Planck2016 PIP XLVI lowL pol Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth depth

 $\tau \sim .07 \ [(1+z_{re})/10]^{3/2}$

- the scattering of CMB creates E mode polarization
- amplitude TT ~ $(A_s \exp[-2\tau])$
- EE /TE feature at low L
- EE ~ $A_s \tau^2$, TE ~ $A_s \tau$
- TT 1st acoustic peak 5600 μ K² cf. FF reionization ~10⁻² μ K²

Fig. 36. *TT* and *TE* 100×143 cross-spectra, plotted for the SimBaL results with and without the bias correction. The black lines shows the fiducial spectra for $\tau = 0.05, 0.07, \text{ and } 0.09$.

т baseline results HFI 100x143 (283 simulations) and check of consistency HFI x LFI (10 simulations)

Planck2016 PIP XLVI lowL pol ArXiv 1605.02985v1

sets of PCL EE cross spectra,

- very consistent,
- debiasing from the ADC NL dipole distortion small (only ell<4)
- QML consistent pattern with PCL, lower dispersion and error bars

Analog to Digital Conversion major systematic to have included. Used warm HFI data Foreground corrections also very important

т baseline results HFI 100x143 (283 simulations) and check of consistency HFI x LFI (10 simulations) τ results: baseline 100x143 consistency check 70x100 and 70x143

Planck2016 PIP XLVI lowL pol ArXiv 1605.02985v1

- PCL spectrum estimates have larger posterior
- the simulation based likelihood gives better results on low Tau
- QML estimator has narrower posterior distribution but the same peak value
- LFI-HFI give also nearly the same peak value but with larger uncertainties

consistency of all Planck τ results improvements of uncertainties drift towards lower values

τ from CMB (historical)

Planck2016 PIP XLVI lowL pol

ArXiv 1605.02985v1

Planck cosmic parameters

Planck 2015

pre-2016

Parameter	PlanckTT+lowP 68 % limits	PlanckTT+SIMlow 68 % limits	PlanckTTTEEE+lowP 68 % limits	PlanckTTTEEE+SIMlow 68 % limits
$\Omega_{ m b}h^2$	0.02222 ± 0.00023	0.02214 ± 0.00022	0.02225 ± 0.00016	0.02218 ± 0.00015
$\Omega_{\rm c}h^2$	0.1197 ± 0.0022	0.1207 ± 0.0021	0.1198 ± 0.0015	0.1205 ± 0.0014
100 <i>θ</i> _{MC}	1.04085 ± 0.00047	1.04075 ± 0.00047	1.04077 ± 0.00032	1.04069 ± 0.00031
τ	0.078 ± 0.019	0.0581 ± 0.0094	0.079 ± 0.017	0.0596 ± 0.0089
$\ln(10^{10}A_s)$	3.089 ± 0.036	3.053 ± 0.019	3.094 ± 0.034	3.056 ± 0.018
<u>n_s</u>	0.9655 ± 0.0062	0.9624 ± 0.0057	0.9645 ± 0.0049	0.9619 ± 0.0045
H_0	67.31 ± 0.96	66.88 ± 0.91	67.27 ± 0.66	66.93 ± 0.62
$\Omega_{\rm m}$	0.315 ± 0.013	0.321 ± 0.013	0.3156 ± 0.0091	0.3202 ± 0.0087
σ_8	0.829 ± 0.014	0.8167 ± 0.0095	0.831 ± 0.013	0.8174 ± 0.0081
$\sigma_8\Omega_{\rm m}^{0.5}$	0.466 ± 0.013	0.463 ± 0.013	0.4668 ± 0.0098	0.4625 ± 0.0091
$\sigma_8\Omega_{\rm m}^{0.25}$	0.621 ± 0.013	0.615 ± 0.012	0.623 ± 0.011	0.6148 ± 0.0086
Z _{re}	9.89 ^{1.8} -1.6	8.11 ± 0.93	10.0 ^{1.7} 1.5	8.24 ± 0.88
$10^9 A_8 e^{-2\tau}$	1.880 ± 0.014	1.885 ± 0.014	1.882 ± 0.012	1.886 ± 0.012
Age/Gyr	13.813 ± 0.038	13.829 ± 0.036	13.813 ± 0.026	13.826 ± 0.025

relaxing tension of clusters and primary CMB

 $10^9 A_8 e^{-2\tau}$

Planck 2013 sigma_8 ~0.83 (WMAP tau .089), Planck 2015 0.83 (.815 + lens) (cleaned LFI tau .079 (.017) Planck 2016 PIP: 0.817 (.812 + lens) (HFI tau .059 (.009))

τ , A_s , n_s degeneracies

Planck2016 PIP XLVI lowL pol ArXiv 1605.02985v1

•better τ breaks almost completely the degeneracy with n_s and reduces the degeneracy with A_s

- adding lensing does not improve
- although τ breaks the degeneracy with n_{s}

Reionisation history constraints from Planck

Planck & HST: Reionisation over 6 < z < 12

Planck indicates `Fast Reionization': Making (questionable) assumptions about their ionizing output the demographics of early galaxies can match the Planck T with reionisation contained with 12 < z < 6 Ly alpha, but OIII, CIV, CIII 4 with z > 7.5, eg 2015 z=7.7 may, 8.68 july, what about z=11.1 ? ~March HST grism ?? Focus now turns to measuring the ionizing output of early galaxies + EoR redshifted 21 cm cosmic dawn experiments: P16 => shift in in frequency target Robertson et al (2015), see also Bouwens+(2015), Mitra+(2015)

Summary

- First use of Planck HFI EE low Ell spectra and τ value with smallest uncertainties. major systematics improvement and modelling with End to End simulations of HFI maps
- $\boldsymbol{\tau}$ measurement almost independent of the other cosmological parameters
- τ lower than previous CMB hence z_{re} lower
- Removes tension between CMB and model of reionization based on the formation of first stars and galaxies.
- no need for early "ring of fire" of exotic early BHs at z~11+ as seemed to be the case with WMAP, more conventional BUT still
- a glorious future for interplay with earliest "optical" galaxies (HST, .. JWST), Ly alpha and future OIII and other metal lines
- cosmic dawn detectability with redshifted 21 cm still on track
- no "patchy reionization" kinetic SZ detection (yet), but cluster kSZ detection