Non-Gaussian Spikes from Chaotic Billiards Cosmological Fluctuations and Non-Gaussianity from Preheating

Zhiqi Huang

Canadian Institute for Theoretical Astrophysics (CITA) Department of Astronomy & Astrophysics, University of Toronto

Particle Cosmology, September 14, 2009

In collaboration with: J. Richard Bond (CITA), Andrei Frolov (SFU), Lev Kofman (CITA)

Outline

Introduction

Inflation and Preheating $\lambda \phi^4$ Model and $g^2 \phi^2 \chi^2$ Interaction δN formula

Initial Conditions

Choosing the Gauge The χ Field After Inflation

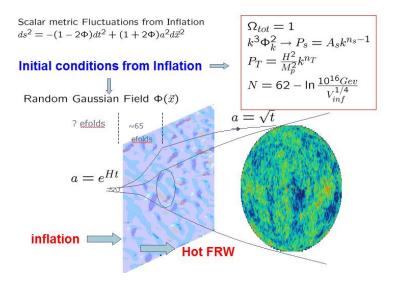
Numerical Simulation Code

Results

Spiky Responses Understanding the Spikes

Observational Signatures

Cosmological Fluctuations from Inflation

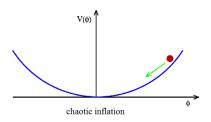


Preheating

- At the end of Inflation, Inflaton non-perturbatively decays into other fields.
- ► Most models are phenomenological (one exception is our recent work "Preheating After Modular Inflation" → Neil Barnaby's talk).
- ► Usually happens at comoving scale ≤ 1 m (causality ⇒ no observable signatures on cosmological scales?)

Chaotic Inflation: $\lambda \phi^4$ Model

$$V = \frac{\lambda}{4}\phi^4$$

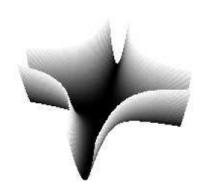


$$\ddot{\phi} + 3H\dot{\phi} + dV/d\phi = 0$$
$$3M_p^2H^2 = 1/2\dot{\phi}^2 + V(\phi)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Preheating: The Four-leg Interaction Model

$$V(\phi,\chi)=rac{\lambda}{4}\phi^4+rac{1}{2}g^2\phi^2\chi^2$$



$$\frac{g^2}{\lambda} \gg 1 \Rightarrow m_{\chi} \gg H,$$

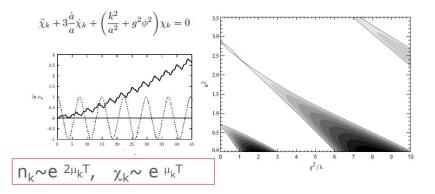
 χ fluctuations suppressed (trivial case)

$$\frac{g^2}{\lambda} \sim 1 \Rightarrow m_\chi \lesssim H,$$

 χ fluctuations \checkmark (interesting case)

Parametric Resonance

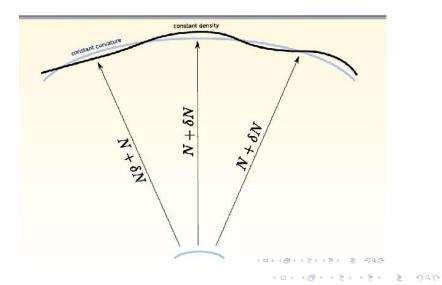
Exponential Growth of χ_k



Green, Kofman, Linde, Starobinsky 1997 For $1 < g^2/\lambda < 3$, the k=0 mode (spatial average of χ) $\langle \chi \rangle$ grows.

δN formula

$$\mathcal{R}_{c} = \delta N$$



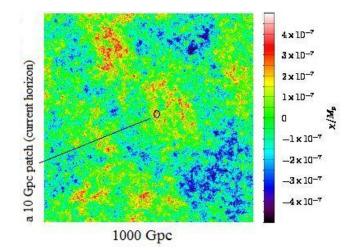
Choosing the Gauge

Cosmological fluctuations from Inflaton spatial flat gauge ⇒ comoving gauge(φ = const hypersurface)

$$\mathcal{R}_{c} = \delta \mathbf{N} = H \frac{\delta \phi}{\dot{\phi}}$$

• Cosmological fluctuations from preheating Calculate δN from $\phi = const$ hypersurface to comoving slice at the end of preheating

Superhorizon "Landscape"

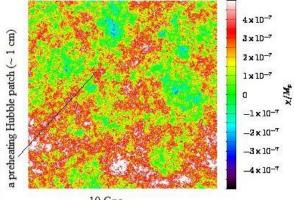


▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

At Cosmological Scales ($\sim (aH)^{-1}$ Today)

mean value of χ on cosmo-scales $\langle \chi \rangle_{\rm cosm}$: random Gaussian with $\sigma \sim \sqrt{N_{>h}} \times 10^{-7} M_p$; $N_{>h}$: # of efolds before cosmo-scales exit the horizon;

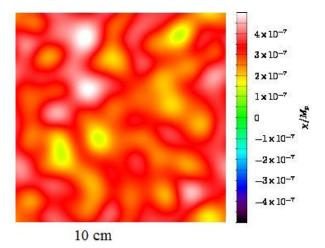
Measuring $\chi_{cosm} \Rightarrow Prob(N_{>h})$; but limited by cosmic variance



10 Gpc

Preheating Scales ($\sim (aH)^{-1}$ At the End of Inflation)

 $\langle \chi \rangle = \langle \chi \rangle_{\rm cosm} + \langle \chi \rangle_{<h}$ $\langle \chi \rangle_{<h}$ random Gaussian, with $\sigma = \sqrt{60} \frac{H_{end}}{2\pi} = 7 \times 10^{-7} M_p$ vacuum fluctuations renormalized



Numerical Simulation

Goal: calculate δN to accuracy 10^{-8} (corresponds to $f_{\rm nl} \sim 100$) A new lattice simulation code **HLattice**

- Higher (up to 8th) order PDE integrator: good accuracy of energy conservation
- Can simulate non-canonical scalar fields
- OMP-MPI hybrid parallel

 $\begin{array}{ll} \mbox{For normal setups } (dt \sim 0.1 dx) \mbox{: energy conservation levels} \\ \mbox{LatticeEasy (G. Felder)} & \sim 10^{-4} - 10^{-3} \\ \mbox{DEFROST (A. Frolov)} & \sim 10^{-5} - 10^{-4} \\ \mbox{HLattice (Z. Huang)} & \sim 10^{-12} - 10^{-8} \end{array}$

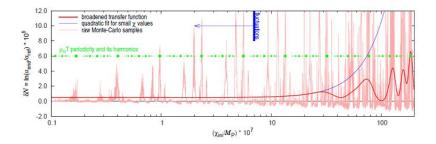
Methods:

- use DEFROST/LatticeEasy Brute-force calculation using very small timestep dt

 dt
 dx.
- use HLattice

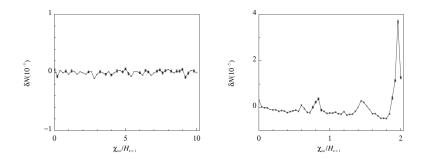
$\delta N(\langle \chi \rangle)$ Response $(g^2/\lambda = 2)$

Spikes: Raw data Red line: smoothed to cosmo-scales (convolved with a Gaussian window with $\sigma = 7 \times 10^{-7} M_p$). Blue line: gudratic fitting



Numerical accuracy check

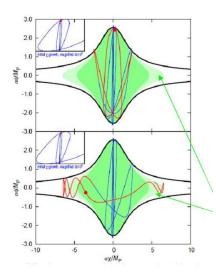
- HLattice agrees with brute-force DEFROST
- ▶ Null test $g^2/\lambda = 3$ (left panel) v.s. $g^2/\lambda = 2$ (right panel)



イロト イポト イヨト イヨト

э

Billiards Entering the Arms



 $\langle \chi \rangle = 3.6 \times 10^{-7} M_{\rm p}, \ {\rm ``billiards''}$ not entering the arms

$$\langle \chi
angle = 3.9 imes 10^{-7} M_{p}$$
, "billards" entering the arms

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Potential walls close up in non-linear regime.

Numerical 3D simulation

A 4-panel movie

Visualized 2D slices of field values:

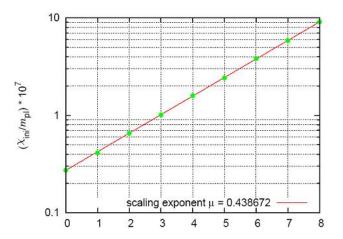
χ in simulation $\#1$	ϕ in simulation $\#1$
χ in simulation #2	ϕ in simulation #2

Guess which simulation box produces δN spike!!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

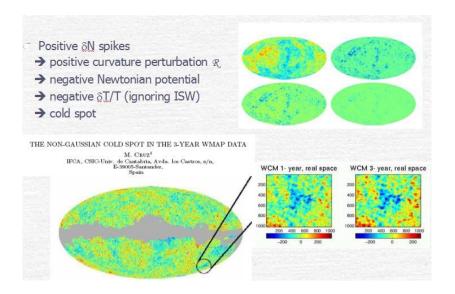
Periodic Pattern of Spikes

During linear regime $\langle \chi \rangle = \chi_0 e^{n\mu T}$, n = 0, 1, 2, ...Replacing $\langle \chi \rangle = \chi_0$ with $\langle \chi \rangle = \chi_0 e^{\mu T}$ produce similar entering-the-arm dynamics.



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

CMB Cold Spot



・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

New Form of Non-Gaussianity

The popular formalism of non-Gaussianity:

$$\Phi(\mathbf{x}) = \Phi_{G}(\mathbf{x}) + f_{\mathrm{nl}} \big(\Phi_{G}^{2}(\mathbf{x}) - \langle \Phi_{G}^{2}(\mathbf{x}) \rangle \big)$$

Our model

$$\Phi(\mathbf{x}) = \Phi_G(\mathbf{x}) + F(\chi(\mathbf{x}))$$

F a highly nonlinear spiky function

Need completely new analysis of CMB map (in progress).

Expecting new signature in CMB polarization (in progress).

Thanks