Acceleration Histories, Potential Reconstruction, Stacking

Dick Bond

Canadian Institute for Theoretical Astrophysics

L'institut Canadien d'astrophysique théorique

Bond since 1993, Canada since 2001, 1st CSA pre-launch contract 2002-09, post-launch 2010-11, 2011-15

Planck+Herschel Launch May14 09 French Guiana

1.5m telescope,

HFI bolometers @6freq <100mK,

LFI HEMTs@3freq,

some bolometers & all HEMTS are polarization sensitive

- Left earth at ~10 km/s, 1.5 million km in 45 days, cooling on the way (20K, 4K, 1.6K, 0.1K 4 stage). @L2 on July 2 09; Survey started on Aug 13 09
- spin@1 rpm, 40-50 minutes on the same circle, covers all-sky in ~6 month, ~5 HFI surveys, ~8 LFI surveys
- kicked out of L2 Oct 2013

Planck 1.3yr Frequency Maps

Some Planck Component Separated Maps

Planck_2013 30 GHz

Commander: Low-Frequency Emission Amplitude @ 30 GHz

C/R: Low-Frequency Emission Amplitude @ 30 GHz

C/R: "discovery" CO map \circledast 100 GHz

LF Synchrotron + bremsstrahlung

Galactic Carbon Monoxide

HF Thermal Dust

Emission

Commander: Dust Amplitude @ 353 GHz

Planck_2013 353 GHz

30-353 GHz: δT [$\mu K_{\rm CMB}];$ 545 and 857 GHz: surface brightness [kJy/sr]

Planck's primordial light unveiled, March 21, 2013

reveals the SIMPLICITY of primordial cosmic structure 7⁺ numbers, 3 densities, 2+1 early-Universe inflation

Temperature changes in micro-degrees

Planck CMB/SMICA map, ~5' resolution + NILC, SEVEM, C-R 3 independent component separated CMB maps show the same features

Planck unveils the Cosmic Microwave Background

Cleaned with Planck 353 GHz dust map and low-frequency templates. 12' resolution. similar tremendous agreement with the much higher (5X) resolution ACT & SPT maps total focus on the 1.2% difference in "calibration" between P13 (HFI &LFI) & WMAP9 Planck's information > 4X WMAP9 in multipoles

Cleaned with low-frequency templates only.

similar tremendous agreement with the much higher (5X) resolution ACT & SPT maps *total focus on the 1.2% difference in "calibration" between P13 (HFI &LFI) & WMAP9*

COBE 89 launch

COBE *CMB-data Concordance*

scan $InP_{s}(Ink)/A_{s}$, $InA_{s}=InP_{s}(k_{pivot,s})$, $r(k_{pivot,t})$; consistency => reconstruct $\epsilon(InHa)$, $V(\psi)$

Excellent agreement between the Planck temperature spectrum at high L and the predictions of the tilted *ACDM model.* **Checks with polarization data provide full support to this conclusion.**

extensive grid of cosmic models strongly constrain the x in tilted $\Lambda CDM + x$, x = subdominant deviations Planck basic parameters (Ω_b , H_o ...), agree with BBN, BAO measure of acoustic scale. but H_o lower than HST, small age change No evidence for additional neutrino-like relativistic particles beyond the three families of neutrinos in the standard model. The first 30 multipoles are low for the standard ΛCDM , with no obvious explanation. primordial fluctuation modification? Exact scale invariance ruled out, $n_s < 1$, at >4 σ Planck alone, >5.4 σ Planck + WMAP polarization No substantial evidence for beyond basic single field slow roll, Bunch-Davis vacuum, standard kinetic term inflation. no f_{NL}

Planck2014, 2015 ACTpol, ABS, Spider, AdvACT, GLP, ...

CMB Peak **Statistics**

temperature stacked on temperature Peaks

CMB Polarization BAO in the CMB – WMAP9

Q, (µK)

Τ(μΚ)

B mode of polarization *cf.* **E mode** *linear scalar fluctuations create only E patterns* strain from CMB lensing tides distorts E pattern into a bit of B SPT **anisotropic strain** from **gravity waves => E & B**

BICEP KECK

photons under strain BICEP2 collaboration 2014

380 sq deg f_{sky}=0.009

512 antenna coupled TES bolometers 150 GHz for 3 seasons cross-correlate with BICEP1, 100 GHz, preliminary cross-correlate with KECK

Simulation: E from lensed-ACDM+noise

FIG. 3.— Left: BICEP2 appdized E-mode and B-mode maps filtered to $50 < \ell < 120$. Right: The equivalent maps for the first of the lensed-ACDM+noise simulations. The color scale displays the E-mode scalar and B-mode pseudoscalar patterns while the lines display the equivalent magnitude and orientation of linear polarization. Note that excess B-mode is detected over lensing+noise with high signal-to-noise ratio in the map $(s/n > 2 \text{ per map mode at } \ell \approx 70)$. (Also note that the E-mode and B-mode maps use different color/length scales.)

BICEP2 collaboration 2014 non-lensing B mode => r=0.20 +.07-.05

r=GW power/scalar-curvature power ≈0.13V/(2x10¹⁶Gev)⁴ Potential Energy scale is the GUT level! We are working heavily on Planck polarization, E Nov 2014, B ?

Spider collaboration, LDB flight Fall 2014 +-.02 supposed to fly Fall 13, but US sequester stopped it

Total

Lensing

Tensors (r=0.2)

 5×10^{-3}

 4×10^{-3}

 (μK^2)

scan $InP_{s}(Ink)/A_{s}$, $InA_{s}=InP_{s}(k_{pivot,s})$, $r(k_{pivot,t})$; consistency => reconstruct $\epsilon(InHa)$, $V(\psi)$

Bond, Braden, Huang, Frolov, 2014

PS: running of PS is a bad fit

Inflation Histories (CMBall+LSS+SN+WL) scan $InP_{s}(Ink)/A_{s}$, $InA_{s}=InP_{s}(k_{pivot,s})$, $r(k_{pivot,t})$; consistency => reconstruct $\epsilon(InHa)$, $V(\psi)$

Bond, Braden, Huang, Frolov, 2014

PS: running of PS is a bad fit

Inflation Histories (CMBall+LSS+SN+WL)

The ACT Collaboration ACT, now ACTpol, => Advanced ACTpol

💒 🐯 Penn jürini IAS----NIST Berkeley 🍲 GRA 💝 🚟 🎀 💃 🖳 🛞 🝈 🌀

MAN UBC

Advanced ACTPol (AdvACT) Observations

- ~20,000 deg² survey (f_{sky}~0.5) with complete LSST overlap as well as DES, ALMA, and other observatories located in Chile
- Substantial overlap with spectroscopic surveys (SDSS, PFS, DESI)

AdvACT: Power Spectra

Error bars above shown for r = 0.2

High S/N B-mode detections for r > 0.01 are measured in independent frequency bands (90 & 150 GHz) and on many patches across the sky.

This provides important crosschecks on any detected signal

Also shown:

- Error bars before and after foreground cleaning
- Varying amplitudes of the gravitational lensing signal for different values of the sum of the neutrino masses
- Planck forecasts

reconstructing ζ aka primordial scalar curvature @uniform density Bond, Frolov, Huang, Braden, Nolta Wiener-filtered ζ maps instead of $\zeta(x), \zeta(k)$, make $\zeta_{LM}(\chi), \chi = |x| \& \zeta_{LM}(k), k = |k|$ maps

 $\mathbf{T}_{LM c,s} \sim \int \boldsymbol{\zeta}_{LM c,s} (k) \mathbf{U}^{\mathsf{T}_{L c,s}} (k) dk + res \sim \int \boldsymbol{\zeta}_{LM c,s} (\chi) \mathbf{V}^{\mathsf{T}_{L c,s}} (\chi) d\chi + res$ Gaussian stats => $\mathbf{C}^{\zeta\zeta} \mathbf{L} (\chi_1, \chi_2), \ \mathbf{C}^{\zeta\mathsf{T}} \mathbf{L} (\chi), \ \mathbf{C}^{\mathsf{T}\mathsf{T}} \mathbf{L}$

 $< \int \mu_{b}(\chi) \zeta_{LM c,s}(\chi) d\chi | a_{LM c,s} > + inhomog Gaussian fluctuations$

visibility masks $\mu_b(\chi)$ select bands $\Delta \chi_b$ about $\chi_b \sim$ decoupling, reionization (also ISW). \exists only a single-mode $V^T{}_{L\,c,s}$ direction, fluctuations in orthogonal directions are huge. use the mask for shaped-weighting to control fluctuation-swamping. full $\zeta_{LM}(k)$ reconstruction $\langle \zeta_{LM}(k) | a_{LM} \rangle$ is fluctuation-swamped \exists E-pol vector $V^E{}_{L\,c,s}$ overlaps V^T but it differs enough so reconstruction improves with E-pol $C^{\zeta E}{}_{L}(\chi), C^{EE}{}_{L}, C^{TE}{}_{L}$ Planck's primordial light unveiled, March 21, 2013

reveals the **SIMPLICITY** of primordial cosmic structure

7⁺ numbers, 2+1 are inflation numbers

Gaussian to high precision for high multipole, anomalies at low multipoles, non-Gaussian, anisotropic

=> inflation COMPLEXITY at t~10⁻³⁶ seconds?

+ anomalies the rare cold spot hemisphere difference in power ~7% at Grand Unified Theory of Anomalies? TBD intermittent strain-power bursts (in curvature)? low resolution

temperature map

mean temperature, 1000 realizations, smooth scale fuhm = 300 arcmin, 5 deg fwhm cf. COBE 7 deg fwhm

+145.

the rare cold spot

Temperature changes in micro-degrees

reveals map of primordial isotropic strain /phonons <Trace(α)|Temp>

mean zeta, 1000 realizations, smooth scale fwhm = 300 arcmin,

5 deg fwhm cf. COBE 7 deg fwhm

visibility mask

Reconstructing the Early Universe

reveals map of **primordial isotropic strain /phonons** <**Trace**(**α**)|*Temp*> + δ**Trace**(**α**)

one realization of fullsky zeta, fwhm = 300 arcmin => but allowed fluctuations make it noisy

temperature map

mean temperature, 1000 realizations, smooth scale fuhm = 30 arcmin,

reveals map of primordial isotropic strain /phonons => primordial scalar curvature map of the inflation epoch

mean zeta, 1000 realizations, smooth scale fuhm = 30 arcmin,

<**Trace**(**a**)|Temp>

0.5 deg fwhm

-4.70

Reconstructing the Early Universe

visibility mask

reveals map of **primordial isotropic strain /phonons** <**Trace**(**α**)|*Temp*> + δ**Trace**(**α**)

one realization of fullsky zeta, fwhm = 30 arcmin

=> but allowed fluctuations make it noisy

0.5 deg fwhm

-8.61

Reconstructing the Early Universe

visibility mask

 $\chi_b = \chi_{ISW}$ L_{cut}=20 projected curvature map

<ζ_b|T>

no WMAP T 'COLD' SPOT

-0.790

+1.03

+4.24

+4.05

 $\chi_b = \chi_{dec}$ L_{cut}=60

projected curvature map

<ζ_b|T>

WMAP T COLD SPOT $\langle v_E | v_T \rangle \sim 2$

<ζ_b|T>

χ_b=χ_{reion}

L_{cut}=60

no WMAP T COLD SPOT

-614

+635.

Power Deviation from fiducial $\langle \zeta | T \rangle \langle \zeta | T \rangle + \langle \delta \zeta \delta \zeta | T \rangle - \langle \zeta \zeta | free \rangle$ byproduct, cf. quadratic $P_{\zeta\zeta}$ reconstruction, extra C_s/C_{tot} & regularizer $P^{(i)}_{\zeta\zeta}$

Wiener-filtered anisotropic stress maps, pks & E-pol from < $\zeta_{LM c,s}(\chi)$ | $a_{LM c,s}$ > reconstruct (1) actual Wiener T_{dec} map at decoupling (not T_{now}) (2) actual Wiener anisotropic photon stress-tensor (aka quadrupole) at χ_{dec} to correlate with E-pol (~sources E) => novel Peaks (eigen-P_Teaks), statistics, *mean fields*, stacks "analytic" results exist or derivable, a la BE87, BM96, BKP97 complications: other cosmic parameters fixed at maxL value; inhomogeneous generalized noise enters Wiener filters; is error assessment with FFPn adequate?; de-lensing; ... simple proxy for < ($\nabla^{-2} \nabla_i \nabla_j - \delta_{ij}/2$) T_{dec} | T_{now} > anisotropic stress: if direct transport from χ_{dec} then ($\nabla^{-2} \nabla_i \nabla_j - \delta_{ij}/2$) T_{now} decompose into $Q_T U_T E_T E_T P_T \psi_T$ akin to $Q U E P \psi$, with enhanced peak-stacking correlations, oriented stacks

some work on this, reported by Frolov HFI-CT 13.06

primordial sub-dominant intermittent nonGaussianity Bond, Frolov, Huang, Braden phonon ~ $\zeta_{NL} = ln(\rho a^{3(1+w)})/3(1+w)$ ~ scalar curvature @ uniform density $\zeta_{NL}(x) = \zeta_G(x) + f_{NL*} (\zeta_G^2(x) - \langle \zeta_G^2 \rangle) = f_{NL*} = 3/5 f_{NL} - 1$ $\zeta_{NL}(\mathbf{x}) = \zeta_G(\mathbf{x}) + \mathbf{F}_{NL}(\chi_G)$, inflaton $\zeta_G \&$ uncorrelated isocon χ_G F_{NL} = local non-G from modulated preheating caustics = a multiple-line spectrum: spacing = Lyapunov instability coefficient, strength by ?, blending by $\psi_{G,HF}$ marginalization a weak quadratic non-G regime => translate f_{NL} constraint & a strong non-G regime \leq super-bias of the ζ -web **F**_{NL} generic if isocon $\Psi_{\rm G}$ is light & inflaton-coupled => search for localized low L extended-sources => CONSTRUCTING INTERMITTENT CMB MAPS "realistic" lattice-computed smoothed F_{NL} **Gaussian lines** (cf. BBKS threshold functions, $> \chi$ crit)

phenomenological Gaussian line: scan super-horizon $\chi_{>h}$, width, strength

-0,500

+0,500

WHITEN => MASK => FILTER BANK (SSG42 filter) => EXTRACT PEAKS (hierarchical peak patches) filter = extra dimension: Scale Space analysis ADS of our CFT hot & cold peaks agree with BE87 Gaussian stats n_{pk}(<v) PLANCK2013: 826', 105 peaks, coldest -4.97σ 1:497 WMAP7: 800', coldest -4.87σ significance 1:300

Grand Unified Theory of Anomalies TBD Anomalies in Polarization? TBD

