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GW from Preheating

figure source: arXiv:0812.2917 (Dufaux, Felder, Kofman & Navros)
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Tachyonic Preheating after Hybrid Inflation

figure source: Dufaux, Felder, Kof-

man & Navros 2008

φ: Inflaton

σ: a complex field (=

σ1 + ıσ2), it acquires a

tachyonic mass (m2 <

0) when φ rolls along

the ridge.

V (φ, σ) =
λ

4
(σ2 − υ2)2 +

1

2
g2φ2σ2 + Vinf(φ)
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The Wisdom of Discretization

The (1st order) discrete derivatives ∂φ
∂xi

are defined on “displaced grids”, and so is gµν .

1D example (actually done in 3D with more a sophisticated scheme):

I Discrete differential operators are commutable ∂i∂j = ∂j∂i . Operators such as
∇−2 are all well defined, so are the discrete scalar, vector, and tensor modes.

I (Discrete) scalar/vector/tensor terms in δTµν only excite (discrete)
scalar/vector/tensor metric perturbations.

I ∇−2 is NOT equivalent to: discrete Fourier transformation & multiply by
(−k−2) & inverse discrete Fourier transformation. Need more sophisticated
scheme to get traceless transverse (TT) component.
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The Wisdom of Discretization

For kmin � k � kmax the boundary effect and finite resolution effect
should disappear. Why sophistications? Why not use projection in
Fourier space to get GW (as done in all previous works)?
Two reasons:

I Realistic simulations have kmax ∼ 102-103kmin. So kmin � k � kmax

is never that well satisfied.

I Scalar metric perturbations � tensor metric perturbations. A tiny
“leaking” from gµν,scalar to gµν,tensor can significantly change the
GW spectrum.
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Evolving A Classical System on the Computer

A trivial system the computer can evolve “exactly”: a free particle
with mass m.
Hamiltonian H = p2

2m .

Evolving from t to t + ∆t:

p(t + ∆t) = p(t) , (1)

x(t + ∆t) = x(t) +
p(t)

m
∆t . (2)

Only round-off errors (. 10−16 with double precision).
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Evolving A Classical System on the Computer

A classical harmonic osillator is already
challenging:

H = p2

2 + q2

2 .

Evolving from t to t + ∆t:

p(t + ∆t) = p(t)− q(t)∆t + O(∆t2) , (3)

q(t + ∆t) = q(t) + p(t)∆t + O(∆t2) (4)

I Shrinking ∆t usually does not help much.

I A better solution is to change the scheme to make the error
term ∝ ∆tn. Large n ⇒ only round-off errors.
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Evolving A Classical System on the Computer

For a general Hamiltonian H(p,q) and a variable f (p,q):

df

dt
= Ĥf , (5)

where the Poisson bracket operator Ĥ ≡ {·,H}.

The exact solution can be formally written as

f (t + ∆t) = eĤ∆t f (t) (6)

I The computer knows how to calculate eĤ∆t f EXACTLY if
H = T (p) ≡ p2/2 or H = V (q), but NOT in the case
H = T (p) + V (q).

I This is because T̂ ≡ {·,T} and V̂ ≡ {·,V } are not commutable:

eĤ∆t = e(T̂ +V̂)∆t 6= eT̂ ∆teV̂∆t . (7)
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Evolving A Classical System on the Computer

The idea of symplectic integrator (SI) is to find constant
c-numbers c1, c2, ..., d1, d2, ..., such that:

e(T̂ +V̂)∆t = ec1T̂∆ted1V̂∆tec2T̂∆ted2V̂∆t ...+ O(∆tn+1) . (8)

I The computer knows how to use the right-hand-side of Eq. (8) to
evolve the system EXACTLY, if the O(∆tn+1) term is dropped.

I The 2nd order SI (n = 2) is the well known “leap frog” algorithm
(used in LatticeEasy & DEFROST when expansion of universe is ignored). Its explict form is

e(T̂ +V̂)∆t = e
1
2 T̂ ∆teV̂∆te

1
2 T̂ ∆t + O(∆t3) . (9)

I Up to 8th order SI’s are all known.
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The Lattice Code

Scalar fields on a lattice:

H(φ, gµν) = Â+ B̂ + Ĉ, (10)

where the three noncommutative terms are
Â: the diagonal terms in the kinetic energy of gravity.
B̂: the kinetic energy of the fields and the off-diagonal terms in the
kinetic energy of gravity.
Ĉ: the potential and gradient energy of the fields and gravity

I The high-order symplectic factorization of e(Â+B̂+Ĉ)∆t is unknown
(iterative expansion⇒ hundreds of factors, practically useless.)

I Operator Â itself is non-canonical (i.e., it has some non-splittable
terms containing both pµν and gµν , the computer does not know

how to calculate eÂ∆t f exactly.
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The Lattice Code

What I have done:

I Find the 4-th and 6-th order optimal symplectic factorizations
of e(Â+B̂+Ĉ)∆t .

I Use 4-th order Runge-Kutta integrator (with much smaller

time-steps) to calculate eÂ∆t f (no cost of extra memory: because Â does not

contain the gradient terms, I can calculate it grid-wise-ly.)

Features of the code:

I You can choose 2nd, 4th or 6th order symplectic integrators
(CPU time cost – 1:3:7. Memory cost: all minimal), depending on how accurate
you want your result to be.

I Three modes for the gravity: FRW background with metric
perturbations; FRW background without metric perturbations;
Minkowski spacetime.
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HLattice output: metric perturbation feed-

backs; evolution in real space; hTT sepa-

rated in real space

arXiv:0812.2917 (Dufaux, Felder,

Kofman & Navros)

LatticeEasy output: no metric per-

turbation feedbacks; evolution in real

space; TT component separated in

Fourier space.
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The opposite claim?

The opposite claim: non-linear enhancement of GW on large
scales?

arXiv:1005.4054 (Bastero-
Gil, Macias-Pérez and
Santos).

TT component sep-
arated in Fourier
space; solid/dashed:
with/without metric
perturbation feedbacks;

leaking from scalar to ten-

sor? numerical noise?
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Conclusions

I A discretization scheme allows the separation of scalar, vector
and tensor modes.

I Symplectic integrator (with Runge-Kutta sub-integrator for
non-canonical terms): evolve the discretized system almost
exactly (numerical noise ∼ 10−14).

I Find lower IR tail of the GW spectrum. Is the extra IR power
in the literature from non-perfect discretization?
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