The Kinematics of Inflation, Preheating and Heating: a Playground for Kolmogorov-Sinai and Shannon Entropies

Dick Bond @ IAS18_5

what are the degrees of freedom / parameters of the ultra early Universe? TBD

Quantum Inflation - if quantum energy then quantum gravity (entangled) then gravitons Phonons *density fluctuations = Trace strain = spatial 3-volume fluctuations*

=> combined entropy-like measure ζ =inflaton

 $\zeta(x,t) = \int_{\text{field-path}} (dE+pdV)/3(E+pV) = \text{Trace } \delta \alpha'_j + \int_{\text{field-path}} \delta \ln \rho_c/3(1+w)$ Gravitons tensor perturbations transverse traceless strain $P_{GW} = r P_{\zeta}$ grail r < .07 now, to < .001Isocons when multiple particle-species - orthogonal scalar degrees of freedom to inflaton/phonon Dilatons 4-volume fluctuations - Higgs inflation $L_G(R)$ gravity - conformally-flatten potentials moduli, axions connection to particle physics models "fundamental scalars".. string theory fermions, vector gauge fields, Higgs Standard model of particle physics . vector perturbations

begin-inflate => inflate => end-inflate => preheat => non-equilibrium heat+entropy

=> Standard Model particle physics QG plasma radiation dominated

=> dark matter dominated *structure via gravitational instability* => dark energy now

fit into a UV-complete theory (ultra-high energy to the Planck scale) strings, landscape, .. & IR-complete theory (post-inflation heating -> quark/gluon plasma)??? TBD

TBD inflate => end-inflate => preheat => non-equilibrium heat+entropy via a |cg <=> fg> condensate/fluctuation framework, cf. quantum cold atom system? using coherent states (very overcomplete basis, but quantum optics, classicallike approach with hbar). includes Bogoliubov transformations for fluctuations as condensate evolves => particle creation in heating and inflating regime. Dick Bond @IAS18_05

ζ all cosmic structure from **entropy**!

linear (*bst1983*) =>nonlinear $\zeta(x,t) = \int_{\text{field-path}} (dE+pdV) / 3(E+pV) = \alpha_{|H|}$ coarse-grained horizon scale cf. fine-grained fluctuations volume deformation = isotropic strain

 $\ln \mathbf{V} / \langle \mathbf{V} \rangle |_{\mathbf{\rho}} = \ln \det \mathbf{A}^{i}_{j}(\mathbf{X}, \mathbf{t}) / \langle a \rangle |_{\mathbf{\rho}} = \operatorname{Trace} \delta \alpha_{c}^{i}_{j}(\mathbf{X}, \mathbf{t}) |_{\mathbf{\rho}}$

*ln*ρ(x,t)/ρ_c(x,t) phonon flucs *ln*ρ_c(x,t)/<ρ>|v /3(1+w) condensate

along coarse-grain trajectories $d\zeta = [dbar \zeta](fg - cg)$ (- $dbar \zeta](cg - fg)$)

regimes: 1. stochastic inflation non-adiabatic $[dbar \zeta](fg -> cg)$ gradient flow +stochastic jitter, simple Hamilton principle function S~H(ϕ_{cg})

2. ballistic phase adiabatic thru EoI, but caustics & Kolmogorov-Sinai entropy

3. shock-in-time, cg <=> fg, origin of almost all entropy S_{U,m+r} ~10^{88.6} cf. S_G ~10^{121.9} asymptotic DE

further S generation in early Universe: phase transitions, out-of-equilibrium decays? further dbar S: reionization epoch & beyond via nuclear/accretion, gravitational collapse **CIB** CMB/LSS observations give access to limited partial operator-paths in field-space aka kinematics => limited glimpse of a UV/IR complete theory aka dynamics. so far just through the ζ -fluctuation spectrum encoding the quantum diffusion of (longitudinal/inflaton) paths. Transverse field-motion aka isocons may influence $\mathcal{P}_{\zeta\zeta}(k)$ and ζ -nonG stochastic dynamical systems theory for kinematics of cg variables

coarse-grained stochastic inflation k~Ha resolution/dynamics relation $d\zeta(x,Ha) = [\mathcal{P}_{\zeta\zeta}(k)]^{1/2} [dlnHa]^{1/2}\eta_{GRD}(x,Ha)$ quantum fluctuations & no drift

order parameters from the ultra early U? so far $\zeta \approx GRF$, $\mathcal{P}_{\zeta\zeta}(k)$ 2 ζ -params

 ζ = an adiabatic invariant, conserved even with large field-strains to get nonG need to break adiabaticity => nonlinear fluctuations

Kinematics of Preheating:

BBFH are developing a **trajectory bundle evolution framework** for nonG in **post-inflation preheating** -> **heating**. field-space path deviations aka strains and their shear can characterize smoothed-bundle "ballistic" chaotic evolutions. arrested by nonlinear fluctuation-mode generation. **metric entropy (KS) in the ballistic phase** -> **Shannon entropy in the fluctuation-mode phase**. nonlinear multi-field classical coupled kinematics/dynamics using lattice simulations. via **symplectic defrost++ code + spectral code** => high accuracy to unveil small effects condensate evolves chaotically? => phase-transition-like melting into phonon+ modes, fast scramble of fundamental fields, evolution of statistically-simple energy-density phonons can one use coherent states to address this quantum mechanically? TBD

 $\zeta_{fi}(x,t)$ = Trace ($\alpha_f - \alpha_i$) + $\int_i^f d\ln \rho_c /\rho_i / 3(1+w)$

cf. $dS_{fi} = dS_{KSfi} - dT_{E_{fi}} = \delta S_{fi} (fg > cg) FokkerPlanck for Prob(\delta S_{fi} control)$ $\zeta_{NL}(x)$ from "isocon" degrees of freedom cf. $\zeta_{NL}(x)$ from inflaton

modulated heating, ballistic chaos, caustics, shock-in-time, modulators isocon $\chi(x)$, axionic-isocon(x) couplings g(x) super-horizon accessible complex field configs Oscillons, Stringy configurations, curvatons, ... Bubble Collisions

aside on LSS: late-time CDM-ish web ~strain web $\zeta_{fi}(x,t) = In \rho det A /3$

if cold DM **p**/**ρ~0 =>** ζ(**x**,*t* |*cdm*) *is* conserved (mass-energy an adiabatic flow)

before shell crossing (analogue of preheating) KS entropy in cool 2LPT dynamics then shock of shell crossing = Shannon entropy development = heat of CDM long adiabatic KS phase cf. should we call it chaotic - tho fits the definition? what is the inflaton+isocons potential?

CMB

ns, r

around a minimum is the HOT /heating question 2 filament?

4 filament 1/4 $\lambda \phi^4$ +1/2g² $\phi^2 \chi^2$

3-filament 5-filament

angles pNGB natural inflation, monodromy, ..

V B2FH, b+braden+frolov+huang **conformal potential-flattening eg Higgs inflation** SBB89 etc how was matter & entropy generated at the end of acceleration = inflation?

Relate to Higgs & standard model?

quartic inflaton V(ϕ, χ) = 1/4 $\lambda \phi^4$ + 1/2 g² $\phi^2 \chi^2$

log-normal pdf (density aka ζ), in k-bands too; normal pdf (velocity)

nearly Gaussian in In pl & in k-bands! B+Braden+Frolov nearly Gaussian in v

but Statistical Simplicity

box L=10m and N=1024³

FourierTransform(*In* density) PDF ~ log-normal after initial transient

B+Braden+Frolov

coherent inflaton => incoherent mode cascade of fields thru a shock-in-time to thermal equilibrium

 $s_{Ui} \sim 0$; $s_{Utot,m+r}/n_b \sim 1.66 \times 10^{10}$ bits/b; $s_{\gamma}/n_{\gamma} = 5.2$ bits/Y = 2130/411; $s_{\nu} = 21/22 s_{\gamma}$

nonG from large-scale modulations of the shock-in-times of preheating

 $V(\phi,\chi)=1/4 \lambda \phi^4 + 1/2 g^2 \phi^2 \chi^2$

nonG from large-scale modulations of the shock-in-times of preheating

 $\Delta S_{\phi+\chi} \sim 1/2 \sum_{k} ln \det \langle (\phi, \Pi_{\phi}, \chi, \Pi_{\chi}) (\phi, \Pi_{\phi}, \chi, \Pi_{\chi})^{\dagger} \rangle$

0.0

-25

A Shocking End to Post Inflation Mean Field Dynamics

Shock-in-space t = const $V_{bulk}^2 > C_s^2 \Rightarrow V_{bulk}^2 < C_s^2$

supersonic \Rightarrow subsonic

Characteristic spatial scale Jump Conditions: $\Delta T^{\mu\nu}$ **Randomizing** Shock Front: ΔS **Mediation**: width via viscosity or collisionless dynamics **post-shock evolution,** slow, of temperature, etc. coherent condensate breakup? Shock-in-time x = const (deviations for nonG) $<\rho>>\delta\rho \Rightarrow <\rho> <<\delta\rho$

Homogeneous \Rightarrow Fluctuations

Characteristic temporal scale Jump Conditions: $\Delta T^{\mu 0}$ **Randomizing** mode cascade & Particle Production: ΔS **Mediation**: width via gradients and nonlinearities

post-shock evolution, slow, of fluctuations
coherent condensate breakup E-phonon soup
a difference: chaotic lead in to shock

dS/dt(t,g) =>the Shock-in-time: entropy production rate**Shock**(χcg,eoi(X) g^2/λ)) => Chaotic Billiards: NonG from Parametric Resonance in Preheating
B+Frolov, Huang, Kofman 09

B+Braden, Frolov, Huang 18

 $V(\phi,\chi) = 1/4 \lambda \phi^4 + 1/2 g^2 \phi^2 \chi^2$

ζ conserved along trajectories until the "shock-in-time" when high **k** fluctuations (fine-grain) develop from coarse-grain, measure is $s_{Shannon} = -\ln \mathcal{P} \sqrt{g}$

but -Dln \mathcal{P} /dt = Trace d \mathcal{E} /dt does change ~ KS entropy (rate)

stretching of phase strings. begin with anisotropic Gaussian at EoI and watch it stretch, \mathcal{E} grows, rotates, locally OK as distorted ellipsoid, but strain depends upon the central value => phase tubes

B²FH understanding the ζ -spike structure, qualitatively YES quantitatively OK arresting chaotic orbits via a shock-in-time, incoherent cf. coherent (caustic) trajectory bundles

with spike, $\chi_{\rm ini} = 3.9 \times 10^{-7} M_p$

(nonlinear) V_{eff} is trajectory-bundle dependent

 $V(\phi,\chi)=1/4 \lambda \phi^4 + 1/2 g^2 \phi^2 \chi^2$

ballistic billiards k=0 mode phase space string evolution

2D constrained distribution functions

stopping criterion when coarse-grained entropy of field variables rises $\langle = \rangle$ strain \mathcal{E} high, *ie* when integral of the Kolomgorov-Sinai entropy reaches a threshold - very $\chi_{cg,eoi}$ dependent

V= 1/4 $\lambda \phi^4$ + 1/2 g² $\phi^2 \chi^2$

caustics in <q^> ballistic **orbits**

 $\langle \delta q^{A} Xt2 | \delta q^{B} Xti \rangle \sim \exp(\mathcal{E}(Xt2 | Xt1))^{A_{C}} \langle \delta q^{C} Xt1 | \delta q^{B} Xti \rangle$ early U parameters: final φ , Π_{φ} , χ , Π_{χ} , In a, In ρ , initial $\chi_{cg,eoi}$, couplings g, λ , ... parameter strain tensor in field space $\mathcal{E}^{A_{C}}(Xt2 | Xt1)$ deformation $e^{\mathcal{E}}$

 $d\epsilon_{\rm C}/dt$ strain rate ~local Lyapunov coefficients Floquet instability charts instability to have nearby parameters diverge => chaotic billiards Kolmogorov-Sinai entropy: ~ Sum of positive evalues of $d\epsilon/dt$

small $\mathbb{E}^{A_{A}}$ eigenvalues=> coherent trajectory bundles (for a time) = caustics (inverse -> ∞) 1/ [$\partial \alpha$ / $\partial \chi_{cg,eoi}$]; => peaks in ζ ($\chi_{cg,eoi}$) stopping time **tstop** ($\chi_{cg,eoi}$) when $\mathbb{E}^{A_{A}}$ evalues get large <=> local gradients \uparrow

cf. LargeScaleStructure: final Eulerian position <= initial Lagrangian position 1LPT aka Zeldovich: $\partial x/\partial r = \exp(\mathcal{E}) \rightarrow 0$ density $\rho \sim \exp(-Tr(\mathcal{E})) \rightarrow \infty$

phase space strings

2D constrained distribution functions

=> 3D constrained distribution functions

αχ B2FH, b+braden+frolov+huang

single field V heating slow, oscillating fine-grain fluctuations = S generation

> *longitudinal instability* KS yes but no LSS modulation a =

A visualized 2D slice in lattice simulation

www.youtube.com/watch?v=FW su-W-ck&NR=1

stochastic inflation Vilenken, Starobinski Salopek+B 90/91 Extend to inflation - gentle short-stretch chaos & nonG?

Stochastic inflation: insert a moving bipartite uniform k-boundary into the full field equations, cg/fg split at $k_c(t)$ ~lnHa => coarse-grain condensate + fine-grain quantum fluctuations

 $dq_c^A = V_c^A dT + K_v^A \sqrt{dT} \eta^{v}(GRD)$ via gradient expansion time T=InHa (breaks down at eoi, but best hypersurface for wave fronts) diffusion tensor $D^{AB}=(KK^+)^{AB}/2$

+ (linearized) fluctuation equations for q_f^A k-modes. slow X_c possible (constrained) Fokker-Planck equation for Shannon entropy $s(q) = -\ln \mathcal{P}(q) \sqrt{g}$

 $\partial s/\partial T + (V_c + V_D)^A \partial s/\partial q^A - \partial (V_c + V_D)^A /\partial q^A = 0 \text{ or } [ds/dT (fg -> cg)]$ $\sqrt{g} = \text{parameter-volume deformation}$

KS entropy rate ~Ds/dt ~ Trace shear (positive eigenvalue sum)

diffusion velocity $V_D^A = D^{AB} \partial s / \partial q^A$ & current $J_D^A = e^{-s} V_D^A$ trajectory divergence via shear = 1/2 Trace ln g = $\partial V^A / \partial q^B$

aside: momentum kicked off the attractor is quickly damp down to the attractor => attractor approx $V_c^A \sim \partial S(q_c^A)/\partial q_c^A$ for field momentum

back to preheating:

through eoi D^{AB} is small, ballistic $dq_c^A = V_c^A dT$ but chaotic if shear eigenvalues are positive (Kolmogorov-Sinai "entropy rate" >0) until nonlinear couplings (shock-in-time) often t scramble well-separated from t dissipation in the MSS sense examples: correlated perturbative nonG cf. uncorrelated nonG subdominant to inflaton zeta fNL spike chaotic billiards

trajectory approach to nonG post-inflation:

 $d < \zeta | \chi_{eoi} > = \text{Response}(\chi_{eoi}) d\chi_{eoi} \text{ aka } \mathcal{E}(\zeta | \chi_{eoi}) \text{ integrates to } < \zeta_{NL} | \chi_{eoi} >$

general: $<\zeta_{NL}|\chi_{eoi},g,...>(x)$ via marginalization over UV (to k~1 Mpc⁻¹) and constrain in IR k <H_0 for LSS/CMB applications complication/joy: ζ is conserved in the ballistic phase, sudden generation by fluctuation generation. but Trace shear is non-zero, the KS entropy => Shannon entropy story again

tools: fast lattice codes defrost++ and spectral code. very fast dynamical systems theory calculations of various potentials, with conformal parameters, modified kinetic pieces in Lagrangian **condensate/fluctuation framework**, classical-like approach with hbar + Bogoliubov transformations for fluctuations as condensate evolves => particle creation & fluctuation freeze-out into new condensate

stochastic inflation | $q_c : q_f >$ Langevin network evolution step: $q_c(X,T+dT) = q_c(X,T) V_c dT + \delta q_f$

condensate evolution step $|q_c(T+dT)\rangle = exp(V_cdT) exp(\delta q_f) |q_c(T)\rangle$ schematic $\delta q_f(x,T) = \sum_{k-band} (Q_k^*(x,T)a_k^T - Q_k(x,T)a_k)$ $V_cdT = V_c(x,T)dT(a_x^T - a_x)$

annihilation/creation operators in position and momentum $a_{x}, a_{x}^{T} a_{k}, a_{k}^{T}$

fluctuating part $|\mathbf{q}_{f}\rangle \sim \exp(\sum \delta \mathbf{q}_{f}) | \mathbf{0}\rangle a$ coherent state description? what is the relation to the usual $\mathbf{q}_{f,op} = \sum_{\mathbf{k}} (\mathbf{Q}_{\mathbf{k}}^{*}(\mathbf{x},T) a_{\mathbf{k}}^{T} + \mathbf{Q}_{\mathbf{k}}(\mathbf{x},T) a_{\mathbf{k}})$ operator linear in Bunch Davies vacuum operators $a_{\mathbf{k}}, a_{\mathbf{k}}^{T}$ (sign difference)

overcomplete basis representation, but conforms to a classical lattice simulation of inflation (no bipartite split). still stuck with the gradient expansion for $|q_c(T)>$. **& mixed operators V**_cdT and $\delta q_f(x,T)$ - can this approach work?

trajectory bundles & particle creation during inflation. fast instabilities eg transverse + nonlinearity or else ζ -conservation with no generation. eg in state enters "chaotic unstable V-region" leaves as out state

how generic will caustic preheating be? structure around potential minima: => 'filamentary' potentials => ballistic flow channels *multi-filaments may lead to caustics* 2 std inflaton, slow heating? roulette V is fast. 3-star 4 case workhorse. the 5-star... 'axionic' angles works with conformal flattening of V(ϕ_A) + cf. filaments that join at clusters in the LSS web gentler potential structure during inflation? role for instabilities

how modulated caustics in preheating could give observable intermittency

via isocon power on large & super-horizon scales =>light particles (Xeoi (x), couplings g(x), ...)

these isocons are active, NOT spectators

Primordial Non-Gaussianity in the Peak Patch method:

Intermittent Non-Gaussian case

Primordial Non-Gaussianity in CO

