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Introduction

Back to WMAP Era

WMAP7 Stacking (source: Komatsu et al. 2011)
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see Enriquez’s talk for basic stacking results.
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Introduction

How to Symmetrize the Polarization Field
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Introduc

Planck 2014: T, Q.
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Stacking Methods

The Stacking Family

Three key elements:
A What to stack? (cosmic field u)

B Where to stack? (selection of patches, e.g., peaks)
C How to stack? (patch orientations)
“where” and “how"” give constrained parameter(s) g;

WMAP & Planck 2013

Planck 2014
What T, Q, U, Qr U T, Q, U, Qr U, E, B, Qr, Ur, (av,
Where T peaks
How

T,E B, Q>+ U2 Q%+ U2, {4y
unoriented

... peaks
oriented and unoriented
For Gaussian fields, (u

q; peak, orientation) = (ug')(gqT)~1(qg|peak, orientation).
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Stacking Methods

How to orient a patch around a peak

First derivative vanishes on the peak. Need to use the 2nd derivatives.

Intuitively (flat-sky limit):

QRQr=V2(0; - 99T, Ur = -2V 2(9:0,)T

Slightly non-intuitive (on the sphere):

Qr(n) £ iUr(n) =3, , [/ T (n') Y, (n') d®n'] £2Yim(n)

Orient the patch such that Ut vanishes in the centre.
(u|g; peak, orientation)(w, ¢) decomposes to cos m¢p, m = 0,2, 4.
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Stacking Methods

» Planck 2014: component separated full-mission maps. (only
SMICA shown in this talk, others are quantitatively similar.)

» FFP8: component separated maps from simulated Planck
full-mission maps, assuming a fiducial cosmology (Planck
2013 best-fit).

» Noise-free: Random-Gaussian maps from the same fiducial
cosmology, assuming perfect observation.

» Derived maps: E, B, and (g4, maps. (gy is visibility-weighted
line-of-sight integral of the primordial curvature fluctuations (.

» All polarization maps are high-pass filtered maps.

Zhiqgi Huang on behalf of Planck Collaboration Stacking of Planck 2014 temperature, polarization and primord



Stacking Methods

How to derive a (4, map

Cav(n) = 5 Corim (n(no — n)) 7€~ " dn, where 7(n) is the optical
depth and 7 conformal time. (prim(X) is the primordial curvature
fluctuations.

In Harmonic space (given measured Tjp,):

C/m = Clm|constrained _;1' Clm|unconstrained

Cimlconstrained = 7ty T
Im|constrained CITT TN, Im

Cim|unconstrained 15 @ random Gaussian field with power

(G0
Z=C _c,T'T+/v,'

C,TT and C,TC are computed from best-fit ACDM. Noise spectrum
N, is computed from FFP8 #0 (for the scales we are considering
N; < C'T so doesn't matter which model to use).
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Stacking Methods

Oriented Stacking: T on Oriented T peaks

P|aan 2014 VS. FFP8 VS. nOise—fl’ee (peak threshold v = 0, resolution FWHM 15

arcmin.)
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Angular dependence (cos m¢, m = 0, 2)
Noise has no noticable impact.
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Stacking Methods

Oriented Stacking: @ on oriented T peaks

Planck 2014 vs. FFP8 vs. noise-free sim. (peak threshold v — 0; resolution FWHM

15 arcmin.)

33216 patches on T maxima, oriented, threshold v=0 31627 patches on T maxima; oriented, threshold y=0 37678 patches on T maxima, oriented, threshold v=0
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Angular dependence (cos m¢, m = 0, 2, 4)
Again noise has no noticable impact.
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Stacking Methods

Oriented Stacking: Other T-related examples

E on oriented T peaks

33216 patches on 7 maxima, oriented, threshold »=0
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Q on oriented Q%— + U%— peaks
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Stacking Methods

Stacking on Polarization Peaks

P|aan 2014 (peak threshold v = 0; resolutionfFWHM 15 arcmin)

Qr on unoriented E peaks Q on oriented Q2 + U2 peaks
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Statistics

Statistics: T on oriented T peaks

24 uniform bins in 0 < w < 2 degrees (pixel size 5 arcmin)
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Statistics

Statistics: T on Oriented T peaks

» Cosmological contribution to 6 Tp,(w) are mostly from low ¢
where cosmic variance is large.

» Statistical isotropy =
§Tm(w) = @M (co + aw@w? + cew* +...)

» Truncate at order n and compute the mean and cov. of
(co,€1,C,. .., Cn).

» Compare x? for Planck map and sims: p-value :=
x;m_ > Xﬁata rate.
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Statistics

Statistics: Convergence Test and Comparison of Maps

1000 FFP8 sims.: use subset#1 to compute cov. , and use
subset#2 compute p-value
Example: Truncation n =4 (5 d.of. ¢, c1, ¢, 3, 1)

map subset#1 subset#2 0Ty p-value 6T, p-value
SMICA 1-500 501-1000 0.33 0.22
SMICA 501-1000 . 1-500 0.27 0.23
SMICA 1-1000 250-750  0.29 0.25
SMICA 1-1000 1-1000 0.30 0.22
COMMANDER ' 1-1000 1-1000 0.21 0.24
NILC 1-1000 1-1000 0.54 0.33
SEVEM 1-1000 1-1000 0.38 0.39
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Statistics

Polarization Statlstlcs Q, U on Q peaks
=0

full radial profile

o om m

mean subtracted

(p-value 0.89 for truncation n = 4) (p-value 0.20 for truncation n = 4)
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Statistics

Q, U on Q% + U? peaks

Noise bias does not spoil the main feature.
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Other applications

Hemisphere Power Asymmetry

T T
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Other applications

Component Separated Commander Dust«Map

Q stacked on Q2 + U? oriented peaks (oriented s.t. U vanishes in the centre). Patch size: w <= 7°; treshold

v =1; T map FWHM 2°; Q, U maps FWHM 15 arcmin.
T < 35uK
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Conclusions

Conclusions

» We have proposed a large family of novel stacking methods.

» Compared to unoriented stacking of T and @Q,, these
extended stacking methods explore many different templates
covering a wider range of scales.

» Planck 2014 is fully consistent with FFP8.

» Many other applications: hemisphere asymmetry; properties of
non-CMB maps . ..
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Conclusions
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