The Art of Lattice and Gravity Waves from Preheating The 3rd IPhT/LPT COSMO meeting

Zhiqi Huang IPhT, CEA/Saclay

Dec 13, 2010

Zhiqi Huang IPhT, CEA/Saclay The Art of Lattice and Gravity Waves from Preheating

イロト イポト イヨト イヨト

Outline

Introduction: GW from preheating The Art of Lattice The GW Spectrum: Results and Comparison Conclusions

Introduction: GW from preheating

The Art of Lattice The Wisdom of Discretization Symplectic Integrator The Lattice Code

The GW Spectrum: Results and Comparison

Conclusions

Inflation and Preheating

GW from Preheating

figure source: arXiv:0812.2917 (Dufaux, Felder, Kofman & Navros)

イロト イヨト イヨト イヨト

æ

Tachyonic Preheating after Hybrid Inflation

The Wisdom of Discretization Symplectic Integrator The Lattice Code

The Wisdom of Discretization

The (1st order) discrete derivatives $\frac{\partial \phi}{\partial x_i}$ are defined on "displaced grids", and so is $g_{\mu\nu}$.

1D example (actually done in 3D with more a sophisticated scheme):

- ▶ Discrete differential operators are commutable ∂_i∂_j = ∂_j∂_j. Operators such as ∇⁻² are all well defined, so are the discrete scalar, vector, and tensor modes.
- (Discrete) scalar/vector/tensor terms in δT^{µν} only excite (discrete) scalar/vector/tensor metric perturbations.

▶ ∇⁻² is NOT equivalent to: discrete Fourier transformation & multiply by (-k⁻²) & inverse discrete Fourier transformation. Need more sophisticated scheme to get traceless transverse (TT) component.

・ロト ・回ト ・ヨト ・ヨト

The Wisdom of Discretization Symplectic Integrator The Lattice Code

The Wisdom of Discretization

For $k_{\min} \ll k \ll k_{\max}$ the boundary effect and finite resolution effect should disappear. Why sophistications? Why not use projection in Fourier space to get GW (as done in all previous works)? Two reasons:

- ▶ Realistic simulations have $k_{\text{max}} \sim 10^2 \cdot 10^3 k_{\text{min}}$. So $k_{\text{min}} \ll k \ll k_{\text{max}}$ is never that well satisfied.
- ► Scalar metric perturbations \gg tensor metric perturbations. A tiny "leaking" from $g_{\mu\nu,\text{scalar}}$ to $g_{\mu\nu,\text{tensor}}$ can significantly change the GW spectrum.

The Wisdom of Discretization Symplectic Integrator The Lattice Code

Evolving A Classical System on the Computer

A trivial system the computer can evolve "exactly": a free particle with mass *m*. Hamiltonian $H = \frac{p^2}{2m}$.

Evolving from *t* to $t + \Delta t$:

$$p(t + \Delta t) = p(t) , \qquad (1)$$

(ロ) (同) (E) (E) (E)

$$x(t + \Delta t) = x(t) + \frac{p(t)}{m} \Delta t .$$
(2)

Only round-off errors ($\lesssim 10^{-16}$ with double precision).

The Wisdom of Discretization Symplectic Integrator The Lattice Code

Evolving A Classical System on the Computer

A classical harmonic osillator is already challenging: $H = \frac{p^2}{2} + \frac{q^2}{2}.$

Evolving from *t* to $t + \Delta t$:

$$p(t + \Delta t) = p(t) - q(t)\Delta t + O(\Delta t^2), \qquad (3)$$

$$q(t + \Delta t) = q(t) + p(t)\Delta t + O(\Delta t^{2})$$
(4)

- Shrinking Δt usually does not help much.
- A better solution is to change the scheme to make the error term ∝ Δtⁿ. Large n ⇒ only round-off errors.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

The Wisdom of Discretization Symplectic Integrator The Lattice Code

Evolving A Classical System on the Computer

For a general Hamiltonian $H(\mathbf{p}, \mathbf{q})$ and a variable $f(\mathbf{p}, \mathbf{q})$:

$$\frac{df}{dt} = \hat{\mathcal{H}}f,\tag{5}$$

where the Poisson bracket operator $\hat{\mathcal{H}} \equiv \{\cdot, H\}.$

The exact solution can be formally written as

$$f(t + \Delta t) = e^{\hat{\mathcal{H}} \Delta t} f(t)$$
(6)

► The computer knows how to calculate $e^{\hat{\mathcal{H}}\Delta t}f$ EXACTLY if $H = T(\mathbf{p}) \equiv \mathbf{p}^2/2$ or $H = V(\mathbf{q})$, but NOT in the case $H = T(\mathbf{p}) + V(\mathbf{q})$.

▶ This is because $\hat{T} \equiv \{\cdot, T\}$ and $\hat{V} \equiv \{\cdot, V\}$ are not commutable:

$$e^{\hat{\mathcal{H}}\Delta t} = e^{(\hat{\mathcal{T}} + \hat{\mathcal{V}})\Delta t} \neq e^{\hat{\mathcal{T}}\Delta t} e^{\hat{\mathcal{V}}\Delta t} .$$
(7)

The Wisdom of Discretization Symplectic Integrator The Lattice Code

Evolving A Classical System on the Computer

The idea of symplectic integrator (SI) is to find constant c-numbers $c_1, c_2, ..., d_1, d_2, ...$, such that:

$$e^{(\hat{\mathcal{T}}+\hat{\mathcal{V}})\Delta t} = e^{c_1\hat{\mathcal{T}}\Delta t}e^{d_1\hat{\mathcal{V}}\Delta t}e^{c_2\hat{\mathcal{T}}\Delta t}e^{d_2\hat{\mathcal{V}}\Delta t}\dots + O(\Delta t^{n+1}) .$$
(8)

- The computer knows how to use the right-hand-side of Eq. (8) to evolve the system EXACTLY, if the O(Δtⁿ⁺¹) term is dropped.
- ► The 2nd order SI (n = 2) is the well known "leap frog" algorithm (used in LatticeEasy & DEFROST when expansion of universe is ignored). Its explicit form is

$$e^{(\hat{\mathcal{T}}+\hat{\mathcal{V}})\Delta t} = e^{\frac{1}{2}\hat{\mathcal{T}}\Delta t}e^{\hat{\mathcal{V}}\Delta t}e^{\frac{1}{2}\hat{\mathcal{T}}\Delta t} + O(\Delta t^3) .$$
(9)

Up to 8th order SI's are all known.

The Wisdom of Discretization Symplectic Integrator The Lattice Code

The Lattice Code

Scalar fields on a lattice:

$$H(\phi, g_{\mu\nu}) = \hat{\mathcal{A}} + \hat{\mathcal{B}} + \hat{\mathcal{C}}, \qquad (10)$$

where the three noncommutative terms are

 $\hat{\mathcal{A}}$: the diagonal terms in the kinetic energy of gravity.

 $\hat{\mathcal{B}}$: the kinetic energy of the fields and the off-diagonal terms in the kinetic energy of gravity.

 $\hat{\mathcal{C}}$: the potential and gradient energy of the fields and gravity

- ► The high-order symplectic factorization of $e^{(\hat{A}+\hat{B}+\hat{C})\Delta t}$ is unknown (iterative expansion \Rightarrow hundreds of factors, practically useless.)
- Operator itself is non-canonical (i.e., it has some non-splittable terms containing both p_{µν} and g_{µν}, the computer does not know how to calculate e^{ÂΔt}f exactly.

・ロト ・回ト ・ヨト ・ヨト

The Wisdom of Discretization Symplectic Integrator The Lattice Code

The Lattice Code

What I have done:

- Find the 4-th and 6-th order optimal symplectic factorizations of e^{(Â+B+C)∆t}.
- ► Use 4-th order Runge-Kutta integrator (with much smaller time-steps) to calculate e^{ÂΔt}f (no cost of extra memory: because does not contain the gradient terms, I can calculate it grid-wise-Iv.)

Features of the code:

- You can choose 2nd, 4th or 6th order symplectic integrators (CPU time cost - 1:3:7. Memory cost: all minimal), depending on how accurate you want your result to be.
- Three modes for the gravity: FRW background with metric perturbations; FRW background without metric perturbations; Minkowski spacetime.

HLattice output: metric perturbation feedbacks; evolution in real space; h^{TT} separated in real space arXiv:0812.2917 (Dufaux, Felder, Kofman & Navros) LatticeEasy output: no metric perturbation feedbacks; evolution in real space; TT component separated in Fourier space.

Zhiqi Huang IPhT, CEA/Saclay The Art of Lattice and Gravity Waves from Preheating

The opposite claim?

The opposite claim: non-linear enhancement of GW on large scales?

arXiv:1005.4054 (Bastero-Gil, Macias-Pérez and Santos).

TT component separated in Fourier space; solid/dashed: with/without metric perturbation feedbacks;

leaking from scalar to tensor? numerical noise?

イロト イポト イヨト イヨト

- A discretization scheme allows the separation of scalar, vector and tensor modes.
- Symplectic integrator (with Runge-Kutta sub-integrator for non-canonical terms): evolve the discretized system almost exactly (numerical noise ~ 10⁻¹⁴).
- Find lower IR tail of the GW spectrum. Is the extra IR power in the literature from non-perfect discretization?

(ロ) (同) (E) (E) (E)