild rising} \\ \text{barcque} \\ \textbf{late-inflaton} \\ \textbf{rajectories} \\ \textbf{rajectories} \\ \textbf{non-oscillating} \\ \hline \textbf{where} \end{cases} \\ \begin{array}{l} -1 + \frac{2\epsilon_s}{3} \{ \frac{(\frac{a_s}{a})^{3-3.6a_s|\epsilon_s|(1-\Omega_{m0})}}{\sqrt{1+\frac{\epsilon_s}{3|\epsilon_s|}(\frac{a_s}{a})^{6-7.2a_s|\epsilon_s|(1-\Omega_{m0})}} \frac{1}{\sqrt{|\epsilon_s|}} \\ +[\sqrt{1+(\frac{a_{eq}}{a})^3} - (\frac{a_{eq}}{a})^3 \ln((\frac{a}{a_{eq}})^{\frac{3}{2}} + \sqrt{1+(\frac{a}{a_{eq}})^3})](1-\zeta_s) \\ +[\sqrt{1+(\frac{a_{eq}}{a})^3} - (\frac{a_{eq}}{a})^3 \ln((\frac{a}{a_{eq}})^{\frac{3}{2}} + \sqrt{1+(\frac{a}{a_{eq}})^3})](1-\zeta_s) \\ +0.36\epsilon_s(1-\Omega_{m0})\frac{(\frac{a_{eq}}{a_{eq}})^2}{1+(\frac{a}{a_{eq}})^4} [0.9 - 0.7\frac{a}{a_{eq}} - 0.045(\frac{a}{a_{eq}})^2] \\ +\frac{2\zeta_s}{3} [\sqrt{1+(\frac{a}{a_{eq}})^3} - 2(\frac{a_{eq}}{a})^3(\sqrt{1+(\frac{a}{a_{e_{e}}})^3} - 1)] \}^2 \\ \frac{\sqrt{1+\frac{a_{eq}}{a_{eq}}}}{1-\frac{1-2}{2}} \\ \frac{\sqrt{1+\frac{a_{eq}}{a_{eq}}}}{1-\Omega_{m0}} \frac{1}{3^{[1-0.36\epsilon_s(1-\Omega_{m0})]}} \\ \frac{\sqrt{|\epsilon_V|}|}{\sqrt{|\epsilon_V|}|} = \sqrt{|\epsilon_s|} [1+\zeta_s((\frac{a}{a_{eq}})^{\frac{3}{2}} - 1)] - 1 < \zeta_s < 1 \\ \end{array}$$

"To me every hour of the light and dark is a miracle. Every cubic inch of space is a miracle." – Walt Whitman

In every cubic centimetre • cosmic radiation 412 cm⁻³ • dark matter ~amu m⁻³ ~ compressed in MW to ~0.1 amu Cm⁻³ for LHC-type DM, ~ 1 every 10 cm

- dark energy ~4 keV cm⁻³ ~(milli-eV)⁴
- neutrinos ~ CMB photons
- gravity waves
- virtual particles vacuum fluctuations
- vacuum potentials Higgs origin of mass
- extra dimensions here, now?

Ο_Λ (time,space) vacuum E Then (10⁻³⁷s) inflation Now (13.7 x 10⁹ yr) =dark energy mysteries in a landscape of different vacuua our ClfAR future: to the early & late Universe thru

Theory+Experiment (CMB+Lens+SN+clusters + LIGO,LISA,BBO for gravity waves + SNOIab,CERN,...,Planck,Fermi,... for dark matter)

ρ_λ (time,space) vacuum E Then (10⁻³⁷s) inflation Now (13.7 x 10⁹ yr) =dark energy mysteries in a landscape of different vacuua our ClfAR future: to the early & late Universe thru

Theory+Experiment (CMB+Lens+SN+clusters + LIGO,LISA,BBO for gravity waves + SNOIab,CERN,..,Planck,Fermi,.. for dark matter)

ρ_Λ (time,space) vacuum E Then (10-37s) inflation Now (13.7 x 10⁹ yr) =dark energy mysteries in a landscape of different vacuua our ClfAR future: to the early & late Universe thru

Theory+Experiment (CMB+Lens+SN+clusters + LIGO,LISA,BBO for gravity waves + SNOIab,CERN,...,Planck,Fermi,... for dark matter)

ρ_λ (time,space) vacuum E Then (10-37s) inflation Now (13.7 x 10⁹ yr) =dark energy mysteries in a landscape of different vacuua our ClfAR future: to the early & late Universe thru

Theory+Experiment (CMB+Lens+SN+clusters + LIGO,LISA,BBO for gravity waves + SNOIab,CERN,..,Planck,Fermi,.. for dark matter)

ρ_Λ (time,space) vacuum E Then (10-37s) inflation Now (13.7 x 10⁹ yr) =dark energy mysteries in a landscape of different vacuua our ClfAR future: to the early & late Universe thru

Theory+Experiment (CMB+Lens+SN+clusters + LIGO,LISA,BBO for gravity waves + SNOIab,CERN,...,Planck,Fermi,... for dark matter)

ρ_Λ(time,space) vacuum E Then (10-37s) inflation Now (13.7 x 10⁹ yr) =dark energy mysteries in a landscape of different vacuua our ClfAR future: to the early & late Universe thru

Theory+Experiment (CMB+Lens+SN+clusters + LIGO,LISA,BBO for gravity waves + SNOIab,CERN,..,Planck,Fermi,.. for dark matter)

Planck satellite, CMB all-sky, 9 frequencies, & polarization: B+ Nolta (SrRA), Netterfield (Prof), Marzieh Farhang (GS), Miville-Deschenes (SrRA), Peter Martin, Francine Marleau (CLTA) + Contaldi, MacTavish, Crill (ex-CITAzens) Early Universe non-Gaussianity: B+ Zhiqi Huang (GS), Kofman (Prof), Frolov ex-CITAzen probing CMB non-Gaussianity: B+ Zhiqi Huang (GS), Kofman (Prof), Nolta, Frolov **Cosmic Background Imager, CMB@ hi res:** B+ Sievers (SrRA) Acbar, CMB @ hi res: B+ Contaldi - completed Atacama Cosmology Telescope, CMB@very hi res: B+ Nolta, Sievers, Hajian (PDF) Clusters & Cosmic Web Gasdynamical Simulations, & the Intracluster Radio Web: B+ Nick Battaglia (GS), Pfrommer (SrRA), Sievers Spider, a balloon-borne CMB expt targetting primordial gravity waves and the **universe's ionization history:** B+ Netterfield, Farhang (GS) + Contaldi, MacTavish Boomerang (first high precision CMB expt): B+ Netterfield, Contaldi, MacTavish still papers GW and Inflation Trajectories: B+ Zhiqi Huang (GS), Kofman (Prof), Vaudrevange (ex-GS), Contaldi **Preheating in Stringy Roulette Inflation:** B+ Zhiqi Huang (GS), Neil Barnaby (PDF), Kofman Late-time Inflation Trajectories and Dark Energy: B+ Zhiqi Huang (GS), Kofman Chime, Baryon Acoustic Oscillations & Dark Energy: B+ Gojko Vujanovic (GS), Ue-Li Pen (Prof), ...

CMB Polarization, Past, Present & Future

Dick Bond Canadian Institute for Theoretical Astrophysics, University of Toronto

theory of CMB polarization

E/B modes

detection history

future CMB polarization experiments

reionization 'trajectories'

inflation & forecasts of the gravity wave level: is the energy scale of inflation high (80s/90s) or low (00s)?

the quest for gravity wave induced B-modes

Standard Parameters of Cosmic Structure Formation

$$\begin{array}{c} \theta \sim \ell_s^{-1} & \sim \ln \sigma_8^2 \\ \hline \Omega_k \ \Omega_b h^2 \ \Omega_{dm} h^2 \ \Omega_{\Lambda} & \hline \tau_c \ \ln A_s \ n_s \ r = A_t / A_s \\ \hline 1 + w_0, w_a & dn_s / dlnk \ n_t \\ \hline 1 + w_0, w_a & dn_s / dlnk \ n_t \\ \hline New Parameters of Cosmic Structure Formation: early-inflaton & late-inflaton trajectories \\ \hline q \neq 1 + w(a) \rangle_{3/2} \quad \epsilon(k), \ k \approx Ha \ \ln H(k_p) \\ \hline \epsilon_s f(a/a_{\Lambda eq}; a_s / a_{\Lambda eq}; \xi_s) \quad \ln P_s(k) \ \ln P_t(k) \end{array}$$

+ subdominant isocurvature/cosmic string/ tSZ ...

PRIMARY END @ 2012?

CMB ~2009+ Planck1+WMAP8+SPT/ACT/Quiet+Bicep/QuAD/Quiet +Spider+Clover

Saturday, November 21, 2009

Spider/Keck: best fsky for E/B-demixing via direct max-L filters for r τ test LDB flight: 2-6 days, 10.3 Alice Springs main LDB flight: 20-40 days, 11.9 Antarctica

Nt~2.5 Tbytes, Np~10 Mb

"The most beautiful thing we can experience is the mysterious. It is the source of all true art and all science. Those to whom this emotion is a stranger, who can no longer pause to wonder and stand rapt in awe, are as good as dead: their eyes are closed."

Albert Einstein

Beyond Einstein in the Final Frontier

"The most beautiful thing we can experience is the mysterious. It is the source of all true art and all science. Those to whom this emotion is a stranger, who can no longer pause to wonder and stand rapt in awe, are as good as dead: their eyes are closed."

Albert Einstein

Beyond Einstein in the Final Frontier

Beyond Einstein in the Final Frontier

