

L'institut Canadien d'astrophysique théorique

Jamboree 2018

12:15 PM — Introduction

Ue-Li Pen	Introduction to CITA
pen@cita.utoronto.ca	Introduction to CITA

12:25 PM — Pulsars & FRBs

Ue-Li Pen	Pulsar Scintillometry
pen@cita.utoronto.ca	TBA
	Disentangling pulsar scattering structures in the ISM
	As radiation from pulsars travels towards Earth, it is lensed
Dana Simard	by the intervening plasma structures; the lensed images
simard@cita.utoronto.ca	create an interference pattern at Earth. How can we use
	this interference pattern to learn about the lensing struc-
	tures themselves?
	From the smallest to the largest scales
	I use pulsar scintillation to study the small scale structures
	responsible for scattering. Using pulsar dynamic spectra,
	one can study the evolution of scintillation to infer the
Viswesh Marthi	physical properties of the scattering structures. Of late,
vrmarthi@cita.utoronto.ca	we've been trying to use multi-station observations to mea-
	sure distances to scattering screens. I'm also involved in
	observational efforts to apply new techniques to measure
	the EoR power spectrum and the LSS at redshifts closer to
	home.
	Measuring the Distance Between Pulse Components of
E- alla C 1	B1133+16
Fardin Syed fardin.syed@mail.utoronto.ca	Through the use of plasma lensing by the Interstellar
	Medium, we are seeking to be the first to measure a physi-
	cal separation between the pulse components of B1133+16.
Dongzi Li	ТВА
dzli@cita.utoronto.ca	TBA

Hsiu-Hsien Lin hhlin@cita.utoronto.ca	Radio Transients from Single Dish to VLBI
	In graduate works, I used the Green Bank Telescope Inten-
	sity Mapping (GBTIM) dataset to detect a Fast Radio Burst
	(FRB) and develop a new algorithm of pulsar timing. In
	CITA, I work with the scintillometry group and the FRB-
	VLBI group, and aim to use VLBI to study pulsars and
	FRBs.
Ling Lug	PINT, a new high precision pulsar timing package
luojing1211@gmail.com	PINT is a new generation of high precision pulsar timing
	python package.
Nayyer Raza nraza@cita.utoronto.ca	Scintillometry, Centroids and the Sun
	I will be studying the lensing properties of the ISM from
	pulsar scinitillation and scattering, in particular inferring
	the impulse response function using PSR B1937+21. I have
	previously worked on analyzing the mis-centring effects of
	galaxy clusters from simulation data, and on testing a novel
	idea for the resolution of the solar coronal heating problem
	using numerical simulations.

12:55 PM — Cosmology

J. Richard Bond bond@cita.utoronto.ca	Putting the B in SMc with CITA aka Cosmic Information
	Theory and Analysis
	I will swoop over my myriad theory and CMB+LSS ex- perimental projects, all in quest of what lies Beyond the
	Standard Model of Cosmology, hovering over our SMc-
	consistent Planck 2018 inflation power spectrum, scanning
	for where BSMc may lurk, before I am ground down by ISM
	dust.
	Predictions for cosmological observables
Simon Foreman	I will briefly review my interests in developing analytical
sforeman@cita.utoronto.ca	techniques for characterizing cosmological observables rel-
	evant for ongoing and future surveys.
Xin Wang xwang@cita.utoronto.ca	Reconstruction of the Large-scale Structure
	I'll describe some of my recent works regarding various ap-
	plications and challenges of the reconstruction of LSS
	13 billion years in the life of a CMB photon
	After the so-called "CMB last scattering" epoch, CMB pho-
Alexander van Engelen	tons undergo many interactions: they get gravitational de-
Alexander van Engelen engelen@cita.utoronto.ca	flections from dark matter and they get upscattered in en-
	ergy when they encounter hot ionized gas. I will try to
	convince you that these signals are interesting and worth
	measuring.

	Cosmology with the Simons Observatory & Planck
Adam Hincks mail@adh-sj.info	I will describe my work on the Simons Observatory and
	on measuring the relativistic Sunyaev-Zeldovich effect in
	Planck data.
	Experimental Astrophysics from the Stratosphere: From
	Cosmology to the ISM
Ismil Chariff	In this talk I will detail my past work developing balloon-
Jamii Shariff	borne and ground-based instrumentation for Antarctic
JSnarin@cita.utoronto.ca	CMB and submillimetre astronomy. I will also talk about
	my current work analyzing large CMB data sets, and prob-
	ing the physics of dust polarization in the ISM.
	Zooming in on the CMB gravitational lensing
	Are Planck and SPT measurements of gravitational lens-
Pavel Wotlocn	ing internally and mutually consistent? For future exper-
motiocn@cita.utoronto.ca	iments, how important will the lensing-induced data co-
	variance be?
	Fisher Forecasting Constraints on the Effective Number
	of Neutrino Species from BBN and CMB
	Using observations of primordial abundances and Big Bang
Alex Lague	nucleosynthesis (BBN) simulations, we compute the un-
lague@astro.utoronto.ca	certainty $\sigma(N_{\text{eff}})$ based on a Fisher matrix forecasting ap-
-	proach. We add a prior from CMB and nuclear physics
	measurements and derive the functional dependence of the
	error $\sigma(N_{\rm eff})$ on their respective uncertainties.
	Intensity Mapping the High-Redshift Universe
	Line intensity mapping is rapidly becoming a powerful tool
	for understanding the distant universe, making it possi-
Patrick Breysse	ble to rapidly probe large volumes of space and and study
pcbreysse@cita.utoronto.ca	sources much too faint for conventional observations. I will
	talk about my work on how we can use upcoming intensity
	mapping surveys to learn about scales ranging from molec-
	ular clouds to the Hubble volume.
Coorgo Stoin	Simulating the Large Scale Structure of our Universe
George Stell	I will discuss current work on cosmological simulation
george.t.stein@gmail.com	techniques, and their use for current and future surveys.
Haaran Vu	Neutrino Torque
haoran@cita.utoronto.ca	We show that the spins of galaxies can constrain the neu-
	trino mass.

Thomas Morrison morrison@physics.utoronto.ca	Field Dynamics in the Early Universe with Lattice Simu-
	lations
	The study of the early universe is a subject rich with inter-
	esting physics, which ultimately lays the ground works for
	the universe we inhabit today. My research uses lattice sim-
	ulations, solving the equations of motion for fields in the
	early universe as a sort of numerical experiment, in order
	to test the response of changing the details in our physical
	model.

1:30 PM — Theoretical Astrophysics

Norman Murray	TBA
murray@cita.utoronto.ca	TBA
Peter Martin pgmartin@cita.utoronto.ca	The ISM: dust and magnetic fields Our research is advancing models of the magnetized inter- stellar medium and at the same time calling for new efforts in modeling interstellar dust.
Chris Thompson thompson@cita.utoronto.ca	Theoretical astrophysics I will discuss my varied interests in theoretical astro- physics.
Tom Quinn trq@astro.washington.edu	N-body simulations: planets to cosmology The scale free nature of gravity allows the use of the same code to tackle Astrophysical processes over a vast dynamic range. As two examples I will discuss results from simula- tions of dust settling in proto-planetary disks and simula- tions of galaxy clusters.
Cristobal Petrovich cpetrovi@cita.utoronto.ca	Dynamics of planets and black holes I work on various aspects of gravitational dynamics from planetary systems to black holes in the galactic center. I attempt to connect the observables from collisional dynam- ics such as transients and tidally-driven populations with astrophysical environments and planetary/stellar popula- tions.
Wei Zhu weizhu@cita.utoronto.ca	An Inclusive View of Planetary System Thanks to the Kepler transit mission, ground-based radial velocity observations, and microlensing surveys, we now have a good understanding of individual planetary popu- lations. My work is to combine the different information to understand the relations between different populations, in order to provide guidance/constraints for planet formation theories.
JJ Zanazzi	TBA
jzanazzi@cita.utoronto.ca	TBA

Katie Breivik kbreivik@cita.utoronto.ca	Simulating Compact Binary Populations Observations of binary systems containing stellar remnants over the next decade(s) will provide an unprecedented view into the formation and evolution of compact object binaries. In the years preceding these observations, simu- lations of compact binary populations can be used to pre- dict future observed populations and investigate how bi- nary evolution models can be tested once we have data in hand.
Alysa Obertas obertas@astro.utoronto.ca	Stability and survival of tightly-packed systems N-body simulations suggest that many of the multi-planet systems observed to date are packed close to their dynam- ical limit, but the mechanism setting this limit is not yet understood. My research focuses on the stability and sur- vival of tightly-packed systems and the implications it has on sculpting observed systems to their present-day archi- tectures.
Terrence Tricco ttricco@cita.utoronto.ca	Numerical Hydrodynamics Numerical simulations have one key requirement: that they recreate real physics. This can be surprisingly chal- lenging to accomplish. I will discuss my work designing and testing hydrodynamical methods, and developing the next generation of smoothed particle hydrodynamics (SPH) codes.
Laura Keating lkeating@cita.utoronto.ca	Modelling emission and absorption lines I will discuss my work simulating CO emission in the FIRE simulations and modelling the Lyman-alpha forest at the end of reionization.
Tova Yoast-Hull yoasthull@cita.utoronto.ca	Cosmic Ray Interactions in Starbursts I will discuss my work on modeling cosmic rays and their associated radio and gamma-ray emission + astrophysical neutrinos in starburst galaxies.
Almog Yalinewich almog.yalin@gmail.com	Explosions in Space I will discuss my research on a variety of spectacular tran- sients: supernovae, tidal disruption events and astroid im- pacts.
Sasha Kostenko kostenko@astro.utoronto.ca	Magnetars and ultra-magnetic quantum electrodynamics Certain environments (magnetar atmospheres, colliding neutron stars) contain fields above the "QED" limit of 4.4×10^{13} Gauss, past which most charged particles are re- stricted to the lowest Landau level. This introduces qualita- tive changes to most fundamental QED processes that must be re-appraised in order to properly explain phenomena in these environments.