

JAMBOREE 2021

Introduction - Thursday : 12:00 - 12:15

Juna Kollmeier	Introduction to CITA
jak@cita.utoronto.ca	Introduction to CITA

Cosmology and Extragalactic I - Thursday : 12:15 - 13:00

	Beyond perturbative methods for early universe cos-
	mology and strong gravity
Loso Tomas Calvoz Chorsi	In this short talk, I will briefly cover the topics of my research
jose Tomas Galvez Ghersi	which dedicates to the development of computational tech-
Jgarvezg@cita.utoronto.ca	niques applied to dynamical systems. In particular, to study
	inflationary cosmology (and alternatives) and the generation of
	GW waveforms for beyond-GR theories.
	LiteBIRD – Anesthetic – Gambit
	Just a quick introduction about me and what I work on. I am
	a new postdoc at UBC working on cosmic inflation and beyond
Lukas Hergt	LCDM cosmology using nested sampling to perform Bayesian
lthergt@phas.ubc.ca	model comparisons, which I visualise with Anesthetic (check it
	out, also useful for MCMC visualisations and highly intuitive
	for matplotlib users). I am also a member of the LiteBIRD and
	Gambit collaborations.
Dick Bond	TBA
	TBA
	Early Universe Simulations and Non-Gaussianity
Thomas Morrison morrison@physics.utoronto.ca	My work focuses on generating novel forms of non-Gaussianity
	in the early universe using lattice simulations as a computa-
	tional tool. I am particularly interested in non-Gaussianity
	generated by phase transitions during inflation.

	CMB data analysis and theory for SO/S4
	Upcoming millimeter-wave surveys like SO/S4 will yield lots of
	interesting cosmology, as long as we can understand our instru-
Zack Li	ments, foregrounds, and cosmological models. I'm interested
zack@cita utoronto ca	in developing methods and tools for analyzing data from these
	surveys! In particular I think about power spectra pipelines
	forward models of foregrounds and using gradients to acceler-
	ate model exploration
	Looking for signatures of novel physics in the cosmic
	web with semi-analytic simulations
	The Peak Patch simulations very rapidly model the approxi-
	mate development of large-scale cosmological structure from a
	primordial random density field without requiring the full phys-
Nathan Carlson	ical treatment of an N-body simulation. My research involves
njcarlson@physics.utoronto.ca	updating the code's ability to model relatively small scales in
	the interiors of galaxy clusters and on the largest scales the fu-
	ture trajectories clusters and the structures they will produce
	at Great Attractors. Our objective in this effort is to recon-
	structing cosmic fields and study various models of cosmology
	beyond ΛCDM .
Matthew Johnson	Fundamental Physics in Cosmology
Pavel Motloch	What I have been up to
motloch@cita.utoronto.ca	Galaxy spins, CMB, CIB
	Cosmological Constraints using Halo Structure
	For a broad range of group and cluster mass at low redshift,
	halo "age" or mean assembly time varies almost orthogonally
James Taylor	to halo abundance in the omega_m-sigma_8 plane. Thus, esti-
taylor@uwaterloo.ca	mates of age based on structural proxies such as concentration
	can significantly reduce the error contours in cluster abundance
	studies. This provides an interesting path to explore the recent
	tension between CMB and cluster results
	tension between OMD and cluster results.
	First Constraints on Reionization from HERA
Adrian Liu	First Constraints on Reionization from HERA In this talk, I will briefly showcase recent science results from
Adrian Liu adrian.liu2@mcgill.ca	First Constraints on Reionization from HERA In this talk, I will briefly showcase recent science results from the Hydrogen Epoch of Reionization Array (HERA), which rule

Planets - Thursday : 13:00-14:00

	Linking solar and extra-solar systems
	Solar system planets are at the extreme ends of the overall exo-
	planetary population. Observationally, however, we do not yet
	have technical capabilities to detect true solar system analogs
Eve Lee	and so robustly determining whether we live in an unusual sys-
eve.lee@mcgill.ca	tem or not is challenging. At the rocky and gassy ends of ex-
	oplanets, there are populations that bridge the more common
	mini-Neptunes with the more extreme solar system counter-
	parts, namely rocky super-Earths and gas giants. I will talk
	about these two populations.
Same Haddan	Instabilities In Planetary Systems
Sam Hadden	A lightning introduction to simulating planetary systems and
snadden1107@gmail.com	understanding their potential for dynamical instabilities.
Scott Tremaine	Stellar and planetary dynamics
tremaine@cita.utoronto.ca	I will give a brief overview of my research interests.
	Planet Disk Interactions with Luminous Planets
	Protoplanetary disks are the environment from which all plan-
	ets, including our own Earth form. Composed initially of gas
	and dust, which, over hundreds of thousands of years, comes
	together to form the planets we observe today. The structure of
	these disks, such as the density and temperature profiles play
	an important role in influencing how planets can form. And
Demand Hannahim	these structures are in turn strongly influenced by the dynam-
hemelin@estre.utenente.es	ical evolution of the disk. Over the past couple decades, many
norrobin@astro.utoronto.ca	works both numerical and analytic have aimed to describe how
	perturbations to the disk from embedded forming planets influ-
	ence the formation and evolution of planetary systems. Here I
	will briefly show how applying explicit radiative hydrodynam-
	ics and including the accretion luminosity of the planet as a
	source can greatly change the torque a planet feels from the
	disk, and consequently have significant influence over its mi-
	gration pathway.
	Teasing-Out Tilts within Planet-Forming Disks
J. J. Zanazzi	I will briefly discuss recent and ongoing work on theoretical and
jzanazzi@cita.utoronto.ca	observational work on constraining tilts within planet-forming
	disks.
	Planetary Dynamics via small-body orbits
Brett Gladman	In this lightening talk I will summarize various insights into
gladman@phas.ubc.ca	planetary dynamics available via the study of small-body or-
	bits, both observationally and numerically.

High Energy / FRB I - Thursday : 14:20 - 15:20

	Negative Dynamical Friction
V . I .	We study the case where a star moving inside ambient gas.
Ainyu Li vli@cita utoronto ca	when outflow is launched from the star, a bow shock is formed about leading to a not acceleration from the ambient gas. With
	a new CPU based code, we can study this effect in realistic
	a new Gi O-based code, we can study this elect in realistic
	Investigating sources of fast radio bursts
Jonathan Zhang jzhang@physics.utoronto.ca	Two of the more commonly proposed sources of fast radio bursts (FRBs) are heavy dark matter particles, and magnetar bursts. If FRBs are caused by dark matter, the signal distribu- tion would correlate with dark matter structure, and therefore allows us to calculate the signal distribution from halo struc- ture simulations. I also intend to study how FRBs could be caused by magnetars. By calculating the plasma distribution in the magnetosphere, we can make more precise predictions
	about the processes that could lead to FRBs.
	Pulsar Scintillation with CHIME
Ashley Stock stock@astro.utoronto.ca	Pulsars scintillate as a result of scattering by the interstellar medium (ISM). Measurement of the scintillation properties of a pulsar, especially the annual variation of these properties, can be used to determine the distance and orientation of the scattering structures. Knowing the distances to the scattering structures can allow for 3D co-location with features in the ISM. I use the CHIME telescope to measure scintillation properties of pulsars on several sight-lines with high cadence to better understand the ISM structures that cause scintillation.
Fang Xi Lin flin@cita.utoronto.ca	Lensing predictions from dispersion measure Dispersion Measure (DM) is a commonly measured quantity in pulsar astronomy: it is the column density of electrons along the line of sight from Earth to the pulsar. It is well known that changing electron densities will change the index of refraction of the ISM and environments surrounding binary pulsars, which should lead to focusing and de-focusing effects. However, this link hasn't been clearly demonstrated in current literature. I present some results showing such lensing effects in eclipsing binary pulsars.
Chris Thompson thompson@cita.utoronto.ca	Topics in High Energy Astrophysics Much of my research over the last year has focused on the electrodynamics of neutron stars and various quantum electro- dynamic and plasma effects that appear to be involved in the bizarre and spectacular behavior of magnetars. Some progress may have also been made untying the longstanding question of how and why radio pulsars produce radio waves. I'm also actively interested in the rotation of stars and the formation of planets, which still provide much fresh theoretical territory to be explored.

Galaxies I - Thursday : 15:20-16:20

	Modelling stellar cluster populations alongside their
	host galaxies: the EMP-Pathfinder view
	Stellar cluster populations in the Local Universe show a wide
	range in properties, suggesting that these objects form via
	a unique physical channel, and that their demographics are
	shaped by their formation and evolution in an evolving cosmic
	environment. This scenario links the current cluster forma-
	tion sites in the disks of the the Antennae galaxies to the old
	GC population that mostly populates the halo of the Milky
	Way, implying that their evolution is tightly coupled to that of
Marta Reina-Campos	their host galaxy. To understand the observed cluster popula-
reinacampos@mcmaster.ca	tions, it has become necessary the use of numerical simulations
	that can model the co-formation and evolution of stellar clus-
	ters alongside their galactic environments over a Hubble time.
	In this talk, I will introduce the EMP-Pathfinder simulations
	(Reina-Campos+ in prep.), and I will show that GC popula-
	tions emerge self-consistently in this scenario after 10 Gyr of
	co-evolution with their host galaxy. Lastly, I will briefly dis-
	cuss how cluster demographics can be used as diagnosis tools
	for baryonic models in galaxy formation simulations, and I will
	set up the floor for a discussion regarding upcoming challenges
	in numerical simulations of galaxy formation and evolution.
	High-z star formation from protoclusters and CIB-
Seunghwan Lim	optical cross-correlation
	I will present a summary of comparisons of protoclusters from
	observation and current simulations, as well as of CIB-optical
	cross-correlation using the CFIS r-band and SPIRE images.
	Rainer Weinberger
Bainer Weinberger	main interests: - Galaxy formation and evolution from cosmo-
rainer@cita.utoronto.ca	logical initial conditions - Numerical modeling and code ac-
	cessibility - Idealized simulations - connections to fundamental
	physics

	Modelling the Star Formation History of M31 Using
	FUV Through IR Data
	M31 has being surveyed at far and near ultraviolet (FUV and
	NUV) with the UVIT telescope on AstroSat. We carry out pho-
	tometry in 5 FUV and NUV bands, and also analyze archival
Donis Loopy	data, including SDSS data in optical, Spitzer data in near in-
looby@ucolgory.co	frared and Herschel data in mid and far infrared. The resulting
leany@ucaigary.ca	multiband photometry is modeled using the public CIGALE
	code and with our own code for modeling multiple Simple Stel-
	lar Populations (SSP) code. We confirm recently published star
	formation history (SFH) studies, and find improved results for
	the youngest populations. The latter is enabled by the inclusion
	of the FUV and NUV data.
	What Sets the Orbits of Stars in the Milky Way?
	Disk galaxies are very regular in their stellar bodies but reveal
	complex structures in their stars and gas. The Milky Way is
	an ideal model organism to study the connection between the
Neige Frankel	structured birth conditions and the subsequent dynamical evo-
frankel@cita.utoronto.ca	lution of its disk, as much 6D phase space information is avail-
	able for its individual stars. At the same time, cosmological
	simulations are reaching resolutions high enough to start mak-
	ing quantitative comparisons with observations. I will briefly
	present my work using the Milky Way at the interface between
	cosmological simulations and external disk galaxies.

	CII 158 micron line emission as star formation rate in-
	dicator of galaxies
	CII (singly ionized carbon) 158 micron emission line, the bright-
	est FIR line of galaxies (1e-2 \sim 1e-3 L_IR), is adopted as a
	powerful tool for measuring SFR of galaxies at extremely high
	redshifts $(z > 5)$. It is motivated by the observed linear corre-
	lation between SFR and CII luminosity (L_CII) of normal star-
	forming galaxies by several different groups recently. However,
	other studies also show that CII luminosity of different types
	of galaxies, such as local ULIRGs and high-z SMGs, exhibit
	a "CII-deficit" with respect to their L_IR. In addition, recent
	ALMA programs (e.g. ALMA-ALPINE survey) have also re-
	vealed a large population of UV-selected galaxies that have no
Lichen Liang	[CII] line detection, casting doubts on the empirical, locally cal-
lliang@cita.utoronto.ca	ibrated SFR vs. CII luminosity scaling relation. In this talk, I
	will introduce our recent study on the CII line emission of galax-
	ies using the FIREBox cosmological simulation, the first-ever
	cosmological-volume simulation that has the resolution of typ-
	ical galaxy zoom-in simulations. I will show that the FIREBox
	simulation can successfully reproduce the local SFR vs. CII
	luminosity scaling relation at 0.1-10 M_sun/yr, as well as the
	observed deficiency of CII emission at higher SFR regime and
	at high redshifts. I will discuss the physical drivers of the vari-
	ation in the L _{CII} / SFR ratio, and their relative importance
	at different regimes of physical parameter spaces of galaxies.
	Finally, I will also pinpoint several important sources of obser-
	vational uncertainties that could bias our SFR calibration by
	CII line emission at high redshifts.

Multimessenger and "Multitopic" - Friday : 12:00 - 1:00

	The Multi-Messenger Milky Way
Sarah Gossan gossan@cita.utoronto.ca	The era of multi-messenger astronomy is well and truly upon
	us, with over 50 compact binaries observed since the Advanced
	LIGO detectors saw first light in 2015. Despite our very own
	cosmic backyard, the Milky Way, being ripe with prospective
	sources for ground-based gravitational wave detectors, the clos-
	est source detected thus far was at a distance of 40 Mpc.
	In this talk, I will outline several potential Galactic multi-
	messenger sources, and discuss several ways in which their de-
	tection prospects over the next twenty years can be improved
	through both experimental and analytical techniques.

	Gravitational Waves, Neutron Stars, and Strong Grav-
Phil Landry pgjlandry@gmail.com	ity In this lightning talk, I will introduce myself and describe my research interests in gravitational wave astronomy, neutron star astrophysics and general relativity.
Jose Miguel Jauregui jgarcia@cita.utoronto.ca	A hardware side of CITA Quarantine times ask for new ways of work. Benchwork needs lab equipment (expensive) or a bunch of orders from online orders and coffee.
Janosz Dewberry jdewberry@cita.utoronto.ca	Tides and oscillations in stars and gaseous planets In this lightning talk, I will describe my efforts over the last year to understand the fluid dynamics of rapidly rotating, centrifu- gally distorted gas giants like Saturn and Jupiter. In particular, I will describe projects related to i) wave excitation in Saturn's rings by the planet's internal oscillations, ii) the computation of tidal Love numbers for rapidly rotating planets and stars, and iii) the tidal response of rotating fluid bodies with stably stratified interiors.
Omar Contigiani contigiani@cita.utoronto.ca	Propagation of gravitational waves on arbitrary back- grounds In General Relativity and beyond, the propagation of gravita- tional waves (GWs) on top of a background metric is studied under one of two assumptions: either the background is fixed to a specific form, or a well-behaved separation between wave and arbitrary background must be imposed. This is tradition- ally done by requiring that the wavelength of the first is smaller than the typical length scale of the second. However, this nat- urally limits us to the geometric optics limit, where the ratio between the two is ii1. In this talk, I will introduce a second way to achieve this separation for arbitrary GW wavelengths in the presence of a spontaneously broken symmetry. I will discuss what a well-behaved separation implies and introduce a simple application of this formalism in the context of scalar waves present in modified theories of gravity.

High Energy / FRB II - TBD

	Wave Optics in Lensing
	The abundance of lensing data for coherent sources (e.g. FRBs and pulsars) that is set to be obtained has made the study of
Dalar I.m.	wave effects in lensing extremely relevant to the current obser-
Dylan Jow	vational climate. New advancements in numerical techniques
ajow@pnysics.utoronto.ca	for evaluating nightly oscillatory integrals has made a more so-
	phisticated study of wave effects possible. In this work, we nope
	ing these new techniques in order to identify and esteraring
	nig these new techniques in order to identify and categorize
	Violent Astrophysical Transients
Almog Yalinewich	I will present my research on violent astrophysical transients,
almog.yalm@gmall.com	such as gamma ray bursts, supernova explosions, tidal disrup-
	tion events and planetary collisions
	Pulsar Scintillometry $\theta - \theta$ Methods
	Pulsar scintillometry can provide an excellent tool for study-
	ing both the properties of pulsars and the Interstellar Medium
Daniel Baker	(ISM). Unfortunately, much of this information is hidden be-
	hind a convolution. $\theta - \theta$ methods allow us to undo the convo-
	lution to make order of magnitude improvements to measure-
	ments of pulsar velocities and details of the the structures in
	the ISM responsible for scintillation.
	Towards precision white dwarf cosmochronology
	The predictable cooling of white dwarfs is routinely exploited
	to measure the ages of stellar systems. With the ongoing data
	revolution in stellar astronomy, the accuracy of this age-dating
	technique is increasing and may soon provide useful constraints
	in cosmology. For the moment, modeling uncertainties of white
	dwarf cooling prevent us from unlocking the full potential of
	white dwarf cosmochronology. During the last few years, I
Simon Blouin	have been working on improving the microphysics (equation of
sblouin@uvic.ca	state, opacities, phase diagrams) of white dwarf cooling models
	to increase their accuracy. I have worked on characterizing the
	chemical fractionation undergone by white dwarfs as their inte-
	riors freeze, a process that can delay their cooling by as much
	as 8 Gyrs. During the next few years, I will be investigating
	convective boundary mixing during the previous evolutionary
	phases to better constrain the chemical profile at the start of
	the white dwarf phase, a quantity that my previous work has
	revealed to be critical for cooling models.
	VLBI FRB Localization
	I ne Fast Radio Bursts are short duration, 10ms, strong radio
Jing Santiago Luo	fiash from the deep universe. The accurate localization of FRBs
luojing1211@gmail.com	helps us understand the physics of their origin and propagation.
	In this presentation, we present the concept of VLBI localizing
	the CHIME FRBs to sub-arcsecond precision.

 S'Irongly-Interacting Ultralight Millicharged Particles (STUMPs) We consider the implications of an ultra-light fermionic dark matter candidate that carries baryon number. This naturally arises if dark matter has a small charge under standard model baryon number whilst having an asymmetry equal and opposite to that in the visible universe. A prototypical model is a theory of dark baryons charged under a non-Abelian gauge group, i.e., a dark Quantum Chromo-Dynamics (QCD). For sub-eV dark baryon masses, the inner region of dark matter halos is naturally at 'nuclear density', allowing for the formation of exotic states of matter, akin to neutron stars. The Tremaine-Gunn lower bound on the mass of fermionic dark matter, i.e., the dark baryons, is violated by the strong short-range self-interactions, cooling via emission of light dark pions, and the Cooper pairing of dark quarks that occurs at densities that are high relative to the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark matter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pressure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk beauter and a superconducting vortices. 		
 (STUMPs) We consider the implications of an ultra-light fermionic dark matter candidate that carries baryon number. This naturally arises if dark matter has a small charge under standard model baryon number whilst having an asymmetry equal and opposite to that in the visible universe. A prototypical model is a theory of dark baryons charged under a non-Abelian gauge group, i.e., a dark Quantum Chromo-Dynamics (QCD). For sub-eV dark baryon masses, the inner region of dark matter halos is naturally at 'nuclear density', allowing for the formation of exotic states of matter, akin to neutron stars. The Tremaine-Gum lower bound on the mass of fermionic dark matter, i.e., the dark baryons, is violated by the strong short-range self-interactions, cooling via emission of light dark pions, and the Cooper pairing of dark quarks that occurs at densities that are high relative to the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark matter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pressure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk betweed as a resolution to core-cusp relation of state of dense quark matter. The model is distinguished from ultra-light back QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light back QCD as a well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk betweed as a resolution to core data partice of the superconducting vortices. Talk betwe		STrongly-Interacting Ultralight Millicharged Particles
 We consider the implications of an ultra-light fermionic dark matter candidate that carries baryon number. This naturally arises if dark matter has a small charge under standard model baryon number whilst having an asymmetry equal and opposite to that in the visible universe. A prototypical model is a theory of dark baryons charged under a non-Abelian gauge group, i.e., a dark Quantum Chromo-Dynamics (QCD). For sub-eV dark baryon masses, the inner region of dark matter halos is naturally at 'nuclear density', allowing for the formation of exotic states of matter, akin to neutron stars. The Tremaine-Gunn lower bound on the mass of fermionic dark matter, i.e., the dark baryons, is violated by the strong short-range self-interactions, cooling via emission of light dark pions, and the Cooper pairing of dark quarks that occurs at densities that are high relative to the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark matter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pressure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk 		(STUMPs)
 matter candidate that carries baryon number. This naturally arises if dark matter has a small charge under standard model baryon number whilst having an asymmetry equal and opposite to that in the visible universe. A prototypical model is a theory of dark baryons charged under a non-Abelian gauge group, i.e., a dark Quantum Chromo-Dynamics (QCD). For sub-eV dark baryon masses, the inner region of dark matter halos is naturally at 'nuclear density', allowing for the formation of exotic states of matter, akin to neutron stars. The Tremaine-Gum lower bound on the mass of fermionic dark matter, i.e., the dark baryons, is violated by the strong short-range self-interactions, cooling via emission of light dark pions, and the Cooper pairing of dark quarks that occurs at densities that are high relative to the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark matter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pressure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk 		We consider the implications of an ultra-light fermionic dark
 arises if dark matter has a small charge under standard model baryon number whilst having an asymmetry equal and opposite to that in the visible universe. A prototypical model is a theory of dark baryons charged under a non-Abelian gauge group, i.e., a dark Quantum Chromo-Dynamics (QCD). For sub-eV dark baryon masses, the inner region of dark matter halos is naturally at 'nuclear density', allowing for the formation of exotic states of matter, akin to neutron stars. The Tremaine-Gunn lower bound on the mass of fermionic dark matter, i.e., the dark baryons, is violated by the strong short-range self-interactions, cooling via emission of light dark pions, and the Cooper pairing of dark quarks that occurs at densities that are high relative to the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark matter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pressure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk 		matter candidate that carries baryon number. This naturally
 baryon number whilst having an asymmetry equal and opposite to that in the visible universe. A prototypical model is a theory of dark baryons charged under a non-Abelian gauge group, i.e., a dark Quantum Chromo-Dynamics (QCD). For sub-eV dark baryon masses, the inner region of dark matter halos is naturally at 'nuclear density', allowing for the formation of exotic states of matter, akin to neutron stars. The Tremaine-Gunn lower bound on the mass of fermionic dark matter, i.e., the dark baryons, is violated by the strong short-range self-interactions, cooling via emission of light dark pions, and the Cooper pairing of dark quarks that occurs at densities that are high relative to the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark matter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pressure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk 		arises if dark matter has a small charge under standard model
to that in the visible universe. A prototypical model is a theory of dark baryons charged under a non-Abelian gauge group, i.e., a dark Quantum Chromo-Dynamics (QCD). For sub-eV dark baryon masses, the inner region of dark matter halos is natu- rally at 'nuclear density', allowing for the formation of exotic states of matter, akin to neutron stars. The Tremaine-Gunn lower bound on the mass of fermionic dark matter, i.e., the dark baryons, is violated by the strong short-range self-interactions, cooling via emission of light dark pions, and the Cooper pairing of dark quarks that occurs at densities that are high relative to the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark mat- ter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pres- sure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk		baryon number whilst having an asymmetry equal and opposite
Evan McDonough e.mcdonough@uwinnipeg.ca of dark baryons charged under a non-Abelian gauge group, i.e., a dark Quantum Chromo-Dynamics (QCD). For sub-eV dark baryon masses, the inner region of dark matter halos is natu- rally at 'nuclear density', allowing for the formation of exotic states of matter, akin to neutron stars. The Tremaine-Gunn lower bound on the mass of fermionic dark matter, i.e., the dark baryons, is violated by the strong short-range self-interactions, cooling via emission of light dark pions, and the Cooper pairing of dark quarks that occurs at densities that are high relative to the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark mat- ter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pres- sure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk heared or ar Xii:9011.06E80		to that in the visible universe. A prototypical model is a theory
a dark Quantum Chromo-Dynamics (QCD). For sub-eV dark baryon masses, the inner region of dark matter halos is natu- rally at 'nuclear density', allowing for the formation of exotic states of matter, akin to neutron stars. The Tremaine-Gunn lower bound on the mass of fermionic dark matter, i.e., the dark baryons, is violated by the strong short-range self-interactions, cooling via emission of light dark pions, and the Cooper pairing of dark quarks that occurs at densities that are high relative to the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark mat- ter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pres- sure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk		of dark baryons charged under a non-Abelian gauge group, i.e.,
Evan McDonough e.mcdonough@uwinnipeg.ca baryon masses, the inner region of dark matter halos is natu- rally at 'nuclear density', allowing for the formation of exotic states of matter, akin to neutron stars. The Tremaine-Gunn lower bound on the mass of fermionic dark matter, i.e., the dark baryons, is violated by the strong short-range self-interactions, cooling via emission of light dark pions, and the Cooper pairing of dark quarks that occurs at densities that are high relative to the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark mat- ter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pres- sure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk heard en arXii::2011.06580		a dark Quantum Chromo-Dynamics (QCD). For sub-eV dark
Evan McDonough e.mcdonough@uwinnipeg.ca rally at 'nuclear density', allowing for the formation of exotic states of matter, akin to neutron stars. The Tremaine-Gunn lower bound on the mass of fermionic dark matter, i.e., the dark baryons, is violated by the strong short-range self-interactions, cooling via emission of light dark pions, and the Cooper pairing of dark quarks that occurs at densities that are high relative to the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark matter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pressure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk		baryon masses, the inner region of dark matter halos is natu-
Evan McDonough e.mcdonough@uwinnipeg.ca states of matter, akin to neutron stars. The Tremaine-Gunn lower bound on the mass of fermionic dark matter, i.e., the dark baryons, is violated by the strong short-range self-interactions, cooling via emission of light dark pions, and the Cooper pairing of dark quarks that occurs at densities that are high relative to the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark mat- ter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pres- sure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk		rally at 'nuclear density', allowing for the formation of exotic
Evan McDonough e.mcdonough@uwinnipeg.ca lower bound on the mass of fermionic dark matter, i.e., the dark baryons, is violated by the strong short-range self-interactions, cooling via emission of light dark pions, and the Cooper pairing of dark quarks that occurs at densities that are high relative to the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark mat- ter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pres- sure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk		states of matter, akin to neutron stars. The Tremaine-Gunn
Evan McDonough e.mcdonough@uwinnipeg.ca baryons, is violated by the strong short-range self-interactions, cooling via emission of light dark pions, and the Cooper pairing of dark quarks that occurs at densities that are high relative to the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark mat- ter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pres- sure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk		lower bound on the mass of fermionic dark matter, i.e., the dark
e.mcdonough@uwinnipeg.ca cooling via emission of light dark pions, and the Cooper pairing of dark quarks that occurs at densities that are high relative to the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark mat- ter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pres- sure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk	Evan McDonough	baryons, is violated by the strong short-range self-interactions.
of dark quarks that occurs at densities that are high relative to the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark mat- ter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pres- sure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk	e.mcdonough@uwinnipeg.ca	cooling via emission of light dark pions, and the Cooper pairing
the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark mat- ter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pres- sure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk	I I I I I I I I I I I I I I I I I I I	of dark quarks that occurs at densities that are high relative to
of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark mat- ter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pres- sure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk		the (ultra-low) dark QCD scale. We develop the astrophysics
(STUMPs) utilizing the equation of state of dense quark mat- ter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pres- sure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk		of these STrongly-interacting Ultra-light Millicharged Particles
ter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pres- sure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk		(STUMPs) utilizing the equation of state of dense quark mat-
galaxies. These cores are prevented from core-collapse by pres- sure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk hasad on arXiin2011.06580		ter and find halo cores consistent with observations of dwarf
sure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk hasad on arXiin2011.06580		relaxies. These cores are prevented from core collapse by pres
as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk		galaxies. These cores are prevented from core-conapse by pres-
matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk		sure of the neutron star, which suggests utra-light dark QCD
matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk		as a resolution to core-cusp problem of consideress cold dark
dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk		matter. I ne model is distinguished from ultra-light bosonic
as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices. Talk		dark matter through direct detection and collider signatures,
such as Andreev reflection and superconducting vortices. Talk		as well as by phenomena associated with superconductivity,
based on $an V:= 9011.06590$		such as Andreev reflection and superconducting vortices. Talk
Dased on arXiv:2011.00589.		based on arXiv:2011.06589.

Galaxies II - Friday : 14:20 - 15:20

	Halo's Magnetic field as Evident from stRiated Inter-
	stellar Clouds (HOMERIC)
	From the propagation of cosmic rays and the removal of CMB
	foregrounds to the formation of molecular clouds and star for-
	mation, the Galactic magnetic field (GMF) plays a paramount
Aris Tritsis atritsis@uwo.ca	role. Despite the importance of the GMF, unveiling its prop-
	erties has proven to be, like the journey of Ulysses to Ithaca
	in Homer's epic poem, a real Odyssey. This is not because of
	lack of effort but rather because the magnetic field is hard to
	observe. The majority of the diagnostics we have been using
	to probe the GMF cannot provide 3-dimensional information
	about its strength or structure. In this talk, I will present
	HOMERIC (HalO's Magnetic field as Evident from stRiated
	Interstellar Clouds), an ambitious project that aims to perform
	a bona-fide tomographic measurement of the strength and ori-
	entation of the plane-of-sky component of the GMF. To this
	end, HOMERIC makes use of a novel method that utilizes the
	imprint of hydromagnetic waves on interstellar clouds to trace
	back the strength of the magnetic field.
Antoine Marchal	Exploring the multiphase and multiscale nature of the
amarchal@cita.utoronto.ca	(neutral) ISM
	Standarium the Instantalian Madiana suith Dalaan
Ismas Makas	Studying the insterstellar Medium with Pulsars
	Puisars anow sensitive measurements of different aspects of the
Jinckee@cita.utorointo.ca	derstand the variable nature of the ISM
	Galactic astrophysics using the Milky Way and its con-
	nection(s) with the galaxy population
	I will present a brief overview of the various projects I'm work-
	ing on or interested in within the broad area of 'using the Milky
Ted Mackereth	Way as a tool for developing our understanding of galactic
ted mackereth @cita.utoron to.ca	astrophysics'. I'll show results examining how alpha-element
	abundances can be tracers of galactic assembly, new results
	from modelling the density of the Milky Way bar, a look at the
	'resolved' assembly of the Milky Way and some smaller results
	on dark matter substructure and interstellar objects.
Peter Martin pgmartin@cita.utoronto.ca	The turbulent dusty magnetized ISM
	At lightning speed I will illustrate analyses by me and my
	coneagues of new probes for modeling the ISM in 3D. These
	involve: Exploiting the complementarity of Herschel/Planck
	conternal dust emission, NIK/optical extinction, and Dragonny
	Coio
	Gaia.

	Molecular Cloud Populations and Their Star Forma-
	tion Efficiencies in Nearby Galaxies
Jiayi Sun sun208@mcmaster.ca	I will showcase my latest research in the context of the
	PHANGS-ALMA project, a CO(2-1) survey mapping the
	molecular cloud populations in 90 nearby, massive, star-forming
	galaxies. Taking advantage of the rich multiwavelength data
	available for these galaxies, we measure physical properties of
	the molecular clouds and put them in the context of their local,
	kpc-scale galactic environment. We observe clear correlations
	between molecular cloud characteristics (such as surface density
	and velocity dispersion) and galactic environmental properties
	(such as kpc-scale surface densities of gas, star, and SFR). We
	further calculate a number of characteristic timescales relevant
	to molecular cloud formation and evolution, including cloud
	free-fall time, turbulence crossing time, and gas depletion time.
	The combination of these timescales allow us to constrain the
	star formation efficiency per free-fall time (0.9%) and test the-
	oretical predictions from turbulence-regulated star formation
	models.

Cosmology and Extragalactic II - Friday : 15:20 - 16:20

	Understanding the evolving Universe
	My research focuses on understanding two main aspects of the
	Universe: cosmological reionization and cosmic magnetism. To
	understand how the Universe acquires its magnetization on the
	large scales and how reionization proceeded, proper theoreti-
	cal tools in modeling and analysis of radiation we receive are
Jennifer Y. H. Chan	needed, in addition to collecting more data through observa-
jyhchan@cita.utoronto.ca	tions and experiments. I develop covariant formalisms of cos-
	mological radiative transfer (CRT) of (i) 21-cm line of neutral
	hydrogen and (ii) polarized continuum radiation to study these
	two key sciences, respectively. These CRT formalisms can take
	the advantage of the vast resources in sophisticated cosmologi-
	cal (magneto-)hydrodynamic simulations and make unambigu-
	ous predictions of the observables to compare with observation.

	Line-intensity mapping: enabling new lines of enquiry
	into the high-redshift universe
	Line-intensity mapping promises to capture large-scale struc-
	ture at high redshift through a three-dimensional measurement
	of the intensity field of a given spectral line species. Surveys
	of rest-frame cm- to mm-wave lines associated with CO and
	[C II] will strongly complement 21 cm surveys at high redshift
	by tracing dense star-forming environments. While CO and
Dongwoo Chung	[C II] intensity mapping experiments are still in early stages
dongwooc@cita.utoronto.ca	modellers must lay the groundwork for more advanced analyses
	with future data to enable both astrophysical and cosmological
	inferences. My programme of research looks to work towards
	this goal through better forward models of the connection be-
	tween halo properties and emission in different spectral lines
	more complete accounting of astrophysical effects, and novel
	mote complete accounting of astrophysical energy, and novel
	of overlapping cosmic volumes
	The Nucliment Nuclimes.
	The Nonlinear and NonGaussian Early Universe
Jonathan Braden	I work on various aspects of nonlinear dynamics in the early
jbraden@cita.utoronto.ca	Universe, such as phase transitions, preneating, and production
	of novel forms of non-Gaussianity. I also work on analog table
	top models for cosmology.
Renee Hlozek	
	Efficient Modelling of Ultralight Axions
	Many models of high energy physics predict the existence of
	ultralight scalar bosons. It has been shown that such parti-
	cles make ideal dark matter candidates which may help allevi-
	ate some observational discrepancies in cosmology such as the
Alex Lague	missing satellite problem and the Hubble- S_8 tensions. However,
lague@astro.utoronto.ca	due to their mass range spanning many orders of magnitude
	and their wave-like nature, accurately modelling the impact of
	ultralight bosons on large-scale structure has proven to be a
	computational challenge. I will discuss the use of a combina-
	tion of BOSS and Planck CMB data to reach the strongest
	constraints on the relic density of axions with mass lower than
	10^{-26} eV (arXiv:2104.07802).
	Physics with the Nonlinear Universe
	Physics with the Nonlinear UniverseI will talk about how to optimally extract information from
Hongming Zhu	Physics with the Nonlinear UniverseI will talk about how to optimally extract information fromthe nonlinear structures of the Universe and present some re-
Hongming Zhu	Physics with the Nonlinear Universe I will talk about how to optimally extract information from the nonlinear structures of the Universe and present some re- cent results for reconstructing the large-scale density field from
Hongming Zhu hmzhu@cita.utoronto.ca	Physics with the Nonlinear Universe I will talk about how to optimally extract information from the nonlinear structures of the Universe and present some re- cent results for reconstructing the large-scale density field from the small-scale matter distribution. I have also proposed new
Hongming Zhu hmzhu@cita.utoronto.ca	Physics with the Nonlinear Universe I will talk about how to optimally extract information from the nonlinear structures of the Universe and present some re- cent results for reconstructing the large-scale density field from the small-scale matter distribution. I have also proposed new estimators for CMB lensing and robust probes of cosmic neu-
Hongming Zhu hmzhu@cita.utoronto.ca	Physics with the Nonlinear Universe I will talk about how to optimally extract information from the nonlinear structures of the Universe and present some re- cent results for reconstructing the large-scale density field from the small-scale matter distribution. I have also proposed new estimators for CMB lensing and robust probes of cosmic neu- trinos.
Hongming Zhu hmzhu@cita.utoronto.ca Martine Lokken	 Physics with the Nonlinear Universe I will talk about how to optimally extract information from the nonlinear structures of the Universe and present some recent results for reconstructing the large-scale density field from the small-scale matter distribution. I have also proposed new estimators for CMB lensing and robust probes of cosmic neutrinos. TBA

	The Hubble tension and the magnetic universe
Levon Pogosian levon@sfu.ca	Magnetic fields, if present in the plasma prior to last scatter-
	ing, would induce baryon inhomogeneities and speed up the
	recombination process. As a consequence, the sound horizon
	at last scattering would be smaller, which would help relieve
	the Hubble tension. Intriguingly, the strength of the magnetic
	field required to alleviate the Hubble tension happens to be of
	the right order to also explain the observed magnetic fields in
	galaxies, clusters of galaxies and the intergalactic space. I will
	review this proposal and provide an update on its status in the
	context of the latest data.