The Dark Energy trajectories in the post-EUCLID era

Zhiqi Huang collaborator: Dick Bond

CITA Seminar, April 26, 2011

Zhiqi Huang collaborator: Dick Bond The Dark Energy trajectories in the post-EUCLID era

Outline

Introduction

Parameterizing Dark Energy: beyond the phenomenological wo-wa

Observational Constraints

current data: SNLS3yr and the latest H_0 measurment The future observations: Planck CMB + EUCLID LSS (+ 21cm + SN)

Conclusion

・ロン ・回 と ・ 回 と ・ 回 と

3

NASA, http://en.wikipedia.org/wiki/File:Cosmological_composition.jpg

Zhiqi Huang collaborator: Dick Bond The Dark Energy trajectories in the post-EUCLID era

イロン 不同と 不同と 不同と

æ

Cosmological Constant

$$\begin{split} S &= \int \sqrt{-g} d^4 x \; \left[\frac{M_\rho^2}{2} \left(R - 2 \Lambda \right) + \mathcal{L}_{\mathrm{matter}} \left(g^{\mu \nu}, \psi_m \right) \right] \\ \rho_{\mathrm{DE}} &= \mathrm{constant} \end{split} \\ \end{split}$$
The equation of state (EOS):

$$w_{\rm DE} \equiv \frac{P_{\rm DE}}{\rho_{\rm DE}} = -1$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Э

Parameterizing the DE EOS

If not $w_{\text{DE}} = -1$, how to parameterize DE? The oft-used options: constant $w_{\text{DE}} = w_0$ or linear $w_{\text{DE}} = w_0 + w_a(1-a)$.

- ► Too many DE models ⇒ difficult to do a model-by-model selection.
- These are good low-redshift approximations for a variety of models.

The take-home message of this talk:

For a wide class of DE models, we have a better choice.

Dark Energy Candidates

A general framework with an extra scalar d.o.f ϕ (scalar-tensor theory)

$$S = \int \sqrt{-g} d^4 x \left[\frac{M_p^2}{2} A(\phi; R) + \frac{1}{2} B(\phi) \partial^{\mu} \phi \partial_{\mu} \phi - V(\phi) + \mathcal{L}_{\text{matter}} \left(g^{\mu\nu} e^{2\alpha(\phi)}, \psi_m \right) \right]$$

Only two free functions are physical:

- Jordan Frame : $\alpha(\phi) = 0$, $B(\phi) = \pm 1$.
- Einstein Frame : $A(\phi) = R$, $B(\phi) = \pm 1$.

Examples: quintessence; phantom; Brans-Dick theory; f(R) gravity; ...

Dark Energy Candidates

If the coupling between ϕ and matter is negligible:

$$S = \int \sqrt{-g} d^4 x \left[\frac{M_p^2}{2} R \pm \frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi - V(\phi) + \mathcal{L}_{\text{matter}} \left(g^{\mu\nu}, \psi_m \right) \right]$$

- +: quintessence.
- -: phantom.
 - These are the simplest alternatives to Λ .
 - Many concrete models: Ratra & Peebles 1988; Wetterich 1988; Frieman et al. 1995; Binetruy 1999; Barreiro et al. 2000; Brax & Martin 1999; Copeland et al. 2000; de La Macorra & Stephan-Otto 2001; Carroll et al. 2003; Caldwell 2002; Caldwell et al. 2003; Linder 2006; Copeland et al. 2006; Huterer & Peiris 2007; Linder 2008 ...

イロン イ部ン イヨン イヨン 三日

Quintessence: two classes of models

The quintessence/phantom $w_{\rm DE}$ recipe

$$w_{\mathrm{DE}} = w_{\phi} = F\left(\mathsf{a}; \Omega_{m}, \epsilon_{s}, \epsilon_{\phi, \infty}, \zeta_{s}
ight)$$

- ▶ The slope parameter $\epsilon_s \equiv \pm \frac{M_p^2}{2} (\frac{d \ln V}{d\phi})^2$ at low redshift ('+' for quintessence, '-' for phantom).
- The tracking parameter $\epsilon_{\phi,\infty} \sim |1 + w_{\phi}|$ at high redshift.
- ► The running parameter ζ_s is related to |dφ/dt| and d² ln V/dφ² at low redshift (for thawing models ζ_s ∝ d² ln V/dφ²).

For the explicit expression of F and more details see *Huang*, *Bond*, *Kofman*, 2011 (ApJ).

Zhiqi Huang collaborator: Dick Bond

The Dark Energy trajectories in the post-EUCLID er-

The thawing models with slow rolling.

Slow-roll thawing models: only ϵ_s is relevant.

The degeneracy between w_0 and w_a (defined as $\frac{dw}{da}|_{a=1}$).

$$1+w_0+w_a(0.264+\frac{0.132}{\Omega_{m0}})=0$$
.

イロン イヨン イヨン イヨン

æ

from bottom to top:

$$\epsilon_{s} = -0.75, -0.5, ..., 0.75$$

Cosmological Data Sets

- Cosmic Microwave Background (CMB): WMAP7(2010), ACT(2010), Acbar (2009), QUAD (2009), BICEP (2009), CBI (2008), Boomerang (2006), VSA (2004), MAXIMA (2000)
- Type Ia Supernova (SN): 472 SNs (123 low-z + 242 SNLS3yr + 93 SDSS1yr + 14 HST)
- Weak Lensing (WL): COSMOS + CFHTLS-wide + RCS + VIRMOS + GaBoDS.
- ► Large Scale Structure (**LSS**): SDSS-DR7 LRG (2009).
- Lya Forest (**Ly***α*): SDSS (P. McDonal 2005, 2006).
- ► HST constraint $H_0 = 73.8 \pm 2.4 \text{km s}^{-1} \text{ Mpc}^{-1}$. (Riess et al 2011)

current data: SNLS3yr and the latest H_0 measurment The future observations: Planck CMB + EUCLID LSS (+ 21cm

<ロ> (四) (四) (三) (三) (三)

SNLS3yr

Table 2.	Cosmological results assuming a flat universe and constant w for the SNLS3 sample						
plus BAO and WMAP7							

Fit	α^{a}	β^{a}	M_B^1	M_B^2	Ω_m	w		
Marginalization fits								
Stat only	$1.450\substack{+0.112\\-0.105}$	$3.164\substack{+0.096\\-0.094}$	-19.164	-19.227	$0.276\substack{+0.016\\-0.013}$	$-1.043^{+0.054}_{-0.055}$		
Stat + sys	$1.367\substack{+0.086\\-0.084}$	$3.179\substack{+0.101\\-0.099}$	-19.175	-19.220	$0.274\substack{+0.019\\-0.015}$	$-1.068^{+0.080}_{-0.082}$		

• • • • • •

current data: SNLS3yr and the latest H_0 measurment The future observations: Planck CMB + EUCLID LSS (+ 21cm

・ロン ・回 と ・ ヨ と ・ ヨ と

3

The updated phenomenological $w_{\rm DE}$

current data: SNLS3yr and the latest H_0 measurment The future observations: Planck CMB + EUCLID LSS (+ 21cm

イロン イヨン イヨン イヨン

The eigen modes

9 uniform bins $a \in [0, 1]$. basis: top-hat functions. $\sigma_1 = 0.12$ $\sigma_2 = 0.22$ $\sigma_3 = 0.41$

Zhiqi Huang collaborator: Dick Bond The Dark Energy trajectories in the post-EUCLID era

current data: SNLS3yr and the latest H_0 measurment The future observations: Planck CMB + EUCLID LSS (+ 21cm

 ϵ_s and $\ln V_0$.

Slow-roll thawing case; assuming $\epsilon_{\phi,\infty} = 0$ and $\zeta_s = 0$.

<ロ> (四) (四) (三) (三) (三) (三)

General quintessence; Uniform priors

on $\Omega_b h^2$, $\Omega_c h^2$ and θ .

current data: SNLS3yr and the latest H_0 measurment The future observations: Planck CMB + EUCLID LSS (+ 21cm

Quintessence models on the ϵ_s - $\epsilon_{\phi,\infty}$ plane.

イロン イ部ン イヨン イヨン 三日

Marginalized over ζ_s and other cosmological parameters.

current data: SNLS3yr and the latest H_0 measurment The future observations: Planck CMB + EUCLID LSS (+ 21cm

・ロト ・回ト ・ヨト ・ヨト

æ

reconstructed $1 + w_{DE}$ trajectories:

the distance moduli:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Forecasts Mock Data

- ► CMB: Planck2.5yr, using 3 channels (70GHz, 100GHz, 143GHz), assuming 5% foreground residual (synchrotron + dust), f_{sky} = 3/4, l_{max} = 2500.
- ► LSS: EUCLID spectroscopic redshift survey; f_{sky} = 0.5, 0.5 < z < 2.1.</p>
- ► SN: JDEM, 500 LOWZ (z < 0.03) + 2500 HIGHZ (0.03 < z < 1.7)</p>
- ► 21-cm survey CHIME 200m×200m cylinder radio telescope, 4000 receivers integrated 4 yrs; f_{sky} = 0.36.

current data: SNLS3yr and the latest H_0 measurment The future observations: Planck CMB + EUCLID LSS (+ 21cm

・ロン ・回 と ・ ヨ と ・ ヨ と …

The EUCLID LSS survey

$$P_g(k,z,\mu) = \left(b + \frac{d\ln D}{d\ln a}\mu^2\right)^2 D^2(z)P_m(k,z=0)e^{-k^2\mu^2\sigma^2}$$

8 redshift bins \times 30 k bins \times 20 μ bins marginalize over 16 nuisance parameters: b_1 , b_2 , ..., b_8 ; σ_1 , σ_2 , ..., σ_8 .

cut-off at quasi nonlinear scales ($k \sim 0.2 \, {
m Mpc}^{-1}$).

current data: SNLS3yr and the latest H_0 measurment The future observations: Planck CMB + EUCLID LSS (+ 21cm

イロト イヨト イヨト イヨト

æ

DE EOS in the post-EUCLID era

Marginalized over ζ_s and other cosmological parame-

ters.

Zhiqi Huang collaborator: Dick Bond The Dark Energy trajectories in the post-EUCLID era

current data: SNLS3yr and the latest H_0 measurment The future observations: Planck CMB + EUCLID LSS (+ 21cm

イロト イヨト イヨト イヨト

Comparison between different probes

current data: SNLS3yr and the latest H_0 measurment The future observations: Planck CMB + EUCLID LSS (+ 21cm

- 4 回 2 - 4 □ 2 - 4 □

How about the "running" parameter ζ_s ?

A slowly rolling field does not "feel" the curvature of the potential.

Conclusion

- Both quintessence and phantom models are consistent with current observations. The best-fit model is in the proximity of Λ.
- The constraints on the slope parameter ε_s and tracking parameter ε_{φ,∞} can be improved by a factor of about 5 by the future observations.
- The running parameter (in thawing case, the second derivative of ln V at low redshift) is not measured today, and will not be measurable in the near-future observations, unless the true model significantly deviates from Λ.
- ► The \(\epsilon_s^{-\epsilon_{\phi,\infty}}\) space is complementary to the standard \(w_0-w_a\) space.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で