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Cosmological Fluctuations from Inflation
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Preheating

» At the end of Inflation, Inflaton non-perturbatively decays into
other fields.

» Most models are phenomenological (one exception is our
recent work “Preheating After Modular Inflation” — Neil
Barnaby's talk).

» Usually happens at comoving scale < 1 m (causality = no
observable signatures on cosmological scales?)



Chaotic Inflation: A¢* Model
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Preheating: The Four-leg Interaction Model

A 1
V(p,x) = Z¢4 + §g2¢2xz
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Parametric Resonance
Exponential Growth of x«
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Green, Kofman, Linde, Starobinsky 1997
For 1 < g?/\ < 3, the k=0 mode (spatial average of x) (x) grows.



ON formula

N + 8N



Choosing the Gauge

» Cosmological fluctuations from Inflaton
spatial flat gauge = comoving gauge(¢ = const hypersurface)

RczéN:H(s—.(l5
¢

» Cosmological fluctuations from preheating
Calculate 6N from ¢ = const hypersurface to comoving slice
at the end of preheating



Superhorizon “Landscape”

a 10 Gpe patch (current horizon)
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At Cosmological Scales (~ (aH)~! Today)

mean value of x on cosmo-scales (X)cosm: random Gaussian with

o~ +/Nop x 107"M, ;

N<p : # of efolds before cosmo-scales exit the horizon;

Measuring Xcosm = Prob(Nsp); but limited by cosmic variance

a preheating Hubble patch (~ 1 cm)
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Preheating Scales (~ (aH)~! At the End of Inflation)

<X> = <X>cosm + <X><h
(X)<n random Gaussian, with o = \/60% =7x107"M,
vacuum fluctuations renormalized
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Numerical Simulation

Goal: calculate 6N to accuracy 10728 (corresponds to f,; ~ 100)
A new lattice simulation code HLattice

» Higher (up to 8th) order PDE integrator: good accuracy of
energy conservation

» Can simulate non-canonical scalar fields
» OMP-MPI hybrid parallel

For normal setups (dt ~ 0.1dx): energy conservation levels
LatticeEasy (G. Felder) ~ 10=*- 1073

DEFROST (A. Frolov) ~107°-10"*

HLattice (Z. Huang) ~10712-10°8

Methods:
» use DEFROST /LatticeEasy

Brute-force calculation using very small timestep dt < dx.
» use HLattice



dN((x)) Response (g2/\ = 2)

Spikes: Raw data

Red line: smoothed to cosmo-scales (convolved with a Gaussian
window with ¢ =7 x 107" M,).
Blue line: qudratic fitting
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Numerical accuracy check

» HLattice agrees with brute-force DEFROST

> Null test
g2/\ = 3 (left panel) v.s. g2/\ = 2 (right panel)
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Billiards Entering the Arms

(X) = 3.6 x 10" M,, “billiards”
-’ A/" not entering the arms
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Numerical 3D simulation

A 4-panel movie

Visualized 2D slices of field values:

X in simulation #1 ‘ ¢ in simulation #1
X in simulation #2 ‘ ¢ in simulation #2

Guess which simulation box produces /N spike!!
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Periodic Pattern of Spikes
During linear regime (x) = xoe™", n=0,1,2, ...
Replacing (x) = xo with {(x) = xoe*" produce similar
entering-the-arm dynamics.
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CMB Cold Spot

-~ Positive 3N spikes

= positive curvature perturbation &
= negative Newtonian potential

= negative §T/T (ignoring ISW)
= cold spot
THE NON-GAUSSIAN COLD SPOT IN THE 3 YEAR WMAP DATA

M. Cruz!

IFCA, CSIC-Univ. de Cantabria, Avda los Castrcs, s/n,
E-1m005-Santander,

WCM 1- year, real space  WCM 3- year, real space
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New Form of Non-Gaussianity

The popular formalism of non-Gaussianity:

d(x) = ®6(x) + fu(PG(x) — (PE(x)))

Our model
®(x) = Og(x) + F(x(x))
F a highly nonlinear spiky function

Need completely new analysis of CMB map (in progress).

Expecting new signature in CMB polarization (in progress).
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