Chameleon in the Early Universe

Zhiqi Huang, CITA

G2000 talk at DAA, UofT October 23, 2013

Collaborators: A. Erickcek, N. Barnaby, C. Burrage Refs: 1304.0009 (published at PRL), 1310.5149 (submitted to PRD)

CITA people aren't taking G2000 seriously...

1pm today, MP 1404D:

Zhiqi: Oh you are giving a G2000 talk, too?

Evan: Yeah...

Zhiqi: And you just started making the slides now?

Evan: Ehuh, yeah...

Zhiqi: Guess I need to start, too. Oh no, I need to get the lunch first...

Outline

Introduction

Methods beyond linear perturbation theory

Results

Conclusions and Outlook

(4回) (4回) (4回)

The Cosmic Pie after Planck

The Chameleon Model for Dark Energy

GR:

$$\mathcal{L} = rac{M_p^2}{2} R\left(g_{\mu\nu}
ight) + \mathcal{L}_{\mathrm{matter}}\left(g_{\mu\nu}, \psi_m
ight) \,.$$

Chameleon field ϕ :

$$\mathcal{L} = rac{M_{
ho}^2}{2} R\left(g_{\mu
u}
ight) + \mathcal{L}_{\mathrm{matter}}\left(\widetilde{g}_{\mu
u},\psi_{m}
ight) + rac{g^{\mu
u}}{2} \partial_{\mu}\phi \partial_{
u}\phi - V(\phi)\,,$$

where $\tilde{g}_{\mu\nu} \equiv e^{rac{2\beta}{M_p}\phi}g_{\mu\nu}.$

・ 回 ト ・ ヨ ト ・ ヨ ト

Chameleon coupling

The e.o.m. for Chamaleon field:

$$\partial^2 \phi = - rac{dV}{d\phi} + rac{eta}{M_P} T^\mu_\mu \, ,$$

where T^{μ}_{μ} is the trace of energy momentum tensor of the matter fields in Einstein frame.

species	T^{μ}_{μ}
radiation	0
non-relativistic fluid	energy density $ ho$

・ロン ・回 と ・ ヨ と ・ ヨ と

3

The non-relativistic ρ raises the effective potential

$$V_{
m eff}(\phi) = V(\phi) + rac{eta
ho_{
m non-rel}}{M_p}\phi$$

回 と く ヨ と く ヨ と

The "kickers" before BBN

Contributions to Σ							
fermions			bosons				
particle	g	m (GeV)	particle	g	m (GeV)		
before QCD phase transition							
top	12	172	Higgs	1	125		
bottom	12	4.2	Z	3	91		
charm	12	1.3	W±	6	80		
tau	4	1.8					
after QCD phase transition							
muon	4	0.106	π	1	0.140		
electron	4	$5.11 imes 10^{-4}$	π^{\pm}	2	0.135		

TABLE I: The numbers of degrees of freedom (g) and the nasses (m) of the particles that we include in the kick function $\Sigma(T)$. For the fermions, the contributions from antiparticles are included in the number of degrees of freedom for each species.

イロン イヨン イヨン イヨン

How linear perturbation theory works?

.

- 1 Solve the background equations and compute $m^2(t) = d^2 V/d\phi^2$.
- 2 Solve the linear perturbations using the known $m^2(t)$:

$$\delta\left(\partial^2\phi\right) + m^2(t)\delta\phi = 0$$

向下 イヨト イヨト

When does linear perturbation theory fail?

Linear perturbation theory assumes that we can replace the local $d^2V/d\phi^2$ with its background value. This assumption fails when

- ► The mass $d^2 V/d\phi^2$ is very sensitive to a tiny shift of ϕ . That is, we have a huge $d^3 V/d\phi^3$. (Chameleon models)
- In a chaotic system, tiny differences in the initial conditions can lead to significantly different background trajectories. A typical example is the modulated preheating (Bond, Frolov, Huang, Kofman 2009.)

The methods beyond linear perturbation theory

- For classical particle production (modulated preheating), we can use lattice simulations.
- ► For quantum particle production (Chameleon models), a full calculation is very difficult. However, we can include the lowest-order backreaction from d³V/dφ³:

$$\partial_t^2 \phi = -V'(\phi) - \frac{1}{2}V'''(\phi) \int_{2\pi/L}^{\infty} \frac{k^3 d\ln k}{2\pi^2} \left[\frac{-\delta\omega_k}{2\omega_k(\omega_k + \delta\omega_k)} \right]$$

The energy dumped into fluctuations

FIG. 11: The evolution of the energy density in fluctuations, $\langle \rho_{\rm fluct} \rangle$, as a fraction of the total energy density of the chameleon field $\rho_{\phi} \simeq \dot{\phi}_M^2/2$. In this figure, $\dot{\phi}_M = -100 \,{\rm GeV}^2$, and $V(\phi)$ is given by Eq. (9) with n = 2 and $M = 10^{-3} \,{\rm eV}$. The different curves show different $k_{\rm IR}$ values: from bottom to top, $k_{\rm IR} = 10^{13}, 10^{14}, 10^{14.7}, 10^{15}$, and $10^{15.3} \,{\rm GeV}$. In all cases, $k_{\rm max} = 10^{18} \,{\rm GeV}$. The spatially averaged field turns around at t = 0.

$$V(\phi) = M^4 \exp\left(\frac{M}{\phi}\right)^2$$

< 🗇 > < 🖃 >

Conclusions and Outlook

- For a large portion of the parameter-space (β ≥ O(1)), Chameleon condensate can be destroyed before BBN.
- ► Higher-order corrections from d⁴V/dφ⁴, d⁵V/dφ⁵ ... might also be relevant. Further calculations is needed in order to fully understand this problem.