

Dick Bond @ CIFAR14 Mapping Inflation

Bond, Frolov, Huang, Braden 14a,b,c,...

a Map is an ensemble = mean-map + fluctuation-maps, e.g., linear: $\langle T \rangle$ (pixel)+ C^{TT} (pix, pix')^{1/2} GRD_{pix'}, quadratic: $\langle C^{TT}_L \rangle + \langle \Delta C^{TT}_L \Delta C^{TT}_{L'} \rangle$ GRD_{L'}, Primordial Curvature/phonon-maps $\zeta = \ln a_{com}$ from the CMB Linear: Wiener-filtered ζ_b all-sky maps & stacking maps on (oriented) Peaks Quadratic: $P_{\zeta}(k)$ Power Spectra maps, Acceleration History $\epsilon(\ln a)$ maps & Inflaton Potential $V_{eff}(\phi)$ maps if r-measurements (BICEP2, Planck, Spider, AdvACT,...)

Implications for **post-Inflation** *heating given r-measurements?* Implications for **anomalies:** caustic trajectories & non-Gaussian Intermittency

CMB Polarization Q,U,E,B & Temperature Stacking maps on (oriented) T-Peaks

$\begin{array}{l} Super-duper LSS \\ \& the Super-WEB \\ gravitational potential Web \Phi_N \\ \sim primordial 3-curvature web \end{array}$

phonon ~ $\zeta_{NL} = \ln(\rho a^{3(1+w)})/3(1+w) \sim \nabla^{-2}$ scalar curvature @ iso-density = $Trace(\alpha|_{H})$ sb90 aka $Trace(\alpha|_{com})$ cf. the density web ~ strain web $dX^{i}(\mathbf{r},t) = eXp(\mathbf{\alpha})\mathbf{J}^{\mathbf{J}}(\mathbf{r},t)d\mathbf{r}_{eq}\mathbf{J}$ $\Phi_N = -Trace(\alpha | NL, longitudinal)$ with no anisotropic stress $\Phi_N = -3/5(D(t)/a(t)) \operatorname{Tr} \mathbf{a}$ if linear (low L ISW 2 $d \Phi_N/dt$)

reveals map of **primordial isotropic strain /phonons** ∫d**visibility**(distance) < **Trace**(**α**) | Temp> (angles, distance)

nean zeta, 1000 realizations, smooth scale fuhm = 300 arcmin, => primordial scalar curvature map of the inflation epoch

5 deg fwhm cf. COBE 7 deg fwhm

-2.94

+3.58

Reconstructing the Early Universe

reveals map of primordial isotropic strain /phonons $\int dvisibility(distance) < Trace(\alpha) | Temp> + \delta Trace(\alpha)$

=> but allowed fluctuations make it noisy

5 deg fwhm cf. COBE 7 deg fwhm

-3.59

+4.06

Reconstructing the Early Universe

reveals map of **primordial isotropic strain /phonons** $\int dvisibility(distance) < Trace(\alpha) | Temp> + \delta Trace(\alpha)$ => but allowed fluctuations make it noisy

CMB-probe no tomography (radial distance (redshift)): **CMB**-*probe* ~ **differential visibility** at decoupling/recombination (all L) reionization/reheating (low L) **CMB**-probe ~ changing gravitational potential Integrated Sachs Wolfe effect (low L), Rees-Sciama effect (hi L) available modes: $f_{sky} L_{max}^2 - f_{sky} L_{min}^2$ $L_{max} \sim L_{damp}$ Large Scale Structure Galaxy Surveys available modes ~ f_{sky} L_{max}² k_{max} d_{max} ~ f_{sky} ($k_{max}^3 d_{max}^3$), $k_{min} \sim 2\pi/d_{max} V_{com} \sim d_{max}^3$

reconstructing ζ aka primordial scalar curvature @uniform density Bond, Frolov, Huang, Braden, Nolta Wiener-filtered ζ maps instead of $\zeta(x), \zeta(k)$, make $\zeta_{LM}(\chi), \chi = |x| \& \zeta_{LM}(k), k = |k|$ maps

 $\mathbf{T}_{LM c,s} \sim \int \boldsymbol{\zeta}_{LM c,s} (k) \mathbf{U}^{\mathsf{T}_{L c,s}} (k) dk + res \sim \int \boldsymbol{\zeta}_{LM c,s} (\chi) \mathbf{V}^{\mathsf{T}_{L c,s}} (\chi) d\chi + res$ Gaussian stats => $\mathbf{C}^{\zeta\zeta} \mathbf{L} (\chi_1, \chi_2), \ \mathbf{C}^{\zeta\mathsf{T}} \mathbf{L} (\chi), \ \mathbf{C}^{\mathsf{T}\mathsf{T}} \mathbf{L}$

 $< \int \mu_{b}(\chi) \zeta_{LM c,s}(\chi) d\chi | a_{LM c,s} > + inhomog Gaussian fluctuations$

visibility masks $\mu_b(\chi)$ select bands $\Delta \chi_b$ about $\chi_b \sim$ decoupling, reionization (also ISW). \exists only a single-mode $V^T{}_{L\,c,s}$ direction, fluctuations in orthogonal directions are huge. use the mask for shaped-weighting to control fluctuation-swamping. full $\zeta_{LM}(k)$ reconstruction $\langle \zeta_{LM}(k) | a_{LM} \rangle$ is fluctuation-swamped \exists E-pol vector $V^E{}_{L\,c,s}$ overlaps V^T but it differs enough so reconstruction improves with E-pol $C^{\zeta E}{}_{L}(\chi), C^{EE}{}_{L}, C^{TE}{}_{L}$

reveals map of **primordial isotropic strain /phonons** ∫dvisibility(distance) < Trace(α) | Temp> (angles, distance)

=> primordial scalar curvature map of the inflation epoch

-4.70

Reconstructing the Early Universe

+5.18

reveals map of primordial isotropic strain /phonons $\int dvisibility(distance) < Trace(\alpha) | Temp> + \delta Trace(\alpha)$

=> but allowed fluctuations make it noisy

Reconstructing the Early Universe

reveals map of primordial isotropic strain /phonons $\int dvisibility(distance) < Trace(\alpha) |Temp> + \delta Trace(\alpha)$ => but allowed fluctuations make it noisy

ng a relization of ζ map, 11113 patches on T maxima, random oriestading mean ζ map, 11113 patches on T maxima, random orientation _____ 9257 mean ζ patches on T maxima, random orientation

Reconstructing the Early Universe

Planck13 CMB Lensing: reconstructed projected $\Phi_N = -3/5(D(t)/a(t))$ Tra grav. potential ~ dark+baryonic matter map, mean-field map = Wiener filter (beware: fluctuations about mean-field)

Galactic South

Power Deviation from fiducial $\langle \zeta | T \rangle \langle \zeta | T \rangle + \langle \delta \zeta \delta \zeta | T \rangle - \langle \zeta \zeta | free \rangle$ byproduct, cf. quadratic $P_{\zeta\zeta}$ reconstruction, extra C_s/C_{tot} & regularizer $P^{(i)}_{\zeta\zeta}$

complications: other cosmic parameters fixed at maxL value; inhomogeneous generalized noise enters Wiener filters; is error assessment with sims adequate?; de-lensing; ...

Quadratic expansions in mode functions: which function to expand (In $P_{\zeta\zeta}$), which modes (cubic B-spline), number?, priors on amplitudes, etc. maxL solutions with Fisher/Hessian errors are Wiener-filtered maps we use MCMC Bond, Braden, Huang, Frolov, Vaudrevange 2014

scan $InP_{s}(Ink)/A_{s}$, $InA_{s}=InP_{s}(k_{pivot,s})$, $r(k_{pivot,t})$; consistency => reconstruct $\epsilon(InHa)$, $V(\psi)$

new parameters: trajectory probabilities for early-inflatons

over the years, b2fhv have also scanned mode expansions of InP_s(Ink), n_s(Ink), ɛ(InHa), InH(InHa), which change the prior measure, but give qualitatively similar results in terms of features if there is an r detection (which breaks degeneracies); InP_s(Ink)/A_s relative stiffness properties, connecting the well-determined data-region about k_{pivot,s} to the band in k being targeted, like a coarse-grained broad band n_s

=> ultra-early Universe Sound spectrum

Bond, Braden, Huang, Frolov, Vaudrevange 2014

Power Deviation from fiducial $\langle \zeta | T \rangle \langle \zeta | T \rangle + \langle \delta \zeta \delta \zeta | T \rangle - \langle \zeta \zeta | free \rangle$ byproduct, cf. quadratic $P_{\zeta\zeta}$ reconstruction, extra C_s/C_{tot} & regularizer $P^{(i)}_{\zeta\zeta}$

Quadratic expansions in mode functions: which function to expand (In *P*ζζ), which modes (cubic B-spline), number?, priors on amplitudes, etc. maxL solutions with Fisher/Hessian errors are Wiener-filtered maps! here MCMC <power> trajectory, 1 sigma mean+fluctuation trajectories

no strong evidence for oscillation patterns, cutoffs, local features; a change on large L<100 scales PS: running of P_s is a bad fit

cf. r=0.2+-0.02 Spider forecast no fgnd, better if r lower cf. r=0.01+-0.003 AdvACTpol forecast w/ fgnds

cf. r=0.2+-0.02 Spider forecast no fgnd, better if r lower cf. r=0.01+-0.003 AdvACTpol forecast w/ fgnds

cf. r=0.2+-0.02 Spider forecast no fgnd, better if r lower

cf. r=0.01+-0.003 AdvACTpol forecast w/ fgnds

heating region is far off => many ways to extrapolate => ??? B2FH14: preheat with Einstein + canonical kinetic + V(ϕ) +G(ϕ)Vint(χ ,...) sims e.g., Higgs inflation with M_P² (ϕ) R/2 or K(ϕ) d ϕ ² /2 difficult with high r, but sims

cf. r=0.2+-0.02 Spider forecast no fgnd, better if r lower

cf. r=0.01+-0.003 AdvACTpol forecast w/ fgnds

Dick Bond @ CIFAR14 Mapping Inflation

Bond, Frolov, Huang, Braden 14a,b,c,...

a Map is an ensemble = mean-map + fluctuation-maps, e.g., linear: $\langle T \rangle$ (pixel)+ C^{TT} (pix, pix')^{1/2} GRD_{pix'}, quadratic: $\langle C^{TT}_L \rangle + \langle \Delta C^{TT}_L \Delta C^{TT}_L \rangle GRD_{L'}$, Primordial Curvature/phonon-maps $\zeta = \ln a_{com}$ from the CMB Linear: Wiener-filtered ζ_b all-sky maps & stacking maps on (oriented) Peaks Quadratic: $P_{\zeta}(k)$ Power Spectra maps, Acceleration History $\epsilon(\ln a)$ maps & Inflaton Potential $V_{eff}(\phi)$ maps if r-measurements (BICEP2, Planck, Spider, AdvACT,...)

Implications for post-Inflation heating given r-measurements? Implications for anomalies: caustic trajectories & non-Gaussian Intermittency decompose T into Q_T U_T E_T E_T P_T ψ_T akin to Q U E P ψ, with enhanced peak-stacking correlations, oriented stacks CMB Polarization Q,U,E,B & Temperature Stacking maps on (oriented) T-Peaks

