

Stacking @ CITA - oriented asymmetric On extrema & other points CITA mini-industry Alvarez, Bond, Stein, Codis + Huang + Connor Bevington, Bruno Régaldo-Saint Blancard & to LIM w/ Ronan Kerr

Topography of the CMB-web, ζ -web, IQU/ E B, ISM-web, y-web, LIM/LAM web

oriented/symmetry-broken stacking on field points peaks saddles (cols, passes)

Stacking @ CITA - oriented asymmetric On extrema & other points CITA mini-industry Alvarez, Bond, Stein, Codis + Huang + Connor Bevington, Bruno Régaldo-Saint Blancard & to LIM w/ Ronan Kerr

Topography of the CMB-web, ζ -web, IQU/ E B, ISM-web, y-web, LIM/LAM web

oriented/symmetry-broken stacking on field points peaks saddles (cols, passes)

CITA mini-industry Alvarez, Bond, Stein, Codis + Huang + Connor Bevington, Bruno Régaldo-Saint Blancard & to LIM w/ Ronan Kerr

Unoriented tSZ stacking (Planck y-map)

 $\langle tSZ|tSZ \rangle$

~43000 hot peaks; peak finding on 10' (map presmoothed to 10')

 $\langle tSZ | n \rangle$

~75000 WHL clusters aka SDSS Wen+12

Unoriented tSZ stacking (simulations with perfect resolution aka ~AdvACT)

Build up of Planck <tSZ|n> stack

~75000 WHL clusters aka SDSS Wen+12

Sphericalized ensembles: the anisotropic web is averaged-out Interconnected web - bent group-ful bridges + tSZ gas outside? oriented asymmetric RedMapper cls

tSZ stack on nearby pairs not great control over different population contributions

tried Saraswati supercluster z~.28, > Shapley?, saw 2 cls in y map, no others in tSZ though we know position AdvACT resolution & sensitivity will help for individual SCs

<tSZ|tSZ> QU oriented results: Peak-patch & Planck

~7600 simulation peaks; peak finding and QU 0.70 1,6 0.65 0.8 y(deg) 0.0 0.60 0.55 -0.8 0.50 -1,6 0.8 -1.6 -0.81.6 0.0 x(deg)

<tSZ|n> QU oriented results: Peak-patch & Planck

Projected-strain/tide 2D stacks

10Mpc X 30Mpc all masses $< n_{halo} | C$ -oriented > (X)

headless vectors show strain tensor orientation

Beyond oriented: Symmetry breaking on <tSZ|n>

dipolar symmetry breaking => positive axes choice cf. beyond the headless 2-basis of pure orientation

m-Susceptibilities => new approaches to stacking

generalized random field 'cluster-expansion' aka halo expansion for a **q-charge density** in Eulerian space: <u>e.g.</u>, M_{tot}, PV, Vol_E

 $\frac{u_q(x) = \sum_c \chi_{qc}(x - x_c, R_{Ec})q_c \delta N_c(x_c, R_{Ec}) + u_{qf}(x)\Theta_{VE} + u_{qf}(x)(1 - \Theta_{VE})}{\& q-charge current: J_q(x)}$

inside = $\Theta_{VE}(x)$ BM's \mathcal{E}_{hpk} , 1 or 0 outside = $1 - \Theta_{VE}(x)$ =complement

response functions to stimuli= mean susceptibilities χ_{qc} SUSCEPTIBILITY OF U_q to the "Charge" q_c the art of halo models susceptibility($q \ C1$)(y)=< [$p_q(\chi_c+s_c(y)$]/ $q_c \ n_c(\chi_c)$ > < $n_c(\chi_c)n_{c1}(\chi_{c1})$ >-1 curious example: response fn of halos - delta function stack OK if you don't go to the far field, but these χ_{qc} as impt to measure as C_{qc}

 χ_{qc} via FT of qn stack and divide by FT of nn stack ... but need to clean/apodize etc.

FT cleaning: m-expansion in 2D, YLM in 3D, hence scalar, dipole, quadrupole, octupole & beyond. reconstruct oriented asymmetric stacks by combining multipole stacks. n^{O} => control of supercluster-ensemble measures. tSZ but also dust, CMB, CIB, lens, ζ , kSZ 3,4-filament mapping of far field cf. near field. multifield teasing of local web structures