Primordial Power Spectra and Cosmological Observations

Zhiqi Huang

Dec 8th, 2009

Collaborators: J.R. Bond, C. Contaldi, L. Kofman, P. Vaudrevange

・ロン ・回と ・ヨン・

Outline

Introduction: Concordance Model and Primordial Power Spectra Cosmological Observations: Current Data and Forecasts Single-Field Slow-Roll Inflation Releasing the Slow-Roll Assumptions Summary and Conclusions

Outline

Introduction: Concordance Model and Primordial Power Spectra

Cosmological Observations: Current Data and Forecasts

Single-Field Slow-Roll Inflation

Releasing the Slow-Roll Assumptions Phenomenological Parametrization Consistency Treatment

Summary and Conclusions

イロト イポト イヨト イヨト

6-parameter Concordance Model

Figure from LAMBDA website

au: reionization optical depth

 $\Omega_{h}h^{2}$: today's physical density of baryon $\Omega_c h^2$: today's physical density of cold dark matter θ : the angle subtended by sound horizon on CMB sky $A_{\rm s}$: the amplitude of primordial scalar metric perturbation $n_{\rm s}$: the spectral index of primordial scalar metric perturbation

(人間) (人) (人) (人)

Observational Confirmation of the Concordance Model

イロン イヨン イヨン イヨン

æ

Beyond 6 parameters:

Late universe: dark energy (w): quintessence, f(R), ... dark matter: annihilation, decay, ... reionization history neutrinos

```
Early universe:
```

inflation & (p)reheating $\begin{cases} \text{ primordial power spectra} \\ \text{ non-Gaussianity}(f_{nl}) \end{cases}$

phase transition topological defect CMB physics

< □ > < @ > < 注 > < 注 > ... 注

Beyond 6 parameters:

I ate universe: dark energy (w): quintessence, f(R), ... dark matter: annihilation, decay, ... reionization history neutrinos

```
Early universe:
```

inflation & (p)reheating $\begin{cases} \text{primordial power spectra} \\ \text{non-Gaussianity}(f_{nl}) \end{cases}$

phase transition topological defect CMB physics

< □ > < @ > < 注 > < 注 > ... 注

Inflation & (p)reheating: the zoology of theories

Zhiqi Huang

Primordial Power Spectra: Standard Extensions n_{run} , r (and n_t).

 $\mathbf{n}_{\mathrm{run}}$: the running of primordial scalar power spectrum \mathbf{r} : the tensor-to-scalar ratio of primordial metric perturbations \mathbf{n}_{t} : the spectral index of primordial tensor power spectrum

$$\begin{aligned} \mathcal{P}_{s}(k) &= A_{s}(\frac{k}{k_{\text{pivot}}})^{n_{s}-1+\frac{1}{2}n_{\text{run}}\ln(\frac{k}{k_{\text{pivot}}})} \\ \mathcal{P}_{t}(k) &= A_{t}(\frac{k}{k_{\text{pivot}}})^{n_{t}}, \end{aligned}$$

where $A_t \equiv rA_s$, and often chosen $k_{\rm pivot}$: $0.002 {\rm Mpc}^{-1}$ or $0.05 {\rm Mpc}^{-1}$.

소리가 소문가 소문가 소문가

Cosmological data sets

- Cosmic Microwave Background (CMB): WMAP5yr (09), Acbar (09), QUAD (09), BICEP (09), CBI (08), Boomerang (06), DASI (05), VSA (04), MAXIMA (00)
- Type Ia Supernova (SN): LOWZ + SDSS + ESSENCE + SNLS1yr + HST (Kessler et al 09) (soon will + SNLS3yr)
- Weak Lensing (WL): COSMOS + CFHTLS-wide + RCS + VIRMOS + GaBoDS (Massey et al 07, Lesgourgues et al 07, Benjamin et al 07)
- ► Large Scale Structure (LSS): SDSS-DR7 LRG (Reid et al 09)
- Lya Forest (Lya): SDSS Lya(McDonald et al 05, 06)
- Others: HST constraint on Hubble parameter (Riess et al 09); Cluster x-ray gas mass fraction (Allen et al 08)

・日本 ・ モン・ ・ モン

Tool: Modified CosmoMC

- Arbitrary Primordial Power spectra functions $P_s(k)$ and $P_t(k)$.
- An integrator to calculate P_s(k) and P_t(k) from arbitrary single-field inflation model
- Automatic adjusting *I*, *k* interpolation for more oscillatory primordial power spectra.
- Dark energy equation of state arbitrary function w(z), with an analytic quintessence/phantom motivated parametrization built-in.
- Decaying dark matter
- CMB, WL, SN, BAO mock data simulator, add an action = -1 for running simulations
- Self-written GetDist to do more statistics & visualizations

The Consistency between Cosmological Data Sets

default SN filter: SALT II

イロン イヨン イヨン イヨン

æ

Forecasts

► CMB: Planck2.5yr, using 3 channels (70GHz, 100GHz, 143GHz), assuming 5% foreground residual (synchrotron + dust), f_{sky} = 3/4, l_{max} = 2500.

other future polarization experiments: SPIDER, EBEX, QUIET, KECK, CMBPol ...

► WL: DUNE-like weak lensing tomography, 20000 degree², depth z ~ 1, 35 galaxies/arcmin², two redshift bins, l_{max} = 1500.

the other proposed deep and wide WL surveys: JDEM, LSST, \ldots

► SN: JDEM, 500 LOWZ (z < 0.03) + 2500 HIGHZ (0.03 < z < 1.7)</p>

other ongoing/future SN surveys: SNLS, SDSS, LSST \ldots

▶ **BAO**: JDEM, 10000 degree², 0.5 < *z* < 2, 10 redshift bins

other ongoing/future BAO surveys: CHIME, WIGGLEZ, BOSS, LSST, ...

Prediction from Single-Field Slow-Roll Inflation

Slow-Roll Approximation:

$$\begin{array}{rcl} n_{5}-1 & \approx & 2\eta_{\nu}-6\epsilon_{\nu} \\ r & \approx & -8n_{t}\approx16\epsilon_{\nu} \\ n_{\mathrm{run}} & \approx & -16\epsilon_{\nu}\eta_{\nu}+24\epsilon_{\nu}^{2}+2\zeta_{\nu}^{2}\approx0 \end{array}$$

where

$$\begin{split} \epsilon_{v} &\equiv \quad \frac{M_{p}^{2}}{2} (\frac{V'}{v})^{2} \\ \eta_{v} &\equiv \quad M_{p}^{2} (\frac{V''}{v}) \\ \zeta_{v}^{2} &\equiv \quad M_{p}^{4} (\frac{V'V'''}{v^{2}}) \end{split}$$

Classification in $\epsilon_v - \eta_v$ space (or $r - n_s$ space):

- Small Field Inflation: η_ν < 0
- Large Field Inflation:
 0 < η_ν < 2ε_ν
- Hybrid Inflation: $\eta_v > 2\epsilon_v$

Constraining Single-Field Slow-Roll Inflation

68.3% and 95.4% CL constraints, current data

Forecast (fiducial
$$n_s = 0.97, r = 0$$
)

current
$$r < 0.16$$
 (95%
CL)
forecast $r < 0.037$ (95%
CL)

イロン イヨン イヨン イヨン

3

The Degeneracy between Scalar and Tensor Spectrum

constraint on r (95%CL):

- r < 0.16 (no running, data sets: all)
- r < 0.32 (no running, data sets: CMB all)
- r < 0.27 (with running, data sets: all)

イロト イポト イヨト イヨト

Phenomenological Parametrization Consistency Treatment

Releasing the Slow-Roll Assumptions:

If allow V''' to be big, ζ_V not necessarily small \rightarrow nontrivial n_{run} . Single field models are not limited in the $r - n_s$ plane.

Two approaches to extend the parametrization of primordial power spectra:

- Phenomenologically take P_s(k) and P_t(k) as arbitrary functions.
- ► Consistently solve P_s(k) and P_t(k) for all possible expansion histories.

イロト イポト イヨト イヨト

Previous works on this topic:

- Simple binning techniques: Briddle et al 03; Hannestad 04; Bridges et al 06, 07; Spergel et al 07;
- Direct inversion: Shafieloo et al 04, 08; Kogo et al 04; Tocchini-Valentini et al 05 06; Nagata et al 08; Nicholson et al 09a, 09b;
- Basis function expansion: Mukherjee 05; Leach 06;
- Cubic spline interpolation: Sealfon et al 05; Peris et al 08, 09;
- Slow-roll reconstruction (flow equations): Peris et al 03, 06a, 06b; Easther 06; Adshead et al 09;

(ロ) (同) (E) (E) (E)

Phenomenological Parametrization Consistency Treatment

Phenomenological Parametrization

conventional "3 + 2" \Rightarrow "n + 2".

► For the well constrained scalar power spectrum, take ln P_s(k) at n fixed knots k₁, k₂, ..., k_n in the observable range, interpolate in between.

n parameters

▶ For the poorly constrained tensor power spectrum, use simple

$$P_t(k) = A_t(rac{k}{k_{ ext{pivot}}})^{n_t}$$
 , with prior $-0.1 < n_t < 0$

2 parameters

(optional: do similar expansion as $P_s \Rightarrow "n + m"$ parametrization)

Outline

Introduction: Concordance Model and Primordial Power Spectra Cosmological Observations: Current Data and Forecasts Single-Field Slow-Roll Inflation Releasing the Slow-Roll Assumptions Summary and Conclusions

Phenomenological Parametrization Consistency Treatment

Reconstructed Primordial Power Spectra

Zhiqi Huang

Introduction: Concordance Model and Primordial Power Spectra Cosmological Observations: Current Data and Forecasts Single-Field Slow-Roll Inflation

Releasing the Slow-Roll Assumptions

Summary and Conclusions

Phenomenological Parametrization Consistency Treatment

Reconstructed Trajectories in C_l Space

Zhiqi Huang

Phenomenological Parametrization Consistency Treatment

Vary the Interpolation Method: Chebyshev Interpolation

Zhiqi Huang

Outline

Introduction: Concordance Model and Primordial Power Spectra **Cosmological Observations: Current Data and Forecasts** Single-Field Slow-Roll Inflation Releasing the Slow-Roll Assumptions Summary and Conclusions

Phenomenological Parametrization Consistency Treatment

Forecast: 7 knots and 13 knots

 $r(0.002 {
m Mpc}^{-1}) < 0.041 (95\% {
m CL})$

 $r(0.002 \mathrm{Mpc}^{-1}) < 0.044 (95\% \mathrm{CL})$

Zhigi Huang

イロト イヨト イヨト イヨト Primordial Power Spectra and Cosmological Observations

æ

Phenomenological Parametrization Consistency Treatment

What is Consistency and Why Consistency

▶ In the context of single-field inflation: uniform acceleration $\epsilon \approx const$: $n_t \approx -2\epsilon \approx -\frac{r}{8}$

generic $\epsilon(\ln k)$: more complicated functional relationship.

 Even the next generation data can not measure the consistency

 \Rightarrow need to be treated as a theoretical prior.

Phenomenological Parametrization Consistency Treatment

Consistency Treatment

Expansion history $H(\ln a) \Rightarrow P_s(k)$ and $P_t(k)$. Method #1: slow-roll approximation Method #2 lution

$$\begin{split} P_s(k) &\approx \frac{1}{8\pi^2 M_p^2} \frac{H^2}{\epsilon}|_{k=aH}, \\ P_t(k) &\approx \frac{2}{\pi^2 M_p^2} H^2|_{k=aH}, \end{split}$$

where

$$\epsilon \equiv -\frac{\dot{H}}{H^2}$$

Inflation $\Leftrightarrow 0 < \epsilon < 1$.

Method #2: numerical exact solution

$$P_s(k) \propto |\mathcal{R}_k|^2,$$

 $P_t(k) \propto |h_k|^2,$

where \mathcal{R}_k and h_k can be solved from:

$$\mathcal{R}_k'' + 2rac{(\sqrt{\epsilon}a)'}{\sqrt{\epsilon}a}\mathcal{R}_k + k^2\mathcal{R}_k = 0,$$

 $h_k'' + 2rac{a'}{a}h_k + k^2h_k = 0.$

・ロン ・回と ・ヨン ・ヨン

Phenomenological Parametrization Consistency Treatment

How Good Is the Slow-Roll Approximation?

Phenomenological Parametrization Consistency Treatment

A wilder example.

When $|rac{d\ln\epsilon}{d\ln k}| \sim 1$,

- ► *P_s*: errors of order 1.
- P_t: still not bad (this is generic given small ε).

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Phenomenological Parametrization Consistency Treatment

Constraining Expansion Histories

- "2 + n" parametrization:
 - $\blacktriangleright \ln A_p \equiv \ln(\frac{H_{\text{pivot}}^2}{\epsilon_{\text{pivot}}})$
 - $\triangleright \epsilon_{\rm pivot}$
 - ► Take d ln e / d ln k at n fixed knots k1, k2, ..., kn, interpolate in between (at knots prior -1 < d ln e / d ln k < 1).</p>

Each MCMC step numerically solve $P_s(k)$ and $P_t(k)$ (CPU time \sim a few WMAP likelihood evaluations).

Phenomenological Parametrization Consistency Treatment

Reconstructed Power Spectra and Potentials

イロト イヨト イヨト イヨト

Phenomenological Parametrization Consistency Treatment

Reconstructed ϵ trajectories

イロン イヨン イヨン イヨン

æ

Phenomenological Parametrization Consistency Treatment

Reconstructing $m^2 \phi^2$ model with mock data

Fiducial model: $V(\phi) = \frac{1}{2}m^2\phi^2$, $m = 5.5 \times 10^{-6}M_p$, $\phi|_{0.002Mpc^{-1}} = 16.5M_p$

イロト イヨト イヨト イヨト

Phenomenological Parametrization Consistency Treatment

Directly Reconstruct $V(\phi)$

Parametrization:

$$V(\phi) = V_0 \alpha^2 \left(1 + \alpha \Delta \phi + \frac{\beta}{2} \Delta \phi^2 + \frac{\gamma}{3!} \Delta \phi^3 + \frac{\omega}{4!} \Delta \phi^4\right),$$

where

$$\Delta \phi \equiv (\phi - \phi_{
m pivot})/M_{
m p}$$

Priors:

- $V(\phi)$ positive and monotonic (WLOG assume $dV/d\phi < 0$).
- \blacktriangleright 0 < ϵ < 1
- (optional) small-field assumption $\phi_{max} \phi_{min} < M_p$

Phenomenological Parametrization Consistency Treatment

Reconstructed potentials

with small-field assumption

・ロト ・日本 ・モート ・モート

Summary and Conclusions

- Current constraint r < 0.16 strongly depends on the uniform acceleration assumption.
- ▶ Completely releasing slow-roll assumption \Rightarrow degeneracy between P_s and $P_t \Rightarrow r \lesssim 0.7$
- The next generation cosmological observations can break the degeneracy between P_s and P_t at a much better level (constrain r < 0.04 without assuming slow-roll).</p>