The Reionisation parameter tau measured by the Planck mission on the behalf of the Planck collaboration

Planck2016 PIP XLVI lowL pol ArXiv 1605.02985v1

Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth

Planck 2016 intermediate results. XLVII. Planck constraints on reionization history

Escape Fraction = 20%?

CMB anisotropies and reionisation parameter

- the scattering of CMB creates
 E mode polarization
- but also reduces the amplitudes TT ~ A_s. e^{-2t}
- EE & TE show a feature at low multipoles EE ~ A_s.t², TE ~ A_s.t
- TT 1st acoustic peak 5600 μK² cf. EE reionization ~10⁻² μK²

Planck 2015 parameters

Parameter [1] Planck TT+low		[4] Planck TT,TE,EE+lowP	$([1] - [4]) / \sigma_{[1]}$	
$ \begin{array}{c} \Omega_{\rm b}h^2 \\ \Omega_{\rm c}h^2 \\ 100\theta_{\rm MC} \\ \tau \\ \end{array} $	$\begin{array}{c} 0.02222 \pm 0.00023 \\ 0.1197 \pm 0.0022 \\ 1.04085 \pm 0.00047 \\ 0.078 \pm 0.019 \end{array}$	$\begin{array}{c} 0.02225 \pm 0.00016 \\ 0.1198 \pm 0.0015 \\ 1.04077 \pm 0.00032 \\ 0.079 \pm 0.017 \end{array}$	-0.1 0.0 0.2 -0.1	
$ \begin{array}{c} \ln(10^{10}A_{\rm s}) & \dots & \dots \\ n_{\rm s} & \dots & \dots & \dots \\ H_0 & \dots & \dots & \dots \\ \Omega_{\rm m} & \dots & \dots & \dots \\ \sigma_8 & \dots & \dots & \dots \\ 10^9A_{\rm s}e^{-2\tau} & \dots & \dots \\ \end{array} $	$\begin{array}{c} 3.089 \pm 0.036 \\ 0.9655 \pm 0.0062 \\ 67.31 \pm 0.96 \\ 0.315 \pm 0.013 \\ 0.829 \pm 0.014 \\ 1.880 \pm 0.014 \end{array}$	$\begin{array}{c} 3.094 \pm 0.034 \\ 0.9645 \pm 0.0049 \\ 67.27 \pm 0.66 \\ 0.3156 \pm 0.0091 \\ 0.831 \pm 0.013 \\ 1.882 \pm 0.012 \end{array}$	-0.1 0.2 0.0 0.0 -0.1	

 $10^9 A_{\rm s} e^{-2\tau}$

E2E simulations: all systematic residuals

- Top figure
 - 1st row maps: is total ADC NL
 - 2nd row maps: is apparent time dependent gain correction
 - 3rd row map: is ADC NL dipole distortion effect (for simulation only as we did not remove it in the pre2016 data)

- Bottom figure : the spectra are
 - top: full ADC NL systematics
 - bottom: after removal of apparent time gain variation

testing bias from systematics 83 E2E simulations

 simulations of the systematic residual power spectrum

 simulating 100 times the HFI data and then full processing of "End to End" simulations and t determination (input was 0.06)

PCL and QML 100x143 cross spectra

Planck2016 PIP XLVI lowL pol ArXiv 1605.02985v1

- left: 2 sets of PCL cross spectra,
 - very consistent,
 - debiasing from the ADC NL dipole distortion small (only ell<4)
 - QML consistent pattern with PCL, lower dispersion and error bars
- bottom right: PTE remain consistent in QML when using 2 independent sets of simulations for
 - i) pixel covariance matrix
 - ii) simus for noise and likelihood

 τ results: baseline 100x143 consistency check 70x100 and 70x143

Planck2016 PIP XLVI lowL pol ArXiv 1605.02985v1

- PCL spectrum estimates have larger posterior
- the simulation based likelihood gives better results on low Tau
- QML estimator has narrower posterior distribution but the same peak value
- LFI-HFI give also nearly the same peak value but with larger uncertainties

Tau baseline results HFI 100x143 (now 283 simulations) and check of consistency HFI x LFI (10 simulations) *Planck2016 PIP XLVI lowL pol ArXiv 1605.02985v1*

	PCL		QML	
Method	peak $\pm 1 \sigma$	peak +2 σ	peak $\pm 1 \sigma$	peak +2 σ
SimBaL1	$0.053^{+0.012}_{-0.012}$	0.076	$0.055^{+0.008}_{-0.010}$	0.073
SimBaL2			$0.055^{+0.007}_{-0.010}$	0.071
Lollipop	$0.053\substack{+0.011\\-0.021}$	0.075		
CamLow	$0.055^{+0.011}_{-0.021}$	0.078		

HFIxLFI consistency results

 $\tau = 0.049^{+0.015}_{-0.019}$ for the 70×100 cross spectra $\tau = 0.053^{+0.012}_{-0.016}$ for the 70×143 cross spectra

the new results are compatible with Planck 2015

$$\tau = 0.078^{+0.019}_{-0.019}, z_{re} = 9.9^{+1.8}_{-1.6}, Planck TT+lowP;$$

$$\tau = 0.070^{+0.024}_{-0.024}, z_{re} = 9.0^{+2.5}_{-2.1}, Planck TT+lensing;$$

$$\tau = 0.066^{+0.016}_{-0.016}, z_{re} = 8.8^{+1.7}_{-1.4}, Planck TT+lowP$$

$$+lensing$$

$$\tau = 0.067^{+0.016}_{-0.016}, z_{re} = 8.9^{+1.7}_{-1.4}, Planck TT+lensing$$

$$(4)$$

$$\tau = 0.066^{+0.013}_{-0.013}, z_{re} = 8.8^{+1.3}_{-1.2}, Planck TT+lowP +lensing+BAO.$$

- more accurate lower values
- an almost independent measurement from the other cosmological parameter
- bringing reduction of some tensions between CMB and astrophysical cosmology

consistency of all Planck t results
improvements of uncertainties
drift towards lower values

τ from CMB (historical) Planck2016 PIP XLVI lowL pol ArXiv 1605.02985v1

11

Reionisation history constraints from Planck

Planck2016 PIP XLVI lowL pol ArXiv 1605.02985v1 $z_{\rm re} = 8.53^{+1.03}_{-1.13}$, $z_{\rm re} = 8.77^{+0.94}_{-0.92}$ (with prior

(with prior $z_{end} > 6$).

τ , A_s , n_s degeneracies

Planck2016 PIP XLVI lowL pol ArXiv 1605.02985v1

•better τ breaks almost completely the degeneracy with n_s and reduces the degeneracy with A_s

- adding lensing does not improve
- although τ breaks the degeneracy with n_{s}

models of reionization

Planck2016 PIP XLVI lowL pol ArXiv 1605.02985v1

10

z

12

14

16

Planck 2016 intermediate results. XLVII. Planck constraints on reionization history

Summary

- First use of Planck HFI EE low Ell spectra and $\,\tau$ value with smallest uncertainties
- measurement almost independent of the other cosmological parameters
- Gives a value for τ lower than previous CMB ones
- Removes the tension between CMB and model of reionisation based on the formation of first stars and galaxies

CITA mini-industry Alvarez, Berger, Bond, Stein, Bahmanyer, Battaglia,...Huang, Frolov 2016 app: Clustering of hot electrons in groups around Planck clusters is detectable

Planck & HST: Reionisation over 6 < z < 12

Planck indicates `Fast Reionization': Making (questionable) assumptions about their ionizing output the demographics of early galaxies can match the Planck τ with reionisation contained with 12 < z < 6

Focus now turns to measuring the ionizing output of early galaxies

Robertson et al (2015), see also Bouwens+(2015), Mitra+(2015)

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada.

