

"The most beautiful thing we can experience is the mysterious. It is the source of all true art and all science. Those to whom this emotion is a stranger, who can no longer pause to wonder and stand rapt in awe, are as good as dead: their eyes are closed."

Albert Einstein

PYTHAGORAS ~ 550 BCE The THEORIST

- ✓ Cosmos The Universe as a Mathematical Entity
- ✓ Music of the Heavens Frequency/Wavelength

ROGER BACON ~ 1260 AD

MARRIAGE: of Experiment to Theory COPERNICUS/KEPLER/GALILEO et al. ~1600 AD

NEWTON ~ 1660 - 1690 AD The PHYSICIST

- ✓ LAW OF GRAVITATION Mass Attraction
- ✓ Heavenly Objects Arise via Clumping .. Gravitational Insta
- ✓ Thus: the Universe is Infinite

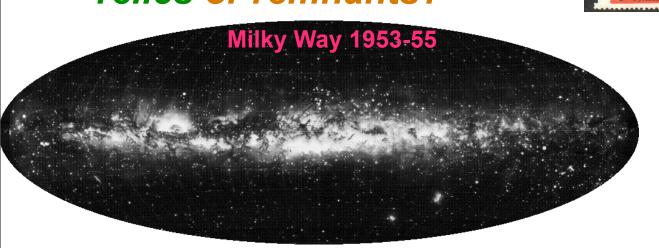
KANT ~ 1755 AD Galaxies - 'Island Universes'

Nilky Way 1953-55

large halo of dark matter 70s/80s relics or remnants?

ISAAC NEWT

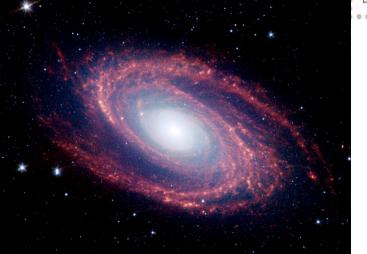
YES! (Early 20s)


Newton's Death Mask @ROE

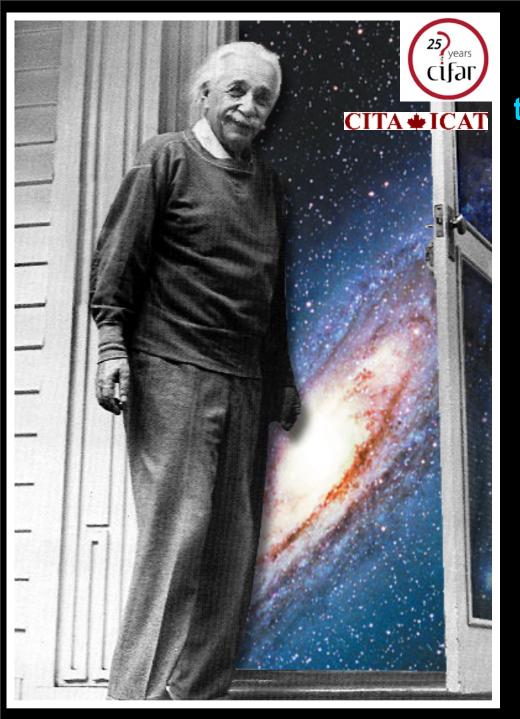
KANT ~ 1755 AD Galaxies - 'Island Universes'

YES! (Early 20s)

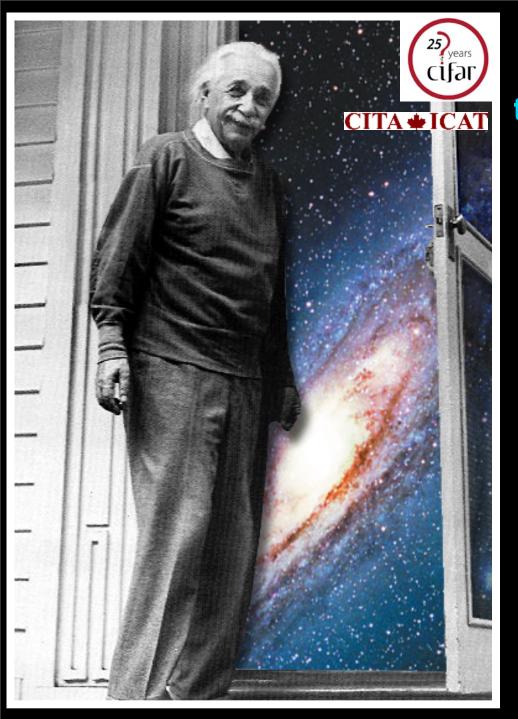
large halo of dark matter 70s/80s around galaxies; 30s around clusters. relics or remnants?

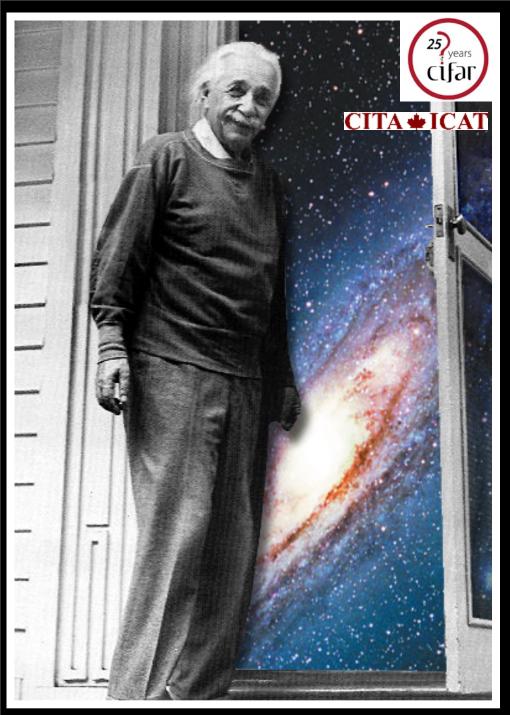


Sombrero Galaxy • MIO4

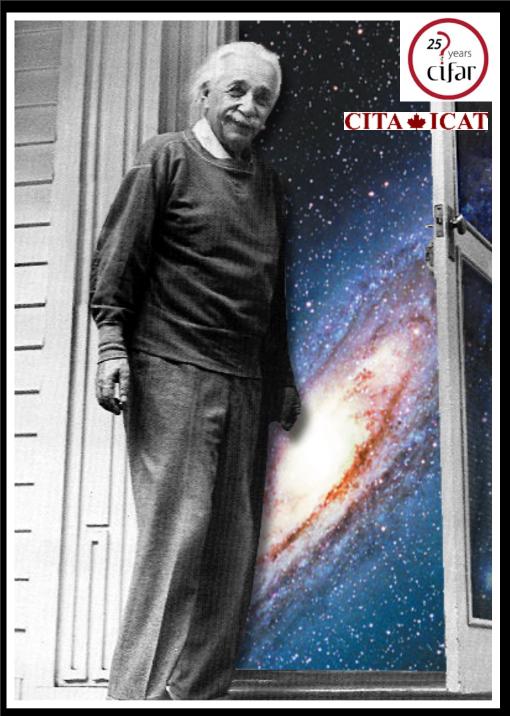

Herit

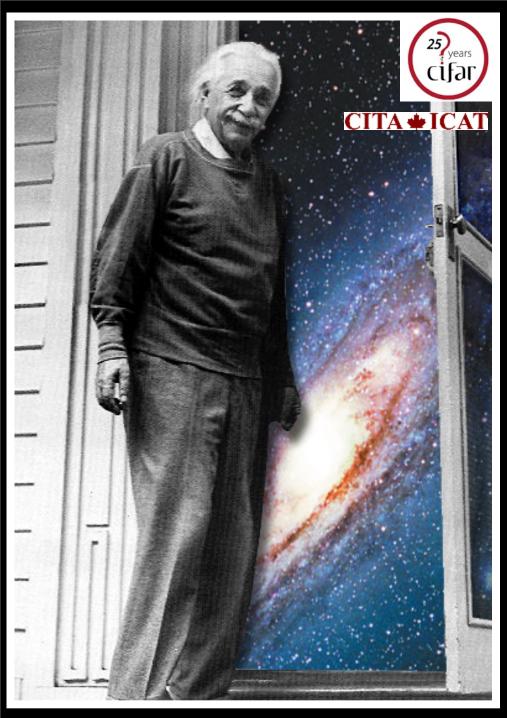
NASA and The Hubble Heritage Team (STScI/AURA) • Hubble Space Telescope ACS • STScI-PRC03-28




Beyond Einstein

the universe is comprehensible!!!


Gravity=Geometry=Mass-Energy


Beyond Einstein the universe is comprehensible!!! Gravity=Geometry=Mass-Energy cosmological constant 1917 1998/2007+: dark energy Ω_{Λ} (space, time)?

Beyond Einstein the universe is comprehensible!!! Gravity=Geometry=Mass-Energy cosmological constant 1917 1998/2007+: dark energy Ω_{Λ} (space, time)? 2_{dm} = dark matter (in labs?) $\Delta 2_{h}$ = ordinary matter (known)

Beyond Einstein the universe is comprehensible!!! Gravity=Geometry=Mass-Energy cosmological constant 1917 1998/2007+: dark energy Ω_{Λ} (space, time)? 2_{dm} = dark matter (in labs?) $S2_{h}$ = ordinary matter (known) **Gravitational waves – 1917**

Beyond Einstein the universe is comprehensible!!! Gravity=Geometry=Mass-Energy cosmological constant 1917 1998/2007+: dark energy Ω_{Λ} (space, time)? ^{2}dm = dark matter (in labs?) $S2_{h}$ = ordinary matter (known) **Gravitational waves – 1917** ripples in spacetime moving at the speed of light. we will "see" it from black holes $\Omega_{ m BH}$ & neutron stars ~2011, from the quantum early Universe ~2010? Ω_{CW}

✓ Finite universe without a boundary

Make the Universe Finite via A Repulsive Force "My greatest blunder"

- ✓ YES! Hubble (late 20s)
- ✓ the SINGULARITY (30s,60s), infinite density (!!!???)

✓ Finite universe without a boundary

 \checkmark "Cosmological Constant" (~ 1895)

Make the Universe Finite via A Repulsive Force "My greatest blunder"

- ✓ YES! Hubble (late 20s)
- ✓ the SINGULARITY (30s,60s), infinite density (!!!???)

✓ Finite universe without a boundary

 \checkmark "Cosmological Constant" (~ 1895)

Make the Universe Finite via A Repulsive Force "My greatest blunder" Ω_{Λ} = vacuum energy

Sakharov~67

- ✓ YES! Hubble (late 20s)
- ✓ the SINGULARITY (30s,60s), infinite density (!!!???)

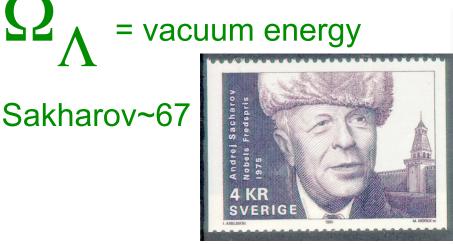
✓ Finite universe without a boundary

 \checkmark "Cosmological Constant" (~ 1895)

Make the Universe Finite via A Repulsive Force "My greatest blunder" $\Omega_{\Lambda} = vacuum energy$

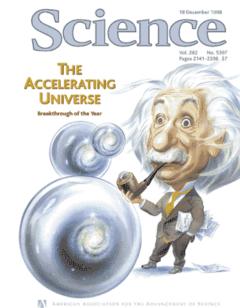
Sakharov~67

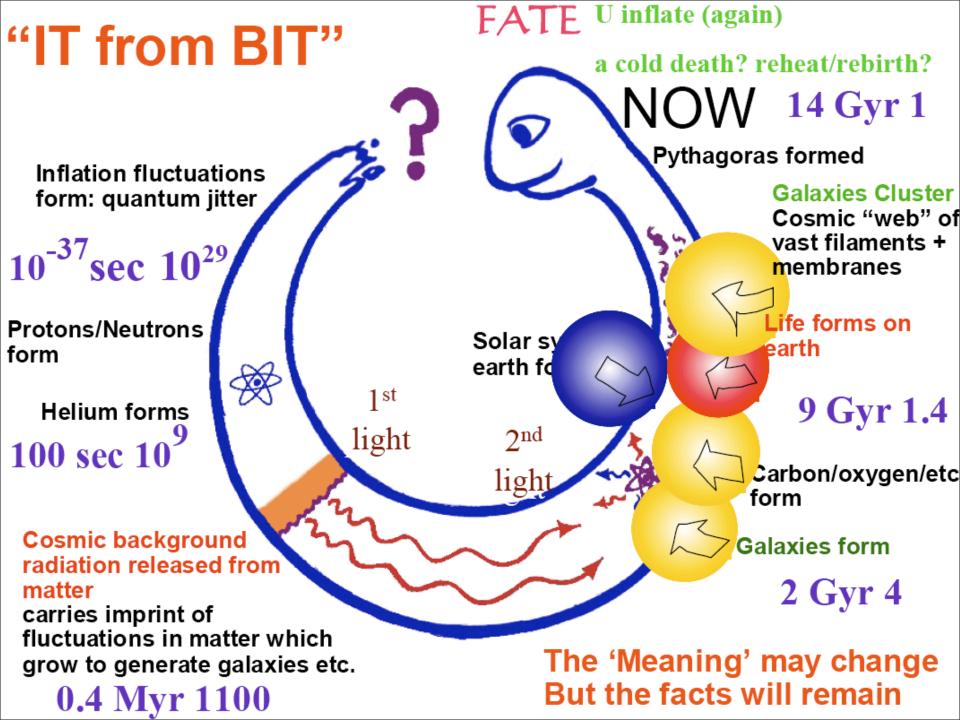
- ✓ YES! Hubble (late 20s)
- ✓ the SINGULARITY (30s,60s), infinite density (!!!???)



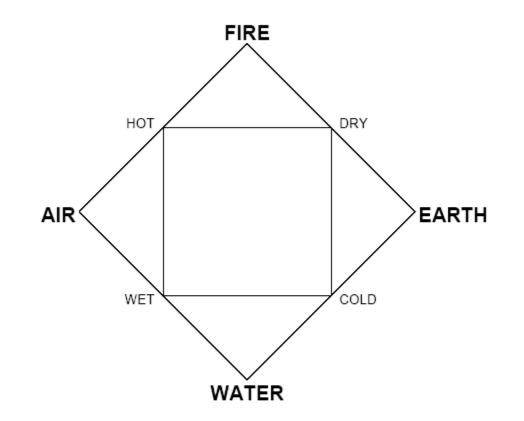
✓ Finite universe without a boundary

 \checkmark "Cosmological Constant" (~ 1895)


Make the Universe Finite via A Repulsive Force "My greatest blunder"


Sakharov~67

- ✓ YES! Hubble (late 20s)
- ✓ the SINGULARITY (30s,60s), infinite density (!!!???)

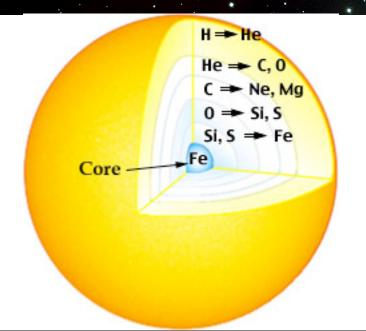


What is the Universe made of?

Chart of Plato and Aristotle (~400 BC)

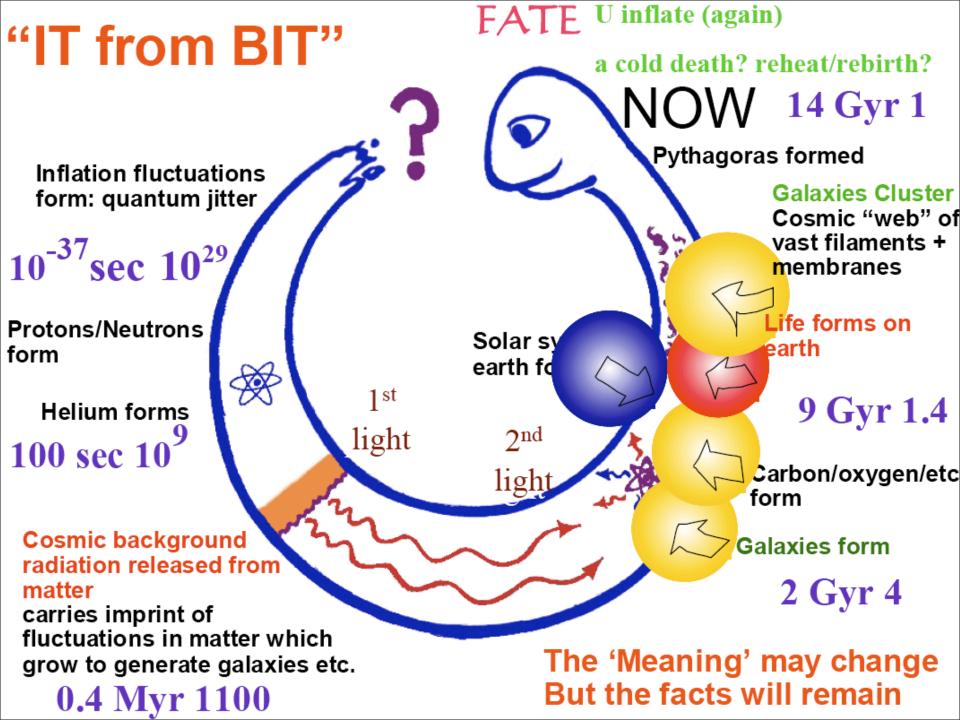
Relation of the four elements and the four qualities.

A fifth element was "ETHER" or material of the heavens.

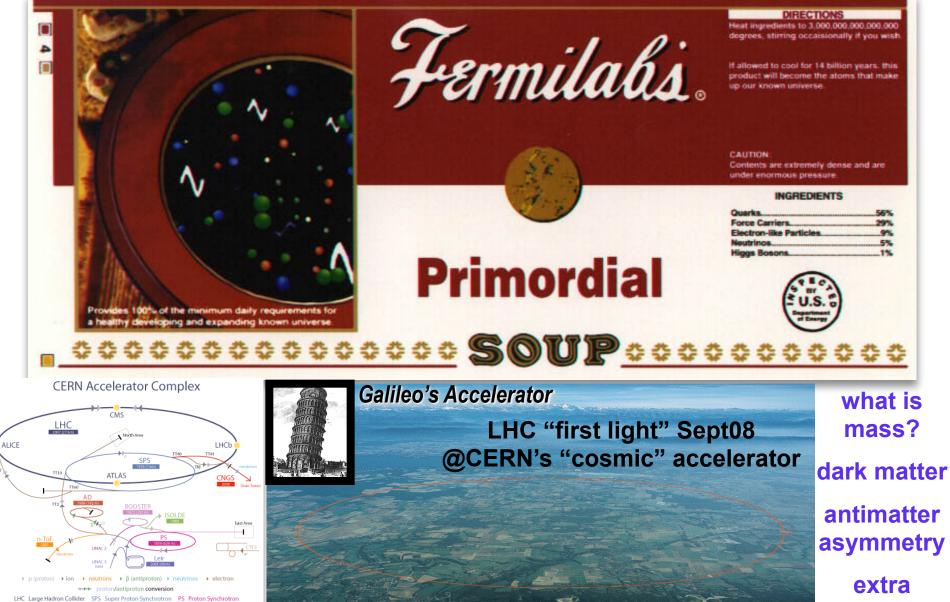

GAMOW (40s, early 50s) HOT BIG BANG Hydrogen (75%) & Helium (25%) Deuterium/Lithium from the first minutes ; Carbon, Oxygen, Iron,..from exploding stars 40s-80s

CTA 1967, Cambridge B²FH 57, WFH 67, sn

Crab 1054 AD SN + pulsar i.e. neutron star remnant



Nobel Prize 84 Willy Fowler + Chandra -sekhar Periodic Table for the *Table of Isotopes** (2001)

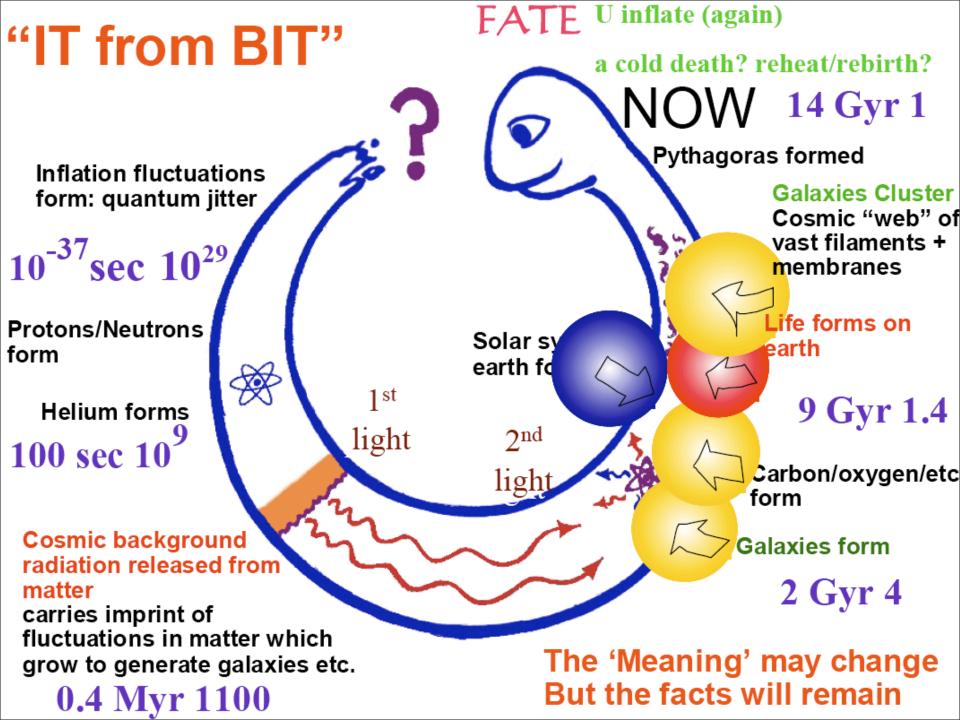

				101	Iouic	<i>i</i> at		n une	, 1 <i>u</i> 0	ie oj	150i	opes	(20	, or j				
1 (IA)										v		-					18 (VIIIA)	
Hydrogen ¹ H -259.34° H -259.87°																	² Ho -272.2°	
1 $\mathbf{H}_{1}^{-259.34^{\circ}}_{-252.87^{\circ}}_{-240.18^{\circ}}_{+1-1}$																	² He ₂ -268.93° -267.96°	
1.00794 91.0%	2 (IIA)			Group								13 (IIIA)	14 (IVA)	15 (VA)	16 (VIA)	7 (VIIA)	4.002602 8.9%	
Lithium	Beryllium			Element								Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon	
	Be ₄ ^{1287°} 2471°			L E MP.° M E CP.°								${}^{\frac{2}{3}}\mathbf{B}_{5}$ ${}^{\frac{2075^{\circ}}{4000^{\circ}}}$	${}^{2}_{4}$ C ₆ ${}^{4492t^{\circ}}_{3642s^{\circ}}$		² O ₈ -182.95° -118.56°	${}^{\frac{2}{7}}\mathbf{F}_{9}$ ${}^{\frac{-219.62^{\circ}}{-188.12^{\circ}}}_{-129.02^{\circ}}$	² / ₈ Ne ^{-248.59°} / ₁₀ -246.08° -228.7°	
+1 6.941	+2 9.012182			N Ox.States O At.Weight								+3 10.811	+2+4-4 12.0107	±1±2±3+4+5 14.00674	15.9994	-1 18.9984032	0 20.1797	
1.86×10 ⁻⁷ % Sodium	2.38×10 ⁻⁹ % Magnesium		L	Q Abundance%								6.9×10 ⁻⁸ %	0.033% Silicon	0.0102% Phosphorus	0.078% Sulfur	2.7×10 *% Chlorine	0.0112% Argon	
	$Mg_{12} \stackrel{1050^{\circ}}{_{1090^{\circ}}}$		K	ey to Tabl	e							2 445 330	${}^{2}_{4}Si_{14} {}^{1414^{\circ}}_{3265^{\circ}}$	${}^{2}_{5} \mathbf{P}_{15} {}^{44.19}_{280.3^{\circ}}_{721^{\circ}}$	² ⁸ S., ^{115,21°} ^{444,60°}	${}^{2}_{8}Cl_{17} \stackrel{-101.5^{\circ}}{}^{-34.04^{\circ}}_{143.8^{\circ}}$	² / ₈ Ar ^{-189,35°} / _{185,85°} ^{185,85°} / _{122,28°}	
+1 2	+2											+3	+2+4-4	+3+5-3	+4+6-2	+1+5+7-1	8 10-122.28° 0 39.948	
22.989770 0.000187%	0.0035076	3 (IIIB)	4 (IVB)	5 (VB)	1 P	4 P	7	9 (VIII)	4		12 (IIB)	26.981538 0.000277%	28.0855 0.00326%	30.973761 0.000034%	32.066 0.00168%	35.4527 0.000017%	0.000329%	
Potassium ² K 63.38° 2	Calcium	$scandium \frac{2}{8}Sc_{21}^{1541^{\circ}}$	Titanium	Vanadium ² V ^{1910°}	Chromium ² Cr ^{1907°}	Manganese	² Fo 1538°	Cobalt 2 Co 1495°	Nickel ² / ₈ Ni ₂₈ ^{1455°} ² / ₁₆ Ni ₂₈ ^{2913°}	2 Cu 1084.62°	² 7 n ^{419.53°}	Callium ${}^{2}Ca {}^{29.76^{\circ}}$	Germanium	Arsenic Arsenic Arsenic	Selenium	Bromine	2 Krypton 2 Krypton	
${}^{2}_{8}$ K ₁₉ ${}^{63.38^{\circ}}_{759^{\circ}}$ ${}^{2}_{8}$ 1 +1 2	Ca ₂₀ 1484°	§ SC ₂₁ 2836° 2 +3	${}^{\frac{2}{8}}_{10}Ti_{22}$ ${}^{\frac{1668^{\circ}}{3287^{\circ}}}_{2 +2+3+4}$	${}^{\frac{8}{11}}_{2} V_{23} {}^{3407^{\circ}}_{2}$	${}^{\frac{2}{8}}_{13}Cr_{24}$ ${}^{\frac{1907^{\circ}}{2671^{\circ}}}_{1}$ ${}^{\frac{1}{1}}_{+2+3+6}$	${}^{\frac{2}{8}}_{\frac{13}{2}}$ Mn ₂₅ ${}^{\frac{1246^{\circ}}{2061^{\circ}}}_{\frac{13}{2}}$	² / ₁₄ Fe ₂₆ ^{1538°} / _{2861°}	² ⁵ ¹⁵ ² ² +2+3	2 +2+3	${}^{2}_{18}Cu_{29}^{1064.62^{\circ}}_{2562^{\circ}}_{1}_{1}_{+1+2}$	${}^{\frac{2}{8}}_{18}Zn_{30}^{419.53^{\circ}}_{907^{\circ}}$	⁸ Ga ₃₁ 2204° 3 +3	⁸ Ge ₃₂ 2833° 4 +2+4	⁸ ₁₈ AS ₃₃ ^{614t°} ¹⁹ ^{1400°} ⁵ ⁺³⁺⁵⁻³	6 +4+6-2	${}^{2}_{8}\mathbf{Br}_{35}$ ${}^{-7.2^{\circ}}_{315^{\circ}}$ ${}^{7}_{+1+5-1}$	² ⁸ ¹⁸ ¹⁰ ^{153.22°} ^{153.22°} ^{153.24°} ^{63.74°}	
39.0983 0.0000123%	40.078 0.000199%	44.955910 1.12×10 ⁻⁷ %	47.867 7.8×10 ⁻⁶ %	50.9415 9.6×10 ⁻⁷ %	51.9961 0.000044%	54.938049 0.000031%	55.845 0.00294%	58.933200 7.3×10 %	58.6934 0.000161%	63.546 1.70×10 ⁻⁶ %	65.39 4.11×10 ⁻⁶ %	69.723 1.23×10 ⁻⁷ %	72.61 3.9×10 ⁻⁷ %	74.92160 2.1×10 ⁸ %	78.96 2.03×10 ⁻⁷ %	79.904 3.8×10 ⁻⁸ %	83.80 1.5×10 ⁻⁷ %	
	Strontium	Yttrium	Zirconium	Niobium 2477º	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin 231 939	Antimony	Tellurium	Iodine	Xenon	
$^{2}_{18}^{2}$ Rb ₃₇ $^{39.31^{\circ}}_{688^{\circ}}$ $^{2}_{18}^{8}$	Sr ₃₈ 1382° +2	8 Y ₃₉ 3345° 9 +3	${}^{2}_{18}\mathbf{Zr}_{40}$ ${}^{1855^{\circ}}_{4409^{\circ}}$	${}^{2}_{8}Nb_{41}$ ${}^{2477^{\circ}}_{4744^{\circ}}$ ${}^{18}_{12}$ ${}^{+3+5}$	${}^{2}_{18}Mo_{42} {}^{2623^{\circ}}_{4639^{\circ}}_{13}$	⁵ / ₁₈ Tc ₄₃ ^{215/°} / _{4265°} ¹⁸ / ₁₃ +4+6+7	² 8 18 15 +3 2354° 4150°	${}^{2}_{8}\mathbf{Rh}_{45} {}^{1964^{\circ}}_{3695^{\circ}}$	² ₈ Pd ₄₆ ^{1554,9°} _{2963°}	⁸ Ag ₄₇ ²¹⁶² ¹⁸ ¹⁸ ⁺¹	² ₈ Cd ₄₈ ^{321.07°} ¹⁸ ₁₈ ⁺²	s In ₄₉ 2072°	² ₈ Sn ₅₀ ^{251,95} ^{2602°}	${}^{2}_{18}$ Sb ₅₁ ${}^{630.63^{\circ}}_{1587^{\circ}}$ ${}^{18}_{18}$ ${}^{+3+5\cdot3}$	${}^{2}_{8}Te_{52} {}^{968^{\circ}}_{988^{\circ}}$	${}^{\hat{8}}_{8}$ ${\rm I}_{53}$ ${}^{\hat{184.4}\circ}_{546^{\circ}}$ ${}^{\hat{8}}_{8}$ ${}^{+1+5+7\cdot1}$	${}^{2}_{\substack{8\\18\\18\\18\\0}}$ ${}^{-111.75^{\circ}}_{108.04^{\circ}}$	
8 +1 8 1 85.4678 2 2.31×10 ⁻⁸ %	87.62 7.7×10 ⁻⁸ %	² 88.90585	¹⁰ ⁷⁴ 2 91.224 3.72×10 ⁻⁸ %	¹² 92.90638 2.28×10- ⁹ %	1 95.94 8.3×10-%	¹³ +4+6+7 ² [98]	1 101.07	1 102.90550	18 +2+4 0 106.42	¹⁰ ¹ 107.8682 1.58×10 ⁻⁹ %	² 112.411	¹⁸ +3 ³ 114.818 6.0×10 ⁻¹⁰ %	18 +2+4 4 118.710	⁵ 121.760	⁶ 127.60	7 126.90447	¹⁰ 131.29	
Cesium	Barium	1.51×10*%	Hafnium	Tantalum	Tungsten	Rhenium	6.1×10-% Osmium	1.12×10-%	4.5×10 ⁻⁹ % Platinum	Gold	5.3×10 % Mercury	Thallium	1.25×10 ⁻⁸ % Lead	1.01×10 ⁻⁹ % Bismuth	1.57×10 ⁻⁸ % Polonium	2.9×10 ⁻⁹ % Astatine	1.5×10 ⁻⁸ % Radon	
$^{2}_{18}Cs_{55}$ $^{28.44^{\circ}}_{671^{\circ}}$ $^{2}_{18}_{18}$	Ba ₅₆ 1897°	${}^{2}_{8}\mathbf{La}_{57}^{\dagger}{}^{918^{\circ}}_{3464^{\circ}}$	${}^{2}_{18}\mathbf{Hf}_{72}$ ${}^{2233^{\circ}}_{4603^{\circ}}$	${}^{2}_{18}$ Ta ₇₃ ${}^{3017^{\circ}}_{5458^{\circ}}$	${}^{2}_{18}$ W ₇₄ ${}^{3422^{\circ}}_{5555^{\circ}}$	$^{2}_{18}$ Re ₇₅ $^{3186^{\circ}}_{5596^{\circ}}$	² ₁₈ Os ₇₆ ^{3033°} _{5012°}	${}^{2}_{18}$ Ir ₇₇ ${}^{2446^{\circ}}_{4428^{\circ}}$	${}^{2}_{18}\mathbf{Pt}_{78} {}^{1768,4^{\circ}}_{3825^{\circ}}$	${}^{2}_{18}\mathrm{Au}_{79}^{1064.18^{\circ}}_{2856^{\circ}}$	${}^{2}_{18}\mathbf{Hg}_{80}{}^{-38.83^{\circ}}_{1477^{\circ}}$	${}^{2}_{18}Tl_{81}$ ${}^{304^{\circ}}_{1473^{\circ}}$	${}^{2}_{18} \mathbf{Pb}_{82} {}^{327.46^{\circ}}_{1749^{\circ}}$	${}^{2}_{18}{\mathbf{Bi}_{83}}$ ${}^{271.40^{\circ}}_{1564^{\circ}}$	² ₁₈ Po ₈₄ ^{254°} / _{962°}	${}^{2}_{8}At_{85}$ ${}^{302^{\circ}}$	${}^{2}_{18}\mathbf{Rn}_{86} - {}^{-71^{\circ}}_{104^{\circ}}$	
18 +1 18 1 132.90545 2	+2 137.327	18 +3 5 138.9055	32 +4 10 178.49	32 +5 11 180.9479	³² +6 ¹² 183.84	32 +4+6+7 13 186.207	32 +3+4 14 190.23	32 +3+4 15 192.217	32 +2+4 16 195.078	32 +1+3 18 196.96655	32 +1+2 18 200.59	32 +1+3 18 204.3833	32 +2+4 18 207.2	32 +3+5 18 208.98038	32 +2+4 3	2 8 7 [210]	32 0 18 [222]	
1.21×10 ⁻⁹ %	1.46×10 ⁻⁸ % Radium	1.45×10-9%	5.02×10 ⁻¹⁰ % Rutherfordium	6.75×10 ⁻¹¹ % Dubnium	4.34×10 ⁻¹⁰ % Seaborgium	1.69×10 ⁻¹⁰ % Bohrium	2.20×10 %	2.16×10 ⁻⁹ % Meitnerium	4.4×10 ⁻⁹ % Element-110	6.1×10 ⁻¹⁰ %	1.11×10 ⁻⁹ % Element -112	6.0×10 ⁻¹⁰ %	1.03×10 ⁻⁸ %	4.7×10 ⁻¹⁰ %				
		${}^{\frac{2}{8}}Ac_{89}^{\ddagger 1051^{\circ}}$		${}^{\frac{2}{8}}\mathbf{Db}_{105}$	${}^{\frac{2}{8}}Sg_{106}$	² / ₈ Bh ₁₀₇	² ₁₈ H s ₁₀₈	$^{2}_{18}Mt_{109}$	² / ₈ 110 ₁₁₀	$\frac{2}{10}$	$\frac{2}{8}112_{112}$							
18 57 18 32 +1 32 18 [223] 18 8 [223] 18	+2 [226]	8	12 +4	18 165 32 32 11 [262]	32	18 107 32 32 [264]	18 105 32 32 14 [269]	18 109 32 32 15 [268]	18 110 32 32 32 [271]	18 111 32 32 17 [272]	32							
8 [225] 8 1 2	[220]	9 [227] 2	10 [201] 2	11 [202] 2	12 [200] 2	13 [204] 2	14 [209] 2	15 [200] 2	16 [271] 2	17 [272] 2	⁵² 18 2 2 2 2 777]							
		Cerium	Praseodymium	Nondersteinen	Promethium	Samarium	Europium	Gadolinium	Terbium	Duransasium	Holmium	Erbium	Thulium	Ytterbium	Lutetium			
		² / ₈ Ce ₅₈ ^{798°} / _{3443°}	² ² ⁸ Pr. . ^{931°} ^{3520°}	${}^{2}_{8}Nd_{60} {}^{1021^{\circ}}_{3074^{\circ}}$	${}^{2}_{18}\mathbf{Pm}_{61} {}^{1042^{\circ}}_{3000^{\circ}}$	${}^{2}_{18}Sm_{62}$ ${}^{1074^{\circ}}_{1794^{\circ}}$	${}^{2}_{18}Eu_{63}$ ${}^{822}_{1596}$	${}^{2}_{18}$ Gd ₆₄ ${}^{1313^{\circ}}_{3273^{\circ}}$	${}^{2}_{18}\text{Tb}_{65} {}^{1356^{\circ}}_{3230^{\circ}}$	${}^{2}_{18}Dy_{66}{}^{1412^{\circ}}_{2567^{\circ}}$	² ₁₈ Ho ₆₇ ^{1474°} ^{2700°}	$^{2}_{18}\mathrm{Er}_{68}^{1529^{\circ}}$, ² / ₈ Tm ₆₀ ^{1545°} ^{1950°}		$^{2}_{18}Lu_{71}$ $^{1663^{\circ}}_{3402^{\circ}}$			
† Lantha	nides	19 +3+4	18 59 21 +3 8 140 00755	22 +3	23 +3	24 +2+3	25 +2+3	25 +3	27 +3	28 +3	29 +3	30 +3	31 +3	32 +2+3	32 +3			
		⁹ 140.116 3.70×10 ⁻⁹ %	⁸ 140.90765 5.44×10 ⁻¹⁰ %	⁸ 144.24 2.70×10 ⁻⁹ %	2 [145]	⁸ 150.36 8.42×10 ⁻¹⁰ %	⁸ 2 151.964 3.17×10 ⁻¹⁰ %	⁹ 157.25 1.076×10 ⁻⁹ %	⁸ 158.92534 1.97×10 ⁻¹⁰ %	² 162.50 1.286×10 ⁻⁹ %	² 164.93032 2.90×10 ⁻¹⁰ %	² 167.26 8.18×10 ⁻¹⁰ %	² 168.93421 1.23×10 ⁻¹⁰ %	⁸ 173.04 8.08×10 ⁻¹⁰ %	⁹ 174.967 1.197×10 ⁻¹⁰ %			
		Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium			
			² ₈ Pa., ^{1572°}	² U., ^{1135°} ⁸ U., ^{4131°}		${}^{\frac{2}{8}}\mathbf{Pu}_{94}$ ${}^{\frac{640^{\circ}}{3228^{\circ}}}$	${}^{2}_{18}\mathbf{Am}_{95}{}^{1176^{\circ}}_{2011^{\circ}}$	² ₁₈ Cm ₉₆ ^{1345°}	² ₁₈ Bk ₉₇ ^{1050°}	² ₁₈ Cf ₉₈ 900°	² ₈ Es ₉₉ ^{860°}	${}^{2}_{18}\mathbf{Fm}_{100}^{1527^{\circ}}$	${}^{\frac{2}{8}}_{18}\mathbf{Md}_{101}^{827^{\circ}}$	² / ₈ No ₁₀₂ ^{827°}	² ₈ Lr ₁₀ , ^{1627°}			
‡ Acti			${}^{2}_{9} \mathbf{Pa}_{91}$ ${}^{1572^{\circ}}_{32}$ ${}^{1572^{\circ}}_{32}$ ${}^{1572^{\circ}}_{32}$ ${}^{1572^{\circ}}_{32}$ ${}^{1572^{\circ}}_{32}$	18 92 111 32 +3+4+5+6 21 238.0289 2 2.94×10 ⁻¹¹ %	² 8 Np ₉₃ ³² +3+4+5+6 ²² [237]	18 94 32 +3+4+5+6 24 [244]	18 95 32 +3+4+5+6 25 [243]	18 96 32 +3 25 [247]	18 9/ 32 +3+4 27 [247]	18 98 32 +3 28 [251]	18 99 32 +3 29 [252]	18 100 32 +3 30 [257]	18 101 32 +2+3 31 [258]	18 102 32 +2+3 32 [259]	$\frac{18}{32}$ +3 $\frac{32}{9}$ [262]			
-	1	22 +4 18 232.0381 2 1.09×10 ⁻¹⁰ %	9 251.05588 2	2 2.94×10 ⁻¹¹ %	9 [257] 2	8 [244] 2	8 [2+5] 2	9 [247] 2	8 [247] 2	8 [251] 2	8 [252] 2	8 [257] 2	8 [236] 2	8 [2.59] 2	9 [202] 2			

cosmic baryon number $\mathbf{n}_{\mathbf{b}}=0.261 + .005 / m^3$

from the latest data: wmap5+acbar+cbi+b03+.+WL+LSS+SNI+Lya

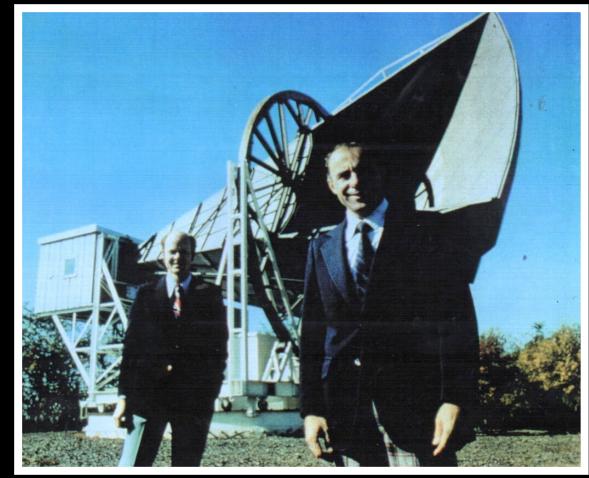
extra-"ordinary" matter

AD Antiproton Decelerator CTF3 Clic Test Facility CNGS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Fligh dimensions


A Simulated Higgs Event in CMS: LHC

'Supersymmetric' particles ? Is Dark Matter this

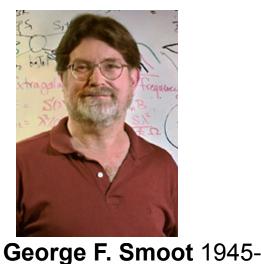
If Dark Matter interacts with ordinary matter by more than gravity, we may "see" it at the Large Hadronic Collider 2008+ or at SNOIab 2008+ in Sudbury


A Simulated Higgs Event in CMS: LHC

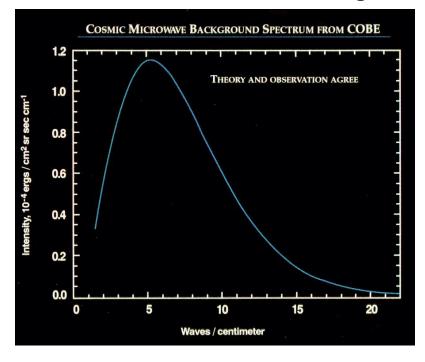
'Supersymmetric' particles ? Is Dark Matter this

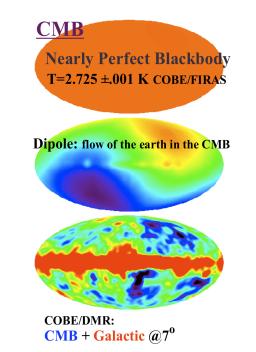
The Universe Is Radiant

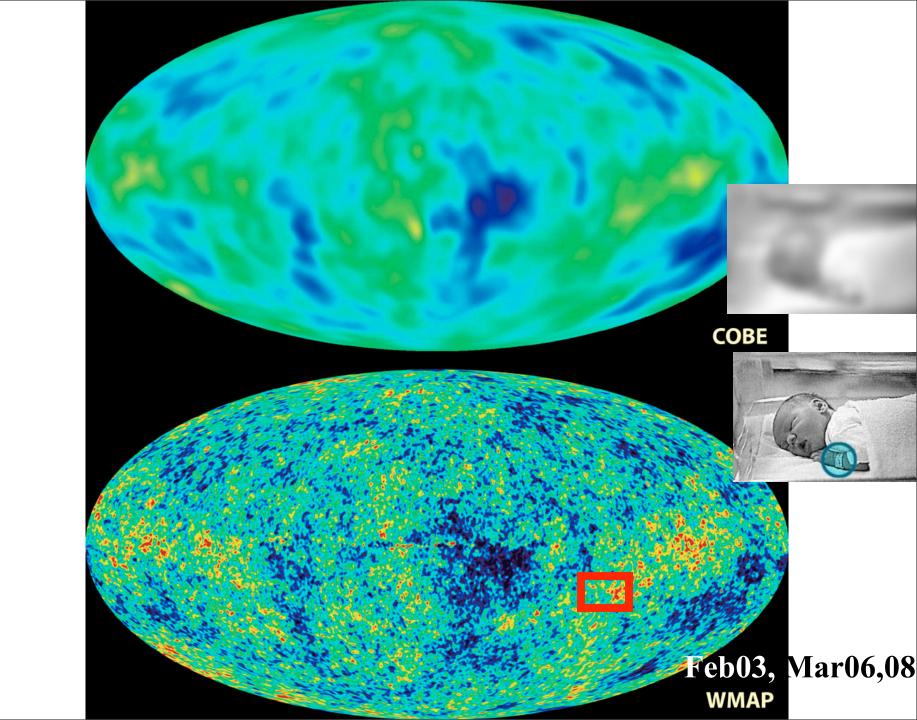
Arno Penzias Robert Wilson 1965

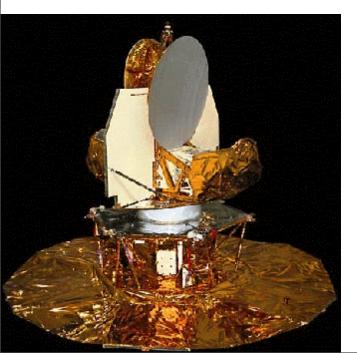


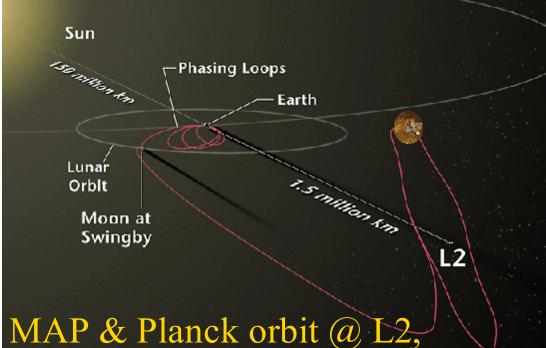
The Nobel Prize in Physics 2006 (also Gruber Prize in Cosmology 2006 for Mather + the COBE team)


"for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation"



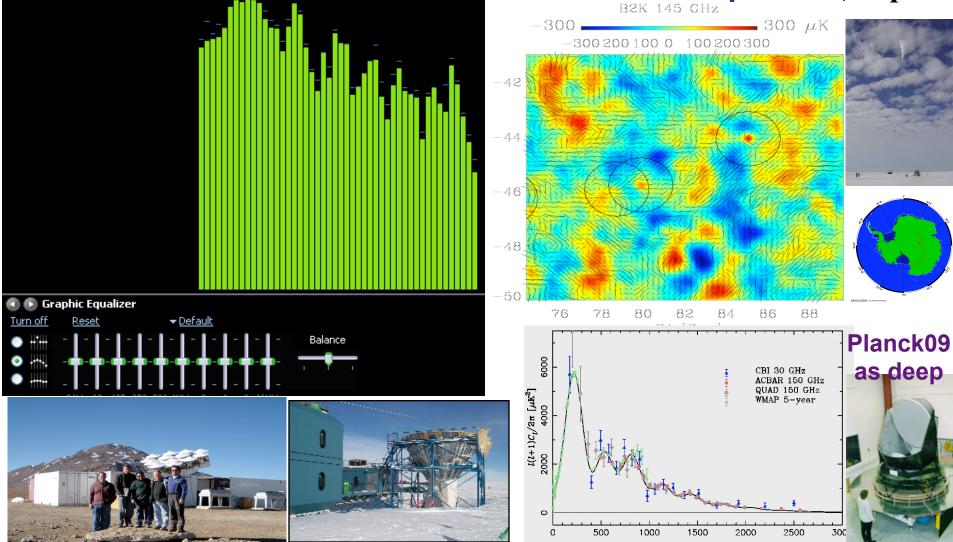

John C. Mather 1946-





Nasa's WMAP satellite @ L2: launch 2001.5, 1yr data 2003.2, 3yr 2006.3, 5yr 2008.3, funded for 9 years

Planck satellite @ L2: launch 2009.2 ESA+NASA+ Cdn Space Agency

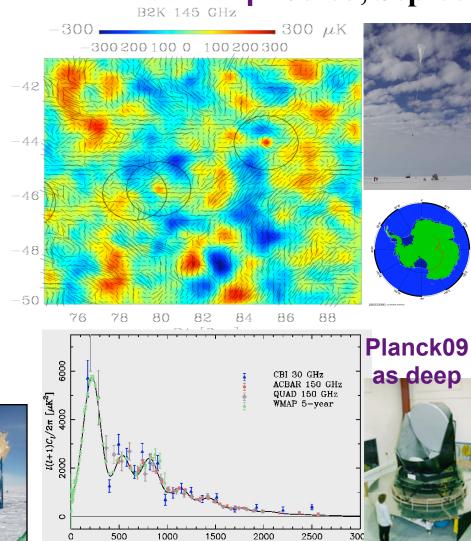


the 2nd earth-sun Lagrange point

13.65 -0.00038 billion years ago

Boom05 deep Jul05, Sept08

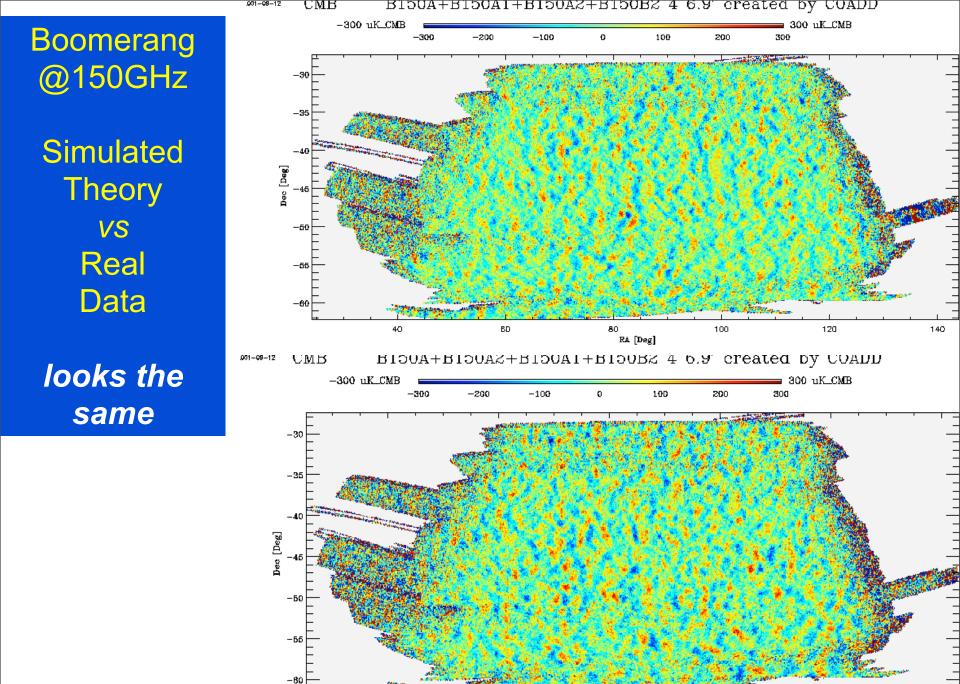
WMAP 2003


Canadian Institute for Theoretical Astrophysics

ICAT L'institut canadien d'astrophysique theorique

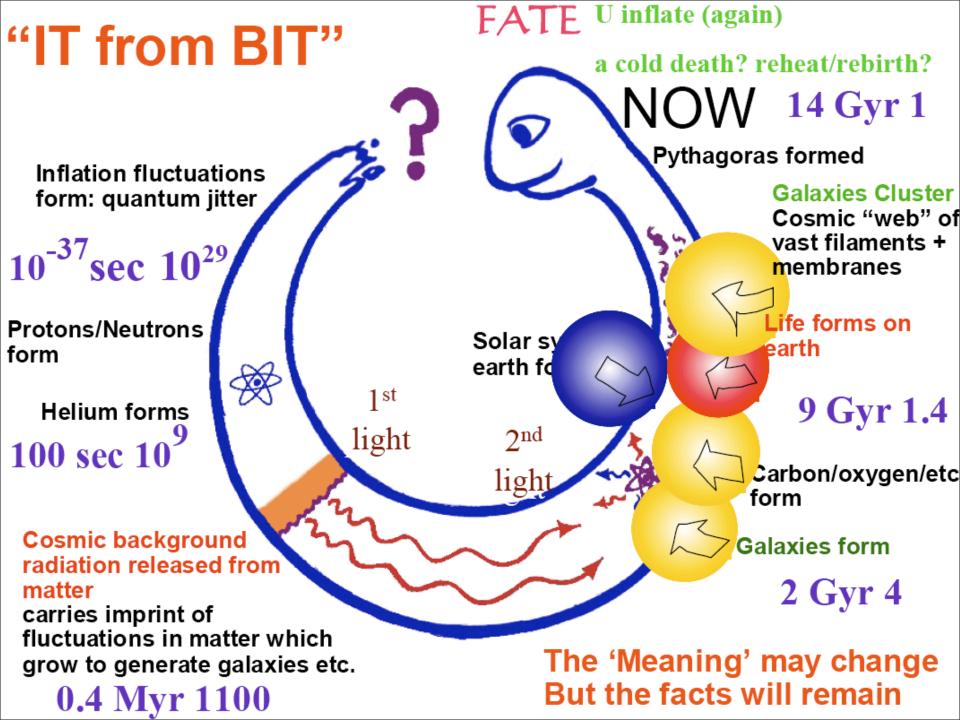
13.65 -0.00038 billion years ago

Boom05 deep Jul05, Sept08



Canadian Institute for Theoretical Astrophysics

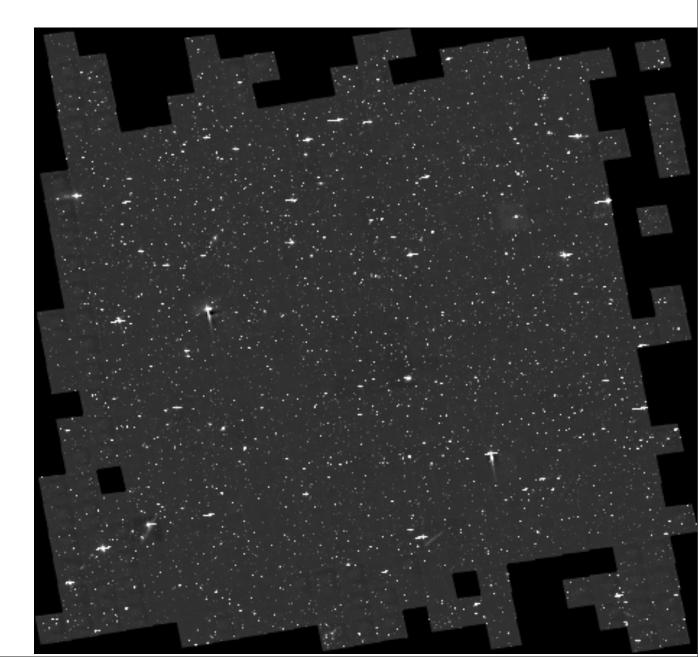
L'institut canadien d'astrophysique theorique


ICA

WMAP 2003

D

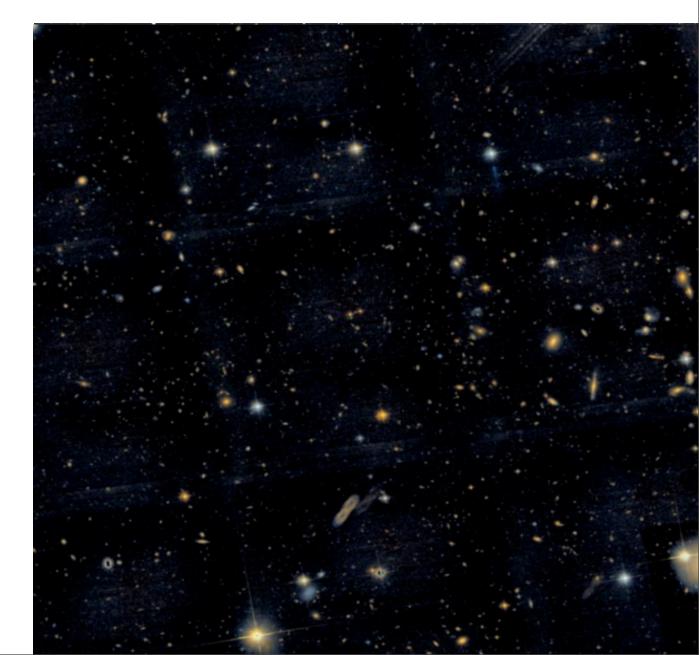
DA [Dec]



Hubble "Cosmic Evolution Survey"

2 deg² Hubble Space Telescope data (largest ever Hubble program)
> 2 million faint galaxies with measurable shapes

& Beyond Hubble: JWST (+TMT+)



Hubble "Cosmic Evolution Survey"

2 deg² Hubble Space Telescope data (largest ever Hubble program)
> 2 million faint galaxies with measurable shapes

& Beyond Hubble: JWST (+TMT+)

a starless "dark age" before the most distant galaxies

Cluster Lens Locates

~13.4 billion years since Big Bang

z=0

Farthest Known Object

dwarflets & the 1st stars

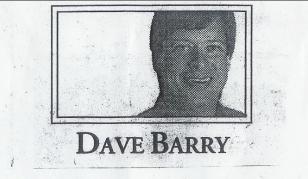
form at compression 13

1st light: Cosmic Microwave Background

released at compression 1100; formed at ~10³⁰ *EINSTEIN* ...1905 international year of physics 2005
 NEW LAW OF GRAVITATION (1916); speed of light is the ultimate speed *HORIZONs;* Space is curved by mass; Lightwaves bend, wavelengths change, under gravity

~11.2 billion

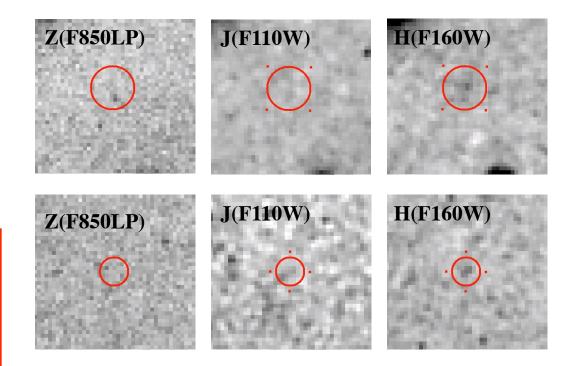
z=0.18


~300 thousand z=1100

~750 million z=7

 ~ 2.1 billion z=3

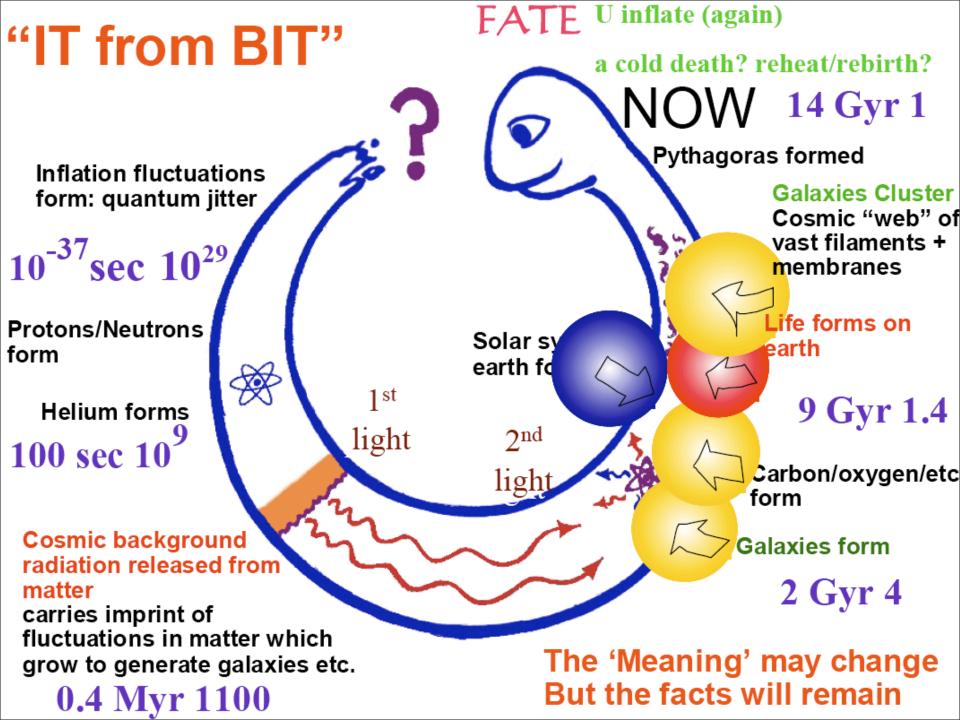
Target 1 Close Up


Kneib & Ellis with Caltech Digital Media Center

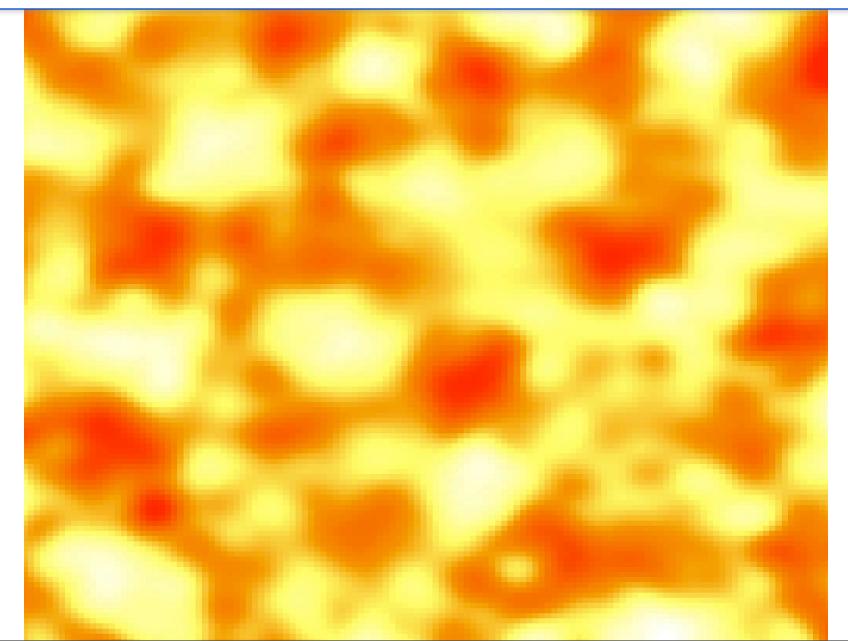
ver the years I have been harshly critical of the scientific community for wasting time researching things nobody cares about, such as the universe. I don't know about you, but I'm tired of reading newspaper stories like this:

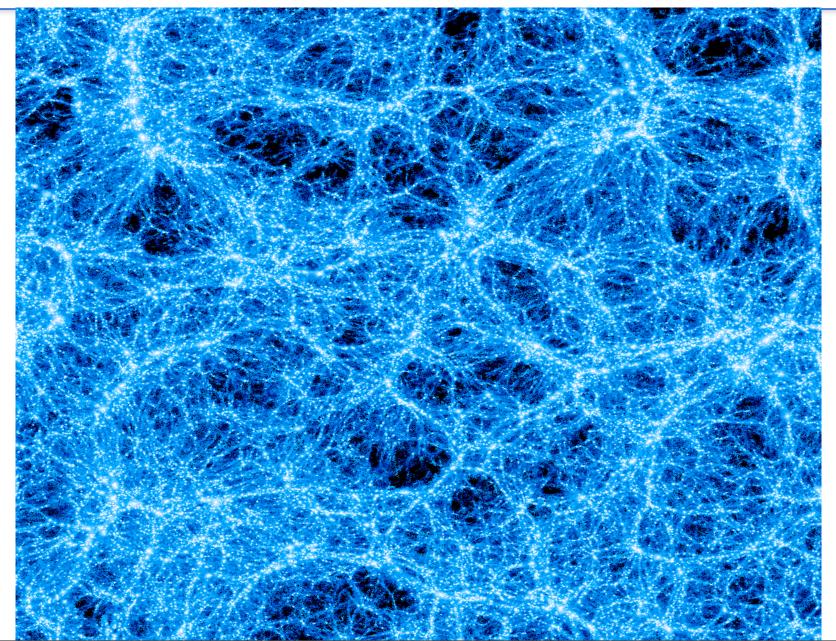
"Using a giant telescope, astronomers at the prestigious Crudwinkle Observatory have observed a teensy light smudge that they say is a humongous galaxy cluster 17 jillion light years away, which would make it the farthestaway thing that astronomers have discovered this week. However, astronomers at the rival Fendleman Observatory charged that what the Crudwinkle scientists discovered is actually mayonnaise on the lens. Both groups of astronomers say they plan to use these new findings to obtain even larger telescopes."

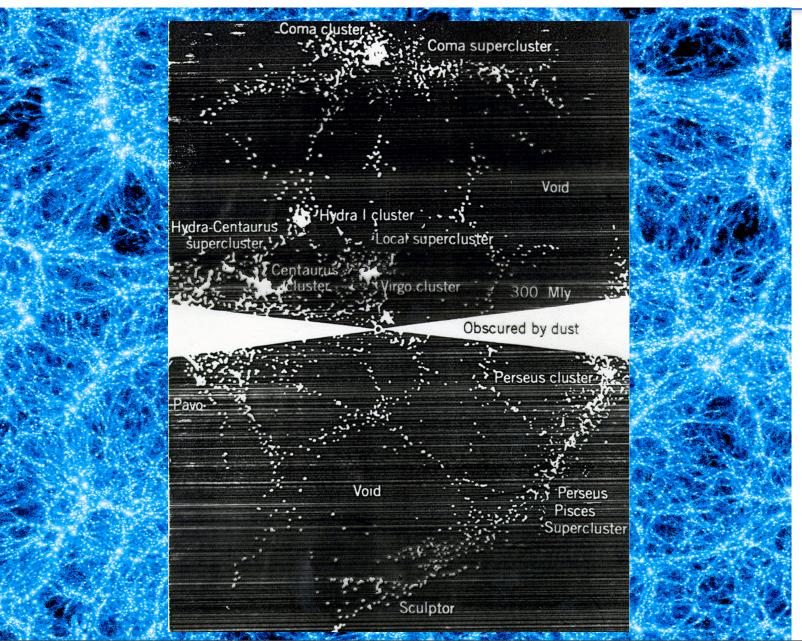
Galaxies at compression 10



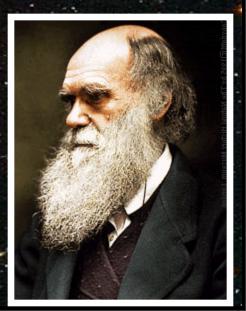
"UtraDeep" work of Richard Ellis et al.CIfAR Associate


TMT: Thirty Metre Telescope


- JWST: James Webb Space Telescope
 - SKA: Square Kilometre Array


nonlinear Gas & Dark Matter Structure in the Cosmic Web the cluster/gp web "now", the galaxy/dwarf system "then"

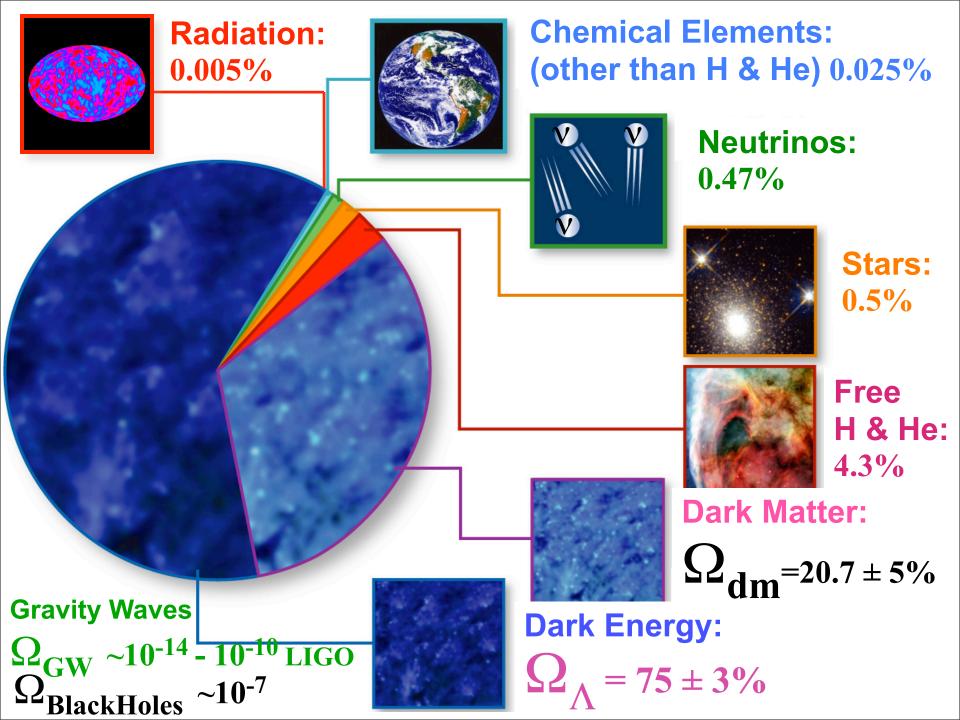
nonlinear Gas & Dark Matter Structure in the Cosmic Web the cluster/gp web "now", the galaxy/dwarf system "then"


nonlinear Gas & Dark Matter Structure in the Cosmic Web the cluster/gp web "now", the galaxy/dwarf system "then"

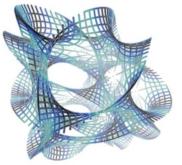
Cosmology today

Space and time: geometry shaped by mass-energy
 Origin: "big bang" 13.7 aeons ago
 Evolution: expanding, cooling, accelerating
 Arrangement: galaxies in the cosmic web
 Composition: dark matter and dark energy & us

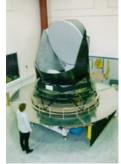
There is grandeur in this view ... from so simple a beginning endless forms most beautiful and most wonderful have been, and are being, evolved. Charles Darwin *The Origin of Species*



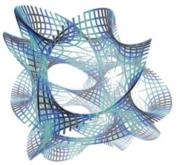
"To me every hour of the light and dark is a miracle. Every cubic inch of space is a miracle." – Walt Whitman


In every cubic centimetre • cosmic radiation 412 cm⁻³ • dark matter ~amu m⁻³ ~ compressed in MW to ~0.1 amu Cm⁻³ for LHC-type DM, ~ 1 every 10 cm

- dark energy ~4 keV cm⁻³
 ~(milli-eV)⁴
- neutrinos ~ CMB photons
- gravity waves
- virtual particles vacuum fluctuations
- Higgs potential origin of mass
- extra dimensions here, now?

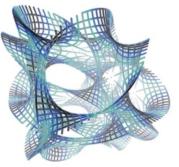

detect Ω_{cdm} in lab; detect primordial $\,\Omega_{GW}\,$ $\Omega_{\Lambda}\,$ (time,space)

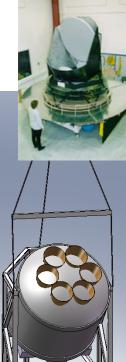
- Then (10⁻³⁷s) inflation
- Now (13.7 x 10⁹ yr)
- dark energy mystery
- our ClfAR future: to the
- early & late Universe thru
- Experiment + Theory (CMB+Lens+SN+clusters LIGO/LISA/BBO for gravity waves + SNOIab/ CERN/ILC for dark matter)



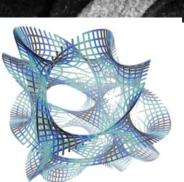
detect Ω_{cdm} in lab; detect primordial $\,\Omega_{GW}\,$ $\Omega_{\Lambda}\,$ (time,space)

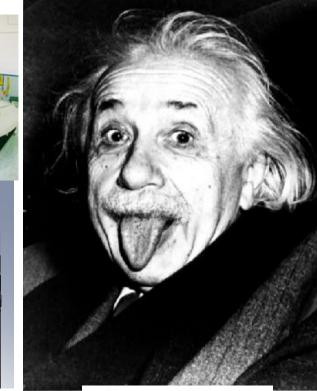
Then (10^{-37} s) inflation Now (13.7×10^9 yr)




- dark energy mystery
- our ClfAR future: to the
- early & late Universe thru
- Experiment + Theory (CMB+Lens+SN+clusters LIGO/LISA/BBO for gravity waves + SNOIab/ CERN/ILC for dark matter)

detect Ω_{cdm} in lab; detect primordial $\,\Omega_{GW}\,$ $\Omega_{\Lambda}\,$ (time,space)


- Then (10⁻³⁷s) inflation Now (13.7 x 10⁹ yr)
- dark energy mystery
- our ClfAR future: to the
- early & late Universe thru
- Experiment + Theory (CMB+Lens+SN+clusters LIGO/LISA/BBO for gravity waves + SNOlab/ CERN/ILC for dark matter)

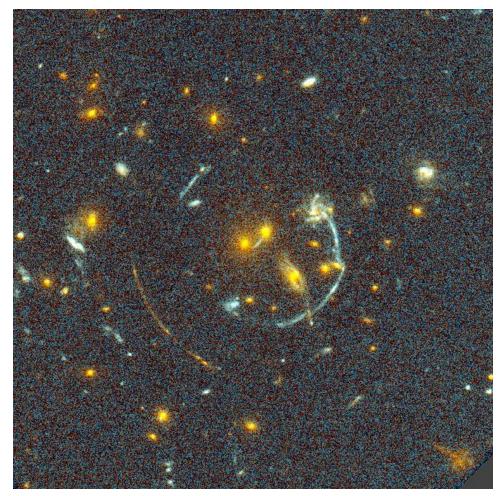


detect Ω_{cdm} in lab; detect primordial Ω_{GW} Ω_{Λ} (time,space)

- Then (10⁻³⁷s) inflation Now (13.7 x 10⁹ yr)
- dark energy mystery
- our ClfAR future: to the
- early & late Universe thru
- Experiment + Theory (CMB+Lens+SN+clusters LIGO/LISA/BBO for gravity waves + SNOIab/ CERN/ILC for dark matter)

end

We shall not cease from exploration And the end of all our exploring Will be to arrive where we started And know the place for the first time.



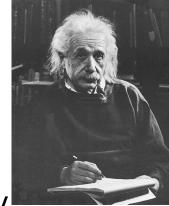
– T. S. Eliot

it is primarily for this knowing & its inspiration to young minds that the world is spending tens of billions of dollars on the cosmic quest for fundamental physics

The world wide web, technological space spinoffs, amazing detector & computational advances, are (important) asides **EINSTEIN ...** 1905 international year of physics 2005

- ✓ NEW LAW OF GRAVITATION (1916)
- ✓ speed of light is the ultimate speed (HORIZONS)
- ✓ Space is curved by mass
- Lightwaves bend, wavelengths change, under gravity

Gravitational lensing of deep galaxies by clusters Toronto RCS 2001; RCS2


HOEKStra, Gladders, Yee


Weak lensing via Canada France Hawaii Telescope Legacy Survey 2002-08

Hoekstra, van Waerbeke

AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE

CFHT SN

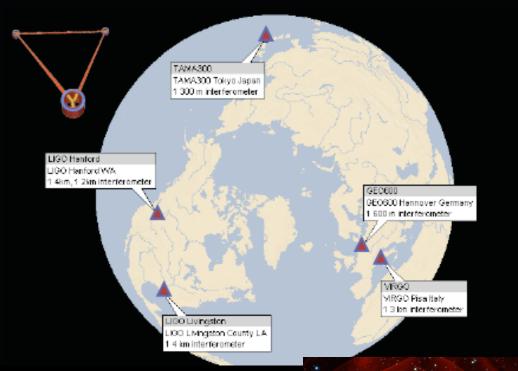
Survey Carlberg, Pritchet,

et al.

5yr 500

AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE

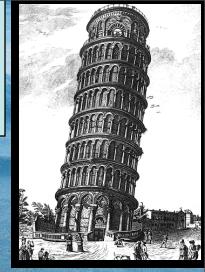
CFHT SN Survey


Carlberg, Pritchet,

et al.

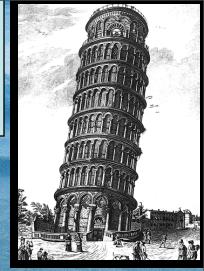
5yr 500

Worldwide Interferometer Network


DANGER: BLACK HOLES MERGING

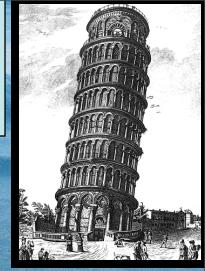
Now-2013+ ~km scale detect .001 nuclear radius

How will Accelerators cast Light on the Dark Side of the Universe?


Cern's Accelerator 2008

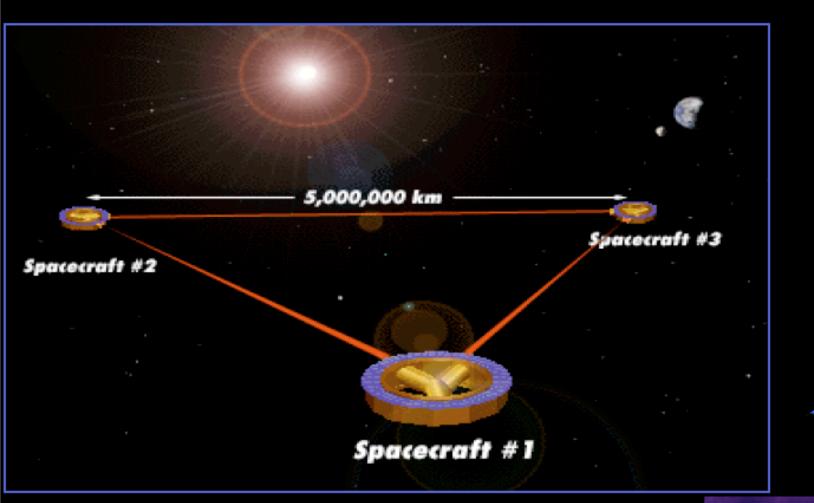
Galileo's Accelerator

How will Accelerators cast Light on the Dark Side of the Universe?


Cern's Accelerator 2008

Galileo's Accelerator

How will Accelerators cast Light on the Dark Side of the Universe?


Cern's Accelerator 2008

Galileo's Accelerator

If Dark Matter interacts with ordinary matter by more than gravity, we may "see" it at the Large Hadronic Collider 2008+ or at SNOIab 2008+ in Sudbury

LISA

2017??

~5 million km scale detect .001 atomic radius DANGER: SuperMassive BLACK HOLES MERGING