
Overview: dust maps in intensity and polarization are manifestly non-Gaussian, not 
statistically isotropic, not derived from a statistically homogeneous random field.  
yikes. unlike early universe quest for perturbative nonG very hard to see  

use “CMB/LSS” ideas to look at the complex ISM data, in particular Planck (& Herschel) 
goals to have simplified compression of data - e.g. novel stacking for dust, synch cf. CMB 

e.g. anisotropic random tensor fields of transformed fields: s(PX, s2s1) = - log{n(PX, 
s2s1)) +1, n(PX, s2s1)) = 2X2 distribution function matrix, (Wigner df)  
=> ln I and p =P/I, e=E/I, b=B/I, q=Q/I, u=U/I, with some large-p modifications 

does look more Gaussian, but still not.  

Gaussian-ize the 1-point PDF, (using relative entropy minimization of PDF(I) and 
PDF_Gauss (newI) to justify doing what you think you should do anyway.  

highly nonG Minkowski approach Gaussian, but still nonG deviations in tails.  

anisotropic Gaussian random field with large scale (long wavelength) constraints to define anisotropy 
directions. so far no really good tensors built from knowledge of e.g., Bhat_Perp because I hoped to get it 
just from the measures TBD

Bond, Frolov, Huang dust/synch/CMB, with Boulanger, Ghosh, Miville-Deschenes, Martin
CITA mini-industry e.g. Stacking also for LSS 2ndary CMB 
Alvarez, Stein, Codis + Connor Bevington,  Bruno Régaldo-Saint Blancard for tSZ etc & to LIM w/ Ronan Kerr



1. the transform and how the maps look 
2. how EE, BB power spectra look in e, b 
3. how IE, IB, EB look ieb cf IEB 

for these not yet done in ieb, but chose a strong bcut> 30deg Galactic mask for these results 

filament-ariness is characterized by anisotropic coherence of stacks, but not straight 
(squeezed 3-point turned out not to be that useful for filaments - Planck with Tuhin Ghosh 
- projected filaments are curved, and Interstellar web is more complex. power pre decade 
rises above scale invariance at low L => huge fluctuations for GRF. Many ideas in Planck 
2015, pip XXX, and some in Planck 2018 IandS 

4. PDF, Minkowski functionals 
5. filaments - perimeter cf. area of contours (with care because of noise).  
6. field point stacks as anisotropy changes 
7. peak (hot spot) catalogue properties with scale. n_pk of dust cf. CMB (nu, nu_e similar 
to p pol fraction)  
     CUTS for filament strengths 
8. stacks for high ellipticity peaks cf. low 
9. stacks on P, P_T etal 
10. stacks on everything else, saddle points are fun, etc 



Planck 18 LIV more aggressive: cut on smoothed 857 intensity, intersect with cut on smoothed CO line map, plus some point sources 
and anodize with 5 degree Gaussian..fsky = 24, .33, .42, .52, .62, .71







for small p, i=ln I and p =P/I, e=E/I, b=B/I, q=Q/I, u=U/I 
=> Planckian increased emphasis on polarization fractions

s(PX, s2s1) = - log{n(PX, s2s1)) +1, n(PX, s2s1)) = 2X2 df matrix aka Wigner df tensor 



mask based on intensity cuts, apodized. cf. Planck 18 LIV more aggressive: cut on smoothed 857 intensity, intersect with cut on 
smoothed CO line map, plus some point sources and anodize with 5 degree Gaussian..fsky = 24, .33, .42, .52, .62, .71



ln I in unmasked region. spurs etc. 



original e map



original b map



an approach to adding fluctuations in B via a randomized b map, with modes L=1 to 4 constrained and other constraints



Planck pip 2018 LIV
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with no further cuts, in ee, bb power spec are almost scale invariant, ie diminished, ib still there though less, no eb



90% mask
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TB EB
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90% mask
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bcut=30deg data

Gaussian fit
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bcut 30deg
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Stacking: CITA mini-industry Bond, Frolov, Huang dust/synch/CMB, 
Alvarez, Stein, Codis + Connor Bevington,  Bruno Régaldo-Saint Blancard for tSZ etc & to LIM w/ Ronan Kerr



using QT, UT was great for CMB, not for dust, synch - huge coherence with these anisotropic 
constraints, because so much power at low L. often use Laplace(QT,UT), ie Hessian to 
concentrate the constraint closer to the filter scale.

Stacking: CITA mini-industry e.g., Bond, Frolov, Huang for dust/synch cf. CMB, 
good way to select regions or points (catalogues), see long wave gradients,etc

use a dipole to decide which side to stack on => asymmetric oriented stacks shows better 
“superclustering”, filaments, membranes, etc. 



bcut=30deg high ellipticity ‘catalogue’ with an intensity cut
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bcut=30deg
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bcut=30deg
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bcut=30deg



−3

−2

−1

0

1

Q
(µ
K
)

−2
◦

2
◦

340 patches on T maxima, ∇2 oriented, ν = 0.2, νupper
e

= 0.1

−0.025 0 0.025
ϖ cosϕ

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

ϖ
si
n
ϕ

−2

−1

0

1

2

B
(µ
K
)

−2
◦

2
◦

340 patches on T maxima, ∇2 oriented, ν = 0.2, νupper
e

= 0.1

−0.025 0 0.025
ϖ cosϕ

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

ϖ
si
n
ϕ

−3

−2

−1

0

1

2

3

E
(µ
K
)

−2
◦

2
◦

340 patches on T maxima, ∇2 oriented, ν = 0.2, νupper
e

= 0.1

−0.025 0 0.025
ϖ cosϕ

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

ϖ
si
n
ϕ

0

100

200

T
(µ
K
)

−2
◦

2
◦

340 patches on T maxima, ∇2 oriented, ν = 0.2, νupper
e

= 0.1

−0.025 0 0.025
ϖ cosϕ

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

ϖ
si
n
ϕ

bcut=30deg



bcut=30deg
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1. the log-transform of the df matrix and how the maps look 
2. how EE, BB power spectra look in e, b 
3. how IE, IB, EB look ieb cf IEB 

for these not yet done in ieb, but chose a strong bcut> 30deg Galactic mask for these results 

filament-ariness is characterized by anisotropic coherence of stacks, but not straight 
(squeezed 3-point turned out not to be that useful for filaments - Planck with Tuhin Ghosh 
- projected filaments are curved, and Interstellar web is more complex. power pre decade 
rises above scale invariance at low L => huge fluctuations for GRF. Many ideas in Planck 
2015, pip XXX, and some in Planck 2018 IandS 

4. PDF, Minkowski functionals 
5. filaments - perimeter cf. area of contours (with care because of noise).  
6. field point stacks as anisotropy changes 
7. peak (hot spot) catalogue properties with scale. n_pk of dust cf. CMB (nu, nu_e similar 
to p pol fraction)  
     CUTS for filament strengths 
8. stacks for high ellipticity peaks cf. low 
9. stacks on P, P_T etal 
10. stacks on everything else, saddle points are fun, etc 


