

1:00 PM — Introduction

Norman Murray	CITA
murray@cita.utoronto.ca	Introduction to CITA

1:05 PM — Theoretical Astrophysics

Norman Murray	Formation and evolution of stars and planets
murray@cita.utoronto.ca	
Ue-Li Pen pen@cita.utoronto.ca	Pulsar Lensing Pulsar radiation propagates through the ISM to arrive at earth along multiple paths which interfere and lead to scin- tillation. VLBI enables precision mapping of the lensing ge- ometry, which in turn allows picoarcsecond localization of pulsar emission, enabling distance, mass and other mea- surements.
Peter G. Martin pgmartin@cita.utoronto.ca	Why bother with the ISM (and why the ISM is a bother)I will explain why this cool picture is hanging on my door,speculating on dust, gas, and magnetic fields.
Chris Thompson thompson@cita.utoronto.ca	Topics in Theoretical Astrophysics My recent and ongoing research activity explores the dy- namics of very dusty gas, protoplanetary disks and planet formation, stellar rotation, magnetars, electromagnetic emission from relativistic outflows, and gamma-ray bursts.
Terrence Tricco ttricco@cita.utoronto.ca	Simulating star formation with smoothed particle magne- tohydrodynamics I've been developing numerical methods to simulate mag- netohydrodynamics with smoothed particle hydrodynam- ics. I will very generally discuss these along with some sim- ulation results studying the effect of magnetic fields in the formation of low-mass stars and turbulence in molecular clouds.

Andrey Vayner avayner@cita.utoronto.ca	Capturing Quenching Mechanisms in Distant Quasar Host Galaxies I will present near-diffraction limited laser guide star obser- vations of $1.4 < z < 2.5$ QSO host galaxies taken with the OSIRIS integral field spectrograph at the W.M. Keck obser- vatory. Our observations are designed to remove the bright QSO to study the faint underlying host galaxy to search for evidence of direct radio jet feedback on star forming re-
Dan Tamayo d.tamayo@utoronto.ca	gions. How the Protoplanetary Disk Shapes the Architectures of Planetary Systems The protoplanetary disk will affect the dynamics of forming planets in important ways. I am working on incorporating these effects into N-body simulations, and on using theory and such simulations to understand the planetary architec- tures we observe around other stars.
Matt Russo mrusso@cita.utoronto.ca	The Inner Life of Protoplanetary Disks My work attempts to constrain the structure and evolution of PPDs through interactions with a protostellar wind and the population of suspended grains.
Cristobal Petrovich cpetrovi@cita.utoronto.ca	New applications of the three-body problem to exoplanet systems I will show some new applications of the three-body prob- lem that attempt to explain the orbital architecture of two different populations of exoplanet systems: (1) planets around orbital resonances discovered by the Kepler space- craft, and (2) gas giant planets in extreme orbital configu- rations mostly discovered by radial velocity and ground- based transit surveys.
Hanbo Wu hanbo@cita.utoronto.ca	Influence of Atmospherical Thermal Tides on Planet's Rotation Stromatolite data have shown that the Earth's present rate of spin deceleration is anomalously high. The day length throughout much of the Precambrian era is relatively con- stant near 21 hour until 600 Ma, when it quickly increased to the present 24 hours. The atmospheric torque could have been comparable in magnitude but opposite in direction to the lunar torque, halting the Earth's spin deceleration. We are running a series of simulations to search for resonant atmosphere response around 21 hours period.
Ian Parrish iparrish@cita.utoronto.ca	Galaxy Clusters & Plasma Astrophysics I am interested in a variety of astrophysical plasmas from the intracluster medium to accretion flows to the solar wind. I also study the lifecycle of gas in systems from ther- mal instability to star formation.

	Probing fundamental physics of pulsars using scintillom-
	etry
Robert Main	Pulsar radiation is scattered in the interstellar medium, re-
ramain@cita.utoronto.ca	sulting in multiple interfering images. My research is fo-
	cused on using these scattered images as an interstellar in-
	terferometer to study pulsars with incredible precision.
	Rotation in red giants and magnetism in white dwarfs
Yevgeni Kissin	I will discuss a new proposed rotation profile for red gi-
kissin@cita.utoronto.ca	ants, supported by Kepler observations, which facilitates
	the growth of strong magnetic fields seen in white dwarfs

1:50 PM — Cosmology

Dick Bond bond@cita.utoronto.ca	Entangled in the Complex Webs of the Universe A sampling of current projects will be given, drawn from explorations: of the cosmic superweb, e.g., intermittent non-Gaussianity, as might be revealed in anomalies in the CMB and LSS; of the cosmic web, e.g., improved cosmic displacements and flows from hierarchical potential pits, beyond peak-patches; of the interstellar web as revealed by Planckian dust intensity and polarization maps.
Marcelo Alvarez malvarez@cita.utoronto.ca	Taking Structure Formation out of the Black Box Theoretical studies of large scale structure very often in- volve performing large N-body simulations that evolve small random fluctuations forward in time under the in- fluence of gravity. At the end of the simulation, structures such as halos are found, and their properties are analyzed in an effort to understand structure formation better and to compare to observations. I describe an approach we're taking at CITA to simulate halo formation by explicitly fol- lowing the peaks from which the halos collapse, called peak patches. This approach not only allows for much larger and faster simulations, but also provides a deeper understand- ing of the process of structure formation itself.
George Stein gstein@cita.utoronto.ca	Full-Sky Mock Simulations With the Peak Patch Approach A new massively parallel implementation of the Peak Patch picture nears completion. As this method has the ability to quickly generate hundreds of mock universes much more efficiently than any Nbody the applications are plenty.
Philippe Berger pberger@cita.utoronto.ca	The 21 cm line: from emission to observation The 21 cm wavelength emission of cosmic neutral hydro- gen, which traces the matter distribution, is redshifted by the expansion of the universe before being measured by the CHIME telescope, thus providing a three dimensional map thereof.

	Observing the time and spatially fluctuating radio sky
Liam Connor liam.dean.connor@gmail.com	with CHIME CHIME will make the biggest ever large-scale structure survey by mapping out diffuse HI emission. It will also see large swaths of pulsars each day and observe hundreds if not thousands of fast radio bursts (FRBs). I will talk about my work on these projects.
JD Emberson emberson@astro.utoronto.ca	Simulating the universe on small and large scales at early and late times I will discuss the research projects I have been working on at CITA over the past five years of my PhD work. These include hydrodynamic reionization simulations, substruc- ture evolution within a galactic host, and neutrino plus cold dark matter N-body simulations.
Xin Wang xwang@cita.utoronto.ca	Understanding the large-scale structure of the Universe The large-scale structure of the Universe encodes valuable information about various physical processes. I'll explain (1) how to use sophisticated perturbation theory to describe the nonlinear clustering of bias tracer; (2) how to obtain statistically averaged evolution of individual fluid element in Newtonian cosmology; and eventually (3) how different observational techniques would help us to understand our questions.
Sandrine Codis codis@cita.utoronto.ca	From cosmology to galaxy formation : what can we learn from the large-scale structure of the Universe? The study of the large-scale structure of the Universe plays a paramount role in our quest to answer the fundamen- tal questions at the heart of Cosmology: (i) What are the constituents of our Universe and what laws dictate its be- haviour? (ii) What is the role of the environment in shaping galaxies? I will describe recent theoretical advances along those two lines.
I-Sheng Yang isheng.yang@gmail.com	Everything about Gravity Visualizing geometry in cosmology, astrophysics and AdS/CFT.
Joel Meyers jmeyers@cita.utoronto.ca	The Cosmic Neutrino Background Cosmic neutrinos carry a wealth of information about both cosmology and particle physics, but they are notoriously difficult to observe. I will discuss the current status and fu- ture prospects for indirect observation of cosmic neutrinos.
Derek Inman inmand@cita.utoronto.ca	Neutrino Simulations I run large N-body simulations containing cold dark matter and neutrino particles. These simulations allow us to bet- ter understand neutrino evolution and quantify potentially observable effects such as neutrino wakes behind collapsed structures.

	Massive Neutrinos in Λ CDM
Dana Simard simard@cita.utoronto.ca	The behavior of the cosmic neutrino background in the presence of non-linear structure formation has yet to be fully explored due to the computational expense of N-body simulations including neutrinos. I will discuss a method of modeling the cosmic neutrino background that includes the full non-linear description of dark matter without requiring simulations of neutrinos.
Zhiqi Huang	Is ACDM Still Our Best Bet
zqhuang@cita.utoronto.ca	I search for signals beyond Λ CDM in the CMB data and study modified gravity models.
Alex Van Engelen engelen@cita.utoronto.ca	The CMB as a backlight The time at which the Universe became transparent to CMB photons is inaccurately known as the epoch of last scatter- ing. CMB photons have in fact undergone many processes more recently, including interactions with hot electrons in Galaxy clusters (the Sunyaev-Zel'dovich effect); gravi- taional deflections from dark matter (gravitational lensing); scattering during and after reionization; and red- and blue- shifting after the onset of dark energy (the integrated Sachs- Wolfe effect). Each of these effects is observable and offers a unique way to track the growth of structure in the Uni- verse.
Daan Meerburg meerburg@cita.utoronto.ca	The Cosmic Lab Through the careful analysis of cosmological data, we can establish a better understanding of the physics in the early Universe. My work focusses theoretical model building and developing new (observation) methods to extract in- formation from cosmological tracers.

2:40 PM — General Relativity

	Gravitational Wave Transient Astronomy
Kipp Cannon	Advanced LIGO is now in observing mode and we are
kcannon@cita.utoronto.ca	transmitting low-latency alerts to transient telescope part-
	ners. What are we up to and what might we find?
	Finding gravitational waves from binary black holes
	Gravitational-wave (GW) astronomy is about to enter into
	a new era with the second-generation LIGO/Virgo detec-
Prayush Kumar	tors beginning operation soon. My work revolves around
prkumar@cita.utoronto.ca	improving searches for GW signals from two-body systems
	of black holes, using results from analytic & numerical rel-
	ativity. I will show some recent applications of numerical
	relativity in GW searches.

	Perturbation theory and black holes
Aaron Zimmerman azimmer@cita.utoronto.ca	I work on an array of topics dealing with perturbations of compact objects. I also study simulations of merging black holes, using new tools to compare with analytic approxi- mations.